JP2007227652A - Two-wavelength semiconductor light-emitting device and manufacturing method thereof - Google Patents

Two-wavelength semiconductor light-emitting device and manufacturing method thereof Download PDF

Info

Publication number
JP2007227652A
JP2007227652A JP2006047100A JP2006047100A JP2007227652A JP 2007227652 A JP2007227652 A JP 2007227652A JP 2006047100 A JP2006047100 A JP 2006047100A JP 2006047100 A JP2006047100 A JP 2006047100A JP 2007227652 A JP2007227652 A JP 2007227652A
Authority
JP
Japan
Prior art keywords
semiconductor
layer
emitting device
stacked body
stacked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006047100A
Other languages
Japanese (ja)
Inventor
Shinichi Tamai
慎一 玉井
Takeshi Nakahara
健 中原
Atsushi Yamaguchi
敦司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2006047100A priority Critical patent/JP2007227652A/en
Priority to PCT/JP2007/053367 priority patent/WO2007097411A1/en
Priority to US12/224,287 priority patent/US7745839B2/en
Publication of JP2007227652A publication Critical patent/JP2007227652A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a two-wavelength semiconductor light-emitting device capable of improving the condensation characteristics of light beams having two wavelengths and preventing deterioration in the manufacturing process of an active layer in a light-emitting element at a long-wavelength side in the two-wavelength semiconductor light-emitting device in which n and p electrodes are provided on the same surface side, and to provide a method for manufacturing the two-wavelength semiconductor light-emitting device. <P>SOLUTION: Semiconductor lasers D1, D2 are integrated and formed as two light-emitting elements having different light-emitting wavelengths on a common substrate 1. A semiconductor laminate A is laminated on an n-type contact layer 21 in the semiconductor laser D1 while a semiconductor laminate B is laminated in the semiconductor laser D2. The semiconductor laminates A, B have different layer structures. Two n electrodes 11a, 11b corresponding to the semiconductor lasers D1, D2 are formed on the substrate 1 while sandwiching the semiconductor laminates A, B. Crystal growth is made from the semiconductor laminate A at a short-wavelength side. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、同一基板上に異なる波長の光を発光する2つの発光素子が形成された2波長半導体発光装置とその製造方法に関する。   The present invention relates to a two-wavelength semiconductor light-emitting device in which two light-emitting elements that emit light of different wavelengths are formed on the same substrate, and a method for manufacturing the same.

近年、高密度光ディスク記録等への応用を目的として短波長の半導体レーザの開発が注力されている。短波長半導体レーザには、GaN、AlGaN、InGaN、InGaAlN、GaPNなどの窒素を含む六方晶化合物半導体(以下、単に窒化物半導体という)が用いられる。   In recent years, development of short-wavelength semiconductor lasers has been focused on for the purpose of application to high-density optical disk recording and the like. For the short wavelength semiconductor laser, a hexagonal compound semiconductor (hereinafter simply referred to as a nitride semiconductor) containing nitrogen such as GaN, AlGaN, InGaN, InGaAlN, GaPN, or the like is used.

また、インターネットの爆発的な普及による通信トラフィックの急増に伴い、高速・大容量通信を可能とする光通信技術を始め、高速転送・大容量の光ディスク、高効率のLED発光素子などの光デバイスへの期待が大きく高まっている。例えば、書き換え型CDと書き換え型DVDの両方式に対応させるために異なる2つの半導体レーザを搭載した素子や、多重化通信に対応した2波長の半導体レーザなどの開発が盛んになってきている。   In addition, with the rapid increase in communication traffic due to the explosive spread of the Internet, optical communication technology that enables high-speed and large-capacity communication, high-speed transfer and large-capacity optical disks, and optical devices such as high-efficiency LED light-emitting elements The expectations of have increased greatly. For example, in order to support both rewritable CD and rewritable DVD systems, development of an element equipped with two different semiconductor lasers, a two-wavelength semiconductor laser compatible with multiplexed communication, and the like has become active.

そこで、特許文献1に記載されているように、基板上にn−GaNバッファ層を形成し、このn−GaNバッファ層を共通の半導体層として、n−GaNバッファ層上に2波長の各発光素子のn型半導体層、活性層、p型半導体層等を積層し、各発光素子のp電極とn電極を基板を挟んで対向させた半導体発光装置が提案されている。   Therefore, as described in Patent Document 1, an n-GaN buffer layer is formed on a substrate, and each of the two wavelengths of light emitted on the n-GaN buffer layer is formed using the n-GaN buffer layer as a common semiconductor layer. There has been proposed a semiconductor light emitting device in which an n-type semiconductor layer, an active layer, a p-type semiconductor layer, and the like of an element are stacked and a p electrode and an n electrode of each light emitting element are opposed to each other with a substrate interposed therebetween.

また、特許文献1に記載の半導体発光装置では、モノリシックに2波長の波長で発振する発光素子を製造するようにしている。半導体基板の主面に、その主面と平行な平面と主面から傾斜した傾斜面をもって形成された六方晶窒化物からなる半導体層を各々形成しておき、半導体層の前記平面上及び傾斜面上に活性層を結晶成長させると、それぞれInを互いに異なる組成比で含んだ活性層が形成され、2波長の波長で発振することができるというものである。
特開2003−101156号公報
In addition, in the semiconductor light emitting device described in Patent Document 1, a light emitting element that oscillates monolithically at two wavelengths is manufactured. A semiconductor layer made of hexagonal nitride formed with a plane parallel to the main surface and an inclined surface inclined from the main surface is formed on the main surface of the semiconductor substrate, respectively, on the plane and the inclined surface of the semiconductor layer. When the active layer is crystal-grown on it, active layers each containing In at different composition ratios are formed, and can oscillate at two wavelengths.
JP 2003-101156 A

しかしながら、上記従来の構成では、2波長の各発光素子のp電極とn電極を基板を挟んで対向させた構造としているので、各発光素子を比較的接近させて形成することができるが、p電極とn電極を基板の同一面側に設ける構造とした場合には、n電極はn−GaNバッファ層上に設ける必要があるために、n電極が各発光素子の間に設けられることになり、2つの発光素子の活性層の距離が開き、2波長の光ビームの間隔が開くので、集光性が悪くなるという問題があった。   However, in the above conventional configuration, the p-electrode and n-electrode of each light-emitting element with two wavelengths are opposed to each other with the substrate interposed therebetween, so that each light-emitting element can be formed relatively close to each other. When the electrode and the n electrode are provided on the same surface side of the substrate, the n electrode needs to be provided on the n-GaN buffer layer, so that the n electrode is provided between the light emitting elements. Since the distance between the active layers of the two light emitting elements is increased and the distance between the light beams having two wavelengths is increased, there is a problem that the light condensing property is deteriorated.

