JP2007230934A - Method for producing secondary butanol - Google Patents

Method for producing secondary butanol Download PDF

Info

Publication number
JP2007230934A
JP2007230934A JP2006055935A JP2006055935A JP2007230934A JP 2007230934 A JP2007230934 A JP 2007230934A JP 2006055935 A JP2006055935 A JP 2006055935A JP 2006055935 A JP2006055935 A JP 2006055935A JP 2007230934 A JP2007230934 A JP 2007230934A
Authority
JP
Japan
Prior art keywords
water
secondary butanol
oxygen
producing secondary
butene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006055935A
Other languages
Japanese (ja)
Other versions
JP4886323B2 (en
Inventor
Shoichi Uchiyama
正一 内山
Kenji Okamoto
賢治 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2006055935A priority Critical patent/JP4886323B2/en
Priority to CNA200780007447XA priority patent/CN101395111A/en
Priority to PCT/JP2007/052999 priority patent/WO2007105421A1/en
Publication of JP2007230934A publication Critical patent/JP2007230934A/en
Priority to KR1020087019871A priority patent/KR101341812B1/en
Application granted granted Critical
Publication of JP4886323B2 publication Critical patent/JP4886323B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/03Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2
    • C07C29/04Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2 by hydration of carbon-to-carbon double bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/12Monohydroxylic acyclic alcohols containing four carbon atoms

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing secondary butanol while suppressing the deterioration of titanium oxidation film caused by the operation of the facility. <P>SOLUTION: Secondary butanol is prepared by the direct hydration of n-butene using an aqueous solution of a heteropolyacid as a catalyst and using water containing dissolved oxygen as the raw water. The water as a raw material is preferably oxygen-saturated water. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、第2級ブタノール(2−ブタノール)の製造方法に関する。さらに詳しくは、直接水和法による第2級ブタノールの製造において、原料水に酸素含有水を使用する製造方法に関する。   The present invention relates to a method for producing secondary butanol (2-butanol). More specifically, the present invention relates to a production method using oxygen-containing water as raw water in the production of secondary butanol by a direct hydration method.

第2級ブタノールは、主に溶剤として有用なメチルエチルケトン(MEK)の原料として使用されている。第2級ブタノールの製造法としては、間接水和法と直接水和法がある。
間接水和法では、n−ブテンを硫酸でエステル化し、この硫酸エステルをスチームで加水分解することにより、第2級ブタノールを得る。この方法では、硫酸を利用するため、再利用等の工程が複雑となり、また、エネルギーの消費が大きい。さらに、装置の腐食や廃硫酸の処理等の問題がある。
一方、本出願人は直接水和法として、ヘテロポリ酸水溶液を使用し、n−ブテンを直接水和することによって第2級ブタノールを得る方法を開示している(例えば、特許文献1参照。)。この方法では硫酸エステルを経由せずに第2級ブタノールが製造できるため工程が簡略化できる。
Secondary butanol is mainly used as a raw material for methyl ethyl ketone (MEK) which is useful as a solvent. As a production method of secondary butanol, there are an indirect hydration method and a direct hydration method.
In the indirect hydration method, n-butene is esterified with sulfuric acid, and the sulfuric ester is hydrolyzed with steam to obtain secondary butanol. In this method, since sulfuric acid is used, processes such as reuse are complicated, and energy consumption is large. Furthermore, there are problems such as corrosion of equipment and treatment of waste sulfuric acid.
On the other hand, the present applicant has disclosed a method of obtaining secondary butanol by directly hydrating n-butene using a heteropolyacid aqueous solution as a direct hydration method (see, for example, Patent Document 1). . In this method, since the secondary butanol can be produced without going through the sulfate ester, the process can be simplified.

