JP2007228012A - Surface acoustic wave resonator - Google Patents

Surface acoustic wave resonator Download PDF

Info

Publication number
JP2007228012A
JP2007228012A JP2006043487A JP2006043487A JP2007228012A JP 2007228012 A JP2007228012 A JP 2007228012A JP 2006043487 A JP2006043487 A JP 2006043487A JP 2006043487 A JP2006043487 A JP 2006043487A JP 2007228012 A JP2007228012 A JP 2007228012A
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
electrode
propagation direction
period length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006043487A
Other languages
Japanese (ja)
Inventor
道明 ▲高▼木
Michiaki Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2006043487A priority Critical patent/JP2007228012A/en
Publication of JP2007228012A publication Critical patent/JP2007228012A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new type surface acoustic wave resonator, where fifth-order harmonic operation is attained by utilizing a Rayleigh-type surface acoustic waves of, or the like on a piezoelectric plate, such as in-plane rotation ST cut quartz plate. <P>SOLUTION: The surface acoustic wave resonator comprises one interdigital electrode on the piezoelectric plate, and a pair of reflectors arranged at both the sides in the propagation direction. The width dimension in the X direction of an electrode finger in the interdigital electrode is set to LT, and the line width ratio LT/PT for array period length is to be within the range of 1/2±1/12. The width dimension in the X direction in the reflector is set to LR, and the line width ratio LR/PR for array period length PR is to be within the range of 1/2±1/12. The relation for PT is PR<PT with respect to the dimension PR, and the relation between speed V of the surface acoustic waves and the operating frequency (f) is f=5V/(2PT). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、面内回転した回転STカット水晶板等の圧電体平板上に、レイリー型等の弾性表面波を利用して、5次高調波動作させた新しい形式の弾性表面波共振子に関する。   The present invention relates to a surface acoustic wave resonator of a new type in which a fifth harmonic wave operation is performed using a Rayleigh type surface acoustic wave on a piezoelectric plate such as a rotated ST-cut quartz plate rotated in-plane.

従来、圧電気を有する水晶STカット基板(圧電体平板の一例)を用いて構成する弾性表面波共振子は、その周波数温度特性が零温度係数をもち精度が良いために、各種高速ネットワーク系のデータ伝送用水晶発振器の発振素子として使用されているが、これはジッタが無く位相ノイズに優れた信号が高信頼性かつ低コストに容易に得られるという長所があるためである。   Conventionally, a surface acoustic wave resonator constructed using a quartz ST-cut substrate (an example of a piezoelectric flat plate) having piezoelectricity has a frequency temperature characteristic with a zero temperature coefficient and is highly accurate. This is used as an oscillation element of a crystal oscillator for data transmission because it has an advantage that a signal free from jitter and excellent in phase noise can be easily obtained with high reliability and low cost.

しかしながら近年、前記のネットワーク系の信号伝送速度がGHz帯にまで高速化するとともに、より高周波数かつ高精度な水晶発振器が求められるに至っている。そこで最近注目されて来たものとして、前記STカットの精度±100ppm(0〜70℃範囲)に対して、約半分(精度±50ppm)の周波数温度特性が得られる面内回転したSTカット水晶板を用いた弾性表面波共振子がある。前記の基板は、レイリー型弾性表面波を利用している(例えば、特許文献1)。   However, in recent years, the signal transmission speed of the network system has been increased to the GHz band, and a crystal oscillator having a higher frequency and higher accuracy has been demanded. In view of this, an ST-cut quartz plate that has been rotated in-plane to obtain a frequency temperature characteristic of about half (accuracy ± 50 ppm) with respect to the accuracy of ST cut ± 100 ppm (range of 0 to 70 ° C.) has recently been attracting attention. There are surface acoustic wave resonators using The substrate uses a Rayleigh surface acoustic wave (for example, Patent Document 1).

面内回転したSTカット水晶板を利用した弾性表面波共振子についても、従来のSTカットと同様に例えば金属アルミニウムからなる多数の平行導体の電極指を周期的に配置した、すだれ状電極(以下略して「IDT」と書く)を形成し、さらにその両側に一対の反射器を多数のストリップ形状からなる電極導体を平行にかつ周期的に配置して構成し、1ポート型の弾性表面波共振子を形成できる。   Also for a surface acoustic wave resonator using an ST-cut quartz plate rotated in-plane, as in the conventional ST-cut, interdigital electrodes (hereinafter, referred to as a plurality of parallel conductor electrode fingers made of metal aluminum, for example) are arranged. Abbreviated as "IDT"), and a pair of reflectors on both sides of the electrode conductors made up of a number of strip shapes arranged in parallel and periodically to form a 1-port surface acoustic wave resonance A child can be formed.