また、モノリシックに2波長の波長で発振する発光素子を製造する方法は、2波長の活性層を同時に結晶成長させることができ、製造工程数が少なくなるものの、活性層を挟むようにして設けられている光ガイド層やクラッド層が2つの発光素子でモノリシックに形成されているため、デバイス特性を悪化させるという問題があった。すなわち、光ガイド層やクラッド層等の各半導体層の屈折率は光の波長に依存するために、発光波長が変わると、放射光に対する各半導体層の屈折率が変化し、同じ組成の光ガイド層やクラッド層では2つの発光素子毎に光閉じ込め効果が異なることになり、性能の良い半導体発光装置を製造できない。   In addition, a method for manufacturing a light-emitting element that oscillates monolithically at two wavelengths is capable of simultaneously growing crystals of two-wavelength active layers and reduces the number of manufacturing steps, but is provided so as to sandwich the active layers. Since the light guide layer and the clad layer are monolithically formed of two light emitting elements, there is a problem that device characteristics are deteriorated. That is, since the refractive index of each semiconductor layer such as the light guide layer and the cladding layer depends on the wavelength of light, when the emission wavelength changes, the refractive index of each semiconductor layer with respect to the emitted light changes, and the light guide having the same composition. In the layer and the clad layer, the light confinement effect is different for each of the two light emitting elements, and a semiconductor light emitting device with good performance cannot be manufactured.

そこで、製造工程数が多くなっても、2波長の発光素子を各々別個の工程で製造すれば良いが、Inを含む窒化物で構成された活性層を有する発光素子では、活性層のIn含有比率が高い程、すなわち長波長の発光素子になるほど、活性層の結晶成長後に、活性層が高温に曝されると、成膜された活性層が壊れやすいという問題があった。   Therefore, even if the number of manufacturing steps increases, it is only necessary to manufacture each of the two-wavelength light-emitting elements in separate steps. However, in a light-emitting element having an active layer composed of a nitride containing In, the active layer contains In. The higher the ratio, that is, the longer the wavelength of the light emitting device, there is a problem that when the active layer is exposed to a high temperature after crystal growth of the active layer, the formed active layer is easily broken.

本発明は、上述した課題を解決するために創案されたものであり、n電極、p電極が同一面側に設けられた2波長半導体発光装置であっても、2波長の光ビームの集光性を高めるとともに、長波長側の発光素子における活性層の製造過程における劣化を防止することができる2波長半導体発光装置及びその製造方法を提供することを目的としている。   The present invention was devised to solve the above-described problem. Even in a two-wavelength semiconductor light emitting device in which an n-electrode and a p-electrode are provided on the same surface side, a two-wavelength light beam is condensed. An object of the present invention is to provide a two-wavelength semiconductor light emitting device and a method for manufacturing the same, which can improve the performance and prevent deterioration in the manufacturing process of the active layer in the light emitting element on the long wavelength side.

上記目的を達成するために、請求項1記載の発明は、異なる波長の光を発光する2つの積層体が同一基板上に形成され、基板の同一面側に前記2つの積層体に対応するn電極とp電極が各々配置される2波長半導体発光装置において、前記2つの積層体に対応する2つのn電極は、前記2つの積層体を挟むように前記基板上に配置されていることを特徴とする2波長半導体発光装置である。   To achieve the above object, according to the present invention, two stacked bodies that emit light of different wavelengths are formed on the same substrate, and n corresponding to the two stacked bodies are formed on the same surface side of the substrate. In the two-wavelength semiconductor light-emitting device in which an electrode and a p-electrode are respectively disposed, two n electrodes corresponding to the two stacked bodies are disposed on the substrate so as to sandwich the two stacked bodies. Is a two-wavelength semiconductor light emitting device.

また、請求項2記載の発明は、異なる波長の光を発光する2つの積層体が同一基板上に形成され、基板の同一面側に前記2つの積層体に対応するn電極とp電極が各々配置されるとともに、前記2つの積層体における活性層はInを異なる比率で含む窒化物層で構成されている2波長半導体発光装置の製造方法において、前記2つの積層体のうちInの組成比率が低い方の活性層を含む第1積層体から結晶成長させた後、Inの組成比率が高い方の活性層を含む第2積層体を結晶成長させ、その後前記第1積層体、第2積層体を挟むようにして2つのn電極を前記基板上に形成することを特徴とする2波長半導体発光装置の製造方法である。   In the invention according to claim 2, two stacked bodies that emit light of different wavelengths are formed on the same substrate, and n electrodes and p electrodes corresponding to the two stacked bodies are provided on the same surface side of the substrate, respectively. In the method for manufacturing a two-wavelength semiconductor light-emitting device, wherein the active layer in the two stacked bodies is formed of a nitride layer containing In at a different ratio, the In composition ratio of the two stacked bodies is After crystal growth from the first stacked body including the lower active layer, the second stacked body including the active layer having the higher In composition ratio is grown, and then the first stacked body and the second stacked body are grown. A two-wavelength semiconductor light-emitting device manufacturing method characterized in that two n-electrodes are formed on the substrate so as to sandwich the substrate.

また、請求項3記載の発明は、前記第2積層体の活性層は、バリア層としてn型GaNを用いたことを特徴とする請求項2記載の2波長半導体発光装置の製造方法である。   The invention according to claim 3 is the method of manufacturing a two-wavelength semiconductor light emitting device according to claim 2, wherein the active layer of the second stacked body uses n-type GaN as a barrier layer.

また、請求項4記載の発明は、前記第2積層体の活性層の結晶成長後、p型の半導体層としてはInGaN層のみを形成することを特徴とする請求項2〜請求項3のいずれか1項に記載の2波長半導体発光装置の製造方法である。   According to a fourth aspect of the present invention, only an InGaN layer is formed as a p-type semiconductor layer after crystal growth of the active layer of the second stacked body. A method for manufacturing a two-wavelength semiconductor light-emitting device according to claim 1.