ところで、直接水和法ではn−ブテンを高温、高圧下にてヘテロポリ酸水溶液に接触させる必要があり、また、比較的強酸性領域での反応であることから、反応容器等の設備には酸に対する腐食に強い金属チタンが使用されている。また、金属チタンは水素によって水素脆化を生じるため、その表層に酸化皮膜を形成することによって、水素による腐食を抑制している。   By the way, in the direct hydration method, it is necessary to contact n-butene with the heteropolyacid aqueous solution at high temperature and high pressure, and since it is a reaction in a relatively strong acidic region, the equipment such as a reaction vessel has an acid. Titanium that is resistant to corrosion is used. Moreover, since metal titanium causes hydrogen embrittlement by hydrogen, corrosion by hydrogen is suppressed by forming an oxide film on the surface layer.

しかしながら、酸化皮膜を形成した設備であっても、設備の稼動により酸化皮膜は徐々に還元されて金属チタンに戻るため、稼働時間が長くなるにつれて水素に対する腐食性が低下する。従って、設備の水素脆化による劣化を防止するためには、定期的に設備に酸化皮膜を形成しなおす必要があった。酸化皮膜を形成するためには、例えば、チタンを高温で加熱する方法、塩酸や硝酸で処理する方法又は過酸化水素水で処理する方法がある(例えば、特許文献2参照。)。しかしながら、これらの方法では設備の稼動を長期間休止する必要があり、また、廃液等の処理が必要となるため、時間的又は費用的に負担が大きかった。
特開昭60−149536号公報 特開昭63−223187号公報
However, even in an equipment in which an oxide film is formed, the oxide film is gradually reduced by the operation of the equipment and returns to titanium metal, so that the corrosiveness to hydrogen decreases as the operation time increases. Therefore, in order to prevent deterioration due to hydrogen embrittlement of the equipment, it was necessary to periodically form an oxide film again on the equipment. In order to form an oxide film, for example, there are a method of heating titanium at a high temperature, a method of treating with titanium or hydrochloric acid, or a method of treating with hydrogen peroxide (see, for example, Patent Document 2). However, in these methods, it is necessary to suspend the operation of the equipment for a long period of time, and it is necessary to treat the waste liquid or the like.
JP-A-60-149536 JP-A-63-223187

本発明は上述の問題に鑑みなされたものであり、設備の稼動によるチタン酸化皮膜の劣化を抑制できる第2級ブタノールの製造方法を提供することを目的とする。   This invention is made | formed in view of the above-mentioned problem, and it aims at providing the manufacturing method of the secondary butanol which can suppress deterioration of the titanium oxide film by operation of an installation.

本発明者らは、上記課題を解決するために鋭意研究した結果、第2級ブタノールの原料となる水に、酸素を溶存させた水を使用することによって、酸化皮膜の劣化が抑制できることを見出し、本発明を完成させた。
本発明によれば、以下の第2級ブタノールの製造方法が提供できる。
1.ヘテロポリ酸水溶液を触媒として用い、n−ブテンを直接水和する第2級ブタノールの製造方法において、原料である水に酸素を溶存させた水を使用することを特徴とする第2級ブタノールの製造方法。
2.前記水が飽和酸素水である1記載の第2級ブタノールの製造方法。
3.前記水が純水を大気開放して得られる水である1又は2に記載の第2級ブタノールの製造方法。
4.連続式液相直接水和用反応装置を使用する1〜3のいずれかに記載の第2級ブタノールの製造方法。
As a result of intensive studies to solve the above problems, the present inventors have found that the deterioration of the oxide film can be suppressed by using water in which oxygen is dissolved in the water used as the raw material of the secondary butanol. The present invention has been completed.
According to the present invention, the following method for producing secondary butanol can be provided.
1. Production of secondary butanol characterized by using water in which oxygen is dissolved in water as a raw material in a production method of secondary butanol in which an aqueous solution of heteropolyacid is used as a catalyst and n-butene is directly hydrated Method.
2. 2. The method for producing secondary butanol according to 1, wherein the water is saturated oxygen water.
3. The manufacturing method of the secondary butanol of 1 or 2 whose said water is water obtained by open | releasing pure water to air | atmosphere.
4). The manufacturing method of the secondary butanol in any one of 1-3 which uses the reactor for continuous liquid phase direct hydration.

