JP2007232640A - 局在プラズモン共鳴センサ及びそれを用いた測定装置 - Google Patents

局在プラズモン共鳴センサ及びそれを用いた測定装置 Download PDF

Info

Publication number
JP2007232640A
JP2007232640A JP2006056551A JP2006056551A JP2007232640A JP 2007232640 A JP2007232640 A JP 2007232640A JP 2006056551 A JP2006056551 A JP 2006056551A JP 2006056551 A JP2006056551 A JP 2006056551A JP 2007232640 A JP2007232640 A JP 2007232640A
Authority
JP
Japan
Prior art keywords
plasmon resonance
resonance sensor
localized plasmon
optical fiber
convex pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006056551A
Other languages
English (en)
Inventor
Kenichi Muta
健一 牟田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moritex Corp
Original Assignee
Moritex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moritex Corp filed Critical Moritex Corp
Priority to JP2006056551A priority Critical patent/JP2007232640A/ja
Publication of JP2007232640A publication Critical patent/JP2007232640A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】局在プラズモン共鳴センサにおいて測定感度を向上させるために、金属微粒子を保持する多数の微細孔を有する微細構造体を形成したものがあるが、この構造では加工において煩雑な工程が必要となる。
【解決手段】以上の課題を解決するために、本発明では,透明基板の試料側の面又は光ファイバ1の端面にモスアイ(Moth eye)構造の微細凹凸パターン4を形成し、微細凹凸パターンを構成する多数の突部5に金属微粒子6を固定した構成の局在プラズモン共鳴センサを提案する。
【選択図】 図1