また、請求項5記載の発明は、前記第1積層体の結晶成長を行う前に、前記第1積層体を積層する領域を除き前記基板上にSi系膜を成膜することを特徴とする請求項2〜請求項4のいずれか1項に記載の2波長半導体発光装置の製造方法である。   The invention according to claim 5 is characterized in that a Si-based film is formed on the substrate except for a region where the first stacked body is stacked before crystal growth of the first stacked body. It is a manufacturing method of the 2 wavelength semiconductor light-emitting device of any one of Claims 2-4.

また、請求項6記載の発明は、前記第2積層体の結晶成長を行う前に、前記第2積層体を積層する領域を除き前記第1積層体上及び前記基板上にSi系膜を成膜することを特徴とする請求項2〜請求項5のいずれか1項に記載の2波長半導体発光装置の製造方法である。   According to a sixth aspect of the present invention, a Si-based film is formed on the first laminate and the substrate except for a region where the second laminate is laminated before crystal growth of the second laminate. 6. The method for manufacturing a two-wavelength semiconductor light-emitting device according to claim 2, wherein the film is formed.

本発明によれば、異なる波長の光を発光する2つの積層体が同一基板上に形成されるとともに、基板の同一面側に2つの積層体に対応するn電極とp電極が形成されるが、2つのn電極は2つの積層体の間に形成されずに、2つの積層体を挟んだ両側の基板上に形成されるので、2つの積層体を接近させて積層することができ、短波長側の活性層と長波長側の活性層とを接近させることができるので、集光性を高めることができる。   According to the present invention, two stacked bodies that emit light of different wavelengths are formed on the same substrate, and n electrodes and p electrodes corresponding to the two stacked bodies are formed on the same surface side of the substrate. The two n-electrodes are not formed between the two stacked bodies, but are formed on the substrates on both sides of the two stacked bodies, so that the two stacked bodies can be brought close to each other and short-circuited. Since the active layer on the wavelength side and the active layer on the long wavelength side can be brought close to each other, the light condensing property can be improved.

また、製造工程においては、先にInの含有比率の高い窒化物で構成された活性層を含む積層体、すなわち長波長側の積層体を短波長側の積層体よりも後にエピタキシャル成長させるようにしているので、長波長側の活性層を高温下に曝す時間が短くなり、長波長側の活性層の劣化を防止することができる。   Also, in the manufacturing process, a laminate including an active layer composed of a nitride having a high In content ratio, that is, a laminate on the long wavelength side is epitaxially grown later than a laminate on the short wavelength side. Therefore, the time for which the active layer on the long wavelength side is exposed to a high temperature is shortened, and deterioration of the active layer on the long wavelength side can be prevented.

以下、図面を参照して本発明の一実施形態を説明する。図1は本発明による2波長半導体発光装置の概略構成を示す。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a schematic configuration of a two-wavelength semiconductor light emitting device according to the present invention.

同一の基板1上に、発光波長の異なる2つの発光素子として半導体レーザD1、D2が集積形成されている。具体的には、成長基板20にn型コンタクト層21が積層されたものである。成長基板20には、サファイア基板、GaN基板、SiC基板等が用いられる。また、各半導体レーザD1、D2に共通のn型コンタクト層21には、n型GaN層等が用いられる。   On the same substrate 1, semiconductor lasers D1 and D2 are integrated and formed as two light emitting elements having different emission wavelengths. Specifically, the n-type contact layer 21 is laminated on the growth substrate 20. As the growth substrate 20, a sapphire substrate, a GaN substrate, a SiC substrate, or the like is used. An n-type GaN layer or the like is used for the n-type contact layer 21 common to the semiconductor lasers D1 and D2.

図1の構造で1チップを構成するもので、実際には図1の半導体レーザD1、D2を1セットとして、これを繰り返して複数個形成されたウエハから図1の部分毎にダイシング等により切断して1チップとするものである。また、図1に記載された矢印は、レーザ光の出射方向を示す。   1 constitutes one chip. Actually, the semiconductor lasers D1 and D2 in FIG. 1 are set as one set, and this is repeated to cut each part of FIG. 1 by dicing or the like. One chip. Moreover, the arrow described in FIG. 1 shows the emission direction of the laser beam.

半導体レーザD1では、基板1のn型コンタクト層21上にストライプ状のリッジ部を有する半導体積層体Aが積層され、半導体レーザD2では、同じく基板1のn型コンタクト層21上にストライプ状のリッジ部を有する半導体積層体Bが積層される。半導体積層体Aと半導体積層体Bとでは層構造が異なる構成となる。半導体積層体Aのリッジ部側面を覆うように、また、半導体積層体Bのリッジ部側面を覆うようにして絶縁膜8(斜線部)が形成されている。n型コンタクト層21上の一部と半導体積層体A、Bの各側面には絶縁膜6(斜線部)が形成されている。なお、同じ種類の斜線が付されている領域は、同じ絶縁膜を表す。   In the semiconductor laser D1, a semiconductor stacked body A having a striped ridge portion is stacked on the n-type contact layer 21 of the substrate 1. In the semiconductor laser D2, a striped ridge is also formed on the n-type contact layer 21 of the substrate 1. The semiconductor stacked body B having a portion is stacked. The semiconductor laminate A and the semiconductor laminate B have different layer structures. An insulating film 8 (shaded portion) is formed so as to cover the side surface of the ridge portion of the semiconductor stacked body A and the side surface of the ridge portion of the semiconductor stacked body B. An insulating film 6 (shaded portion) is formed on a part of the n-type contact layer 21 and on each side surface of the semiconductor stacked bodies A and B. Note that regions with the same type of diagonal lines represent the same insulating film.

また、半導体積層体Aのリッジ部上部と絶縁膜8を覆うようにしてp電極9aが形成され、同様に半導体積層体Bのリッジ部上部と絶縁膜8を覆うようにしてp電極9bが形成されている。さらに、ワイヤボンディング等のために、半導体レーザD1のp電極9a上にはp側パッド電極12aが、半導体レーザD2のp電極9b上にはp側パッド電極12cが形成されている。   Further, a p-electrode 9a is formed so as to cover the upper portion of the ridge portion of the semiconductor stacked body A and the insulating film 8, and similarly, a p-electrode 9b is formed so as to cover the upper portion of the ridge portion of the semiconductor stacked body B and the insulating film 8. Has been. Further, for wire bonding or the like, a p-side pad electrode 12a is formed on the p-electrode 9a of the semiconductor laser D1, and a p-side pad electrode 12c is formed on the p-electrode 9b of the semiconductor laser D2.

