JP2007225826A - Deflection-type optical path switching method and optical path switching device - Google Patents

Deflection-type optical path switching method and optical path switching device Download PDF

Info

Publication number
JP2007225826A
JP2007225826A JP2006046028A JP2006046028A JP2007225826A JP 2007225826 A JP2007225826 A JP 2007225826A JP 2006046028 A JP2006046028 A JP 2006046028A JP 2006046028 A JP2006046028 A JP 2006046028A JP 2007225826 A JP2007225826 A JP 2007225826A
Authority
JP
Japan
Prior art keywords
light
control
signal light
optical path
absorption layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006046028A
Other languages
Japanese (ja)
Other versions
JP4822114B2 (en
Inventor
Ichiro Ueno
一郎 上野
Nobutaka Tanigaki
宣孝 谷垣
Noritaka Yamamoto
典孝 山本
Toshiko Mizokuro
登志子 溝黒
Takashi Hiraga
隆 平賀
Norio Tanaka
教雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichiseika Color and Chemicals Mfg Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Dainichiseika Color and Chemicals Mfg Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichiseika Color and Chemicals Mfg Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Dainichiseika Color and Chemicals Mfg Co Ltd
Priority to JP2006046028A priority Critical patent/JP4822114B2/en
Priority to EP07737467A priority patent/EP1987391A1/en
Priority to US12/223,665 priority patent/US7826696B2/en
Priority to PCT/JP2007/053707 priority patent/WO2007099979A1/en
Publication of JP2007225826A publication Critical patent/JP2007225826A/en
Priority to US12/801,300 priority patent/US8208770B2/en
Application granted granted Critical
Publication of JP4822114B2 publication Critical patent/JP4822114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical path switching device in which the extinction ratio is high and one input/multiple outputs is feasible, and to provide an optical path switching method. <P>SOLUTION: The optical path switching device has a signal light source to emit signal light 28; a control light source to emit control light 29, of which the wavelength is different from that of the signal light 28; a thermal lens forming optical element containing a light absorption layer 34 which transmits the signal light 28 and selectively absorbs the control light 29; and a condensing means which condenses the control light 29 and the signal light 28 in the light absorption layer 34 with convergent points made different in a direction vertical to the optical axis, wherein the thermal lens forming optical element changes an advancing direction of the signal light 28 by the action of the thermal lens reversibly formed due to temperature rise, caused by the control light 29 and the signal light 28 which converge in the light-advancing directions on an incident plane of the light absorption layer or in the vicinity thereof and subsequently diffuse, and generated in a region of the light absorption layer where the control light 29 is absorbed and in its peripheral region. The optical path switching device is equipped with an extraction means for separating and extracting a signal light 30 with the unchanged advancing direction and signal light 31, with the changed advancing direction according to the advancing directions. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光通信分野および光情報処理分野で用いられる偏向式光路切替装置および光路切替方法に関する。   The present invention relates to a deflection optical path switching device and an optical path switching method used in the fields of optical communication and optical information processing.

インターネットおよび会社内・家庭内イントラネットの普及にともなうネットワークトラフィックの爆発的増加に対応するため、電気信号を経由しない光路切替装置(光スイッチ)、すなわち、光−光直接スイッチが求められている。光ファイバー、光導波路、あるいは、空間を伝搬する光の進む道筋、すなわち、光路を切り替える装置・方法としては、例えば、光導波路内または光導波路間で光路を切り替える空間分割型、多重化された複数の波長の光を波長に応じた光路へ分割して切り替える波長分割多重型、一定時間毎に時分割多重化された光の光路を切り替える時分割多重型、空間を伝搬する光の光路を鏡やシャッターなどを用いて空間的に分割・合成するフリースペース型などの方式が知られている。これらの方式は、各々多重化することも複数を組み合わせて使用することもできる。   In order to cope with the explosive increase in network traffic accompanying the spread of the Internet and intranets within a company / home, there is a need for an optical path switching device (optical switch) that does not pass through an electrical signal, that is, an optical-optical direct switch. As an apparatus / method for switching an optical path, that is, an optical fiber, an optical waveguide, or a path of light propagating in space, for example, a space division type that switches an optical path in or between optical waveguides, and a plurality of multiplexed Wavelength-division multiplexing type that switches light of wavelength by dividing it into optical paths according to wavelength, time-division multiplexing type that switches the optical path of light that is time-division multiplexed every certain time, mirror or shutter for the optical path of light propagating in space There are known methods such as a free space type that spatially divides and synthesizes. Each of these methods can be multiplexed or used in combination.

空間分割型光スイッチには、方向性結合器を利用するもの、光分岐器で光信号のコピーを作り、ゲート素子により光をオン・オフするもの、交差またはY分岐の交差部分で導波路の屈折率を変化させることで、導波路を伝搬してきた光を透過させたり反射させたりするものなどが提案されているが、まだ研究開発段階である。マッハツェンダー干渉計型光導波路スイッチの導波路の屈折率を変化させるために電気ヒーター加熱による熱光学効果を用いるものが実用化に近づいていると言われているが、応答速度が1ミリ秒程度と遅いだけでなく、光スイッチを動作させるために電気信号を用いなければならない、という欠点を有する。   The space division type optical switch uses a directional coupler, makes a copy of an optical signal with an optical branching device, turns on and off the light with a gate element, and guides the waveguide at the intersection of the intersection or Y branch. Proposals have been made to transmit or reflect light propagating through a waveguide by changing the refractive index, but it is still in the research and development stage. It is said that a thermooptic effect by heating an electric heater is used to change the refractive index of the waveguide of a Mach-Zehnder interferometer type optical waveguide switch, but the response speed is about 1 millisecond. Not only is it slow, it has the disadvantage that an electrical signal must be used to operate the optical switch.

フリースペース型光スイッチには、マイクロ・エレクトロ・メカニカル・システム(Micro Electro Mechanical System; MEMSと略記される。)、励起子吸収・反射スイッチ(Exciton Absorption Reflection Switch;EARSスイッチと略記される)、多段ビームシフタ型光スイッチ、ホログラム型光スイッチ、液晶スイッチなどが検討されている。これらは、機械的可動部分がある、偏波依存性があるなどの課題があり、まだ充分実用段階にあるとは言えない。   The free space type optical switch includes a micro electro mechanical system (abbreviated as MEMS), an exciton absorption / reflection switch (abbreviated as Exciton Absorption Reflection Switch; EARS switch), and a multistage. Beam shifter type optical switches, hologram type optical switches, liquid crystal switches, and the like have been studied. These have problems such as the presence of mechanically movable parts and polarization dependence, and it cannot be said that they are still in practical use.

一方、熱レンズ形成光素子に光を照射することで引き起こされる透過率変化や屈折率変化を利用し、直接、光で光の強度や周波数を変調する、全光型熱レンズ形成光素子や光制御方式の研究が盛んに行われている。本発明者らは、全光型光素子等による新たな情報処理技術の開発を目指して、有機色素凝集体をポリマーマトリックスに分散した有機ナノパーティクル光熱レンズ形成素子(非特許文献1参照)を用いて、光制御方式の研究を行って来た。現在、制御光(660nmおよび980nm)により信号光(780nmおよび1550nm)の変調を行う方式で、制御光と信号光を同軸・同焦点入射させることを特徴とし、制御光の吸収により過渡的に形成される熱レンズにより信号光が屈折されるという動作原理の素子を開発しており、約20ナノ秒の高速応答が達成されている。光応答性組成物からなる熱レンズ形成光素子に制御光を照射し、制御光とは異なる波長帯域にある信号光の透過率および/または屈折率を可逆的に変化させることにより前記熱レンズ形成光素子を透過する前記信号光の強度変調および/または光束密度変調を行う光制御方法であって、前記制御光および前記信号光を各々収束させて前記熱レンズ形成光素子へ照射し、かつ、前記制御光および前記信号光のそれぞれの焦点の近傍(ビームウエスト)の光子密度が最も高い領域が前記熱レンズ形成光素子中において互いに重なり合うように前記制御光および前記信号光の光路を調整することを特徴とする光制御方法が開示されている(特許文献1から特許文献7参照)。光応答性組成物からなる熱レンズ形成光素子に、互いに波長の異なる制御光および信号光を照射し、前記制御光の波長は前記光応答性組成物が吸収する波長帯域から選ばれるものとし、前記光応答性組成物が前記制御光を吸収した領域およびその周辺領域に発生する温度上昇に起因する密度変化の分布に基づいた熱レンズを可逆的に形成させ、前記熱レンズを透過する信号光の強度変調および/または光束密度変調を行う光制御方法が開示されている(特許文献8参照)。そして、上記熱レンズ形成光素子として例えば色素/樹脂膜や色素溶液膜が用いられ、制御光のパワー2ないし25mWにおける制御光照射に対する信号光の応答時間は、2マイクロ秒未満と記載されている(特許文献8参照)。これらの方法は光で光を制御する点で優れ、かつ高速応答も可能であるが、制御光照射時に形成され光束形状がドーナツ型になり、そのために光ファイバーへの結合効率が小さいという問題がある。   On the other hand, an all-optical thermal lens forming optical element or light that directly modulates the intensity or frequency of light with light using the change in transmittance or refractive index caused by irradiating the thermal lens forming optical element with light. Research on control methods is actively conducted. The present inventors have used an organic nanoparticle photothermal lens forming element (see Non-Patent Document 1) in which an organic dye aggregate is dispersed in a polymer matrix with the aim of developing a new information processing technique using an all-optical type optical element. I have studied light control systems. Currently, the control light (660 nm and 980 nm) is used to modulate the signal light (780 nm and 1550 nm). The control light and the signal light are coaxially and confocally incident and formed transiently by absorption of the control light. An element with the principle of operation that signal light is refracted by a thermal lens is developed, and a high-speed response of about 20 nanoseconds is achieved. Forming the thermal lens by irradiating control light to a thermal lens forming optical element made of a photoresponsive composition and reversibly changing the transmittance and / or refractive index of signal light in a wavelength band different from the control light An optical control method for performing intensity modulation and / or light flux density modulation of the signal light transmitted through an optical element, wherein the control light and the signal light are converged and irradiated to the thermal lens forming optical element, and Adjusting the optical paths of the control light and the signal light so that regions having the highest photon density in the vicinity (beam waist) of the respective focal points of the control light and the signal light overlap each other in the thermal lens forming optical element. A light control method is disclosed (see Patent Document 1 to Patent Document 7). The thermal lens forming optical element made of a photoresponsive composition is irradiated with control light and signal light having different wavelengths, and the wavelength of the control light is selected from a wavelength band absorbed by the photoresponsive composition, A signal light that reversibly forms a thermal lens based on a density change distribution caused by a temperature rise generated in a region where the photoresponsive composition absorbs the control light and a peripheral region thereof, and transmits the thermal lens. A light control method for performing intensity modulation and / or light beam density modulation is disclosed (see Patent Document 8). For example, a dye / resin film or a dye solution film is used as the thermal lens forming optical element, and the response time of the signal light with respect to the control light irradiation at the control light power of 2 to 25 mW is described as less than 2 microseconds. (See Patent Document 8). These methods are excellent in controlling light with light and can respond at high speed. However, there is a problem in that the shape of the light beam formed at the time of control light irradiation becomes a donut shape, so that the coupling efficiency to the optical fiber is small. .