特開昭57−73513号公報JP-A-57-73513

しかしながら、前述の従来技術を使用したものはいずれも基本波動作する弾性表面波共振子であるため、IDTの電極指および反射器の導体ストリップの繰り返しの周期長Pと動作周波数との関係は、Vを弾性表面波の速度とし、fを動作周波数とすればf=V/(2P)の関係にある。その結果、前記動作周波数fは速度VとPに制約されており、圧電体基板の速度V=3000m/s、電極パターンを形成する露光機の分解能を0.5×10-6mとすれば、P=1.0×10-6mとなり、1.5GHz程度が高周波化の限界となっているのが現状である。 However, since all of the above-described conventional techniques are surface acoustic wave resonators that operate at a fundamental wave, the relationship between the repetition period length P of the electrode finger of the IDT and the conductor strip of the reflector and the operating frequency is If V is the velocity of the surface acoustic wave and f is the operating frequency, the relationship is f = V / (2P). As a result, the operating frequency f is limited to the speeds V and P. If the speed V of the piezoelectric substrate is 3000 m / s and the resolution of the exposure device for forming the electrode pattern is 0.5 × 10 −6 m. , P = 1.0 × 10 −6 m, and about 1.5 GHz is the limit of high frequency.

本発明はかかる課題を解決するものでその目的とするところは、基本波動作周波数の5倍で高調波動作可能な弾性表面波共振子を実現して、これらを用いて1から5GHz帯で使用可能な、高精度かつ低位相ノイズなSAW発振器および電圧制御型SAW発振器をギガビット系の高速有線通信市場に提供することにある。   The present invention solves such a problem, and an object of the present invention is to realize a surface acoustic wave resonator capable of harmonic operation at a frequency five times the fundamental wave operating frequency, and to use it in the 1 to 5 GHz band. It is to provide a high-accuracy and low-phase noise SAW oscillator and a voltage-controlled SAW oscillator to the gigabit high-speed wired communication market.

(1)本発明の弾性表面波共振子は、圧電体平板上の位相伝播方向Xに弾性表面波を励振する少なくとも1個のすだれ状電極とその伝播方向両側に配置した一対の反射器とからなる弾性表面波共振子であって、前記すだれ状電極は、弾性表面波の前記位相伝播方向Xにほぼ直交して配置した多数の電極指からなり、前記電極指の前記位相伝播方向X方向の幅寸法をLTとし、電極指の存在しない領域の前記位相伝播方向X方向の寸法をSTとして、前記すだれ状電極の配列周期長であるPT=LT+STに対する線幅比LT/PTが(1/2±1/12)の範囲であり、前記反射器は、弾性表面波の前記位相伝播方向Xにほぼ直交して配置した多数の電極指からなり、前記電極指の前記位相伝播方向X方向の幅寸法をLRとし、電極指の存在しない領域の前記位相伝播方向X方向の寸法をSRとして、前記反射器の配列周期長であるPR=LR+SRに対する線幅比LR/PRが(1/2±1/12)の範囲であり、前記反射器の配列周期長PRに対して前記すだれ状電極の配列周期長PTの関係がPR<PTであって、前記すだれ状電極の配列周期長PTに対する前記反射器の配列周期長PRの割合が1から10%の差があり、前記弾性表面波の速度Vと動作周波数fの関係がf=5V/(2PT)であることを特徴とする。   (1) A surface acoustic wave resonator according to the present invention includes at least one interdigital electrode for exciting a surface acoustic wave in a phase propagation direction X on a piezoelectric plate and a pair of reflectors disposed on both sides of the propagation direction. The interdigital electrode is composed of a number of electrode fingers arranged substantially orthogonal to the phase propagation direction X of the surface acoustic wave, and the electrode fingers are arranged in the phase propagation direction X direction. When the width dimension is LT and the dimension in the phase propagation direction X direction of the region where no electrode finger is present is ST, the line width ratio LT / PT with respect to PT = LT + ST which is the arrangement period length of the interdigital electrodes is (1/2 The reflector is composed of a number of electrode fingers arranged substantially orthogonal to the phase propagation direction X of the surface acoustic wave, and the width of the electrode fingers in the phase propagation direction X direction Dimension is LR and there is an electrode finger The line width ratio LR / PR with respect to PR = LR + SR, which is the arrangement period length of the reflectors, is in a range of (1/2 ± 1/12), where SR is the dimension in the phase propagation direction X direction of the non-existing region, The relation between the arrangement period length PT of the interdigital electrodes and the arrangement period length PT of the reflectors is PR <PT, and the ratio of the arrangement period length PR of the reflectors to the arrangement period length PT of the interdigital electrodes is There is a difference of 1 to 10%, and the relationship between the velocity V of the surface acoustic wave and the operating frequency f is f = 5 V / (2PT).