各半導体レーザD1、D2に対応するn電極11a、11bは、半導体積層体A、Bを挟むようにして半導体積層体A、Bの両側に配置され、共通の基板1上に形成されている。   The n electrodes 11a and 11b corresponding to the semiconductor lasers D1 and D2 are disposed on both sides of the semiconductor stacked bodies A and B so as to sandwich the semiconductor stacked bodies A and B, and are formed on the common substrate 1.

ワイヤボンディング等のために、n電極11a上にはn側パッド電極12bが、n電極11b上にはn側パッド電極12dが、形成されている。 For wire bonding or the like, an n-side pad electrode 12b is formed on the n-electrode 11a, and an n-side pad electrode 12d is formed on the n-electrode 11b.

以上のように、n電極とp電極が同一面側に設けられた2波長半導体発光装置において、半導体積層体A、Bの間にn電極を設けることはしないで、半導体積層体A、Bを挟んで配置するようにしているので、半導体積層体A、Bを接近して積層することができるので、半導体積層体A、Bに含まれる各活性層を接近して形成することができ、異なる波長の光ビームの集光性を高めることができる。   As described above, in the two-wavelength semiconductor light-emitting device in which the n-electrode and the p-electrode are provided on the same surface side, the n-electrode is not provided between the semiconductor laminates A and B, and the semiconductor laminates A and B are formed. Since the semiconductor stacked bodies A and B can be stacked close to each other because they are arranged so as to be sandwiched, the active layers included in the semiconductor stacked bodies A and B can be formed close to each other, which are different. The condensing property of the light beam having the wavelength can be improved.

図1の2波長半導体発光装置の製造方法を図2〜図15を使って説明する。ここで、半導体レーザD1を例えば青色の短波長レーザとし、半導体レーザD2を例えば緑色の長波長レーザとする。また、基板1やその上に積層される半導体層を含めたウエハは、紙面の横方向や前後方向にも拡がっているものであるが、図1と同様、繰り返して形成される半導体レーザD1、D2を1セットとした1チップ分を示している。ここで、半導体積層体Aが第1積層体に相当し、半導体積層体Bが第2積層体に相当する。   A method of manufacturing the two-wavelength semiconductor light emitting device of FIG. 1 will be described with reference to FIGS. Here, the semiconductor laser D1 is, for example, a blue short wavelength laser, and the semiconductor laser D2 is, for example, a green long wavelength laser. In addition, the wafer including the substrate 1 and the semiconductor layer stacked on the substrate extends in the horizontal direction and the front-rear direction on the paper surface. One chip is shown with D2 as one set. Here, the semiconductor stacked body A corresponds to the first stacked body, and the semiconductor stacked body B corresponds to the second stacked body.

まず、短波長の半導体レーザD1を形成するために、成長基板20をMOCVD(有機金属化学気相成長)装置に入れ、水素ガスを流しながら、1050℃程度まで温度を上げ、成長基板20をサーマルクリーニングする。温度を600℃程度まで下げ、図2のように、n型コンタクト層21としてSiドープのn型GaNコンタクト層211を成長基板20上に成長させる。   First, in order to form the short-wavelength semiconductor laser D1, the growth substrate 20 is put into a MOCVD (metal organic chemical vapor deposition) apparatus, and the temperature is raised to about 1050 ° C. while flowing hydrogen gas, so that the growth substrate 20 is thermally Clean it. The temperature is lowered to about 600 ° C., and an Si-doped n-type GaN contact layer 211 is grown on the growth substrate 20 as the n-type contact layer 21 as shown in FIG.

図3に示すように、絶縁膜4aをn−GaNコンタクト層211上に形成し、絶縁膜4aの上に半導体積層体Aを形成する領域部分を除いてレジスト14をパターニングする。絶縁膜4aには、GaNが成長不可能でウエットエッチングが容易なSiO、Si等のSi系膜が用いられる。このSi系膜を用いることで、後述するように、ウエハ上に半導体積層体Aを構成する半導体層を積層していくだけで、半導体積層体Aの形状が得られる。次に、ウエットエッチングにより、半導体積層体Aを形成する領域部分の絶縁膜4aを除去する。 As shown in FIG. 3, the insulating film 4 a is formed on the n-GaN contact layer 211, and the resist 14 is patterned except for the region where the semiconductor stacked body A is formed on the insulating film 4 a. For the insulating film 4a, a Si-based film such as SiO 2 or Si 3 N 4 that cannot grow GaN and is easy to perform wet etching is used. By using this Si-based film, the shape of the semiconductor stacked body A can be obtained simply by stacking the semiconductor layers constituting the semiconductor stacked body A on the wafer, as will be described later. Next, the insulating film 4a in the region where the semiconductor stacked body A is formed is removed by wet etching.

図4のように、半導体積層体Aを積層するために、再びMOCVD装置内にウエハを導入し、温度を1000℃程度まで上げ、Siドープのn型AlGaNクラッド層22、Siドープのn型GaN光ガイド層23を成長させる。   As shown in FIG. 4, in order to stack the semiconductor stacked body A, the wafer is again introduced into the MOCVD apparatus, the temperature is raised to about 1000 ° C., the Si-doped n-type AlGaN cladding layer 22, the Si-doped n-type GaN The light guide layer 23 is grown.

次に、温度を約750℃まで下げて、InGaN活性層24を成長させる。その後温度を1000℃〜1100℃程度まで上げて、Mgドープのp型GaN光ガイド層25、Mgドープのp型AlGaNクラッド層26、Mgドープのp型GaNコンタクト層27を順次積層する。   Next, the temperature is lowered to about 750 ° C., and the InGaN active layer 24 is grown. Thereafter, the temperature is raised to about 1000 ° C. to 1100 ° C., and an Mg-doped p-type GaN light guide layer 25, an Mg-doped p-type AlGaN cladding layer 26, and an Mg-doped p-type GaN contact layer 27 are sequentially stacked.