ここで熱レンズ効果とは、光吸収の中心部分において光を吸収した分子などが光を熱に変換し、この熱が周囲に伝搬されることにより温度分布が生じ、その結果、光透過媒体の屈折率が光吸収中心から外部へ向けて球状に変化して光吸収中心の屈折率が低く外部へ向けて屈折率が高くなる分布を生じ、これが凹レンズのように機能するような光の屈折効果を示す。熱レンズ効果は分光分析の分野で古くから利用されており、現在では分子1個による光吸収をも検出するような超高感度分光分析も可能になっている(非特許文献2および非特許文献3参照)。   Here, the thermal lens effect means that molecules that absorb light in the central part of light absorption convert light into heat, and this heat is propagated to the surroundings, resulting in a temperature distribution. The refractive index of the light changes such that the refractive index changes spherically from the light absorption center to the outside, resulting in a distribution in which the refractive index at the light absorption center is low and the refractive index increases toward the outside, which functions like a concave lens. Indicates. The thermal lens effect has been used for a long time in the field of spectroscopic analysis, and now it is possible to perform ultrasensitive spectroscopic analysis that detects light absorption by a single molecule (Non-Patent Document 2 and Non-Patent Document). 3).

熱レンズ効果ないし熱による屈折率変化を用いて光路を偏向させる方式として、発熱抵抗体で媒体に熱を与え、媒体内に屈折率分布を生じさせ、光を偏向する方法が開示されている(特許文献9参照)。しかしながら、上述の手法は、発熱抵抗体で発熱させ、熱伝導で媒体を加熱することになるので、「熱の拡がり」という問題を本来的に有する。つまり、熱の拡がりにより、広い面積内で微細な熱勾配を与えることができず、所望の屈折率分布を得るのが困難である。さらに、発熱抵抗体の微細加工は半導体集積回路で用いられているフォトリソグラフィ技術を採用しても、現実には一定の限界を有し、素子が大型化せざるを得ない。素子が大型化すれば、それにともない光学系も複雑かつ大型化する。また、発熱抵抗体で発熱させ、熱伝導で媒体を加熱することになるので、応答が遅く、屈折率変化の周波数を上げることができないという不具合を本質的な問題として有している。   As a method of deflecting an optical path by using a thermal lens effect or a refractive index change due to heat, a method of deflecting light by applying heat to a medium with a heating resistor to generate a refractive index distribution in the medium is disclosed ( (See Patent Document 9). However, the above-described method inherently has a problem of “spreading of heat” because heat is generated by the heating resistor and the medium is heated by heat conduction. That is, due to the spread of heat, a fine thermal gradient cannot be given within a wide area, and it is difficult to obtain a desired refractive index distribution. Further, even if the photolithography technique used in the semiconductor integrated circuit is adopted for the fine processing of the heating resistor, there is a certain limit in practice, and the element must be enlarged. As the element becomes larger, the optical system becomes more complicated and larger. In addition, since the medium is heated by heat generation by generating heat with a heat generating resistor, the response is slow and the problem that the frequency of refractive index change cannot be increased is an essential problem.

また、光応答組成物からなる熱レンズ形成光素子と、該熱レンズ形成光素子にくさび形の光強度分布で光を照射するための強度分布調整手段とから少なくとも構成され、制御光により前記熱レンズ形成光素子中に屈折率分布を形成し、該屈折率分布により前記制御光とは異なる波長の信号光の偏向を行うことを特徴とする熱レンズ形成光素子を用いた偏向素子が開示されている(特許文献10参照)。この方式は、光で光を制御する点では優れたものであるが、該熱レンズ形成光素子にくさび形の光強度分布で光を照射するための強度分布調整手段で制御光のロスが大きく、また、くさび形の光強度分布を自由に形成することが難しく、光路切替方向を自由に設定することができないという問題がある。   The thermal lens forming optical element made of a photoresponsive composition and at least an intensity distribution adjusting means for irradiating the thermal lens forming optical element with a wedge-shaped light intensity distribution. A deflecting element using a thermal lens forming optical element is disclosed, wherein a refractive index distribution is formed in a lens forming optical element, and signal light having a wavelength different from that of the control light is deflected by the refractive index distribution. (See Patent Document 10). This method is excellent in that the light is controlled by light, but the loss of control light is large due to the intensity distribution adjusting means for irradiating the thermal lens forming optical element with a wedge-shaped light intensity distribution. In addition, it is difficult to freely form a wedge-shaped light intensity distribution, and there is a problem that the optical path switching direction cannot be freely set.

また、レーザ光を照射して物質を加熱することによりレーザ光の照射された物質の屈折率を変え、レーザ光を偏向する方法が提案されている(特許文献11および特許文献12参照)。どちらの方法も、ビーム径が太く、大パワーを入力させないとレーザ光の偏向はほんのわずかである。特許文献11の方法は、照射光の加熱で照射光自身が偏向する方法である。この方法を光偏向に用いる場合は、加熱して屈折率を変えるために照射光は吸収されるので、物質を透過する光は原理的に大きく減少してしまうことになる。   In addition, there has been proposed a method for deflecting laser light by changing the refractive index of the material irradiated with laser light by irradiating the laser light to heat the material (see Patent Document 11 and Patent Document 12). In both methods, the beam diameter is large, and the deflection of the laser beam is very small unless a large power is input. The method of Patent Document 11 is a method in which the irradiation light itself is deflected by heating the irradiation light. When this method is used for light deflection, the irradiation light is absorbed in order to change the refractive index by heating, so that the light transmitted through the substance is greatly reduced in principle.

特許文献12の方法は、電気的または機械的手段を取らず、制御ビームの照射でスイッチ物質の屈折率を変え、信号ビームの光路を変える光学的スイッチである。しかしながら、この場合のも、制御ビームも信号ビームもレンズを用いて集光する方法を取っておらず、屈折率変化を起こさせるレーザ光は大パワーが必要である。また、装置も大がかりになってしまう。また、本提案の様に屈折変化領域がビームの進行に従って拡がる様な手段を取り得ないので、偏向角を余り大きくできない。   The method of Patent Document 12 is an optical switch that takes no electrical or mechanical means, changes the refractive index of the switch material by irradiation of a control beam, and changes the optical path of the signal beam. However, even in this case, neither the control beam nor the signal beam is collected using a lens, and the laser beam that causes the refractive index change requires a large power. In addition, the device becomes large. In addition, since it is not possible to take a means for the refractive change region to expand as the beam progresses as in the present proposal, the deflection angle cannot be increased too much.

特許文献11および特許文献12のどちらにも、本提案のように非偏向光と偏向光とを分離し集光する手段、および光検出手段に光ファイバーを用い非偏向光と偏向光の光ファイバーへの入射角の違いを利用し非偏向光と偏向光との高精度の分別を行う手段等は記載されていない。   In both Patent Document 11 and Patent Document 12, as described in this proposal, a means for separating and condensing non-deflected light and deflected light, and an optical fiber as a light detecting means, and using the optical fiber for the non-deflected light and deflected light to the optical fiber. No means or the like for performing high-accuracy separation between unpolarized light and deflected light by utilizing the difference in incident angle is not described.

平賀隆、田中教雄、早水紀久子、守谷哲郎著、色素会合体・凝集体の作成・構造評価・光物性、「電子技術総合研究所彙報」、通商産業省工業技術院電子技術総合研究所発行、第59巻、第2号、29−49頁(1994年)Takashi Hiraga, Norio Tanaka, Kikuko Hayami, Tetsuro Moriya, Creation of dye aggregates / aggregates, structural evaluation, photophysical properties, "Vocabulary of Electronic Technology Research Institute", published by Electronic Technology Research Institute, Ministry of International Trade and Industry 59, No. 2, pp. 29-49 (1994) 藤原祺多夫、不破敬一郎、小林孝嘉著、レーザ誘起熱レンズ効果とその比色法への応用、「化学」、化学同人発行、第36巻、第6号、432−438頁(1981年)Takao Fujiwara, Keiichiro Fuwa, Takayoshi Kobayashi, Laser-induced thermal lens effect and its application to colorimetric method, "Chemical", Kagaku Dojin, Vol. 36, No. 6, pp. 432-438 (1981) 北森武彦、澤田嗣郎著、光熱変換分光分析法、「ぶんせき」、日本分析化学会発行、1994年3月号、178−187頁Takehiko Kitamori, Goro Sawada, Photothermal Conversion Spectroscopy, “Bunseki”, published by the Japan Society for Analytical Chemistry, March 1994, pp. 178-187 特開平8−286220号公報JP-A-8-286220 特開平8−320535号公報JP-A-8-320535 特開平8−320536号公報JP-A-8-320536 特開平9−329816号公報Japanese Patent Laid-Open No. 9-329816 特開平10−90733号公報Japanese Patent Laid-Open No. 10-90733 特開平10−90734号公報JP-A-10-90734 特開平10−148852号公報Japanese Patent Laid-Open No. 10-148852 特開平10−148853号公報Japanese Patent Laid-Open No. 10-148853 特開昭60−14221号公報Japanese Patent Laid-Open No. 60-14221 特開平11−194373号公報JP-A-11-194373 米国特許4,776,677号US Pat. No. 4,776,677 米国特許4,585,301号US Pat. No. 4,585,301

本発明は、複雑で高価な電気回路や機械的可動部品を用いずに光偏向を可能とすることにより、故障が極めて少なく、耐久性の高い、偏波依存性の極めて少ない、信号光の光強度減衰が少なく、信号光断面におけるエネルギー分布が回析光学的に収束の容易な状態(例えばガウス分布)を保ちつつ光路切替が可能で後段の光ファイバーへの光結合を高効率に行うことができ、消光比の高い1入力複数出力が可能な偏向式光路切替装置および光路切替方法を提供することを目的とする。   The present invention makes it possible to deflect light without using complicated and expensive electric circuits or mechanically moving parts, so that the light of signal light is extremely low in failure, highly durable, and extremely low in polarization dependence. The optical path can be switched while the intensity distribution is small and the energy distribution in the cross section of the signal light is diffractive optically easy to converge (for example, Gaussian distribution), and optical coupling to the optical fiber in the subsequent stage can be performed with high efficiency. An object of the present invention is to provide a deflection optical path switching device and an optical path switching method capable of one input and multiple outputs with a high extinction ratio.

本発明は、以下の特徴を有する。   The present invention has the following features.