上記(1)の構成によれば、基本波の5倍の動作周波数において、同一膜厚比H/λにあっても(λは弾性表面波の波長)、すだれ状電極の電極指および反射器の導体ストリップのもつ反射係数が基本波の場合の約60%が確保できるため、40%程度のIDT対数あるいは反射器本数を増加させるだけで、弾性表面波の振動エネルギの閉じ込めが可能となり、5次高調波動作する良好な弾性表面波共振子が実現できるという効果がある。   According to the configuration of the above (1), the electrode fingers of the interdigital electrodes and the reflector even when the same film thickness ratio H / λ is present at the operating frequency five times that of the fundamental wave (λ is the wavelength of the surface acoustic wave) Since the reflection coefficient of the conductor strip of about 60% of the fundamental wave can be secured, the vibration energy of the surface acoustic wave can be confined only by increasing the IDT logarithm of about 40% or the number of reflectors. There is an effect that a good surface acoustic wave resonator that operates in the second harmonic can be realized.

(2)本発明の弾性表面波共振子は、前記圧電体平板が水晶単結晶からなり、かつ水晶回転Y板を電気軸(X軸)の回りに反時計方向にθ=31度から42度回転し、さらに主平面の法線の回りに電気軸から40度から46度回転したXP方向に弾性表面波の位相伝搬方向が存在するように電極指を配置しており、前記電極指および前記反射器が有する導体ストリップは、アルミニウムの薄膜をフォトリソ加工により形成した金属パターンからなり、前記アルミニウムの薄膜の膜厚Hと前記反射器の配列周期長PRが示す2PRとの比が(0.02±0.01)の範囲にあることを特徴とする。   (2) In the surface acoustic wave resonator of the present invention, the piezoelectric plate is made of a single crystal crystal, and the quartz rotating Y plate is rotated counterclockwise around the electric axis (X axis) from θ = 31 degrees to 42 degrees. The electrode fingers are arranged such that there is a phase propagation direction of the surface acoustic wave in the XP direction that is rotated and further rotated about 40 to 46 degrees from the electric axis around the normal of the main plane, The conductor strip of the reflector is made of a metal pattern in which an aluminum thin film is formed by photolithography, and the ratio of the film thickness H of the aluminum thin film to 2PR indicated by the arrangement period length PR of the reflector (0.02). It is characterized by being in the range of ± 0.01).

上記(2)の基板構成であれば、基本波動作状態においては膜厚比H/λ0=H/(2PR)が0.02であり反射係数が正値をとる。また、5次高調波動作時においては弾性表面波の波長λ3がλ0/5となるために、膜厚比H/λ3が5倍の0.10となるから反射係数が負値をとる。一方において強制なエネルギ閉じ込め状態を得るためのIDTと反射器の電極周基長の条件は、反射係数が負値の場合にはPR<PTが必要であり、反射係数が正値の場合にはPR>PTが必要条件である。従って、基本波が抑圧される結果となり5次高調波動作のみが可能になるという効果がある。 With the substrate configuration of (2) above, the film thickness ratio H / λ 0 = H / (2PR) is 0.02 and the reflection coefficient takes a positive value in the fundamental wave operation state. Also, because the wavelength lambda 3 of the surface acoustic wave becomes lambda 0/5 at the time of the fifth harmonic operation, a negative value is the reflection coefficient because the film thickness ratio H / lambda 3 is 5 times 0.10 Take. On the other hand, the conditions of the IDT and the electrode circumference base length of the reflector for obtaining a forced energy confinement state require PR <PT when the reflection coefficient is negative, and when the reflection coefficient is positive. PR> PT is a necessary condition. Therefore, the fundamental wave is suppressed, and only the fifth harmonic operation is possible.

以下、本発明を図面に示した実施例に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

最初に、本発明に使用する圧電体平板につき説明する。前記の圧電体平板は面内回転STカット水晶板であり、図5において水晶結晶からの切り出し方位を示す。図中の501が水晶結晶の基本軸である電気軸X、502が機械軸Y、503が光軸Zである。面内回転STカット水晶板は、電気軸Xと光軸Zの2軸が作る面を主面とするY板を電気軸Xの回りに反時計方向にθ度(特に零温度係数が得られるθ=31度から42度)回転した基板500において、さらに前記基板の法線507の回りにX軸からの面内の回転角Ψが±(40〜46)度である方位を弾性表面波の位相伝播方位X'(素子のx軸506)としたものである。   First, the piezoelectric flat plate used in the present invention will be described. The piezoelectric plate is an in-plane rotated ST-cut quartz plate, and shows a cutting direction from the quartz crystal in FIG. In the figure, reference numeral 501 denotes an electric axis X, 502 which is a fundamental axis of a crystal crystal, 502 denotes a mechanical axis Y, and 503 denotes an optical axis Z. The in-plane rotation ST-cut quartz plate has a Y plate whose principal surface is a surface formed by two axes of the electric axis X and the optical axis Z, and the counterclockwise direction around the electric axis X is θ degrees (particularly a zero temperature coefficient is obtained). In the substrate 500 rotated by θ = 31 degrees to 42 degrees), an orientation in which the in-plane rotation angle ψ from the X axis is ± (40 to 46) degrees around the normal line 507 of the substrate The phase propagation azimuth X ′ (element x-axis 506) is used.