InGaN活性層24は、InGaN単層でも良いが、多重量子井戸構造としても良く、その場合は、井戸層をInGaN、バリア層(障壁層)をアンドープGaN又はInGaNで形成し、井戸層とバリア層を交互に数周期積層することで構成される。前述のように、青色の発光波長(短波長側)の半導体レーザをD1と仮定したので、InGaN活性層24のIn組成は15%前後とし、InGaN井戸層を30Å前後とすることが望ましい。   The InGaN active layer 24 may be an InGaN single layer, but may have a multiple quantum well structure. In this case, the well layer is formed of InGaN, the barrier layer (barrier layer) is formed of undoped GaN or InGaN, and the well layer and the barrier layer are formed. Are alternately stacked for several cycles. As described above, since the semiconductor laser having the blue emission wavelength (short wavelength side) is assumed to be D1, it is desirable that the In composition of the InGaN active layer 24 is about 15% and the InGaN well layer is about 30%.

n−AlGaNクラッド層22のAlの組成は10%までとするのが望ましく、クラックを防止するためには、膜厚を1.2μm以下とすることが望ましい。n−GaN光ガイド層23はn−InGaN光ガイド層としても良く、この場合Inの組成は3%までとするのが望ましい。   The Al composition of the n-AlGaN cladding layer 22 is desirably up to 10%, and the film thickness is desirably 1.2 μm or less in order to prevent cracks. The n-GaN light guide layer 23 may be an n-InGaN light guide layer. In this case, the In composition is preferably up to 3%.

p−GaN光ガイド層25もp−InGaN光ガイド層としても良く、この場合Inの組成は3%までとするのが望ましい。なお、p−AlGaNクラッド層26のAlは、10%までで、膜厚としては0.4μmまでが望ましい。ここで、n−AlGaNクラッド層22〜p−GaNコンタクト層27までが、半導体積層体Aに相当する。   The p-GaN light guide layer 25 may also be a p-InGaN light guide layer. In this case, the In composition is preferably up to 3%. Note that the Al content of the p-AlGaN cladding layer 26 is preferably up to 10% and the film thickness is preferably up to 0.4 μm. Here, the layers from the n-AlGaN cladding layer 22 to the p-GaN contact layer 27 correspond to the semiconductor stacked body A.

次に、図5に示すように、絶縁膜4aと半導体積層体Aの全体を覆うように、絶縁膜4bを積層する。この絶縁膜4bも絶縁膜4aと同様、GaNが成長不可能でウエットエッチングが容易なSiO、Si等のSi系膜が用いられる。このようにすることにより、半導体積層体Bを形成する場合に、後述するように、半導体積層体Bを構成する半導体層を順次積層していくだけで、半導体積層体Bの形状が得られる。半導体積層体Bを形成する領域部分を除いてマスク6をパターニングし、ウエットエッチングを行う。 Next, as illustrated in FIG. 5, the insulating film 4 b is stacked so as to cover the entire insulating film 4 a and the semiconductor stacked body A. Similarly to the insulating film 4a, the insulating film 4b is made of a Si-based film such as SiO 2 or Si 3 N 4 that cannot grow GaN and is easy to wet-etch. Thus, when forming the semiconductor stacked body B, the shape of the semiconductor stacked body B can be obtained by sequentially stacking the semiconductor layers constituting the semiconductor stacked body B, as will be described later. The mask 6 is patterned except for the region where the semiconductor laminate B is to be formed, and wet etching is performed.

マスク5をリフトオフした後、図5で、ウエットエッチングを行った領域に、図6のように、半導体レーザD2の半導体積層体Bを積層する。半導体積層体Bを成長させるために、再び、MOCVD装置内で、温度を1000℃程度にまで上げ、n−GaNコンタクト層211の上にSiドープのn型AlGaNクラッド層32、Siドープのn型GaN光ガイド層33を結晶成長させる。次に、温度を約750℃まで下げて、InGaN活性層34を成長させる。その後、温度を850℃程度まで上げて、Mgドープのp型InGaN層35を成長させる。ここで、n−AlGaNクラッド層32〜p−InGaN層35までが、半導体積層体Bに相当する。   After the mask 5 is lifted off, the semiconductor stacked body B of the semiconductor laser D2 is stacked in the region where the wet etching is performed in FIG. 5 as shown in FIG. In order to grow the semiconductor stacked body B, the temperature is again raised to about 1000 ° C. in the MOCVD apparatus, and the Si-doped n-type AlGaN cladding layer 32 and the Si-doped n-type are formed on the n-GaN contact layer 211. The GaN light guide layer 33 is crystal-grown. Next, the temperature is lowered to about 750 ° C., and the InGaN active layer 34 is grown. Thereafter, the temperature is raised to about 850 ° C., and the Mg-doped p-type InGaN layer 35 is grown. Here, the n-AlGaN cladding layer 32 to the p-InGaN layer 35 correspond to the semiconductor stacked body B.

InGaN活性層34は、Siドープのn型InGaN単層でも良いが、多重量子井戸構造としても良く、その場合は、井戸層をSiドープのn型InGaN、バリア層をSiドープのn型GaNで形成し、井戸層とバリア層を交互に数周期積層して構成することができる。前述のように、緑色の発光波長(長波長側)の半導体レーザをD2と仮定したので、InGaN活性層34のIn組成は20%前後とし、InGaN井戸層を30Å前後とすることが望ましい。バリア層をn型GaNとすることで、井戸層と同様、約750℃の温度で成長させることができる。   The InGaN active layer 34 may be a Si-doped n-type InGaN single layer, but may have a multiple quantum well structure. In this case, the well layer is Si-doped n-type InGaN, and the barrier layer is Si-doped n-type GaN. The well layer and the barrier layer may be alternately stacked for several cycles. As described above, since the semiconductor laser having the green emission wavelength (long wavelength side) is assumed to be D2, it is desirable that the In composition of the InGaN active layer 34 is about 20% and the InGaN well layer is about 30%. By using n-type GaN as the barrier layer, it can be grown at a temperature of about 750 ° C. as in the case of the well layer.