Description

本発明は局在プラズモン共鳴センサ及びそれを用いた測定装置に関するものである。
局在プラズモン共鳴を利用して、例えば試料の屈折率や、免疫反応等を測定するための各種の局在プラズモン共鳴センサが従来から提案されている。
例えば、特許文献1には、基板の表面に、金属微粒子を、互いに凝集させずに互いに離隔した状態にある単層膜として固定してセンサー・ユニットを構成し、このセンサー・ユニットに対して光を照射し、前記基板に固定された前記金属微粒子を透過した光の吸光度を測定することにより、前記基板に固定された前記金属微粒子近傍の媒質の屈折率を検出する局在プラズモン共鳴センサーが記載されている。
また特許文献2には、光ファイバ2の端面に、局在化した表面プラズモン共鳴が励起される寸法の金属微粒子層を形成すると共に、この金属微粒子層の表面に、アナライト、即ち、検出対象分子に相補的なリガンドの分子層を形成し、金属微粒子層内に局在化した表面プラズモン共鳴により、光ファイバに入力された光の変化を用いて、リガンドに対してのアナライトの結合状態を測定する局在プラズモン共鳴センサが記載されている。
また特許文献3には、ポリスチレン等の基板の表面側に、表面に対して垂直な方向の多数の微細孔を形成し、この微細孔の内部に金属微粒子を独立して保持することにより光学的なノイズの発生を防止して、高感度な測定が可能な局在プラズモン共鳴センサが記載されている。
また特許文献4には、一表面に複数の微細孔が形成された層状の基体を陽極酸化アルミナ等を用いて構成し、この基体の前記微細孔内に金属微粒子を充填させると共に、この金属微粒子と、概ね、その径以下の距離を置いた状態で、前記一表面において微細孔の周囲部分に金属薄膜を形成した微細構造体から成る局在プラズモン共鳴センサが記載されている。
一方、近来、液晶ディスプレイパネル、回折格子、レンズ、プリズム等の光学素子の端面における光の反射率を低下させて透過率を向上させる技術の一つとして、モスアイ(Moth eye)と称される微細凹凸パターンが知られている。例えば特許文献5には、2光束干渉法を利用してガラス基材の表面にモスアイ構造の加工を行う方法が記載されている。
特開2000−356587号公報 特開2005−181296号公報 特開2004−279364号公報 特開2004−232027号公報 特開2004−51388号公報
上述したように、上記特許文献3、4は、局在プラズモン共鳴センサを構成する基板の試料側の面に、金属微粒子を保持する多数の微細孔を有する微細構造体を形成して、センサとしての感度の向上を図るものであるが、このような微細構造体は、基板とは異なった材料により構成するので、加工工程が煩雑であるという課題がある。
本発明は、このような課題を解決することを目的とするもので、即ち、局在プラズモン共鳴センサの要素に合理的にモスアイ構造を適用することにより、加工において、煩雑な工程が不要であり、効果的に反射率を低下させ、感度を向上することができるようにしたものである。
以上の課題を解決するために,本発明では、まず、透明基板の試料側の面にモスアイ構造の微細凹凸パターンを形成し、微細凹凸パターンを構成する多数の突部に金属微粒子を固定した局在プラズモン共鳴センサを提案する。
そして本発明では、上記局在プラズモン共鳴センサの透明基板の試料側とは反対側に測定光の送光部と、検出光の検出装置を配置して構成した測定装置を提案する。
また本発明では、上記局在プラズモン共鳴センサの透明基板の試料側に測定光の送光部と、検出光の検出装置を配置して構成した測定装置を提案する。
また本発明では、上記局在プラズモン共鳴センサの透明基板の試料側の面と対向する側に測定光の送光部を配置すると共に、上記透明基板の試料側と反対側に検出光の検出装置を配置して構成した測定装置を提案する。
また本発明では、光ファイバの端面にモスアイ構造の微細凹凸パターンを形成し、微細凹凸パターンを構成する多数の突部に金属微粒子を固定した局在プラズモン共鳴センサを提案する。
そして本発明では、上記局在プラズモン共鳴センサの光ファイバ側に測定光の送光部と、検出光の検出装置を配置して構成した測定装置を提案する。
また本発明では、上記局在プラズモン共鳴センサの光ファイバと試料を隔てて対向する側に測定光の送光部を配置すると共に、光ファイバ側に検出光の検出装置を配置して構成した測定装置を提案する。
また本発明では、以上の構成において、金属微粒子にリガンドを固定した局在プラズモン共鳴センサ又はそれを用いた測定装置を提案する。
そして本発明では、以上の構成において、微細凹凸パターンの周期を200nm又はその近傍とし、高さを500〜700nmとすると共にアスペクト比(高さ/周期)を1〜3に設定することを提案する。
請求項1及び請求項5の発明の局在プラズモン共鳴センサでは、透明基板又は光ファイバに形成したモスアイ構造の微細凹凸パターンを構成する多数の突部に固定された金属微粒子に測定光を照射して、ある特定の波長において局在プラズモン共鳴を生じさせ、それによる検出光強度の変化を測定することにより、金属微粒子と接触している試料の屈折率、そして対応する試料の物性等を測定することができる。
透明基板又は光ファイバの面における光の反射率は、モスアイ構造により低減することができるので、透明基板及び光ファイバにおける測定光又は検出光の透過効率が高く、従って感度の高い測定を行うことができる。
局在プラズモン共鳴を生じさせる金属微粒子は、モスアイ構造の微細凹凸パターンを構成する多数の突部に固定するので、微細凹凸パターンが形成された基板又は光ファイバの面積に対して、金属微粒子が固定される面積が大きく、従ってこの点においても測定における感度を向上することができる。