さらに前記圧電体平板500の表面を鏡面研磨した後、レイリー型等の弾性表面波の位相伝搬方向X'に対して直交して、例えば金属アルミニウムからなる多数の平行導体の電極指を周期的に配置した少なくとも1個のすだれ状電極を構成し、その両側に一対の反射器を形成して弾性表面波共振子を構成する。   Further, after the surface of the piezoelectric flat plate 500 is mirror-polished, the electrode fingers of a number of parallel conductors made of, for example, metal aluminum are periodically formed perpendicular to the phase propagation direction X ′ of the Rayleigh type surface acoustic wave. The surface acoustic wave resonator is configured by forming at least one interdigital electrode and forming a pair of reflectors on both sides thereof.

以下本発明の弾性表面波共振子の実施形態について、まず理解を容易ならしめるために、図1によって具体的な電極パターンの実施例を説明した後、図2、図3、図4、図6をもちいてその動作原理を詳細に解説する。   In order to facilitate understanding of the embodiments of the surface acoustic wave resonator according to the present invention, examples of specific electrode patterns will be described with reference to FIG. 1, and then FIG. 2, FIG. 3, FIG. The operating principle will be explained in detail using.

図1は請求項1の本発明に係わる弾性表面波共振子(以下略して本素子と称すことがある)の一実施例について、圧電体平板上に形成した電極パターンを図示したものである。   FIG. 1 shows an electrode pattern formed on a piezoelectric plate for an embodiment of a surface acoustic wave resonator according to the first aspect of the present invention.

図1中の各部位の名称は、100は水晶からなる圧電体平板、101および103は反射器、102はすだれ状電極、104および105は反射器を構成する導体ストリップ、106は給電導体(ブスバー)108に接続された正極側の電極指、107は給電導体(ブスバー)109に接続された負極側の電極指である。さらに、圧電体平板上の110は利用する弾性表面波の位相伝搬方向であるX’軸である(図5の506に対応)。   In FIG. 1, the names of the respective parts are as follows: 100 is a piezoelectric plate made of quartz, 101 and 103 are reflectors, 102 is an interdigital electrode, 104 and 105 are conductor strips constituting the reflector, 106 is a feeding conductor (bus bar) ) 108 is a positive electrode finger connected to 108, and 107 is a negative electrode finger connected to a power supply conductor (busbar) 109. Further, reference numeral 110 on the piezoelectric plate is an X ′ axis that corresponds to the phase propagation direction of the surface acoustic wave to be used (corresponding to 506 in FIG. 5).

さらに説明すると図1中の反射器101と103において、記号LRは導体ストリップ104の幅(ライン)寸法であり、SRは導体で被服されていない幅(スペース)寸法である。またPRはLRとSRの和からなる導体ストリップの周期長である。つぎにIDT102において、記号LTは電極指106および107等の幅(ライン)寸法であり、STは電極導体で被服されていない幅(スペース)寸法である。またPTはLTとSTの和からなる電極指の周期長である。   More specifically, in the reflectors 101 and 103 in FIG. 1, the symbol LR is the width (line) dimension of the conductor strip 104, and SR is the width (space) dimension not covered by the conductor. PR is the period length of the conductor strip composed of the sum of LR and SR. Next, in the IDT 102, the symbol LT is the width (line) dimension of the electrode fingers 106 and 107 and the like, and ST is the width (space) dimension not covered by the electrode conductor. PT is the period length of the electrode finger consisting of the sum of LT and ST.

さらに説明すると、前記102のIDTにおいて線幅比として定義されるLT/PTが(1/2±1/12)の範囲であり、かつ前記反射器においては、前記線幅比LR/PRが(1/2±1/12)の範囲に設定しており、スペース領域が広い構造となっている。前記寸法PRとPTについては、PR<PTであっておおむね大抵の基板に対して有効な1から10%程度の差を設けてある。また前記電極指および反射器の導体ストリップは、アルミニウムの薄膜をフオトリソ加工により形成した金属パターンからなり、前記アルミニウム薄膜Hと前記PRの比が(0.02±0.01)の範囲に構成する。   More specifically, LT / PT defined as the line width ratio in the IDT of 102 is in the range of (1/2 ± 1/12), and in the reflector, the line width ratio LR / PR is ( 1/2 ± 1/12), and the structure has a wide space area. The dimensions PR and PT have a difference of about 1 to 10% which is effective for most substrates because PR <PT. The electrode fingers and the conductor strips of the reflector are made of a metal pattern in which an aluminum thin film is formed by photolithography, and the ratio of the aluminum thin film H to the PR is in the range of (0.02 ± 0.01). .

以上の構成からなる本素子において、102のIDTに印加する信号の周波数は、f0=V/(2PT)を基本波の動作周波数とすれば、このほぼ5倍であるf3=5V/(2PT)で動作させて使用することが特徴である。   In this element having the above configuration, the frequency of the signal applied to the IDT 102 is approximately five times f3 = 5V / (2PT), where f0 = V / (2PT) is the fundamental operating frequency. It is characterized by being operated with

つぎに、図2と図3をもちいて本発明の素子の動作特性につき説明する。   Next, the operation characteristics of the element of the present invention will be described with reference to FIGS.