本発明の第2級ブタノールの製造方法では、チタンの酸化皮膜の劣化を抑制できるため、設備の寿命が長くなる。従って、設備のメンテナンスに係る時間及び費用を削減できる。   In the method for producing secondary butanol according to the present invention, the deterioration of the titanium oxide film can be suppressed, so that the life of the equipment is prolonged. Therefore, it is possible to reduce the time and cost related to the maintenance of the equipment.

本発明の第2級ブタノールの製造方法は、ヘテロポリ酸水溶液を触媒として用い、n−ブテンを直接水和する第2級ブタノールの製造方法において、出発原料である水として、酸素を溶存させた水を使用することを特徴とする。
n−ブテンを直接水和する製造方法の詳細については、例えば、特開昭60−149536号公報や特開平4−356434号公報を参照できる。以下、概略を説明する。
The method for producing secondary butanol according to the present invention is a method for producing secondary butanol in which n-butene is directly hydrated using a heteropolyacid aqueous solution as a catalyst. It is characterized by using.
For details of the production method for directly hydrating n-butene, reference can be made to, for example, JP-A-60-149536 and JP-A-4-356434. The outline will be described below.

n−ブテンを直接水和する製造方法では、n−ブテン(n−ブテン−1又はn−ブテン−2、あるいはこれらの混合物)を原料としてpHが2.3以下のヘテロポリ酸水溶液と接触させてn−ブテンの水和反応を進行させる。   In the production method in which n-butene is directly hydrated, n-butene (n-butene-1, n-butene-2, or a mixture thereof) is used as a raw material and is brought into contact with a heteropolyacid aqueous solution having a pH of 2.3 or less. The hydration reaction of n-butene proceeds.

ヘテロポリ酸としては、ケイタングステン酸、リンタングステン酸、ケイモリブデン酸、リンモリブデン酸等が使用できる。また、2種以上のヘテロ原子、ポリ原子を組合せたものも使用できる。
ヘテロポリ酸水溶液の濃度は、使用するヘテロポリ酸の種類等により適宜調整する必要があるが、通常、0.001モル/リットル〜0.2モル/リットルである。
As the heteropolyacid, silicotungstic acid, phosphotungstic acid, silicomolybdic acid, phosphomolybdic acid or the like can be used. A combination of two or more heteroatoms and polyatoms can also be used.
The concentration of the aqueous heteropolyacid solution needs to be adjusted as appropriate depending on the type of heteropolyacid used, but is usually 0.001 mol / liter to 0.2 mol / liter.

反応温度は140℃〜300℃とし、反応圧力は6MPa以上とすることが好ましい。このように、高温高圧下、かつ強酸性雰囲気での反応となるため、設備の腐食対策が必要である。このため、反応容器等の設備の内表面には、金属チタンの内張り(爆着クラッド、ライニング)が施され、さらに、金属チタンに酸化皮膜を形成させたものを使用する。
尚、酸化皮膜の形成は公知の方法(例えば、上述した特許文献2)で形成できる。また、酸化皮膜の厚さは150Å〜5000Åが好ましい。
The reaction temperature is preferably 140 ° C. to 300 ° C., and the reaction pressure is preferably 6 MPa or more. As described above, since the reaction is performed under a high temperature and high pressure and in a strongly acidic atmosphere, it is necessary to take measures against corrosion of the equipment. For this reason, the inner surface of equipment such as a reaction vessel is provided with a metallic titanium lining (explosion cladding, lining), and a metal titanium oxide film is used.
In addition, formation of an oxide film can be formed by a well-known method (for example, patent document 2 mentioned above). The thickness of the oxide film is preferably 150 to 5000 mm.