上記の局在プラズモン共鳴センサにおいて、金属微粒子にリガンドを固定したものにおいては、金属微粒子に固定したリガンドにより、それと結合するアナライトの結合状態を測定することができる。
反射率の低下は、微細凹凸パターンの寸法に依存し、例えば、使用波長を可視光の範囲とする場合、微細凹凸パターンの周期を200nm又はその近傍とし、高さを500〜700nmとすると共にアスペクト比を1〜3とした場合に、良好な結果が得られる。
次に本発明を実施するための最良の形態を添付図面を参照して説明する。
図1は本発明の局在プラズモン共鳴センサを光ファイバを用いて構成した実施の形態を要部を拡大して模式的に示すものである。
符号1は光ファイバであり、2はコア、3はクラッドを示すものである。この実施の形態では、光ファイバ1の端面にモスアイ構造の微細凹凸パターン4を形成し、微細凹凸パターン4を構成する多数の突部5に金属微粒子6を固定して局在プラズモン共鳴センサを構成するものである。
モスアイ構造の微細凹凸パターン4は、上述した特許文献5に記載されている技術等を利用して、例えば2光束干渉法、電子描画法、マスク法等を利用した簡素な加工工程で形成することができる。
この局在プラズモン共鳴センサにおいては、光ファイバ1のコア2を伝播してきた測定光は、モスアイ構造の微細凹凸パターン4を経て低反射率で出射して金属微粒子6に照射され、金属微粒子6により反射された検出光が再び微細凹凸パターン4を経てコア2に入射して、光ファイバ1に接続された測定装置により所定の測定が行われる。
即ち、金属微粒子6に照射された測定光の、ある特定の波長において生じる局在プラズモン共鳴に起因する検出光の強度の変化を測定することにより、金属微粒子と接触している試料の屈折率、そして対応する試料の物性等を測定することができる。
モスアイ構造の微細凹凸パターン4においては、突部5は円錐状、三角錐状、四角錘状等の錐体形状を成しており、この多数の突部5に金属微粒子6を固定するので、金属微粒子6が固定される面積は、光ファイバ1の端面にそのまま固定する場合と比較して大きい。
従って本発明では、モスアイ構造により反射率が低下することと、金属微粒子が固定される面積が大きいことにより、測定感度を向上することができる。
図2は本発明における局在プラズモン共鳴センサを用いて構成した反射型測定装置の実施の形態を、要部を拡大して示すものである。
図において、符号7は光源であり、光源7からの測定光は光ファイバ8を経て、光カップラー9を介して、本発明の局在プラズモン共鳴センサが構成されている光ファイバ10に接続される。一方、光カップラー9には検出器11に至る光ファイバ12が接続されており、検出器11による検出出力はコンピュータ等の分析装置13に入力されて、所定の測定動作が行われる。
一方、本発明の局在プラズモン共鳴センサが構成されている光ファイバ8の端部は、試料容器14に入れられている試料15中に浸漬されている。
以上の構成において、光源7からの測定光は、光ファイバ8、光カップラー9、光ファイバ10を経て、その端部に構成されたセンサに至り、検出光は、光ファイバ10、光カップラー9、光ファイバ12を経て検出器11に至り、分析装置13においてディスプレイ等に出力される。
一方、図3は、本発明における局在プラズモン共鳴センサを用いて構成した透過型測定装置の実施の形態を、要部を拡大して示すものである。尚、図においては、図2の反射型測定装置の構成要素と同様な構成要素は、同一の符号を付して重複する説明は省略する。
この透過型測定装置においては、光源7からの測定光は、試料15側からセンサに照射され、検出光は、光ファイバ10、光カップラー9、光ファイバ12を経て検出器11に至り、分析装置13においてディスプレイ等に出力される。
次に図4は本発明の局在プラズモン共鳴センサを光ファイバではなく、透明基板を用いて構成した実施の形態を要部を拡大して模式的に示すものである。この図4において、図1に示す構成要素と同様な構成要素には同一の符号を付している。
符号1はガラス等の透明基板であり、図中の上側が試料15側に対応しており、この試料15側の面にモスアイ構造の微細凹凸パターン4を形成し、微細凹凸パターン4を構成する多数の突部5に金属微粒子6を固定して局在プラズモン共鳴センサを構成している。
図5はこの実施の形態の局在プラズモン共鳴センサを用いて構成した透過型測定装置の要部を示すもので、この測定装置では、透明基板16とスペーサ17と、スペーサ17を介して対向させた透明板18とから試料容器14を構成しており、この試料容器14内の試料15に上記センサが浸漬されている。
この透過型測定装置においては、光源からの測定光は、図3の測定装置と同様に試料15側からセンサに照射され、微細凹凸パターン4を経て透明基板16内に入射された検出光は、透明基板16の他の面から出射して、適宜の検出装置により検出されて分析に供される。
次に図6は、この実施の形態の局在プラズモン共鳴センサを用いて構成した反射型測定装置の要部を模式的に示すもので、この測定装置では、透明基板16とスペーサ17と、スペーサ17を介して対向させた板19とから試料容器14を構成しており、この試料容器14内の試料15に上記センサが浸漬されている。
この反射型測定装置においては、光源からの測定光は、透明基板16に入射し、透過して、モスアイ構造の微細凹凸パターン4が形成されている端面において反射し、この際、微細凹凸パターン4に固定した金属微粒子6に局在化プラズモン共鳴を励起すると共に、検出光は透明基板を透過し、出射して、適宜の検出装置により検出されて分析に供される。