図2は本発明になる図1のような電極指あるいは導体ストリップの本数を200本として、周期的構造をなすIDTおよび反射器が有する反射特性200を示すものである。また図2は前記f5の周波数による5次高調波動作状態での反射特性を示すものである。図2中の横軸は前記IDTの電極指および反射器の導体ストリップが有する線幅比L/Pである。線幅比L/PはIDTであれば、LT/PTとほぼ同一であり、反射器であればLR/PRにほぼ相当する。縦軸はIDTおよび反射器全体が有する弾性表面波の反射係数であり、個々の電極指および導体ストリップの反射係数rの総和からなるΓを示すものである。図2が示すとおり、反射係数ΓはL/Pがおよそ0.1、0.3、0.5、0.7、0.9付近の値の場合において最大値0.65をとっている。従って、L/Pとしておおよそ(1/2±1/12)の範囲の値に設定すれば、反射係数は最大値が得られ最小の小型な弾性表面波共振子が得られることになる。一方図3は図2と同様な反射特性300を示す特性図であるが、動作周波数が前記の基本波f0である点が異なっており、反射係数Γの最大値は0.997程度の値を示している。この場合はL/Pが0.5において反射係数Γは最大を示す。   FIG. 2 shows a reflection characteristic 200 of an IDT and a reflector having a periodic structure with 200 electrode fingers or conductor strips as shown in FIG. 1 according to the present invention. FIG. 2 shows the reflection characteristics in the fifth harmonic operating state at the frequency f5. The horizontal axis in FIG. 2 represents the line width ratio L / P of the electrode finger of the IDT and the conductor strip of the reflector. The line width ratio L / P is substantially the same as LT / PT for IDT, and substantially corresponds to LR / PR for a reflector. The vertical axis represents the reflection coefficient of the surface acoustic wave possessed by the IDT and the entire reflector, and indicates Γ, which is the sum of the reflection coefficients r of the individual electrode fingers and conductor strips. As shown in FIG. 2, the reflection coefficient Γ has a maximum value of 0.65 when L / P is about 0.1, 0.3, 0.5, 0.7, and 0.9. Therefore, if L / P is set to a value in the range of approximately (1/2 ± 1/12), the maximum value of the reflection coefficient can be obtained, and the minimum surface acoustic wave resonator can be obtained. On the other hand, FIG. 3 is a characteristic diagram showing a reflection characteristic 300 similar to FIG. 2 except that the operating frequency is the fundamental wave f0, and the maximum value of the reflection coefficient Γ is about 0.997. Show. In this case, the reflection coefficient Γ is maximum when L / P is 0.5.

図2は前記の動作周波数f5において得られるものであるが、最大値0.65は、基本波f0における動作特性図3と比較しても約35%程度の減少にとどまり、弾性表面波共振子の構成には支障をきたさない。ちなみに、電極指あるいは導体ストリップの本数は200本より大きくとも少なくとも反射特性の最大値を示すL/Pの値は変わらない。   Although FIG. 2 is obtained at the operating frequency f5, the maximum value of 0.65 is only about a 35% decrease compared to the operating characteristic diagram 3 at the fundamental wave f0, and a surface acoustic wave resonator is obtained. This will not interfere with the configuration. Incidentally, even if the number of electrode fingers or conductor strips is greater than 200, at least the L / P value indicating the maximum value of the reflection characteristic does not change.

つぎに、図4は本発明の弾性表面波共振子の構成に使用する圧電体平板が有する特性を示すものである。図4中の横軸は前記の線幅比L/Pであり、縦軸は電極指あるいは反射器の導体ストリップ1本当たりの反射係数rを単位%でみたものである。図中の白丸点400(r=3%)は線幅比L/Pが0.5かつ膜厚比H/λが0.02における反射係数rを示す点である。また401は、線幅比L/Pが0.5かつ膜厚比H/λが0.09における反射係数r(=10%)を示す点である。また曲線402は反射係数rがほぼゼロをとる境界線であり、右上半分の領域403のrが負値をとる領域と下左半面404のrが正値をとる領域の境界線を示す。本発明になる弾性表面波共振子においては、図4の特性を利用して基本波動作状態における共振子の直列等価抵抗いわゆるCI値を増大させて抑圧することができる。   Next, FIG. 4 shows the characteristics of the piezoelectric plate used in the structure of the surface acoustic wave resonator of the present invention. In FIG. 4, the horizontal axis represents the line width ratio L / P, and the vertical axis represents the reflection coefficient r per electrode strip or conductor strip of the reflector in unit%. A white circle point 400 (r = 3%) in the figure is a point indicating the reflection coefficient r when the line width ratio L / P is 0.5 and the film thickness ratio H / λ is 0.02. Reference numeral 401 denotes a point indicating a reflection coefficient r (= 10%) when the line width ratio L / P is 0.5 and the film thickness ratio H / λ is 0.09. A curve 402 is a boundary line where the reflection coefficient r is almost zero, and shows a boundary line between a region where r in the upper right half region 403 takes a negative value and a region where r in the lower left half surface 404 takes a positive value. In the surface acoustic wave resonator according to the present invention, the series equivalent resistance of the resonator in the fundamental wave operating state, that is, the so-called CI value can be increased and suppressed using the characteristics shown in FIG.