(1)少なくとも光吸収層を含む熱レンズ形成光素子中の光吸収層に、制御光と信号光とを入射させ、所望の情報に応じて前記制御光を照射の有無を選択し、前記制御光および前記信号光は、前記光吸収層にて収束するように照射されかつ前記制御光および前記信号光の各々の収束点の位置が光軸に対して垂直方向で相異なるように照射され、前記制御光の波長と前記信号光の波長を異ならせ、前記制御光の波長は前記光吸収層が吸収する波長帯域から選ばれ、前記信号光の波長は前記光吸収層が吸収しない波長帯域から選ばれ、前記制御光と前記信号光は、光の進行方向で前記光吸収層の入射面またはその近辺において収束したのち拡散することによって、前記光吸収層内における前記制御光を吸収した領域およびその周辺領域に起こる温度上昇に起因し可逆的に形成される熱レンズにより、屈折率が変化して、前記信号光の進行方向を変え、前記制御光が照射されず進行方向が変わらなかった信号光と、前記制御光が照射され進行方向が変えられた信号光とは、各々の進行方向に応じてそれぞれ分別されて取り出される光路切替方法である。   (1) Control light and signal light are incident on a light absorption layer in a thermal lens forming optical element including at least a light absorption layer, and the presence or absence of irradiation of the control light is selected according to desired information, and the control The light and the signal light are irradiated so as to converge in the light absorption layer, and the control light and the signal light are irradiated such that the positions of the convergence points of the control light and the signal light are different in the direction perpendicular to the optical axis, The wavelength of the control light is different from the wavelength of the signal light, the wavelength of the control light is selected from a wavelength band that is absorbed by the light absorption layer, and the wavelength of the signal light is from a wavelength band that is not absorbed by the light absorption layer. The control light and the signal light are converged at the incident surface of the light absorption layer or in the vicinity thereof in the light traveling direction and then diffused to thereby diffuse the control light in the light absorption layer and The temperature that occurs in the surrounding area Due to the thermal lens formed reversibly due to the rise, the refractive index is changed to change the traveling direction of the signal light, and the control light is not irradiated with the control light, and the control light is not changed. The signal light whose traveling direction is changed by being irradiated is an optical path switching method that is separated and extracted according to each traveling direction.

(2)前記制御光と前記信号光は、光の進行方向で前記光吸収層の入射面または前記光吸収層内にて収束または集光するようにした上記(1)に記載の光路切替方法である。   (2) The optical path switching method according to (1), wherein the control light and the signal light are converged or condensed on an incident surface of the light absorption layer or in the light absorption layer in a light traveling direction. It is.

(3)前記制御光が照射されず進行方向が変わらなかった信号光と、前記制御光が照射され進行方向が変えられた信号光とは、ミラーによって分離することを特徴とする上記(1)または(2)に記載の光路切替方法である。   (3) The signal light whose traveling direction is not changed without being irradiated with the control light and the signal light whose traveling direction is changed while being irradiated with the control light are separated by a mirror (1) Or it is the optical path switching method as described in (2).

(4)前記制御光が照射されず進行方向が変わらなかった信号光と、前記制御光が照射され進行方向が変えられた信号光とは、レンズによって集光し検出手段に入射させる上記(1)から(3)のいずれか1つに記載の光路切替方法である。   (4) The signal light whose traveling direction is not changed without being irradiated with the control light and the signal light whose traveling direction is changed while being irradiated with the control light are collected by the lens and incident on the detection means (1) The optical path switching method according to any one of (3) to (3).

(5)前記検出手段は、レンズによって集光した信号光を受光する光ファイバーである上記(4)に記載の光路切替方法である。   (5) The optical path switching method according to (4), wherein the detection means is an optical fiber that receives signal light collected by a lens.

(6)前記レンズによって集光された前記光ファイバーに入射する信号光の光軸は、互いに前記光ファイバーの伝搬可能最大入射角の2倍以上の角度を有する上記(5)に記載の光路切替方法である。   (6) The optical path switching method according to (5), wherein the optical axes of the signal light incident on the optical fiber collected by the lens have an angle that is at least twice the maximum incident angle of propagation of the optical fiber. is there.

(7)光路切替数に応じて複数の制御光を前記光吸収層に照射し、前記複数の制御光の組み合わせによって、前記信号光の進行方向を変え、前記光路切替数に応じた複数の信号光を取り出す上記(1)から(6)のいずれか1つに記載の光路切替方法である。   (7) A plurality of control lights are applied to the light absorption layer according to the number of optical path switches, the traveling direction of the signal light is changed by a combination of the plurality of control lights, and a plurality of signals according to the number of optical path switches The optical path switching method according to any one of (1) to (6), wherein light is extracted.

(8)1種類以上の波長の信号光を照射する信号光光源と、前記信号光とは異なる波長の制御光を照射する制御光光源と、前記信号光は透過し、前記制御光を選択的に吸収する光吸収層を含む熱レンズ形成光素子と、前記光吸収層に前記制御光と前記信号光とを各々収束点を光軸に対して垂直方向で異ならせて集光させる集光手段と、を有し、前記熱レンズ形成光素子は、前記制御光と前記信号光が、光の進行方向で前記光吸収層の入射面またはその近辺において収束したのち拡散することによって、前記光吸収層内における前記制御光を吸収した領域およびその周辺領域に起こる温度上昇に起因し可逆的に形成される熱レンズにより、屈折率が変化して、前記信号光の進行方向を変え、さらに、前記制御光が照射されず進行方向が変わらなかった信号光と、前記制御光が照射され進行方向が変えられた信号光とを、各々の進行方向に応じてそれぞれ分別して取り出す取出手段を備えた光路切替装置である。   (8) A signal light source that emits signal light having one or more wavelengths, a control light source that emits control light having a wavelength different from that of the signal light, and the signal light is transmitted, and the control light is selectively used. A thermal lens forming optical element including a light absorption layer that absorbs light, and a condensing means for condensing the control light and the signal light on the light absorption layer with different convergence points in a direction perpendicular to the optical axis. And the thermal lens forming optical element diffuses the control light and the signal light after converging at or near the incident surface of the light absorption layer in the light traveling direction. The thermal lens formed reversibly due to the temperature rise occurring in the region where the control light is absorbed in the layer and the surrounding region, the refractive index is changed, the traveling direction of the signal light is changed, Control light is not irradiated and the direction of travel does not change A signal light Tsu, and said control light irradiated signal light traveling direction is changed, an optical path switching device having a take-out means for taking out and separated respectively in response to each direction of travel.

(9)前記集光手段は、光の進行方向で前記光吸収層の入射面または前記光吸収層内にて収束または集光する上記(8)に記載の光路切替装置である。   (9) The light condensing unit is the optical path switching device according to (8), which converges or condenses in an incident surface of the light absorption layer or in the light absorption layer in a light traveling direction.

(10)前記取出手段は、ミラーであることを特徴とする上記(8)または(9)に記載の光路切替装置である。   (10) The optical path switching device according to (8) or (9), wherein the extraction means is a mirror.

(11)さらに、前記制御光が照射されず進行方向が変わらなかった信号光と、前記制御光が照射され進行方向が変えられた信号光とが、レンズによって集光され入射される検出手段を有する上記(8)から(10)のいずれか1つに記載の光路切替装置である。   (11) Further, there is provided a detection means in which the signal light whose traveling direction is not changed without being irradiated with the control light and the signal light whose traveling direction is changed while being irradiated with the control light are collected and incident by a lens. The optical path switching device according to any one of (8) to (10) above.

(12)前記検出手段が、光ファイバーである上記(11)に記載の光路切替装置である。   (12) The optical path switching device according to (11), wherein the detection unit is an optical fiber.

(13)前記レンズによって集光された前記光ファイバーに入射する信号光の光軸は、互いに前記光ファイバーの伝搬可能最大入射角の2倍以上の角度を有する上記(12)に記載の光路切替装置である。   (13) The optical path switching device according to (12), wherein the optical axes of the signal light incident on the optical fiber collected by the lens have an angle that is at least twice as large as the maximum propagating angle of propagation of the optical fiber. is there.

(14)前記制御光光源は、光路切替数に応じて2つ以上の複数の制御光を照射し、前記集光手段は、前記複数の制御光の収束点を光軸に対して垂直方向で異ならせて前記光吸収層に収束または集光させる上記(8)から(13)のいずれか1つに記載の光路切替装置である。   (14) The control light source emits a plurality of control lights of two or more according to the number of optical path switching, and the condensing means sets a convergence point of the plurality of control lights in a direction perpendicular to the optical axis. The optical path switching device according to any one of (8) to (13), wherein the optical path switching device is caused to converge or condense on the light absorption layer.

本発明によれば、制御光を集光して光吸収層に照射することにより局部的に光パワー密度を高めることができ、低パワーで光吸収層の局所の温度を高めることができ、その部分および近辺の屈折率を変えることができる。また信号光も集光して制御光の照射位置近辺の光吸収層に入射させることにより、制御光による屈折率の変化を効率よく利用でき、信号光の光路切替が可能となる。   According to the present invention, the light power density can be locally increased by condensing the control light and irradiating the light absorption layer, and the local temperature of the light absorption layer can be increased with low power. The refractive index of the part and the vicinity can be changed. In addition, by collecting the signal light and making it incident on the light absorption layer near the irradiation position of the control light, the change in the refractive index due to the control light can be used efficiently, and the optical path of the signal light can be switched.

さらに、制御光を光吸収層の入射面近辺に集光して入射させることにより、光吸収層内で制御光が集光点から拡散するので、屈折率の変化領域も拡がり信号光の偏向を大きくすることが可能となる。また、光路切替された信号光は、集光前のビーム断面と同じ形状で熱レンズ形成光素子より出力されるため、光路切替された信号光をのちに集光させて用いる際にも実用性が高い。   Furthermore, by converging the control light near the incident surface of the light absorption layer and making it incident, the control light diffuses from the condensing point in the light absorption layer, so that the region where the refractive index changes is expanded and the signal light is deflected. It becomes possible to enlarge. In addition, since the signal light whose optical path has been switched is output from the thermal lens forming optical element in the same shape as the beam cross section before condensing, it is practical even when the signal light whose optical path has been switched is subsequently condensed. Is expensive.

さらに、複数の制御光を同一の光吸収層に入射させ、1つの入力を複数の異なった光路に切り替えることができる。   Furthermore, a plurality of control lights can be incident on the same light absorption layer, and one input can be switched to a plurality of different optical paths.

本発明では、制御光および信号光を集光し、かつ集光点を近接できるので、高速の光路切替が可能となる。   In the present invention, the control light and the signal light can be condensed and the light condensing points can be brought close to each other, so that high-speed optical path switching can be performed.

また、低パワーの半導体レーザを用いることができるので、小型で安価な光路切替装置を提供できる。   In addition, since a low-power semiconductor laser can be used, a small and inexpensive optical path switching device can be provided.