製造設備としては、公知の回分式液相直接水和用反応装置や連続式液相直接水和用反応装置を使用することができる。
連続式液相直接水和用反応装置では、第2級ブタノールを連続的に製造するため、水和反応を行う反応容器に原料であるn−ブテンと水を所定の速度で供給し、反応物である第2級ブタノール及び副生成物を取り出す。これにより、反応系におけるヘテロポリ酸水溶液の濃度が所定の範囲に維持される。
As a production facility, a known batch type liquid phase direct hydration reactor or a continuous type liquid phase direct hydration reactor can be used.
In the continuous liquid phase direct hydration reactor, in order to continuously produce secondary butanol, n-butene and water as raw materials are supplied at a predetermined rate to a reaction vessel for performing a hydration reaction, Secondary butanol and by-products are removed. Thereby, the density | concentration of the heteropoly acid aqueous solution in a reaction system is maintained in the predetermined range.

本発明では、原料として反応容器に供給する水に、酸素を溶存させた水を使用する。これにより、n−ブテンの還元作用による、酸化皮膜からの酸素欠落を抑制できる。これは、水に溶存した酸素が反応容器内で高温高圧下に曝されることによって、反応容器内壁表面を酸化し酸化皮膜を形成するためと推定している。この溶存酸素による酸化皮膜形成作用と、n−ブテンの還元作用とが打ち消しあうことによって、反応容器内の酸化皮膜量の減少が抑制できる。   In the present invention, water in which oxygen is dissolved is used as water supplied to the reaction vessel as a raw material. Thereby, oxygen deficiency from the oxide film due to the reducing action of n-butene can be suppressed. This is presumed to be because oxygen dissolved in water is exposed to high temperature and high pressure in the reaction vessel to oxidize the inner wall surface of the reaction vessel to form an oxide film. By reducing the oxide film forming action by dissolved oxygen and the reducing action of n-butene, it is possible to suppress a decrease in the oxide film amount in the reaction vessel.

従来、原料として反応容器に供給される水は、脱イオンし、さらに脱気したもの、いわゆる純水が使用されていた。これは、反応系においては、不純物の混入を極力避ける必要があるためである。
また、商用設備では水処理の効率化のため、反応系で使用する水と、熱源や動力源となるスチームで使用する水等は、同じ処理がされた同じ水であることが一般的である。そして、ボイラー等の水蒸気供給系では、装置の酸化防止のために純水を使用することが必須であることから、反応系に供給する水についても純水が使用されていた。
Conventionally, water supplied to a reaction vessel as a raw material has been deionized and further degassed, so-called pure water. This is because it is necessary to avoid contamination of impurities as much as possible in the reaction system.
Moreover, in order to improve the efficiency of water treatment in commercial facilities, the water used in the reaction system and the water used in the steam as the heat source and power source are generally the same water that has been subjected to the same treatment. . In a steam supply system such as a boiler, it is essential to use pure water in order to prevent oxidation of the apparatus. Therefore, pure water is also used for water supplied to the reaction system.

本発明では、上記の状況の下でも、敢えて酸素を溶存させた水を反応系に供給することが、反応容器内の酸化皮膜を維持する効果を発揮することを見出したものである。
尚、反応条件によっては、酸素を溶存させた水が反応容器内に酸化皮膜を形成する場合がある。この場合、設備の使用前に酸化皮膜を形成していなくとも、設備の腐食を防止できる。
In the present invention, it has been found that even under the above-mentioned circumstances, supplying water in which oxygen is dissolved to the reaction system exhibits the effect of maintaining the oxide film in the reaction vessel.
Depending on the reaction conditions, water in which oxygen is dissolved may form an oxide film in the reaction vessel. In this case, the corrosion of the equipment can be prevented even if an oxide film is not formed before the equipment is used.