そのメカニズムはつぎのようなものである。まず基本波動作f0において、本発明の弾性表面波共振子の膜圧比H/λを+0.02かつ線幅比L/Pを0.5に設定する(図4中の白丸点400に対応)。このとき弾性表面波の波長λはPTの2倍である2PTの状態となっている。つぎにf0の5倍の周波数f5において動作させると、このとき弾性表面波の波長λは2PTの1/5の状態になることから、前記の膜圧比H/λはH/(2PT)の5倍となって0.10となる(図4中の黒丸点401に対応)。結果として反射係数は負値となる。ここから先のメカニズムは図6の概説図に示すつぎのようなものである。   The mechanism is as follows. First, in the fundamental wave operation f0, the film pressure ratio H / λ of the surface acoustic wave resonator of the present invention is set to +0.02 and the line width ratio L / P is set to 0.5 (corresponding to the white circle point 400 in FIG. 4). . At this time, the wavelength λ of the surface acoustic wave is 2PT, which is twice that of PT. Next, when operating at a frequency f5 that is five times f0, the wavelength λ of the surface acoustic wave becomes 1/5 of 2PT, so the film pressure ratio H / λ is 5 / (2PT). Doubled to 0.10 (corresponding to the black dot 401 in FIG. 4). As a result, the reflection coefficient becomes a negative value. From here on, the mechanism is as follows as shown in the schematic diagram of FIG.

図6は横軸が動作周波数fであり、縦軸はIDTあるいは反射器における弾性表面波の反射係数および放射振幅の相対値を示している。実曲線600はIDTが有する反射特性Γであり、破線で示した601、602、603は前記の同一IDTが有する弾性表面波の放射特性である。反射特性600の平坦部下側に配置する曲線601は、反射係数rが正値をとる基本波動作時f0近傍におけるものであり、また一方の平坦部上側に配置する曲線603は反射係数rが負値をとる5次高調波動作f5状態における前記の同一IDTが有する弾性表面波の放射特性である。   In FIG. 6, the horizontal axis represents the operating frequency f, and the vertical axis represents the relative value of the reflection coefficient and the radiation amplitude of the surface acoustic wave in the IDT or reflector. A solid curve 600 is a reflection characteristic Γ possessed by the IDT, and 601, 602, and 603 indicated by broken lines are radiation characteristics of the surface acoustic wave possessed by the same IDT. A curve 601 disposed below the flat portion of the reflection characteristic 600 is in the vicinity of f0 at the time of fundamental wave operation where the reflection coefficient r has a positive value, and a curve 603 disposed above one flat portion has a negative reflection coefficient r. It is a radiation characteristic of the surface acoustic wave that the same IDT has in the fifth harmonic operation f5 state taking a value.

一般的に、弾性表面波共振子を構成する反射器の反射特性とIDTの放射特性の周波数配置としては、反射器は図6の反射特性曲線600をとるものとして、IDTは放射特性602の関係となるように設定するのが通例である。すなわち反射特性曲線600のほぼ中央にIDTの放射特性602を配置して最も強制な反射現象が実現してQ値の高い共振子となるように、反射器の導体ストリップの周期長PRとIDTの電極指の周期長PTを設定する。このように設定するためには、基本波動作状態ではIDTの電極周期長PTの寸法を小さくして曲線601から602状態にシフトさせる。従ってPT<PRの関係が必要である。また一方、5次高調波動作状態においてはIDTの電極周期長PTの寸法を大きくして曲線603から602状態にシフトさせる。従ってPT>PRの関係が必要である。   In general, regarding the frequency arrangement of the reflection characteristics of the reflectors constituting the surface acoustic wave resonator and the radiation characteristics of the IDT, the reflector assumes the reflection characteristic curve 600 of FIG. It is customary to set so that In other words, the IDT radiation characteristic 602 is arranged almost at the center of the reflection characteristic curve 600 so that the most forced reflection phenomenon is realized and a resonator having a high Q value is obtained. The period length PT of the electrode finger is set. In order to set in this way, in the fundamental wave operating state, the dimension of the electrode period length PT of the IDT is reduced and shifted from the curve 601 to the state 602. Therefore, a relationship of PT <PR is necessary. On the other hand, in the fifth harmonic operation state, the dimension of the electrode period length PT of the IDT is increased and shifted from the curve 603 to the state 602. Therefore, a relationship of PT> PR is necessary.