以下、図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1の実施の形態)
図1は本発明の第1の実施形態に係る偏向式光路切替装置の概略構成例である。本発明の第1の実施の形態に係る偏向式光路切替装置は、図1に概要を例示するように信号光光源である信号光入射端子1と、信号光をほぼ平行光にする第1のコリメートレンズ2と、制御光光源である制御光入射端子3と、制御光をほぼ平行光にする第2のコリメートレンズ4と、信号光と制御光とを合わせる光混合器5と、信号光と制御光とを熱レンズ形成光素子7の光吸収層に集光する集光手段である集光レンズ6と、熱レンズ形成光素子7と、熱レンズ形成光素子7を透過した光をほぼ平行光にする第3のコリメートレンズ8と、波長選択透過フィルター9と、非偏向光と偏向光とを分岐する第1の分岐ミラー10と、非偏向光を第1の検出器12に集光する第2の集光レンズ11と、非偏向光を検出する第1の検出器12と、偏向光を第2の検出器14に集光する第3の集光レンズ13と、偏向光を検出する第2の検出器14とを有する。
(First embodiment)
FIG. 1 is a schematic configuration example of a deflection optical path switching apparatus according to a first embodiment of the present invention. The deflection type optical path switching apparatus according to the first embodiment of the present invention includes a signal light incident terminal 1 that is a signal light source and a first light that makes the signal light substantially parallel light, as schematically illustrated in FIG. A collimating lens 2; a control light incident terminal 3 that is a control light source; a second collimating lens 4 that makes the control light substantially parallel; an optical mixer 5 that combines the signal light and the control light; The condensing lens 6 which is a condensing means for condensing the control light on the light absorption layer of the thermal lens forming optical element 7, the thermal lens forming optical element 7, and the light transmitted through the thermal lens forming optical element 7 are substantially parallel. The third collimating lens 8 to be light, the wavelength selective transmission filter 9, the first branch mirror 10 for branching the non-deflected light and the deflected light, and the non-deflected light are condensed on the first detector 12. Second condenser lens 11, first detector 12 for detecting non-deflected light, and deflection The has a third condenser lens 13 for condensing the second detector 14, and a second detector 14 for detecting the deflected light.

図示されていないが、信号光入射端子1には、光ファイバーにより信号光を入射させた。信号光波長は、本実施例では1550nmを用いた。信号光はこれ以外でも熱レンズ形成光素子7の光吸収層を透過する波長であれば何でも良い。本実施例では、信号光は光ファイバーで入射させているが、信号光入射端子1には、信号光を発光するレーザを直接設置しても良い。   Although not shown, signal light was incident on the signal light incident terminal 1 by an optical fiber. In this embodiment, the signal light wavelength is 1550 nm. The signal light may have any wavelength as long as it transmits the light absorption layer of the thermal lens forming optical element 7. In this embodiment, the signal light is incident through an optical fiber, but a laser that emits signal light may be directly installed at the signal light incident terminal 1.

本発明の偏向式光路切替方法および光路切替装置で使用される熱レンズ形成光素子中の光吸収層の材料、信号光の波長帯域、および制御光の波長帯域は、これらの組み合わせとして、使用目的に応じて適切な組み合わせを選定し用いることができる。具体的な設定手順としては、例えば、まず、使用目的に応じて信号光の波長ないし波長帯域を決定し、これを制御するのに最適な光吸収層膜の材料と制御光の波長の組み合わせを選定すれば良い。または、使用目的に応じて信号光と制御光の波長の組み合わせを決定してから、この組み合わせに適した光吸収層膜の材料を選定すれば良い。例えば、信号光によって画像や文字を直接表示しようとする場合は、信号光としては波長400〜800nmの可視光線を用い、制御光としては波長980nmの赤外線を用い、光吸収層の材料としては前記波長の可視光線を透過し前記波長の赤外線を吸収するものが用いられる。また、例えば、使用する光吸収層の材料の光吸収スペクトルにおける吸収極大の最長波長λ1に相当する波長の光を制御光として用いる場合、λ1よりも長波長の光を信号光として好適に用いることができる。具体的には、光吸収層の材料としてペリレンを用いる場合、制御光を例えば405nm、信号光を例えば540nm、660nm、780nm、830nm、980nm、1310nm、または,1550nmとすることができる。また、光吸収層の材料として銅フタロシアニン誘導体を用いる場合、制御光を例えば650nm、信号光を例えば690nm、780nm、830nm、980nm、1310nm、または,1550nmとすることができる。   The material of the light absorbing layer, the wavelength band of the signal light, and the wavelength band of the control light in the thermal lens forming optical element used in the deflection optical path switching method and the optical path switching apparatus of the present invention are used as a combination thereof. Appropriate combinations can be selected and used according to. As a specific setting procedure, for example, first, the wavelength or wavelength band of signal light is determined according to the purpose of use, and a combination of the material of the light absorption layer film and the wavelength of control light that is optimal for controlling this is selected. It only has to be selected. Alternatively, after determining the combination of the wavelengths of the signal light and the control light according to the purpose of use, a material for the light absorption layer film suitable for this combination may be selected. For example, when an image or a character is to be directly displayed using signal light, visible light having a wavelength of 400 to 800 nm is used as signal light, infrared light having a wavelength of 980 nm is used as control light, and the light absorbing layer material is the above-described material. A material that transmits visible light having a wavelength and absorbs infrared light having the wavelength is used. In addition, for example, when light having a wavelength corresponding to the longest wavelength λ1 of the absorption maximum in the light absorption spectrum of the material of the light absorption layer to be used is used as control light, light having a wavelength longer than λ1 is preferably used as signal light. Can do. Specifically, when perylene is used as the material of the light absorption layer, the control light can be 405 nm, for example, and the signal light can be 540 nm, 660 nm, 780 nm, 830 nm, 980 nm, 1310 nm, or 1550 nm. When a copper phthalocyanine derivative is used as the material of the light absorption layer, the control light can be set to 650 nm, for example, and the signal light can be set to 690 nm, 780 nm, 830 nm, 980 nm, 1310 nm, or 1550 nm, for example.

図示されていないが、制御光入射端子3には光ファイバーにより制御光を入射させた。制御光波長は、本実施例では980nmを用いた。制御光はこれ以外でも熱レンズ形成光素子7の光吸収層で吸収される波長であれば何でも良い。本実施例では、制御光は光ファイバーで入射させているが、制御光入射端子3には、制御光を発光するレーザを直接設置しても良い。   Although not shown, control light is incident on the control light incident terminal 3 by an optical fiber. In this embodiment, the control light wavelength is 980 nm. The control light may be any wavelength as long as it is absorbed by the light absorption layer of the thermal lens forming optical element 7. In the present embodiment, the control light is incident through an optical fiber, but a laser that emits control light may be directly installed at the control light incident terminal 3.

第1のコリメートレンズ2および第2のコリメートレンズ4、第3のコリメートレンズ8は、焦点距離8mmの非球面レンズを用いた。焦点距離は8mmである必要はなく、より小型の偏向式光路切替装置にするためにさらに短い焦点距離を用いても良いことは言うまでもない。また、非球面レンズである必要はないが、小型軽量にするために非球面レンズを用いた。   As the first collimating lens 2, the second collimating lens 4, and the third collimating lens 8, aspherical lenses having a focal length of 8 mm were used. Needless to say, the focal length need not be 8 mm, and a shorter focal length may be used in order to obtain a smaller deflecting optical path switching device. Further, although it is not necessary to use an aspheric lens, an aspheric lens is used to reduce the size and weight.

光混合器5は、信号光は透過し、制御光は反射するダイクロイックミラーを用いた。もちろん、信号光入射端子と制御光入射端子との位置を入れ替えて、信号光が反射し、制御光が透過する様にしたダイクロイックミラーを用いても良いことは言うまでもない。   The optical mixer 5 is a dichroic mirror that transmits signal light and reflects control light. Of course, it goes without saying that a dichroic mirror in which the signal light is reflected and the control light is transmitted can be used by switching the positions of the signal light incident terminal and the control light incident terminal.

集光レンズ6は、焦点距離8mmの非球面レンズを用いた。焦点距離は8mmである必要はなく、より小型の偏向式光路切替装置にするためにさらに短い焦点距離を用いても良いことは言うまでもない。また、非球面レンズである必要はないが、小型軽量にするために非球面レンズを用いた。   As the condenser lens 6, an aspherical lens having a focal length of 8 mm was used. Needless to say, the focal length need not be 8 mm, and a shorter focal length may be used in order to obtain a smaller deflecting optical path switching device. Further, although it is not necessary to use an aspheric lens, an aspheric lens is used to reduce the size and weight.

信号光と制御光は、集光レンズ6により、光の進行方向で光吸収層の入射面またはその近辺において収束する様にした。信号光と制御光とを光吸収層の入射面近辺の同一のところに収束(集光)すると信号光はドーナツ状に拡がる。この状況を図14に示す。制御光がない場合には図14(a)の写真1aの様に丸ビームであった信号光が、制御光が同時に同一のところに照射されると、図14(b)の写真1bの様になる。このドーナツ形状が鮮明で大きく形成されるのが、光吸収層の入射面であると思われる。よって、本実施の形態で光吸収層の入射面という場合は、このドーナツ形状が鮮明で大きく形成される位置とする。もちろん、本実施の形態では信号光と制御光とは収束(集光)点の位置では25〜50μmほど離れているので、ドーナツ形状は形成されないが、調整時には信号光と制御光とを同一点に入射させ、ドーナツ形状を形成させ、その後信号光と制御光との収束(集光)点が分離させている。なお、信号光と制御光との収束点間の距離が25μm未満の場合には、図14に示すような丸ビームにならず、三日月型ビームになってしまう。この三日月型ビームの信号光ではのちに集光させ光ファイバーに入射させた場合には入射効率が減少してしまい、実用性にかけるおそれがある。   The signal light and the control light are converged by the condenser lens 6 on the incident surface of the light absorption layer or in the vicinity thereof in the light traveling direction. When the signal light and the control light are converged (condensed) at the same position in the vicinity of the incident surface of the light absorption layer, the signal light spreads in a donut shape. This situation is shown in FIG. When there is no control light, the signal light which was a round beam as shown in the photograph 1a of FIG. 14A is irradiated with the control light at the same place at the same time, as shown in the photograph 1b of FIG. 14B. become. It is considered that the light-absorbing layer incident surface has a clear and large donut shape. Therefore, in this embodiment, the light absorption layer is referred to as an incident surface where the donut shape is clear and large. Of course, in this embodiment, the signal light and the control light are separated from each other by about 25 to 50 μm at the position of the convergence (condensing), so that a donut shape is not formed, but the signal light and the control light are the same at the time of adjustment. Then, a donut shape is formed, and then the convergence (condensing) points of the signal light and the control light are separated. In addition, when the distance between the convergence points of the signal light and the control light is less than 25 μm, it does not become a round beam as shown in FIG. 14 but becomes a crescent moon beam. When the signal light of the crescent moon beam is subsequently condensed and incident on the optical fiber, the incident efficiency is reduced, which may impair practicality.