本発明で使用する酸素を溶存させた水としては、反応系に悪影響を与えるイオン等の異物を除去したものであって、酸素を溶存している水が使用できる。具体的には、脱イオン処理後、脱気処理をしない水、純水を大気開放して空気中の酸素を吸収した水、純水に空気や酸素をバブリングすることにより酸素を溶存させた水等が使用できる。
尚、脱イオン処理等はイオン交換樹脂を使用する等、公知の方法が使用できる。
As the water in which oxygen is used in the present invention, water from which foreign matters such as ions that adversely affect the reaction system are removed, and water in which oxygen is dissolved can be used. Specifically, after deionization, water that has not been degassed, water that has released pure water to the atmosphere and has absorbed oxygen in the air, and water in which oxygen has been dissolved by bubbling air or oxygen into pure water Etc. can be used.
In addition, a deionization process etc. can use a well-known method, such as using an ion exchange resin.

上述した商用設備で、反応系で使用する水とスチームで使用する水等が同じ場合は、例えば、反応系で使用する純水を大気開放したタンク等に投入し酸素を溶存させ、その後、反応容器に供給すればよい。これにより、水処理設備は共通したまま、水蒸気供給系には純水を供給でき、反応系に供給する水には酸素を溶存する水を供給できる。   If the water used in the reaction system is the same as the water used in the steam in the commercial equipment described above, for example, pure water used in the reaction system is introduced into a tank or the like that is open to the atmosphere to dissolve oxygen, and then the reaction is performed. What is necessary is just to supply to a container. Accordingly, pure water can be supplied to the steam supply system while water treatment facilities are common, and water in which oxygen is dissolved can be supplied to the water supplied to the reaction system.

尚、水に溶存する酸素量は元々少ないため、本発明においては、5℃〜30℃で大気圧下における飽和酸素水を使用することが好ましい。
また、溶存酸素による酸化皮膜の劣化防止効果を高めるため、反応温度は、150℃〜220℃であることが好ましく、反応圧力は6MPa〜25MPaが好ましい。
In addition, since the amount of oxygen dissolved in water is originally small, in the present invention, it is preferable to use saturated oxygen water at 5 to 30 ° C. under atmospheric pressure.
In order to enhance the effect of preventing deterioration of the oxide film due to dissolved oxygen, the reaction temperature is preferably 150 ° C. to 220 ° C., and the reaction pressure is preferably 6 MPa to 25 MPa.

以下、本発明を実施例によって、さらに具体的に説明する。
実施例1
ヘテロポリ酸水溶液として、17wt%ケイタングステン酸水溶液を使用した。ヘテロポリ酸水溶液を内径φ4mmのチタンチューブ(未処理)に約5cc(液高として約40cm)入れ、水素で2MPaに加圧した。系内の水素分圧を一定に保つため、微量の水素を流しながら圧力を背圧弁で制御した。水素分圧の面から、本評価例の水素濃度は実際の製造と比べて、1000倍程度高い条件となっている。
その後、水溶液部分を220℃に加熱した。水素を供給(1cc/min以下)しているため、液面レベルが低下しヘテロポリ酸濃度が上昇するので、大気開放して空気中の酸素を吸収させた純水を1cc/日程度で適宜補充した。
この状態を12日間継続した後、加熱部分のチタンチューブを1cm程度切断し、チタン材中の水素濃度を測定した。その結果、加熱部分のチタン材中の水素濃度の上昇は見られなかった。
尚、水素濃度の測定はJIS H 1619に従った。
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
A 17 wt% silicotungstic acid aqueous solution was used as the heteropolyacid aqueous solution. About 5 cc (about 40 cm as the liquid height) of the heteropolyacid aqueous solution was placed in a titanium tube (untreated) having an inner diameter of 4 mm and pressurized to 2 MPa with hydrogen. In order to keep the hydrogen partial pressure in the system constant, the pressure was controlled by a back pressure valve while flowing a small amount of hydrogen. From the standpoint of hydrogen partial pressure, the hydrogen concentration in this evaluation example is about 1000 times higher than that in actual production.
Thereafter, the aqueous solution portion was heated to 220 ° C. Since hydrogen is supplied (1 cc / min or less), the liquid level decreases and the heteropolyacid concentration increases, so pure water that has been released into the atmosphere and absorbed oxygen in the air is replenished appropriately at about 1 cc / day. did.
After this state was continued for 12 days, the heated portion of the titanium tube was cut about 1 cm, and the hydrogen concentration in the titanium material was measured. As a result, no increase in the hydrogen concentration in the titanium material in the heated portion was observed.
The hydrogen concentration was measured according to JIS H 1619.