以上から言えることは、5次高調波動作状態において最良な共振条件に設定するためにPT>PRと設定すれば、基本波動作状態においては、IDT放射特性は反射器の反射特性の平坦部下側にはずれて、十分な反射が実現されず良好な共振現象が得られない。ちなみに三次高調波はIDTにより励振できなおことが知られており、実際3次高調波共振は発生しないことを付け加える。従って基本波f0における共振先鋭度Qは大幅に低下してその等価直列抵抗CI値は5次高調波動作のCI値より数倍に増大する。結果として基本波、二次、三次、四次高調波は抑圧されて、本発明の弾性表面波共振子を用いて水晶SAW発振器を構成した場合には、五次高調波のCI値が小さいために唯一この5次高調波周波数f5が選択された発振のみが実現されることになる。   What can be said from the above is that if PT> PR is set in order to set the best resonance condition in the fifth harmonic operation state, the IDT radiation characteristic is below the flat part of the reflection characteristic of the reflector in the fundamental wave operation state. In other words, sufficient reflection is not realized and a good resonance phenomenon cannot be obtained. Incidentally, it is known that the third harmonic can be excited by the IDT, and it is added that the third harmonic resonance does not actually occur. Accordingly, the resonance sharpness Q in the fundamental wave f0 is greatly reduced, and the equivalent series resistance CI value is increased several times as much as the CI value of the fifth harmonic operation. As a result, the fundamental wave, the second, third, and fourth harmonics are suppressed, and when the surface acoustic wave resonator of the present invention is used to construct a crystal SAW oscillator, the CI value of the fifth harmonic is small. Only the oscillation in which the fifth harmonic frequency f5 is selected is realized.

本発明の弾性表面波共振子の一実施例が有する電極パターンを示す平面図。The top view which shows the electrode pattern which one Example of the surface acoustic wave resonator of this invention has. 本発明の弾性表面波共振子の5次高調波動作状態における反射特性を示す特性図。The characteristic view which shows the reflective characteristic in the 5th harmonic operation state of the surface acoustic wave resonator of this invention. 本発明の弾性表面波共振子の基本波動作状態における反射特性を示す特性図。The characteristic view which shows the reflective characteristic in the fundamental wave operation state of the surface acoustic wave resonator of this invention. 本発明の弾性表面波共振子の構成部品である圧電体平板が有する特性図。The characteristic view which the piezoelectric material flat plate which is a component of the surface acoustic wave resonator of the present invention has. 本発明の弾性表面波共振子の構成部品である圧電体平板の切断方位図。FIG. 3 is a cut orientation view of a piezoelectric plate that is a component of the surface acoustic wave resonator according to the present invention. 本発明の弾性表面波共振子の動作原理を説明する概説図。BRIEF DESCRIPTION OF THE DRAWINGS The general view explaining the principle of operation of the surface acoustic wave resonator of this invention.

符号の説明Explanation of symbols

100…圧電体平板、101,103…反射器、102…すだれ状電極(IDT)。   DESCRIPTION OF SYMBOLS 100 ... Piezoelectric body plate, 101, 103 ... Reflector, 102 ... Interdigital electrode (IDT).

Claims (2)