熱レンズ形成光素子7は、図6に示した様な構成であるが、本実施例では説明を容易にするため、光吸収層のみを図示した。図6において、熱レンズ形成光素子35の光吸収層34は、色素を溶剤に溶解したものをガラス容器36に封じて用いた。溶剤に可溶性の色素としては、使用する制御光の波長領域に吸収があり、使用する信号光の波長領域に吸収のない公知の色素を使用することができる。レーザ光25が透過するガラス容器36のガラスの厚みは約500μm、光吸収層34の厚みは200〜1000μmであった。色素の具体例としては、例えば、ローダミンB、ローダミン6G、エオシン、フロキシンBなどのキサンテン系色素、アクリジンオレンジ、アクリジンレッドなどのアクリジン系色素、エチルレッド、メチルレッドなどのアゾ色素、ポルフィリン系色素、フタロシアニン系色素、3,3’−ジエチルチアカルボシアニンヨージド、3,3’−ジエチルオキサジカルボシアニンヨージドなどのシアニン色素、エチル・バイオレット、ビクトリア・ブルーRなどのトリアリールメタン系色素、ナフトキノン系色素、アントラキノン系色素、ナフタレンテトラカルボン酸ジイミド系色素、ペリレンテトラカルボン酸ジイミド系色素などを好適に使用することができる。また、これらの色素を単独で、または、2種以上を混合して使用することができる。溶剤としては、少なくとも使用する色素を溶解するものを用いることができるが、熱レンズ形成時の温度上昇に際し、熱分解することなく、かつ、沸騰する温度(沸点)が100℃以上、好ましくは200℃以上、さらに好ましくは300℃以上のものを好適に用いることができる。具体的には、硫酸などの無機系溶剤、o−ジクロロベンゼンなどのハロゲン化芳香族炭化水素系、1−フェニル−1−キシリルエタンまたは1−フェニル−1−エチルフェニルエタンなどの芳香族置換脂肪族炭化水素系、ニトロベンゼンなどのニトロベンゼン誘導体系、などの有機溶剤を好適に用いることができる。   Although the thermal lens forming optical element 7 has a configuration as shown in FIG. 6, in this embodiment, only the light absorption layer is shown for ease of explanation. In FIG. 6, the light absorption layer 34 of the thermal lens forming optical element 35 is used by sealing a pigment in a solvent in a glass container 36. As the dye soluble in the solvent, a known dye having absorption in the wavelength region of the control light to be used and having no absorption in the wavelength region of the signal light to be used can be used. The glass container 36 through which the laser beam 25 is transmitted has a glass thickness of about 500 μm, and the light absorption layer 34 has a thickness of 200 to 1000 μm. Specific examples of the dye include, for example, xanthene dyes such as rhodamine B, rhodamine 6G, eosin and phloxine B, acridine dyes such as acridine orange and acridine red, azo dyes such as ethyl red and methyl red, porphyrin dyes, Phthalocyanine dyes, cyanine dyes such as 3,3′-diethylthiacarbocyanine iodide, 3,3′-diethyloxadicarbocyanine iodide, triarylmethane dyes such as ethyl violet and Victoria Blue R, naphthoquinone A dye, an anthraquinone dye, a naphthalene tetracarboxylic acid diimide dye, a perylene tetracarboxylic acid diimide dye, or the like can be suitably used. Moreover, these pigment | dyes can be used individually or in mixture of 2 or more types. As the solvent, a solvent that dissolves at least the dye to be used can be used. However, the temperature (boiling point) of boiling without being thermally decomposed when the temperature rises during the formation of the thermal lens is 100 ° C. or higher, preferably 200. Those having a temperature of at least ° C, more preferably at least 300 ° C can be suitably used. Specifically, inorganic solvents such as sulfuric acid, halogenated aromatic hydrocarbons such as o-dichlorobenzene, aromatic substituted aliphatics such as 1-phenyl-1-xylylethane or 1-phenyl-1-ethylphenylethane Organic solvents such as hydrocarbons and nitrobenzene derivatives such as nitrobenzene can be suitably used.

波長選択透過フィルター9は、熱レンズ形成光素子7をわずかに透過する制御光を遮光し、信号光は透過する誘電体フィルターである。熱レンズ形成光素子7で実用上問題ない程度に制御光が吸収されれば、波長選択透過フィルター8を用いる必要はない。   The wavelength selective transmission filter 9 is a dielectric filter that blocks control light that slightly passes through the thermal lens forming optical element 7 and transmits signal light. If the control light is absorbed by the thermal lens forming optical element 7 to the extent that there is no practical problem, the wavelength selective transmission filter 8 need not be used.

熱レンズ形成光素子7の光吸収層で制御光が吸収されると、光吸収層の温度が上昇し、屈折率が変わる。温度が上昇するので、一般に屈折率は下がる方向に変化する。通常のレーザ光源から出射するレーザ光、および、通常のレーザ光源から出射し光ファイバーを透過してきたレーザ光の強度分布はガウス分布である。また、前記レーザ光をレンズ等で集光した光もガウス分布をしている。よって、制御光が照射された光吸収層での屈折率分布は、制御光の光軸で屈折率が一番低下し、制御光の周辺では屈折率の低下が少なくなる。また、熱伝導があるので、光の照射されていない部分でも屈折率が変化する。   When the control light is absorbed by the light absorption layer of the thermal lens forming optical element 7, the temperature of the light absorption layer rises and the refractive index changes. As the temperature increases, the refractive index generally changes in a decreasing direction. The intensity distribution of laser light emitted from a normal laser light source and laser light emitted from a normal laser light source and transmitted through an optical fiber is a Gaussian distribution. Further, the light obtained by condensing the laser light with a lens or the like has a Gaussian distribution. Therefore, in the refractive index distribution in the light absorption layer irradiated with the control light, the refractive index is the lowest on the optical axis of the control light, and the refractive index is less reduced around the control light. Further, since there is heat conduction, the refractive index changes even in a portion where light is not irradiated.

図5は、信号光が偏向する状況を説明した図である。なお、説明を簡単にするため、図5では光吸収層と光吸収層の周りの媒質との屈折率の違いによる光の屈折は無視している。図5において、熱レンズ形成光素子の光吸収層34に、信号光28と制御光29が照射され、制御光が照射されなかった場合の熱レンズ形成光素子を透過した信号光30と、制御光が照射された場合の熱レンズ形成光素子を透過した信号光31が示されている。さらに、熱レンズ形成光素子の光吸収層34の入射面近辺での制御光の光強度分布32、および、熱レンズ形成光素子の光吸収層34の出射面近辺での光強度分布33が示されている。   FIG. 5 is a diagram illustrating a situation where the signal light is deflected. In order to simplify the explanation, in FIG. 5, light refraction due to the difference in refractive index between the light absorption layer and the medium around the light absorption layer is ignored. In FIG. 5, signal light 30 and control light 29 are irradiated on the light absorption layer 34 of the thermal lens forming optical element, and the signal light 30 transmitted through the thermal lens forming optical element when the control light is not irradiated. The signal light 31 transmitted through the thermal lens forming optical element when irradiated with light is shown. Further, a light intensity distribution 32 of the control light in the vicinity of the incident surface of the light absorption layer 34 of the thermal lens forming optical element and a light intensity distribution 33 in the vicinity of the emission surface of the light absorption layer 34 of the thermal lens forming optical element are shown. Has been.

図5aはレーザ光を集光しない場合、図5bは本実施例の様にレーザ光を集光した場合のレーザ光の光路を模式的に示したものである。レーザ光を集光しない場合のレーザ光の強度分布領域は、光吸収層の入射面近辺と出射面近辺では変わらない。このことは、信号光が光吸収層22を進むに従って、屈折率の変化の少ない領域を通過することを意味する。一方、レーザ光を集光した場合はレーザ光の強度分布領域は、光吸収層の入射面近辺と出射面近辺では大きく変わり、出射面近辺では領域が拡がっている。このことは、屈折率も徐々に拡がっていることになり、信号光が光吸収層を進むに従ってより偏向させる作用を及ぼすことになる。なお、屈折率変化は制御光パワーにほぼ比例して変化するので、光吸収層を進むに従って屈折率変化は小さくなる。   FIG. 5a schematically shows the optical path of the laser light when the laser light is not condensed, and FIG. 5b schematically shows the optical path of the laser light when the laser light is condensed as in this embodiment. The intensity distribution region of the laser beam when the laser beam is not condensed does not change between the vicinity of the incident surface and the exit surface of the light absorption layer. This means that the signal light passes through a region where the refractive index changes little as it travels through the light absorption layer 22. On the other hand, when the laser beam is condensed, the intensity distribution region of the laser beam is greatly changed near the incident surface and the exit surface of the light absorption layer, and the region is expanded near the exit surface. This means that the refractive index also gradually increases, and the signal light has an effect of deflecting more as it travels through the light absorption layer. Since the refractive index change changes substantially in proportion to the control light power, the refractive index change becomes smaller as the light absorption layer is advanced.

図5bでは、信号光も熱レンズ形成光素子の光吸収層34の入射面に収束(集光)する様にしているが、入射面近辺であれば良い。特に信号光は、光吸収層のもう少し出射面側に収束(集光)する様にしても良い。また、信号光と制御光とは光の進行方向で同一面に入射するようにしているが、全く同一面である必要はなく、多少ずれていても構わない。   In FIG. 5b, the signal light is also converged (condensed) on the incident surface of the light absorption layer 34 of the thermal lens forming optical element, but may be in the vicinity of the incident surface. In particular, the signal light may be converged (condensed) to the light exit surface side of the light absorption layer. Further, the signal light and the control light are made incident on the same surface in the light traveling direction, but they are not necessarily the same surface, and may be slightly shifted.

偏向角は、次の条件が変わると変化する。
1.熱レンズ形成光素子の光吸収層の、信号光と制御光の第1の集光レンズ6の収束(集光)点に対する位置
2.制御光パワー
3.制御光位置(第1の集光レンズ6の集光点での信号光と制御光の光軸に直角方向の距離)
4.熱レンズ形成光素子の光吸収層の厚み
5.制御光波長および信号光波長。
6.光吸収層の色素濃度
これ以外にも、光吸収層の材質、光吸収層への制御光および信号光の収束(集光)角等によっても変化する。
The deflection angle changes when the following conditions change.
1. 1. Position of light absorption layer of thermal lens forming optical element with respect to convergence (condensation) point of first condenser lens 6 for signal light and control light. 2. Control light power Control light position (distance perpendicular to the optical axis of signal light and control light at the condensing point of the first condenser lens 6)
4). 4. Thickness of light absorption layer of thermal lens forming optical element Control light wavelength and signal light wavelength.
6). In addition to this, the dye concentration of the light absorption layer also varies depending on the material of the light absorption layer, the convergence (condensation) angle of the control light and signal light to the light absorption layer, and the like.

本実施の形態では、信号光1550nmをコア径9.5μmのシングルモード石英光ファイバーで信号光入射端子に入射させ、制御光980nmをコア径9.5μmのシングルモード石英光ファイバーで制御光入射端子に入射させ、焦点距離8mmの第1のコリメートレンズおよび第2のコリメートレンズで信号光および制御光をほぼ平行光にし、光吸収層の厚み500μmであって光吸収層の波長1550nmにおける透過率95%および980nmにおける透過率0.2%の熱レンズ形成光素子に、焦点距離8mmのレンズで収束(集光)して入射させた。   In this embodiment, the signal light 1550 nm is incident on the signal light incident terminal with a single-mode quartz optical fiber having a core diameter of 9.5 μm, and the control light 980 nm is incident on the control light incident terminal with a single-mode quartz optical fiber having a core diameter of 9.5 μm. The signal light and the control light are made to be substantially parallel light by the first collimating lens and the second collimating lens having a focal length of 8 mm, the light absorption layer has a thickness of 500 μm, and the transmittance of the light absorption layer at a wavelength of 1550 nm is 95%. It converged (condensed) with a lens having a focal length of 8 mm and was incident on a thermal lens forming optical element having a transmittance of 0.2% at 980 nm.