比較例1
補充する水として、純水を脱気した水を用いた他は、実施例1と同様にしてチタン材の水素濃度を評価した。その結果、加熱部分のチタン材中の水素濃度は23wtppm増加していた。
Comparative Example 1
The hydrogen concentration of the titanium material was evaluated in the same manner as in Example 1 except that pure water degassed was used as the water to be supplemented. As a result, the hydrogen concentration in the titanium material in the heated portion was increased by 23 wtppm.

実施例2
加熱期間を34日間とした他は、実施例1と同様に実施した。その結果、加熱部分のチタン材中の水素濃度の上昇は見られなかった。
Example 2
The same operation as in Example 1 was performed except that the heating period was 34 days. As a result, no increase in the hydrogen concentration in the titanium material in the heated portion was observed.

比較例2
加熱期間を34日間とした他は、比較例1と同様に実施した。その結果、加熱部分のチタン材中の水素濃度は48wtppm増加していた。
Comparative Example 2
It carried out similarly to the comparative example 1 except having made the heating period into 34 days. As a result, the hydrogen concentration in the titanium material in the heated portion was increased by 48 wtppm.

実施例3
ヘテロポリ酸水溶液を30wt%ケイタングステン酸水溶液とした他は、実施例1と同様に実施した。その結果、加熱部分のチタン材中の水素濃度の上昇は見られなかった。
Example 3
The same operation as in Example 1 was performed except that the heteropolyacid aqueous solution was changed to a 30 wt% silicotungstic acid aqueous solution. As a result, no increase in the hydrogen concentration in the titanium material in the heated portion was observed.

比較例3
ヘテロポリ酸水溶液を30wt%ケイタングステン酸水溶液とした他は、比較例1と同様に実施した。その結果、加熱部分のチタン材中の水素濃度は76wtppm増加していた。
Comparative Example 3
The same operation as in Comparative Example 1 was performed except that the heteropolyacid aqueous solution was changed to a 30 wt% silicotungstic acid aqueous solution. As a result, the hydrogen concentration in the titanium material in the heated portion was increased by 76 wtppm.

実施例4
容量が約30mの水和反応器の内部に、チタン材の板状テストピース(45mm×25mm×5mm厚)を複数投入した状態で、第2級ブタノールを製造して、チタン材の水素吸収を評価した。
触媒としては、ケイタングステン酸水溶液を使用し、水和反応器内の濃度が2.1wt%となるように調整した。反応器内の温度を200℃〜220℃、圧力を19〜22MPaとした。これに5℃〜30℃で大気圧下における飽和酸素水を、供給温度が5〜30℃、供給速度が25リットル/分の条件で供給した。また、n−ブテンガスを2150リットル/分の条件で供給した。このn−ブテンガスには、水素が不純物として90molppm程度含まれている。
この条件で3年間運転した後、水和反応器内部からテストピースを2つ取り出し、チタン材の水素吸収量を測定した結果、それぞれ、13wtppmと14wtppmであった。一方、比較試料として、新品のチタン材の水素吸収を測定した結果、17wtppmであった。このことから反応器内のチタン材の水素吸収はなかったものと認められた。
Example 4
Secondary butanol is produced with multiple titanium plate-like test pieces (45 mm x 25 mm x 5 mm thick) in the hydration reactor with a capacity of about 30 m 3 , and hydrogen absorption of the titanium material Evaluated.
As a catalyst, silicotungstic acid aqueous solution was used, and it adjusted so that the density | concentration in a hydration reactor might be 2.1 wt%. The temperature in the reactor was 200 to 220 ° C., and the pressure was 19 to 22 MPa. Saturated oxygen water under atmospheric pressure at 5 ° C. to 30 ° C. was supplied thereto at a supply temperature of 5 to 30 ° C. and a supply rate of 25 liters / minute. Moreover, n-butene gas was supplied on the conditions of 2150 liter / min. The n-butene gas contains about 90 mol ppm of hydrogen as an impurity.
After operating for 3 years under these conditions, two test pieces were taken out from the inside of the hydration reactor and the hydrogen absorption amount of the titanium material was measured. As a result, they were 13 wtppm and 14 wtppm, respectively. On the other hand, as a result of measuring hydrogen absorption of a new titanium material as a comparative sample, it was 17 wtppm. From this, it was recognized that there was no hydrogen absorption of the titanium material in the reactor.