この構成では、モスアイ構造による反射率の低下と、金属微粒子が固定される面積が大きいことによる測定感度の向上を図ることができる。
次に図7は、この実施の形態の局在プラズモン共鳴センサを用いて構成した反射型測定装置の他の構成の要部を模式的に示すもので、この測定装置では、図5の装置と同様に、透明基板16とスペーサ17と、スペーサ17を介して対向させた透明板18とから試料容器14を構成しており、この試料容器14内の試料15に上記センサが浸漬されている。
この反射型測定装置においては、光源からの測定光は、透明板18に入射し、透過して、モスアイ構造の微細凹凸パターン4において反射し、この際、微細凹凸パターン4に固定した金属微粒子6に局在化プラズモン共鳴を励起すると共に、検出光は透明板18を透過し、出射して、適宜の検出装置により検出されて分析に供される。
この構成では、モスアイ構造において金属微粒子が固定される面積が大きいことによる測定感度の向上を図ることができる。
上述したとおり、本発明の局在プラズモン共鳴センサは、以上の構成において、試料15の屈折率、そして対応する試料15の物性等を測定することができるのであるが、図8に模式的に示すように、金属微粒子6にリガンド19を固定して、それと結合するアナライト20の結合状態を測定することができる。
例えば、アナライト20をアビジンとすると、アビジンに親和性の強い分子、即ち、リガンド19としてビオチンを使用することにより、アナライト20であるアビジンを検出可能なセンサを構成することができ、抗原抗体反応の検出を行うことができる。
上述したモスアイ構造の微細凹凸パターン4による光の反射率の低下は、微細凹凸パターン4の寸法に依存する。即ち、使用する波長:λ、モスアイ構造の微細凹凸パターン4の周期をΛとすると、反射率を低下させるための、波長λと周期Λの関係は、次式で表される。(下記非特許文献1、2を参照。)
(Λ/λ)≦{1/max(ns,ni)+ni}
但し、ni:空気の屈折率、ns:光学ガラスの屈折率とする。
「Optimal design forantireflective tapered two-dimensional subwavelength grating structures」J.Opt.Soc.Am.A Vol.12 333 (1995) 「Antireflection structuredsurfaces for the ingrared spectral region」 Appl.Opt Vol.32 1154 (1993)
そこで使用波長を可視光の400nmから700nmとすると、上式から、下記の周期Λの範囲が得られる。
160nm≦Λ≦290nm
シミュレーションでは、微細凹凸パターンの周期を200nm又はその近傍とし、高さを500〜700nmとすると共に、アスペクト比(高さ/周期)を1〜3に設定した場合に、良好な結果が得られた。
そこでシミュレーションの結果で得られた最適な寸法に基づき、透明基板としてのPMMA(ポリメチルメタクリレート)板にモスアイ構造の微細凹凸パターンを形成して反射率を測定した結果を図9に示す。尚、図9においてPMMAの表示は、モスアイ構造の微細凹凸パターンを形成していない場合、Moth Eyeの表示は、モスアイ構造の微細凹凸パターンを形成した場合を示すものである。
以上の結果から、本発明の局在プラズモン共鳴センサでは、透明基板又は光ファイバの面における光の反射率を、モスアイ構造により低減することができるので、透明基板及び光ファイバにおける測定光又は検出光の透過効率が高く、従って感度の高い測定を行うことができる。
また、局在プラズモン共鳴を生じさせる金属微粒子は、モスアイ構造の微細凹凸パターン部に固定するので、微細凹凸パターンが形成された基板又は光ファイバの面積に対して、金属微粒子が固定される面積が大きく、従ってこの点においても測定における感度を向上することができる。
本発明は以上のとおりであるので、感度を向上させた局在プラズモン共鳴センサを、煩雑でない加工工程で製作することができ、産業上の利用可能性が大である。
本発明の局在プラズモン共鳴センサを光ファイバを用いて構成した実施の形態を要部を拡大して模式的に示すものである。 本発明における局在プラズモン共鳴センサを用いて構成した反射型測定装置の実施の形態を、要部を拡大して示すものである。 本発明における局在プラズモン共鳴センサを用いて構成した透過型測定装置の実施の形態を、要部を拡大して示すものである。 本発明の局在プラズモン共鳴センサを透明基板を用いて構成した実施の形態を要部を拡大して模式的に示すものである。こ 図4のセンサを用いて構成した透過型測定装置の要部を示すものである。 図4のセンサを用いて構成した反射型測定装置の要部を示すものである。 図4のセンサを用いて構成した他の反射型測定装置の要部を示すものである。 本発明に係る局在プラズモン共鳴センサの他の実施の形態の構成を概念的に示す説明図である。 シミュレーションの結果で得られた最適な寸法に基づき、透明基板としてのPMMA板にモスアイ構造の微細凹凸パターンを形成して反射率を測定した結果を示す説明図である。
符号の説明
1 光ファイバ
2 コア
3 クラッド
4 微細凹凸パターン
5 突部
6 金属微粒子
7 光源
8、10、12 光ファイバ
9 光カップラー
11 検出器
13 分析装置
14 試料容器
15 試料
16 透明基板
17 スペーサ
18 透明板
19 リガンド
20 アナライト