図7に、図1の分岐ミラー10の直前で、光軸に直角に紙面内方向に、スリット開口を持った光検出器を動かして測定した信号光の光強度分布を示す。図7において、線38(丸点を結ぶ実線)は制御光が照射されなかった場合の非偏向光、線39(四角点を結ぶ実線)は制御光パワー7.8mWが照射された場合の偏向光、線40(×点を結ぶ実線)は制御光パワー12.9mWが照射された場合の偏向光の光強度分布を示す。制御光パワー7.8mWが照射された場合の偏向光39の場合は、非偏向光38と強度分布の裾のところで重なり合っておりお互いの分離が不充分であるが、制御光パワー12.9mWが照射された場合の偏向光40の場合は、非偏向光38と分離している。よって、分岐ミラー10で非偏向光と制御光パワー12.9mWが照射された場合の偏向光40とは分離できる。なお、図7において、制御光位置(第1の集光レンズ6の集光点での信号光と制御光の光軸に直角方向の距離)は35μmであり、制御光と信号光は光吸収層の光入射面から約30μm進んだところに収束(集光)し、光吸収層の厚みは500μmであった。   FIG. 7 shows the light intensity distribution of the signal light measured by moving a photodetector having a slit opening in the in-plane direction perpendicular to the optical axis immediately before the branch mirror 10 of FIG. In FIG. 7, a line 38 (solid line connecting round points) is unpolarized light when the control light is not irradiated, and a line 39 (solid line connecting square points) is the deflection when the control light power is 7.8 mW. The light, line 40 (solid line connecting the dots) shows the light intensity distribution of the deflected light when the control light power of 12.9 mW is applied. In the case of the deflected light 39 irradiated with the control light power of 7.8 mW, it overlaps with the non-deflected light 38 at the bottom of the intensity distribution and is insufficiently separated from each other, but the control light power of 12.9 mW is not sufficient. The polarized light 40 when irradiated is separated from the non-polarized light 38. Therefore, the non-deflected light and the deflected light 40 when the control light power 12.9 mW is irradiated by the branch mirror 10 can be separated. In FIG. 7, the control light position (distance perpendicular to the optical axis of the signal light and the control light at the condensing point of the first condenser lens 6) is 35 μm, and the control light and the signal light absorb light. The layer converged (condensed) at a position advanced by about 30 μm from the light incident surface of the layer, and the thickness of the light absorption layer was 500 μm.

制御光が照射されなかった場合は、分岐ミラー10で反射されることなく通過した非偏向光は、焦点距離8mmの集光レンズ11で光検出器12に収束(集光)し、非偏向光を検出する。制御光パワーと偏向角との関係を図8に示す。制御光パワーが大きくなると偏向角が大きくなる。なお、図8において、制御光位置(第1の集光レンズ6の集光点での信号光と制御光の光軸に直角方向の距離)は35μm、制御光と信号光は光吸収層の光入射面から約60μm進んだところに収束(集光)させた。充分な強度(図8の例の場合は、12.9mW以上)の制御光パワーが照射された場合の偏向光は、図1に示す分岐ミラー10で反射し、焦点距離8mmの集光レンズ13で光検出器14に収束(集光)し、偏向光を検出する。集光レンズ11および集光レンズ13の焦点距離は8mmのものを用いたが、焦点距離は8mmに拘る必要はない。なお、本実施の形態では光検出器12,14のところには、9.5μmのシングルモード石英光ファイバーを設置し、光ファイバーに信号光を収束(集光)し、光ファイバーで伝送してから検出した。もちろん、直接光検出器を設置しても良いことは言うまでもない。また、分岐ミラー10では偏向光を反射するようにしたが、非偏向光が反射し、偏向光が通過するように設置しても良い。   When the control light is not irradiated, the non-deflected light that has passed without being reflected by the branch mirror 10 is converged (condensed) to the photodetector 12 by the condensing lens 11 having a focal length of 8 mm, and the non-deflected light Is detected. FIG. 8 shows the relationship between the control light power and the deflection angle. As the control light power increases, the deflection angle increases. In FIG. 8, the control light position (distance perpendicular to the optical axis of the signal light and the control light at the condensing point of the first condenser lens 6) is 35 μm, and the control light and the signal light are in the light absorption layer. The light was converged (condensed) at a position about 60 μm from the light incident surface. The deflected light when the control light power with sufficient intensity (in the example of FIG. 8 is 12.9 mW or more) is irradiated is reflected by the branch mirror 10 shown in FIG. Then, the light converges (condenses) on the light detector 14 and detects the deflected light. Although the focal lengths of the condensing lens 11 and the condensing lens 13 are 8 mm, the focal length need not be 8 mm. In the present embodiment, a 9.5 μm single-mode quartz optical fiber is installed at the photodetectors 12 and 14, the signal light is converged (condensed) on the optical fiber, and transmitted after the optical fiber is detected. . Of course, it goes without saying that a photodetector may be installed directly. Further, although the branching mirror 10 reflects the deflected light, it may be installed so that the non-deflected light is reflected and the deflected light passes.

9.5μmのシングルモード石英光ファイバーの開口数(以下NAと記す)は、一般的に0.1である。NA=0.1の光ファイバーを伝搬可能な最大入射角θcは次式で与えられ、約5.7度である。
(式1)
θc=Sin−1(0.1)≒5.7度
The numerical aperture (hereinafter referred to as NA) of a 9.5 μm single mode quartz optical fiber is generally 0.1. The maximum incident angle θc that can propagate through an optical fiber with NA = 0.1 is given by the following equation and is about 5.7 degrees.
(Formula 1)
θc = Sin −1 (0.1) ≈5.7 degrees

本実施の形態では、図1に示す第3のコリメートレンズ8と集光レンズ11および集光レンズ13の焦点距離は同じ8mmのものを用いたので、偏向角が分岐ミラー10で分岐しなかった場合に光ファイバーに入射する偏向光の光軸と非偏向光の光軸とのなす角度になる。すなわち、制御光パワー7.8mWの場合は約6.7度、制御光パワー12.9mWの場合は約10.1度、制御光パワー18mWの場合は約13.2度となる。分岐ミラー10で偏向光と非偏向光とが充分分岐できなかった場合には、偏向光検出光ファイバーに非偏向光が、非偏向光検出光ファイバーに偏向光がこの角度を中心として入射することになる。信号光もコア径9.5μmのシングルモード石英光ファイバーで入射させているのでNAは0.1であり、信号光そのものの収束(集光)角が約5.7度ある。よって、第1の光検出器12および第2の光検出器14の光ファイバーへの入射効率は、制御光パワー7.8mWの場合は多少悪化するが信号光の入射が可能である。しかし、第1の検出器12および第2の検出器14の光ファイバーへの信号光の入射は、制御光パワー12.9mWの場合はほんのわずかであり、制御光パワー18mWの場合は入射しないことになる。よって、仮に分岐ミラー10での非偏向光と偏向光との分離度合いが多少悪くても、制御光パワーが大きくて偏向角が大きい場合は、第1の光検出器12の光ファイバーへの偏向光の入射および第2の光検出器14の光ファイバーへの非偏向光の入射はないことになり、消光比の大きい光路切替が可能となる。   In the present embodiment, the third collimating lens 8 shown in FIG. 1, the condensing lens 11, and the condensing lens 13 have the same focal length of 8 mm, so that the deflection angle is not branched by the branch mirror 10. In this case, the angle is formed between the optical axis of the deflected light incident on the optical fiber and the optical axis of the non-deflected light. That is, when the control light power is 7.8 mW, it is about 6.7 degrees, when the control light power is 12.9 mW, it is about 10.1 degrees, and when the control light power is 18 mW, it is about 13.2 degrees. When the deflected light and the non-deflected light cannot be sufficiently branched by the branch mirror 10, the non-deflected light enters the deflected light detection optical fiber and the deflected light enters the non-deflected light detection optical fiber around this angle. . Since the signal light is also incident through a single-mode quartz optical fiber having a core diameter of 9.5 μm, the NA is 0.1, and the convergence (condensation) angle of the signal light itself is about 5.7 degrees. Therefore, the incident efficiency of the first photodetector 12 and the second photodetector 14 to the optical fiber is slightly deteriorated when the control light power is 7.8 mW, but signal light can be incident. However, the incidence of the signal light on the optical fibers of the first detector 12 and the second detector 14 is very small when the control light power is 12.9 mW and does not enter when the control light power is 18 mW. Become. Therefore, even if the degree of separation between the non-deflected light and the deflected light at the branch mirror 10 is somewhat worse, if the control light power is large and the deflection angle is large, the deflected light to the optical fiber of the first photodetector 12 And the non-deflected light are not incident on the optical fiber of the second photodetector 14, and the optical path can be switched with a large extinction ratio.

図9に、図5に示した熱レンズ形成光素子7の光吸収層34への信号光と制御光の収束(集光)点の入射位置(「光吸収層位置」と記す)と偏向角との関係を示す。図9において、横軸の光吸収層位置は熱レンズ形成光素子7の光吸収層34への光の入射面の位置(制御光と信号光の収束(集光)点に対する位置)である。0点は制御光と信号光の収束(集光)点の位置であり、図5bの状態である。マイナス方向が光の進行方向であり、プラスの位置では信号光と制御光が熱レンズ形成光素子7の光吸収層34内で収束(集光)する。縦軸は偏向角である。なお、図9において、制御光パワーは約12.9mWであり、制御光位置(第1の集光レンズ6の集光点での信号光と制御光の光軸に対して垂直方向の距離)は35μm、光吸収層の厚みは500μmである。図9の条件の場合には、光吸収層位置が約40μm以下の場合は偏向角が大きく、第1の光検出器12の光ファイバーへの偏向光の入射および第2の光検出器14の光ファイバーへの非偏向光の入射はないことになる。もちろん、図8からも明らかなように、制御光パワーを上げれば光吸収層位置を40μmよりももっと大きくしても良く、約100μmにしても良い。   FIG. 9 shows the incident position (referred to as “light absorption layer position”) and the deflection angle of the convergence (condensation) point of the signal light and control light to the light absorption layer 34 of the thermal lens forming optical element 7 shown in FIG. Shows the relationship. In FIG. 9, the position of the light absorption layer on the horizontal axis is the position of the light incident surface on the light absorption layer 34 of the thermal lens forming optical element 7 (position with respect to the convergence (condensing) point of the control light and signal light). Point 0 is the position of the convergence (condensing) point of the control light and signal light, which is the state of FIG. The minus direction is the light traveling direction, and the signal light and the control light converge (condense) in the light absorption layer 34 of the thermal lens forming optical element 7 at the plus position. The vertical axis represents the deflection angle. In FIG. 9, the control light power is about 12.9 mW, and the control light position (distance in the direction perpendicular to the optical axis of the signal light and the control light at the condensing point of the first condenser lens 6). Is 35 μm, and the thickness of the light absorption layer is 500 μm. In the case of the condition of FIG. 9, the deflection angle is large when the position of the light absorption layer is about 40 μm or less, the incidence of the deflected light on the optical fiber of the first photodetector 12 and the optical fiber of the second photodetector 14. There will be no incidence of unpolarized light on the surface. Of course, as is apparent from FIG. 8, if the control light power is increased, the position of the light absorption layer may be made larger than 40 μm or about 100 μm.