本発明の第2級ブタノールの製造方法は、設備の寿命を長くできるので設備のメンテナンスに係る時間及び費用を削減できる。従って、第2級ブタノールの製造法として好適である。また、MEKの製造プロセスの一部として組み入れることによって、MEKの製造効率を向上できる。
The production method of secondary butanol according to the present invention can extend the life of the equipment, and therefore can reduce the time and cost for maintenance of the equipment. Therefore, it is suitable as a method for producing secondary butanol. Further, by incorporating it as part of the MEK manufacturing process, MEK manufacturing efficiency can be improved.

Claims (4)

ヘテロポリ酸水溶液を触媒として用い、n−ブテンを直接水和する第2級ブタノールの製造方法において、
原料である水に酸素を溶存させた水を使用することを特徴とする第2級ブタノールの製造方法。
In a method for producing secondary butanol in which an aqueous heteropolyacid solution is used as a catalyst and n-butene is directly hydrated,
A method for producing secondary butanol, characterized by using water in which oxygen is dissolved in water as a raw material.
前記水が飽和酸素水である請求項1記載の第2級ブタノールの製造方法。   The method for producing secondary butanol according to claim 1, wherein the water is saturated oxygen water. 前記水が純水を大気開放して得られる水である請求項1又は2に記載の第2級ブタノールの製造方法。   The method for producing secondary butanol according to claim 1 or 2, wherein the water is water obtained by releasing pure water to the atmosphere. 連続式液相直接水和用反応装置を使用する請求項1〜3のいずれかに記載の第2級ブタノールの製造方法。

The method for producing secondary butanol according to any one of claims 1 to 3, wherein a continuous liquid phase direct hydration reactor is used.

JP2006055935A 2006-03-02 2006-03-02 Method for producing secondary butanol Active JP4886323B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006055935A JP4886323B2 (en) 2006-03-02 2006-03-02 Method for producing secondary butanol
CNA200780007447XA CN101395111A (en) 2006-03-02 2007-02-20 Process for the preparation of sec-butanol
PCT/JP2007/052999 WO2007105421A1 (en) 2006-03-02 2007-02-20 Method for producing secondary butanol
KR1020087019871A KR101341812B1 (en) 2006-03-02 2008-08-13 2 method for producing secondary butanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006055935A JP4886323B2 (en) 2006-03-02 2006-03-02 Method for producing secondary butanol

Publications (2)

Publication Number Publication Date
JP2007230934A true JP2007230934A (en) 2007-09-13
JP4886323B2 JP4886323B2 (en) 2012-02-29

Family

ID=38509259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006055935A Active JP4886323B2 (en) 2006-03-02 2006-03-02 Method for producing secondary butanol

Country Status (4)