半導体積層体Aと同様、n−AlGaNクラッド層32のAlの組成は10%までとするのが望ましく、クラックを防止するためには、膜厚を1.2μm以下とすることが望ましい。n−GaN光ガイド層33はn−InGaN光ガイド層としても良く、この場合Inの組成は3%までとするのが望ましい。また、p−InGaN層35のIn組成は3%までとし、良好な膜質を得るためには0.5μm以下の膜厚とするのが望ましい。   Similar to the semiconductor stacked body A, the Al composition of the n-AlGaN cladding layer 32 is desirably up to 10%, and the film thickness is desirably 1.2 μm or less in order to prevent cracks. The n-GaN optical guide layer 33 may be an n-InGaN optical guide layer, and in this case, the In composition is preferably up to 3%. In addition, the In composition of the p-InGaN layer 35 is up to 3%, and in order to obtain good film quality, the film thickness is preferably 0.5 μm or less.

ところで、従来、p型の電流注入層にはAlGaN(ただし、X+Y=1、0≦X<1、0<Y≦1)が用いられている。ところが、良好なp型伝導を示すAlGaNを得るためには1000℃を超える温度で成長させることが必要である。しかし、p型のAlGaNを1000℃を超える温度で成長させると、特にInの組成が大きい長波長側のInGaN活性層34が劣化しやすく、壊れやすくなる。長波長の発光素子程、活性層に含まれるInの組成が増大するが、Inの組成が増大する程、高温になると活性層中のInが昇華して分離するため活性層が劣化しやすく、また壊れやすくなるので、InGaN活性層34は、900℃以下で成長させる必要がある。 Conventionally, Al X Ga Y N (where X + Y = 1, 0 ≦ X <1, 0 <Y ≦ 1) is used for the p-type current injection layer. However, in order to obtain Al X Ga Y N exhibiting good p-type conduction, it is necessary to grow at a temperature exceeding 1000 ° C. However, when p-type Al X Ga Y N is grown at a temperature exceeding 1000 ° C., the InGaN active layer 34 on the long-wavelength side having a particularly large In composition tends to deteriorate and break easily. The longer wavelength light emitting element, the composition of In contained in the active layer increases, but as the composition of In increases, the active layer tends to deteriorate because In in the active layer is sublimated and separated at higher temperatures, Further, since it becomes fragile, the InGaN active layer 34 needs to be grown at 900 ° C. or lower.

仮に、半導体積層体Bを先に結晶成長させ、半導体積層体B側にも半導体積層体Aと同様p型のAlGaNやGaNを使用していた場合には、Inの組成が大きいInGaN活性層34の成膜後に、InGaN活性層34が1000℃以上の高温にさらされる時間が長くなるが、本発明のように、短波長側の半導体積層体Aを先に成長させることで、Inの組成が大きいInGaN活性層34の成膜後に、InGaN活性層34が1000℃以上の高温に曝される時間を短くすることができ、InGaN活性層34の劣化を防止することができる。   If the semiconductor stacked body B is first crystal-grown and p-type AlGaN or GaN is used on the semiconductor stacked body B as well as the semiconductor stacked body A, the InGaN active layer 34 having a large In composition. After the film is formed, the time during which the InGaN active layer 34 is exposed to a high temperature of 1000 ° C. or longer becomes longer. However, by growing the semiconductor laminated body A on the short wavelength side first as in the present invention, the composition of In can be increased. After the formation of the large InGaN active layer 34, the time during which the InGaN active layer 34 is exposed to a high temperature of 1000 ° C. or more can be shortened, and the InGaN active layer 34 can be prevented from being deteriorated.

さらに、半導体積層体Bの方では、半導体積層体Aの場合と異なり、p−GaN光ガイド層、p−AlGaNクラッド層を形成せずに、InGaN活性層34の上にp−InGaN層35を積層するようにしているので、InGaN活性層34の成膜後も900℃以下の低温で結晶成長させることができる。また、InGaN活性層34を量子井戸構造とした場合には、バリア層をn型GaNとすることで、井戸層と同様の温度で成長させることができるので、InGaN活性層34の劣化や破壊を防止することができる。なお、p−InGaN層35は、クラッド層やコンタクト層の役割を兼ねる半導体層となる。   Further, in the case of the semiconductor stacked body B, unlike the semiconductor stacked body A, the p-InGaN layer 35 is formed on the InGaN active layer 34 without forming the p-GaN light guide layer and the p-AlGaN cladding layer. Since the layers are stacked, the crystal can be grown at a low temperature of 900 ° C. or less even after the InGaN active layer 34 is formed. In addition, when the InGaN active layer 34 has a quantum well structure, the barrier layer is made of n-type GaN, so that the InGaN active layer 34 can be grown at the same temperature as the well layer. Can be prevented. The p-InGaN layer 35 is a semiconductor layer that also functions as a cladding layer and a contact layer.

次に、図7のように、絶縁膜4a、4bを除去した後、絶縁膜6を基板1上に塗布し、マスク7をストライプ状にパターニングして、エッチングを行い、半導体積層体A、Bにストライプ状のリッジ部を同時に形成する。そして、図8のように、フッ酸に浸す等してライトエッチングを行い、絶縁膜6の一部を溶かすとともに、リッジ部を整形する。   Next, as shown in FIG. 7, after the insulating films 4a and 4b are removed, the insulating film 6 is applied onto the substrate 1, the mask 7 is patterned in a stripe shape, and etching is performed, so that the semiconductor stacked bodies A and B are formed. A striped ridge portion is formed simultaneously. Then, as shown in FIG. 8, light etching is performed by immersing in hydrofluoric acid to dissolve a part of the insulating film 6 and shape the ridge portion.

図9に示すように、半導体積層体A、Bのリッジ部側面から絶縁膜6上面に渡って、絶縁膜6とは異なる材料の絶縁膜8をスパッタにより形成し、図10のように、再度フッ酸に浸した状態でリッジ部上の絶縁膜6を完全に溶解させて、リッジ部上方に形成されているマスク7、絶縁膜8を除去する。   As shown in FIG. 9, an insulating film 8 made of a material different from that of the insulating film 6 is formed by sputtering from the side surfaces of the ridges of the semiconductor stacked bodies A and B to the upper surface of the insulating film 6, and again as shown in FIG. In the state immersed in hydrofluoric acid, the insulating film 6 on the ridge portion is completely dissolved, and the mask 7 and the insulating film 8 formed above the ridge portion are removed.