さらに、仮に分岐ミラー10で非偏向光と偏向光とを分離しなかった場合でも、光検出器の位置では非偏向光と偏向光とを分離させることが可能である。図10に、図5bに示す熱レンズ形成光素子の光吸収層34への信号光と制御光の収束(集光)点の入射位置(すなわち、光吸収層位置)と非偏向光と偏向光との分離距離の測定データの例を示す。光吸収層への入射位置が約60μmの場合は分離距離が0に近いが、これからずれると離距離が大きくなる。図10で分離距離の正負の符号は、信号光の入射点を原点(すなわち0点)とし、偏向する方向を正とした。分離距離が大きいことは、仮に分岐ミラー10での非偏向光と偏向光との分岐が充分なかったとしても、図1に示す第1の光検出器12の光ファイバーへの偏向光の入射および第2の光検出器14の光ファイバーへの非偏向光の入射はないことになる。この測定は、第1の検出器12の位置で、スリット開口を持った検出器を移動させて測定したものである。図10において、制御光パワーは15.4mW、光吸収層の厚みは1000μmであり、制御光位置(第1の集光レンズ6の集光点での信号光と制御光の光軸に直角方向の距離)は25μmある。   Further, even if the non-deflected light and the deflected light are not separated by the branch mirror 10, the non-deflected light and the deflected light can be separated at the position of the photodetector. FIG. 10 shows the incident position (that is, the light absorbing layer position), the unpolarized light, and the deflected light of the signal light and the control light on the light absorbing layer 34 of the thermal lens forming optical element shown in FIG. An example of the measurement data of the separation distance is shown. When the incident position on the light absorption layer is about 60 μm, the separation distance is close to 0, but when the position is shifted from this, the separation distance increases. In FIG. 10, the sign of the separation distance is defined such that the incident point of the signal light is the origin (that is, 0 point) and the deflection direction is positive. The large separation distance means that even if the non-deflected light and the deflected light at the branch mirror 10 are not sufficiently branched, the incident of the deflected light on the optical fiber of the first photodetector 12 shown in FIG. No unpolarized light is incident on the optical fiber of the second photodetector 14. This measurement was performed by moving a detector having a slit opening at the position of the first detector 12. In FIG. 10, the control light power is 15.4 mW, the thickness of the light absorption layer is 1000 μm, and the control light position (in the direction perpendicular to the optical axis of the signal light and the control light at the condensing point of the first condenser lens 6). ) Is 25 μm.

本実施の形態では、非偏向光と偏向光の光検出器でのそれぞれの検出は、以上述べてきたように、分岐ミラー10による分岐、非検出光の光ファイバー伝搬可能最大入射角以上での入射、光検出器位置での分離等により、充分に分離して検出でき、精度の高い光路切替が可能である。   In the present embodiment, as described above, the non-deflected light and the deflected light are detected by the photodetector. It is possible to detect with sufficient separation by separation at the photodetector position, etc., and to switch the optical path with high accuracy.

図11に、本実施の形態での光路切替データの例を示す。図11において、測定に用いた測定器の0.1μW以下の値の信頼度がなかったので、0.1μW以下の値の場合は0μWの場合も含めてすべて0.1μW以下とし、消光比の計算では0.1μW以下の場合はすべて0.1μWとして計算してある。No.7の場合以外は、非偏向光も偏向光も40dB以上の消光比があった。   FIG. 11 shows an example of the optical path switching data in the present embodiment. In FIG. 11, since there was no reliability of the value of 0.1 μW or less of the measuring instrument used for the measurement, the values of 0.1 μW or less were all set to 0.1 μW or less including the case of 0 μW, and the extinction ratio was In the calculation, all the cases of 0.1 μW or less are calculated as 0.1 μW. No. Except for the case of 7, the unpolarized light and the deflected light had an extinction ratio of 40 dB or more.

偏向角は、制御光波長および信号光波長によっても異なる。波長が短いほど偏向角が大きくなる。   The deflection angle varies depending on the control light wavelength and the signal light wavelength. The shorter the wavelength, the greater the deflection angle.

(比較例1)
第1の実施の形態において、集光レンズ6を用いず、各々コリメートされた信号光および制御光を収束することなく熱レンズ形成光素子7に照射する点および第3のコリメートレンズ8を用いない点を除いては、第1の実施形態と同様の実験を行ったが、制御光パワー18mW程度では、制御光を照射しても信号光の偏向は全く観察されなかった。そこで、制御光光源をTi:サイファイアレーザに変えて、さらにハイパワーの制御光(980nm)を照射したところ、信号光の偏向が検知される前に熱レンズ形成光素子中の色素溶液の溶剤が沸騰を開始し、信号光の偏向を行うことが困難であることが確認された。さらに、制御光のパワーを前記沸騰が始まる寸前まで下げて、熱レンズ形成光素子に入射するまでの信号光と制御光の配置およびビーム間距離を微調整したが、信号光の光路偏向は観察されなかった。さらにまた、熱レンズ形成光素子中の光吸収層における信号光と制御光の配置およびビーム間距離を微調整したが、信号光の光路偏向は観察されなかった。すなわち、制御光を収束させて熱レンズ形成光素子中の光吸収層において拡散しながら光吸収が起こるようにしないで、コリメートされた平行ビームとして照射した場合、信号光の光路を偏向するに足る大きさの熱レンズが形成されないことが判った。
(Comparative Example 1)
In the first embodiment, the condensing lens 6 is not used, and the collimated signal light and control light are irradiated to the thermal lens forming optical element 7 without converging, and the third collimating lens 8 is not used. Except for this point, the same experiment as in the first embodiment was performed. However, when the control light power was about 18 mW, no deflection of the signal light was observed even when the control light was irradiated. Therefore, when the control light source is changed to Ti: cypher laser and further irradiated with high power control light (980 nm), the solvent of the dye solution in the thermal lens forming optical element is detected before the deflection of the signal light is detected. Started boiling and it was confirmed that it was difficult to deflect the signal light. Furthermore, the power of the control light was lowered to just before the start of boiling, and the arrangement of the signal light and the control light and the distance between the beams until entering the thermal lens forming optical element were finely adjusted, but the optical path deflection of the signal light was observed. Was not. Furthermore, although the arrangement of the signal light and the control light and the distance between the beams in the light absorption layer in the thermal lens forming optical element were finely adjusted, no optical path deflection of the signal light was observed. That is, it is sufficient to deflect the optical path of the signal light when it is irradiated as a collimated parallel beam without converging the control light so that light absorption occurs while diffusing in the light absorption layer in the thermal lens forming optical element. It was found that no size thermal lens was formed.

(第2の実施の形態)
図2は本発明の第2の実施の形態に係る偏向式光路切替装置の概略構成例である。本発明の第2の実施の形態において、第1の実施の形態と同じ光学部材については、同一の番号を付けた。
(Second Embodiment)
FIG. 2 is a schematic configuration example of a deflection optical path switching apparatus according to the second embodiment of the present invention. In the second embodiment of the present invention, the same optical members as those in the first embodiment are given the same numbers.

図2において、第2の信号光入射端子15、第2の制御光入射端子16、焦点距離8mmの第4の結像レンズ17とを有する偏向式光路切替装置が示されている。これ以外の光学部材は、図1と同じである。また、用いた信号光の波長は1550nm、制御光の波長は980nmであった。しかし、信号光の波長も制御光の波長もこれ以外の波長でも良いことは第1の実施例と同様言うまでもない。制御光のパワーを変えると偏向量(偏向角)が変わることは、第1の実施の形態と同じである。   FIG. 2 shows a deflecting optical path switching device having a second signal light incident terminal 15, a second control light incident terminal 16, and a fourth imaging lens 17 having a focal length of 8 mm. Other optical members are the same as those in FIG. Further, the wavelength of the signal light used was 1550 nm, and the wavelength of the control light was 980 nm. However, it goes without saying that the wavelength of the signal light and the wavelength of the control light may be other wavelengths as in the first embodiment. It is the same as in the first embodiment that the deflection amount (deflection angle) changes when the power of the control light is changed.

第2の信号光入射端子15と第2の制御光入射端子16には、図12に示した2芯光ファイバーフェルールを設置した。   The second signal light incident terminal 15 and the second control light incident terminal 16 are provided with the two-core optical fiber ferrule shown in FIG.

図12の2芯光ファイバーフェルールの信号光出射ファイバー46と制御光出射ファイバー45はコア9.5μmのシングルモード石英光ファイバーのクラット層をフッ酸で所望の太さにエッチングして用いた。エッチングする部分は、光ファイバーの先端数mmだけであった。エッチングした後の光ファイバーの太さ「ω」は、光吸収層に収束(集光)した信号光と制御光の収束(集光)点の光軸に直角方向の距離「χ」と次の関係にした。
(式2)
ω=χ/m
ここでmは、第4の集光レンズ17の結像倍率である。本実施例では、mは1であった。mを小さくすればエッチング後の光ファイバーの太さは太くでき、mを大きくすればエッチング後の光ファイバーの太さは細くしなければならない。
The signal light emitting fiber 46 and the control light emitting fiber 45 of the two-core optical fiber ferrule in FIG. 12 were used by etching a 9.5 μm single-mode quartz optical fiber clat layer to a desired thickness with hydrofluoric acid. The part to be etched was only a few mm of the tip of the optical fiber. The thickness “ω” of the optical fiber after etching is the following relationship with the distance “χ” perpendicular to the optical axis of the convergence (condensation) of the signal light and control light converged (condensed) on the light absorption layer: I made it.
(Formula 2)
ω = χ / m
Here, m is the imaging magnification of the fourth condenser lens 17. In this example, m was 1. If m is reduced, the thickness of the optical fiber after etching can be increased. If m is increased, the thickness of the optical fiber after etching must be reduced.

本実施の形態では、mは1,ωは35μmにした。第1の実施例からも明らかである様に、ωを大きくすると偏向角は小さくなるので、ωは25〜50ミクロンが相応しい。25μm以下にすると、レーザ光の透過率が悪くなった。特に、980nmのレーザ光の透過が悪くなり、1mのファイバーでの透過率が20%〜80%となった。   In the present embodiment, m is 1 and ω is 35 μm. As is clear from the first embodiment, when ω is increased, the deflection angle is reduced, so ω is preferably 25 to 50 microns. When the thickness was 25 μm or less, the transmittance of laser light was deteriorated. In particular, the transmission of 980 nm laser light was poor, and the transmittance with a 1 m fiber was 20% to 80%.