Country Link
JP (1) JP4886323B2 (en)
KR (1) KR101341812B1 (en)
CN (1) CN101395111A (en)
WO (1) WO2007105421A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104475109A (en) * 2014-11-20 2015-04-01 北京恩泽福莱科技有限公司 Catalyst for preparing sec-butyl alcohol and preparation method of catalyst

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8558036B2 (en) 2010-11-15 2013-10-15 Saudi Arabian Oil Company Dual phase catalysts system for mixed olefin hydrations
CN106622386A (en) * 2017-01-11 2017-05-10 王艺霖 Preparation method of high-performance catalyst for producing sec-butyl alcohol
CN106631688A (en) * 2017-01-11 2017-05-10 王艺霖 Method for preparing sec-butyl alcohol through butylene hydration
KR102080381B1 (en) 2018-01-09 2020-02-21 한화토탈 주식회사 Heteropoly Acid Catalysts with Aluminum and Cobalt as Central Atom, Preparation Method Thereof, and Hydration reaction of n-Butene to 2-Butanol Using Said Catalysts
US20220227691A1 (en) * 2020-04-10 2022-07-21 Showa Denko K.K. Method for producing alcohol
KR102551320B1 (en) * 2020-11-02 2023-07-04 한화토탈에너지스 주식회사 Method for improving production yield of 2-butanol using solubilizer in butene hydration reaction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936203B1 (en) * 1969-05-08 1974-09-28
JPS5113711A (en) * 1974-07-26 1976-02-03 Mitsui Toatsu Chemicals ARUKOORUNOSEIZOHOHO

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936203B1 (en) * 1969-05-08 1974-09-28
JPS5113711A (en) * 1974-07-26 1976-02-03 Mitsui Toatsu Chemicals ARUKOORUNOSEIZOHOHO

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104475109A (en) * 2014-11-20 2015-04-01 北京恩泽福莱科技有限公司 Catalyst for preparing sec-butyl alcohol and preparation method of catalyst

Also Published As

Publication number Publication date
KR101341812B1 (en) 2013-12-17
JP4886323B2 (en) 2012-02-29
WO2007105421A1 (en) 2007-09-20
KR20080100190A (en) 2008-11-14
CN101395111A (en) 2009-03-25

Similar Documents

Publication Publication Date Title
JP4886323B2 (en) Method for producing secondary butanol
RU2089487C1 (en) Method of continuous synthesis of chlorine dioxide
MX2011008369A (en) Method and system for operating plant.
JP4811844B2 (en) Method for producing percarbonate
JP4886324B2 (en) Secondary reactor for butanol production
CN104609629B (en) Method for treating glycerin-based epoxy chloropropane saponification wastewater
US5190627A (en) Process for removing dissolved oxygen from water and system therefor
WO2020020389A1 (en) Process to treat waste brine
JP2013064170A (en) Corrosion inhibitor injection method
CN112853364A (en) Condenser manganese scale chemical cleaning agent
JPH0237432B2 (en)
JP2014140826A (en) Ultrapure water production method
EP0427191B1 (en) Process for removing dissolved oxygen from water and system therefor
JPH04214002A (en) Manufacture of chlorine dioxide
JP5913087B2 (en) Wastewater treatment system
JP2009300162A (en) Desalter for primary cooling system and purification method for primary cooling water in nuclear power plant with pressurized water reactor
CN108455716A (en) For fertilizer production line upper circulation water cooling system good antiscale property method
JP2007231385A (en) Method for forming titanium oxide film
JP4282962B2 (en) Wastewater neutralization method
JP2003145177A (en) Deoxidation treatment method and deoxidation treatment apparatus
JP2008173617A (en) Water treatment apparatus and water treating method
Ma et al. Degradation of high concentration methanol in aqueous solution by dielectric barrier discharge
JP2015520295A (en) Method and apparatus for treating an effluent stream from an epoxy compound production plant
WO2022254878A1 (en) Method and apparatus for producing sodium hypochlorite solution
JP2005336563A (en) Etching treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4886323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150