Claims (11)

  1. 透明基板の試料側の面にモスアイ構造の微細凹凸パターンを形成し、微細凹凸パターンを構成する多数の突部に金属微粒子を固定したことを特徴とする局在プラズモン共鳴センサ。
  2. 請求項1の局在プラズモン共鳴センサの透明基板の試料側とは反対側に測定光の送光部と、検出光の検出装置を配置して構成した局在プラズモン共鳴センサを用いた測定装置。
  3. 請求項1の局在プラズモン共鳴センサの透明基板の試料側に測定光の送光部と、検出光の検出装置を配置して構成した局在プラズモン共鳴センサを用いた測定装置。
  4. 請求項1の局在プラズモン共鳴センサの透明基板の試料側の面と対向する側に測定光の送光部を配置すると共に、上記透明基板の試料側と反対側に検出光の検出装置を配置して構成した局在プラズモン共鳴センサを用いた測定装置。
  5. 光ファイバの端面にモスアイ構造の微細凹凸パターンを形成し、微細凹凸パターンを構成する多数の突部に金属微粒子を固定したことを特徴とする局在プラズモン共鳴センサ。
  6. 請求項5の局在プラズモン共鳴センサの光ファイバ側に測定光の送光部と、検出光の検出装置を配置して構成した局在プラズモン共鳴センサを用いた測定装置。
  7. 請求項5の局在プラズモン共鳴センサの光ファイバと試料を隔てて対向する側に測定光の送光部を配置すると共に、光ファイバ側に検出光の検出装置を配置して構成した局在プラズモン共鳴センサを用いた測定装置。
  8. 金属微粒子にリガンドを固定したことを特徴とする請求項1又は5に記載の局在プラズモン共鳴センサ。
  9. 金属微粒子にリガンドを固定したことを特徴とする請求項2〜4、6又は7のいずれか1項に記載の局在プラズモン共鳴センサを用いた測定装置。
  10. 微細凹凸パターンの周期を200nm又はその近傍とし、高さを500〜700nmとすると共にアスペクト比(高さ/周期)を1〜3に設定したことを特徴とする請求項1、5又は8のいずれか1項に記載の局在プラズモン共鳴センサ。
  11. 微細凹凸パターンの周期を200nm又はその近傍とし、高さを500〜700nmとすると共にアスペクト比(高さ/周期)を1〜3に設定したことを特徴とする請求項2〜4、6、7又は9のいずれか1項に記載の局在プラズモン共鳴センサを用いた測定装置。
JP2006056551A 2006-03-02 2006-03-02 局在プラズモン共鳴センサ及びそれを用いた測定装置 Pending JP2007232640A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006056551A JP2007232640A (ja) 2006-03-02 2006-03-02 局在プラズモン共鳴センサ及びそれを用いた測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006056551A JP2007232640A (ja) 2006-03-02 2006-03-02 局在プラズモン共鳴センサ及びそれを用いた測定装置

Publications (1)

Publication Number Publication Date
JP2007232640A true JP2007232640A (ja) 2007-09-13

Family

ID=38553350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006056551A Pending JP2007232640A (ja) 2006-03-02 2006-03-02 局在プラズモン共鳴センサ及びそれを用いた測定装置