次に、図11に示すように、p電極層9を積層した後に、p電極を形成する領域にマスク10をパターニングし、エッチングにより、余分なp電極層9を取り除いて、p電極9a、9bを形成する。   Next, as shown in FIG. 11, after the p-electrode layer 9 is stacked, the mask 10 is patterned in the region where the p-electrode is to be formed, the excess p-electrode layer 9 is removed by etching, and the p-electrodes 9a, 9b Form.

その後、図12のように、n電極を形成するために、マスク10をメサパターニングし、エッチングを行って絶縁膜8、10の一部を除去する。次に、図13に示すように、n電極を積層する領域を除いてレジスト40をパターニングし、n電極層11を蒸着やスパッタにより積層し、レジスト40をリフトオフすると、図14のように、半導体レーザD1、D2の各々に対応するn電極11a、11bが半導体積層体A、Bを挟むようにしてn−GaNコンタクト層211上に形成される。   Thereafter, as shown in FIG. 12, in order to form an n-electrode, the mask 10 is mesa-patterned and etched to remove part of the insulating films 8 and 10. Next, as shown in FIG. 13, the resist 40 is patterned except for the region where the n electrode is laminated, the n electrode layer 11 is laminated by vapor deposition or sputtering, and the resist 40 is lifted off. As shown in FIG. N electrodes 11 a and 11 b corresponding to the lasers D 1 and D 2 are formed on the n-GaN contact layer 211 so as to sandwich the semiconductor stacked bodies A and B.

次に、図15に示すように、パッド電極を形成する領域を除いてレジスト42をパターニングし、パッド電極層12を蒸着やスパッタにより積層し、ウエハをアセトン溶液に浸すとレジスト42が溶けて、図1に示すように、p電極9a上にはp側パッド電極12aが、p電極9b上にはp側パッド電極12cが、n電極11a上にはn側パッド電極12bが,n電極11b上にはn側パッド電極12dが形成され、2波長半導体発光素子が完成する。

Next, as shown in FIG. 15, the resist 42 is patterned except for the region where the pad electrode is formed, the pad electrode layer 12 is laminated by vapor deposition or sputtering, and the wafer 42 is immersed in an acetone solution, the resist 42 is dissolved, As shown in FIG. 1, the p-side pad electrode 12a is formed on the p-electrode 9a, the p-side pad electrode 12c is formed on the p-electrode 9b, the n-side pad electrode 12b is formed on the n-electrode 11a, and the n-electrode 11b is formed. The n-side pad electrode 12d is formed to complete a two-wavelength semiconductor light emitting device.

本発明の2波長半導体発光装置の概略構成を示す図である。It is a figure which shows schematic structure of the 2 wavelength semiconductor light-emitting device of this invention. 2波長半導体発光装置の一製造工程を示す図である。It is a figure which shows one manufacturing process of a 2 wavelength semiconductor light-emitting device. 2波長半導体発光装置の一製造工程を示す図である。It is a figure which shows one manufacturing process of a 2 wavelength semiconductor light-emitting device. 2波長半導体発光装置の一製造工程を示す図である。It is a figure which shows one manufacturing process of a 2 wavelength semiconductor light-emitting device. 2波長半導体発光装置の一製造工程を示す図である。It is a figure which shows one manufacturing process of a 2 wavelength semiconductor light-emitting device. 2波長半導体発光装置の一製造工程を示す図である。It is a figure which shows one manufacturing process of a 2 wavelength semiconductor light-emitting device. 2波長半導体発光装置の一製造工程を示す図である。It is a figure which shows one manufacturing process of a 2 wavelength semiconductor light-emitting device. 2波長半導体発光装置の一製造工程を示す図である。It is a figure which shows one manufacturing process of a 2 wavelength semiconductor light-emitting device. 2波長半導体発光装置の一製造工程を示す図である。It is a figure which shows one manufacturing process of a 2 wavelength semiconductor light-emitting device. 2波長半導体発光装置の一製造工程を示す図である。It is a figure which shows one manufacturing process of a 2 wavelength semiconductor light-emitting device. 2波長半導体発光装置の一製造工程を示す図である。It is a figure which shows one manufacturing process of a 2 wavelength semiconductor light-emitting device. 2波長半導体発光装置の一製造工程を示す図である。It is a figure which shows one manufacturing process of a 2 wavelength semiconductor light-emitting device. 2波長半導体発光装置の一製造工程を示す図である。It is a figure which shows one manufacturing process of a 2 wavelength semiconductor light-emitting device. 2波長半導体発光装置の一製造工程を示す図である。It is a figure which shows one manufacturing process of a 2 wavelength semiconductor light-emitting device. 2波長半導体発光装置の一製造工程を示す図である。It is a figure which shows one manufacturing process of a 2 wavelength semiconductor light-emitting device.

符号の説明Explanation of symbols

1 基板
2 半導体積層体A
3 半導体積層体B
6 絶縁膜
8 絶縁膜
9a p電極
9b p電極
11a n電極
11b n電極
12a p側パッド電極
12b n側パッド電極
12c p側パッド電極
12d n側パッド電極
20 成長基板
21 n型コンタクト層
1 substrate 2 semiconductor laminate A
3 Semiconductor stack B
6 Insulating film 8 Insulating film 9a p electrode 9b p electrode 11a n electrode 11b n electrode 12a p side pad electrode 12b n side pad electrode 12c p side pad electrode 12d n side pad electrode 20 growth substrate 21 n-type contact layer

Claims (6)