圧電体平板上の位相伝播方向Xに弾性表面波を励振する少なくとも1個のすだれ状電極とその伝播方向両側に配置した一対の反射器とからなる弾性表面波共振子であって、
前記すだれ状電極は、弾性表面波の前記位相伝播方向Xにほぼ直交して配置した多数の電極指からなり、前記電極指の前記位相伝播方向X方向の幅寸法をLTとし、電極指の存在しない領域の前記位相伝播方向X方向の寸法をSTとして、前記すだれ状電極の配列周期長であるPT=LT+STに対する線幅比LT/PTが(1/2±1/12)の範囲であり、
前記反射器は、弾性表面波の前記位相伝播方向Xにほぼ直交して配置した多数の電極指からなり、前記電極指の前記位相伝播方向X方向の幅寸法をLRとし、前記電極指の存在しない領域の前記位相伝播方向X方向の寸法をSRとして、前記反射器の配列周期長であるPR=LR+SRに対する線幅比LR/PRが(1/2±1/12)の範囲であり、前記反射器の配列周期長PRに対して前記すだれ状電極の配列周期長PTの関係がPR<PTであって、前記すだれ状電極の配列周期長PTに対する前記反射器の配列周期長PRの割合が1から10%の差があり、前記弾性表面波の速度Vと動作周波数fの関係がf=5V/(2PT)であることを特徴とする弾性表面波共振子。
A surface acoustic wave resonator comprising at least one interdigital electrode for exciting a surface acoustic wave in a phase propagation direction X on a piezoelectric plate and a pair of reflectors disposed on both sides of the propagation direction,
The interdigital electrode is composed of a number of electrode fingers arranged substantially orthogonal to the phase propagation direction X of the surface acoustic wave, and the width dimension of the electrode finger in the phase propagation direction X direction is LT, and the presence of the electrode finger The line width ratio LT / PT with respect to PT = LT + ST, which is the arrangement period length of the interdigital electrode, is in the range of (1/2 ± 1/12), where ST is the dimension in the phase propagation direction X direction of the non-conducting region.
The reflector includes a large number of electrode fingers arranged substantially orthogonal to the phase propagation direction X of the surface acoustic wave, the width dimension of the electrode finger in the phase propagation direction X direction is LR, and the presence of the electrode finger The line width ratio LR / PR with respect to PR = LR + SR, which is the arrangement period length of the reflectors, is in a range of (1/2 ± 1/12), where SR is the dimension in the phase propagation direction X direction of the region that is not The relation between the arrangement period length PT of the interdigital electrodes and the arrangement period length PT of the reflectors is PR <PT, and the ratio of the arrangement period length PR of the reflectors to the arrangement period length PT of the interdigital electrodes is A surface acoustic wave resonator having a difference of 1 to 10%, and the relationship between the surface acoustic wave velocity V and the operating frequency f is f = 5 V / (2PT).
前記圧電体平板が水晶単結晶からなり、かつ水晶回転Y板を電気軸(X軸)の回りに反時計方向にθ=31度から42度回転し、さらに主平面の法線の回りに電気軸から40度から46度回転したXP方向に弾性表面波の位相伝搬方向が存在するように電極指を配置しており、
前記電極指および前記反射器が有する導体ストリップは、アルミニウムの薄膜をフォトリソ加工により形成した金属パターンからなり、前記アルミニウムの薄膜Hと前記反射器の配列周期長PRが示す2PRとの比が(0.02±0.01)の範囲にあることを特徴とする請求項1記載の弾性表面波共振子。
The piezoelectric flat plate is made of a single crystal, and the quartz rotating Y plate is rotated counterclockwise around θ = 31 ° to 42 ° around the electric axis (X axis), and further, electric around the normal of the main plane. The electrode fingers are arranged so that the phase propagation direction of the surface acoustic wave exists in the XP direction rotated from 40 degrees to 46 degrees from the axis,
The conductor strips of the electrode fingers and the reflector are made of a metal pattern in which an aluminum thin film is formed by photolithography, and the ratio of the aluminum thin film H to 2PR indicated by the arrangement period length PR of the reflector is (0 The surface acoustic wave resonator according to claim 1, wherein the surface acoustic wave resonator is in a range of 0.02 ± 0.01).
JP2006043487A 2006-02-21 2006-02-21 Surface acoustic wave resonator Withdrawn JP2007228012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006043487A JP2007228012A (en) 2006-02-21 2006-02-21 Surface acoustic wave resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006043487A JP2007228012A (en) 2006-02-21 2006-02-21 Surface acoustic wave resonator

Publications (1)

Publication Number Publication Date
JP2007228012A true JP2007228012A (en) 2007-09-06

Family

ID=38549419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006043487A Withdrawn JP2007228012A (en) 2006-02-21 2006-02-21 Surface acoustic wave resonator

Country Status (1)

Country Link
JP (1) JP2007228012A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014112949A (en) * 2009-02-27 2014-06-19 Seiko Epson Corp Surface acoustic wave resonator and surface acoustic wave oscillator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014112949A (en) * 2009-02-27 2014-06-19 Seiko Epson Corp Surface acoustic wave resonator and surface acoustic wave oscillator

Similar Documents

Publication Publication Date Title
JP4591800B2 (en) Surface acoustic wave device and surface acoustic wave oscillator
JP4645923B2 (en) Surface acoustic wave resonator and surface acoustic wave oscillator
JP2011041287A (en) Surface acoustic wave resonator and surface acoustic wave oscillator
JP2007300287A (en) Surface acoustic wave element, surface acoustic wave device, and electronic apparatus
JP2007259414A (en) Method for fabricating elastic surface wave equipment, method for ajusting its temperature characteristics, and elastic surface wave equipment manufactured thereby
JP3724575B2 (en) Surface acoustic wave device
JP2008236295A (en) Saw resonator
JP2005204275A (en) Surface acoustic wave element piece, its manufacturing method, and surface acoustic wave device
JP4059152B2 (en) Surface acoustic wave resonator
JP2010088141A (en) Surface acoustic wave device and surface acoustic wave oscillator
JP2007288812A5 (en)
JP2010177819A (en) Surface acoustic wave element
JP3864665B2 (en) SAW resonator
JP4059147B2 (en) Surface acoustic wave resonator
JP5563378B2 (en) Elastic wave element
JP4868124B2 (en) Surface acoustic wave resonator
JP2007228012A (en) Surface acoustic wave resonator
JP2006074136A (en) Surface acoustic wave element chip and surface acoustic wave device
JP2008278349A (en) Saw resonator
JP2012049817A (en) Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus
JP2005269284A (en) Lamb wave type elastic wave element
JP2005204042A (en) Surface acoustic wave resonator and surface acoustic wave filter
JP2009027671A (en) Sh type bulk wave resonator
WO2012137027A1 (en) Surface acoustic wave resonator
JP2005184340A (en) Surface acoustic wave chip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090220

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110610

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110725