Country Status (1)

Country Link
JP (1) JP2007232640A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150749A (ja) * 2007-12-20 2009-07-09 Japan Aviation Electronics Industry Ltd 表面プラズモンセンサ
JP2013097164A (ja) * 2011-10-31 2013-05-20 Ricoh Opt Ind Co Ltd 光学部品
JP2014029288A (ja) * 2012-07-31 2014-02-13 Nippon Steel & Sumikin Chemical Co Ltd 複合基板、局在型表面プラズモン共鳴センサー、その使用方法、及び検知方法
JP2014168871A (ja) * 2013-03-01 2014-09-18 Dainippon Printing Co Ltd 金属粒子が担持されたフィルムおよびフィルム製造方法
US8998446B2 (en) 2009-12-24 2015-04-07 Samsung Display Co., Ltd. Optical film and organic light emitting display apparatus comprising the same
WO2015136733A1 (ja) * 2014-03-14 2015-09-17 シャープ株式会社 光学素子及び表示装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150749A (ja) * 2007-12-20 2009-07-09 Japan Aviation Electronics Industry Ltd 表面プラズモンセンサ
JP4659018B2 (ja) * 2007-12-20 2011-03-30 日本航空電子工業株式会社 表面プラズモンセンサ
US8998446B2 (en) 2009-12-24 2015-04-07 Samsung Display Co., Ltd. Optical film and organic light emitting display apparatus comprising the same
JP2013097164A (ja) * 2011-10-31 2013-05-20 Ricoh Opt Ind Co Ltd 光学部品
JP2014029288A (ja) * 2012-07-31 2014-02-13 Nippon Steel & Sumikin Chemical Co Ltd 複合基板、局在型表面プラズモン共鳴センサー、その使用方法、及び検知方法
JP2014168871A (ja) * 2013-03-01 2014-09-18 Dainippon Printing Co Ltd 金属粒子が担持されたフィルムおよびフィルム製造方法
WO2015136733A1 (ja) * 2014-03-14 2015-09-17 シャープ株式会社 光学素子及び表示装置

Similar Documents

Publication Publication Date Title
CN105899983B (zh) 导模共振设备
Charrier et al. Evanescent wave optical micro-sensor based on chalcogenide glass
Yoon et al. Design optimization of nano-grating surface plasmon resonance sensors
Kashyap et al. Surface plasmon resonance-based fiber and planar waveguide sensors
Szeghalmi et al. Theoretical and experimental analysis of the sensitivity of guided mode resonance sensors
JP4429323B2 (ja) 導波路素子、導波路素子の製造方法及び光学センサ
AU2278500A (en) A surface plasmon resonance sensor
JP2009535977A5 (ja)
WO2005114276A1 (en) Integrated optical waveguide sensors with reduced signal modulation
JP2007232640A (ja) 局在プラズモン共鳴センサ及びそれを用いた測定装置
US20120218550A1 (en) Nanohole array biosensor
Kim et al. Correlation analysis between plasmon field distribution and sensitivity enhancement in reflection-and transmission-type localized surface plasmon resonance biosensors
WO2013129378A1 (ja) Sprセンサセルおよびsprセンサ
Cennamo et al. Biosensors exploiting unconventional platforms: The case of plasmonic light-diffusing fibers
CN110926667A (zh) 一种基于非对称周期表面等离激元晶格共振的压力传感器件
Qian et al. Improving the sensitivity of guided-mode resonance sensors under oblique incidence condition
Live et al. Localized and propagating surface plasmons in gold particles of near-micron size
Cheng et al. Metallic nanoparticles on waveguide structures: effects on waveguide mode properties and the promise of sensing applications
Kovacs et al. Near cut-off wavelength operation of resonant waveguide grating biosensors
Hasan et al. Theory and modeling of slab waveguide based surface plasmon resonance
Wawro et al. Optical waveguide-mode resonant biosensors
JP2008268188A (ja) センシング装置
JP5777277B2 (ja) 光導波路型バイオケミカルセンサチップ
Abdulhalim II et al. Resonant and scatterometric grating-based nanophotonic structures for biosensing
Jasim et al. Low-cost fabrication of functional plasmonic fiber-optic-based sensors using microsphere photolithography