異なる波長の光を発光する2つの積層体が同一基板上に形成され、基板の同一面側に前記2つの積層体に対応するn電極とp電極が各々配置される2波長半導体発光装置において、
前記2つの積層体に対応する2つのn電極は、前記2つの積層体を挟むように前記基板上に配置されていることを特徴とする2波長半導体発光装置。
In the two-wavelength semiconductor light emitting device in which two stacked bodies that emit light of different wavelengths are formed on the same substrate, and an n electrode and a p electrode corresponding to the two stacked bodies are respectively disposed on the same surface side of the substrate.
Two n-electrodes corresponding to the two stacked bodies are arranged on the substrate so as to sandwich the two stacked bodies.
異なる波長の光を発光する2つの積層体が同一基板上に形成され、基板の同一面側に前記2つの積層体に対応するn電極とp電極が各々配置されるとともに、前記2つの積層体における活性層はInを異なる比率で含む窒化物層で構成されている2波長半導体発光装置の製造方法において、
前記2つの積層体のうちInの組成比率が低い方の活性層を含む第1積層体から結晶成長させた後、Inの組成比率が高い方の活性層を含む第2積層体を結晶成長させ、その後前記第1積層体、第2積層体を挟むようにして2つのn電極を前記基板上に形成することを特徴とする2波長半導体発光装置の製造方法。
Two laminated bodies emitting light of different wavelengths are formed on the same substrate, and n electrodes and p electrodes corresponding to the two laminated bodies are respectively arranged on the same surface side of the substrate, and the two laminated bodies In the method of manufacturing a two-wavelength semiconductor light-emitting device, the active layer in is composed of nitride layers containing In at different ratios.
Crystal growth is performed from the first stacked body including the active layer having the lower In composition ratio of the two stacked bodies, and then the second stacked body including the active layer having the higher In composition ratio is crystal-grown. Then, two n-electrodes are formed on the substrate so as to sandwich the first stacked body and the second stacked body, and the method for manufacturing a two-wavelength semiconductor light emitting device.
前記第2積層体の活性層は、バリア層としてn型GaNを用いたことを特徴とする請求項2記載の2波長半導体発光装置の製造方法。   3. The method of manufacturing a two-wavelength semiconductor light emitting device according to claim 2, wherein the active layer of the second stacked body uses n-type GaN as a barrier layer. 前記第2積層体の活性層の結晶成長後、p型の半導体層としてはInGaN層のみを形成することを特徴とする請求項2〜請求項3のいずれか1項に記載の2波長半導体発光装置の製造方法。   4. The two-wavelength semiconductor light-emitting device according to claim 2, wherein after the crystal growth of the active layer of the second stacked body, only an InGaN layer is formed as a p-type semiconductor layer. 5. Device manufacturing method. 前記第1積層体の結晶成長を行う前に、前記第1積層体を積層する領域を除き前記基板上にSi系膜を成膜することを特徴とする請求項2〜請求項4のいずれか1項に記載の2波長半導体発光装置の製造方法。   5. The Si-based film is formed on the substrate excluding a region where the first stacked body is stacked before crystal growth of the first stacked body. 2. A method for producing a two-wavelength semiconductor light-emitting device according to item 1. 前記第2積層体の結晶成長を行う前に、前記第2積層体を積層する領域を除き前記第1積層体上及び前記基板上にSi系膜を成膜することを特徴とする請求項2〜請求項5のいずれか1項に記載の2波長半導体発光装置の製造方法。
3. The Si-based film is formed on the first stacked body and the substrate except for a region where the second stacked body is stacked before crystal growth of the second stacked body. The manufacturing method of the two-wavelength semiconductor light-emitting device of any one of Claims 5-5.
JP2006047100A 2006-02-23 2006-02-23 Two-wavelength semiconductor light-emitting device and manufacturing method thereof Pending JP2007227652A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006047100A JP2007227652A (en) 2006-02-23 2006-02-23 Two-wavelength semiconductor light-emitting device and manufacturing method thereof
PCT/JP2007/053367 WO2007097411A1 (en) 2006-02-23 2007-02-23 Double wavelength semiconductor light emitting device and method for manufacturing same
US12/224,287 US7745839B2 (en) 2006-02-23 2007-02-23 Double wavelength semiconductor light emitting device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006047100A JP2007227652A (en) 2006-02-23 2006-02-23 Two-wavelength semiconductor light-emitting device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2007227652A true JP2007227652A (en) 2007-09-06

Family

ID=38549162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006047100A Pending JP2007227652A (en) 2006-02-23 2006-02-23 Two-wavelength semiconductor light-emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2007227652A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245444A (en) * 2009-04-09 2010-10-28 Sharp Corp Method of manufacturing nitride semiconductor light-emitting element
JP2011077341A (en) * 2009-09-30 2011-04-14 Sumitomo Electric Ind Ltd Nitride semiconductor light emitting element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252592A (en) * 1999-03-01 2000-09-14 Hitachi Ltd Optical disk device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252592A (en) * 1999-03-01 2000-09-14 Hitachi Ltd Optical disk device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245444A (en) * 2009-04-09 2010-10-28 Sharp Corp Method of manufacturing nitride semiconductor light-emitting element
JP2011077341A (en) * 2009-09-30 2011-04-14 Sumitomo Electric Ind Ltd Nitride semiconductor light emitting element

Similar Documents

Publication Publication Date Title
US7745839B2 (en) Double wavelength semiconductor light emitting device and method of manufacturing the same
JP4169821B2 (en) Light emitting diode
US7773649B2 (en) Semiconductor laser diode having wafer-bonded structure and method of fabricating the same
JP3659621B2 (en) Method of manufacturing nitride semiconductor laser device
JPH1174621A (en) Nitride group semiconductor luminous element
US20110013659A1 (en) Semiconductor laser device and method of manufacturing the same
KR101020118B1 (en) Monolithic semiconductor laser
JP4960777B2 (en) Edge-emitting semiconductor laser chip
JP2006093682A (en) Semiconductor laser and method of manufacturing the same
JP3796065B2 (en) Light emitting device and manufacturing method thereof
JP2007227652A (en) Two-wavelength semiconductor light-emitting device and manufacturing method thereof
JPH10303459A (en) Gallium nitride based semiconductor light emitting element and its manufacture
JP2007184644A (en) Semiconductor device and method of manufacturing same
JP2004311964A (en) Nitride semiconductor element and its manufacturing method
JP2003060319A (en) Nitride semiconductor laser
JP4890509B2 (en) Manufacturing method of semiconductor light emitting device
JP2007227651A (en) Two-wavelength semiconductor light-emitting device and manufacturing method thereof
JP3644446B2 (en) Nitride semiconductor device
JP4868888B2 (en) Method for manufacturing optical semiconductor element
JP2000277862A (en) Nitride semiconductor device
JP2006253235A (en) Laser diode chip, laser diode and process for fabricating laser diode chip
JP2010186835A (en) Nitride semiconductor laser device
JP2002324946A (en) Iii group nitride semiconductor light emitting element
JP2003347658A (en) Semiconductor light emitting element and its fabricating process
JP2010098001A (en) Semiconductor laser device and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120626