制御光用の光ファイバーと信号光用の光ファイバーは、太さ2ω+数μmにあけられたフェルールの穴に接着剤で固定した後、先端を研磨して用いた。   The optical fiber for control light and the optical fiber for signal light were used after being fixed to the hole of the ferrule with a thickness of 2ω + several μm with an adhesive and then polishing the tip.

本実施の形態では、光ファイバーのコア径は9.5μmのシングルモード光ファイバーを用いたが、レーザ光の波長を変える場合は、それに相応しいコア径の光ファイバーにする必要がある。例えば、制御光を660nmにする場合は、コア径4.5μmにした方が良い。   In this embodiment, a single mode optical fiber having a core diameter of 9.5 μm is used. However, when changing the wavelength of the laser light, it is necessary to use an optical fiber having a core diameter suitable for it. For example, when the control light is 660 nm, it is better to set the core diameter to 4.5 μm.

本実施の形態で得られた光路切替データは、第1の実施の形態とほぼ同じであった。   The optical path switching data obtained in this embodiment is almost the same as that in the first embodiment.

(第3の実施の形態)
図3は本発明の第3の実施の形態に係る偏向式光路切替装置の概略構成例である。本発明の第3の実施の形態において、第1の実施の形態および第2の実施の形態と同じ光学部材については、同一の番号を付けた。第3の実施の形態は、第2の実施の形態より制御光の数を1つ増やし、切り替える光路を3にした例である。図3において、第3の信号光入射端子18、第3の制御光入射端子19、第4の制御光入射端子20、第2の分岐ミラー21,第5の集光レンズ、第3の検出器23以外は、図1および図2と同じである。また、用いた信号光の波長は1550nm、制御光の波長は980nmであった。しかし、信号光の波長も制御光の波長もこれ以外の波長でも良いことは第1の実施の形態および第2の実施の形態と同様言うまでもない。制御光のパワーを変えると偏向量(偏向角)が変わることは、第1の実施の形態および第2の実施の形態と同じである。
(Third embodiment)
FIG. 3 is a schematic configuration example of a deflection optical path switching apparatus according to the third embodiment of the present invention. In the third embodiment of the present invention, the same optical members as those in the first embodiment and the second embodiment are given the same numbers. The third embodiment is an example in which the number of control lights is increased by one from the second embodiment and the optical path to be switched is set to 3. In FIG. 3, a third signal light incident terminal 18, a third control light incident terminal 19, a fourth control light incident terminal 20, a second branch mirror 21, a fifth condenser lens, and a third detector. Except 23, it is the same as FIG. 1 and FIG. Further, the wavelength of the signal light used was 1550 nm, and the wavelength of the control light was 980 nm. However, it goes without saying that the wavelength of the signal light and the wavelength of the control light may be other wavelengths as in the first embodiment and the second embodiment. It is the same as the first embodiment and the second embodiment that the deflection amount (deflection angle) changes when the power of the control light is changed.

第3の信号光入射端子18と第3の制御光入射端子19および第4の制御光入射端子20には、図13(a)に示した3芯光ファイバーフェルールを設置した。   For the third signal light incident terminal 18, the third control light incident terminal 19, and the fourth control light incident terminal 20, the three-core optical fiber ferrule shown in FIG.

図13(b)の3芯光ファイバーは、光路切替を2次元に行う場合の例である。図13bの3芯光ファイバーを用いる実施例は記載していないが、例えば図3の第2の分岐ミラーを移動して紙面に直角の方向に反射するように構成すれば良い。   The three-core optical fiber shown in FIG. 13B is an example when the optical path is switched two-dimensionally. Although the embodiment using the three-core optical fiber in FIG. 13b is not described, for example, the second branch mirror in FIG. 3 may be moved and reflected in a direction perpendicular to the paper surface.

図13の3芯光ファイバーフェルールの信号光出射ファイバー48と制御光出射ファイバー47はコア9.5μmのシングルモード石英光ファイバーのクラット層をフッ酸で所望の太さにエッチングして用いた。エッチングする部分は、光ファイバーの先端数mmだけであった。エッチングした後の光ファイバーの太さ「ω」は、光吸収層に収束(集光)した信号光と制御光の収束(集光)点の光軸に直角方向の距離「χ」と次の関係にした。
(式3)
ω=χ/m
ここでmは、第2の集光レンズ12の結像倍率である。本実施例では、mは1であった。mを小さくすればエッチング後の光ファイバーの太さは太くでき、mを大きくすればエッチング後の光ファイバーの太さは細くしなければならない。
The signal light emitting fiber 48 and the control light emitting fiber 47 of the three-core optical fiber ferrule of FIG. 13 were used by etching a 9.5 μm single mode quartz optical fiber clat layer to a desired thickness with hydrofluoric acid. The part to be etched was only a few mm of the tip of the optical fiber. The thickness “ω” of the optical fiber after etching is the following relationship with the distance “χ” perpendicular to the optical axis of the convergence (condensation) of the signal light and control light converged (condensed) on the light absorption layer: I made it.
(Formula 3)
ω = χ / m
Here, m is the imaging magnification of the second condenser lens 12. In this example, m was 1. If m is reduced, the thickness of the optical fiber after etching can be increased. If m is increased, the thickness of the optical fiber after etching must be reduced.

本実施の形態では、mは1,ωは35μmにした。第1の実施例からも明らかである様に、ωを大きくすると偏向角は小さくなるので、ωは25〜50ミクロンが相応しい。25μm以下にすると、レーザ光の透過率が悪くなった。特に、980nmのレーザ光の透過が悪くなり、1mのファイバーでの透過率が20%〜80%となった。   In the present embodiment, m is 1 and ω is 35 μm. As is clear from the first embodiment, when ω is increased, the deflection angle is reduced, so ω is preferably 25 to 50 microns. When the thickness was 25 μm or less, the transmittance of laser light was deteriorated. In particular, the transmission of 980 nm laser light was poor, and the transmittance with a 1 m fiber was 20% to 80%.

図13(a)の場合の制御光用の光ファイバーと信号光用の光ファイバーは、太さ3ω+数μmにあけられたフェルールの穴に接着剤で固定した後、先端を研磨して用いた。また、図13(b)の場合の制御光用の光ファイバーと信号光用の光ファイバーは、太さ(1+√2)ω+数μmにあけられたフェルールの穴に接着剤で固定した後、先端を研磨して用いた。   The optical fiber for control light and the optical fiber for signal light in the case of FIG. 13 (a) were used after being fixed to the hole of the ferrule with a thickness of 3ω + several μm with an adhesive and then polishing the tip. In addition, the optical fiber for control light and the optical fiber for signal light in the case of FIG. 13 (b) are fixed to the hole of the ferrule with a thickness (1 + √2) ω + several μm with an adhesive, and then the tip is fixed. Polished and used.

本実施の形態では、光ファイバーのコア径は9.5μmのシングルモード光ファイバーを用いたが、レーザ光の波長を変える場合は、それに相応しいコア径の光ファイバーにする必要がある。例えば、制御光を660nmにする場合は、コア径4.5μmにした方が良い。   In this embodiment, a single mode optical fiber having a core diameter of 9.5 μm is used. However, when changing the wavelength of the laser light, it is necessary to use an optical fiber having a core diameter suitable for it. For example, when the control light is 660 nm, it is better to set the core diameter to 4.5 μm.

本実施の形態で得られた光路切替データは、第1の実施の形態および第2の実施の形態とほぼ同じであった。   The optical path switching data obtained in this embodiment is almost the same as that in the first embodiment and the second embodiment.

(第4の実施の形態)
図4は本発明の第4の実施の形態に係る光路切替装置の概略構成例である。本発明の第4の実施の形態において、第1の実施の形態、第2の実施の形態および第3の実施の形態と同じ光学部材については、同一の番号を付けた。第4の実施の形態は、第1の実施の形態と検出手段を変えた例である。分岐ミラーを用いず、進行方向が異なる非偏向光および偏向光をレンズ24,26で収束(集光)し、光検出器で検出するようにした。図4において、焦点距離8mmの第6の集光レンズ24で第4の検出器25に収束(集光)し、非偏向光を検出する。また、焦点距離8mmの第7の集光レンズ26で第5の検出器27に収束(集光)し、偏向光を検出する。
(Fourth embodiment)
FIG. 4 is a schematic configuration example of an optical path switching apparatus according to the fourth embodiment of the present invention. In the fourth embodiment of the present invention, the same optical members as those in the first embodiment, the second embodiment, and the third embodiment are given the same numbers. The fourth embodiment is an example in which the detection unit is changed from the first embodiment. Without using a branch mirror, unpolarized light and deflected light having different traveling directions are converged (condensed) by the lenses 24 and 26 and detected by a photodetector. In FIG. 4, the sixth condenser lens 24 with a focal length of 8 mm converges (condenses) on the fourth detector 25 to detect unpolarized light. Further, the light is converged (condensed) on the fifth detector 27 by the seventh condenser lens 26 having a focal length of 8 mm, and the deflected light is detected.

集光レンズ24,26の焦点距離は8mmのものを用いたが、焦点距離は8mmに拘る必要はない。なお、本実施の形態では光検出器25,27には、9.5μmのシングルモード石英光ファイバーを設置し、光ファイバーに信号光を収束(集光)し、光ファイバーで伝送してから検出した。もちろん、直接光検出器を設置しても良いことは言うまでもない。   Although the condensing lenses 24 and 26 have a focal length of 8 mm, the focal length need not be 8 mm. In the present embodiment, a 9.5 μm single mode quartz optical fiber is installed in the photodetectors 25 and 27, the signal light is converged (condensed) on the optical fiber, and transmitted through the optical fiber to be detected. Of course, it goes without saying that a photodetector may be installed directly.

用いた信号光の波長は1550nm、制御光の波長は980nmであった。しかし、信号光の波長も制御光の波長もこれ以外の波長でも良いことは第1の実施の形態、第2の実施の形態および第3の実施の形態と同様言うまでもない。   The wavelength of the signal light used was 1550 nm, and the wavelength of the control light was 980 nm. However, it goes without saying that the wavelength of the signal light and the wavelength of the control light may be other wavelengths as in the first embodiment, the second embodiment, and the third embodiment.

本実施の形態で得られた光路切替データは、第1の実施の形態、第2の実施の形態および第3の実施の形態とほぼ同じであった。   The optical path switching data obtained in this embodiment is almost the same as that in the first embodiment, the second embodiment, and the third embodiment.

本発明の偏向光路切替方法および光路切替装置は、光通信分野および光情報処理分野において有効に用いることができる。   The deflection optical path switching method and the optical path switching apparatus according to the present invention can be effectively used in the fields of optical communication and optical information processing.

本発明の第1の実施の形態の偏向式光路切替装置の概念図である。It is a conceptual diagram of the deflection | deviation type optical path switching device of the 1st Embodiment of this invention. 本発明の第2の実施の形態の偏向式光路切替装置の概念図である。It is a conceptual diagram of the deflection | deviation type optical path switching apparatus of the 2nd Embodiment of this invention. 本発明の第3の実施の形態の偏向式光路切替装置の概念図である。It is a conceptual diagram of the deflection | deviation type optical path switching apparatus of the 3rd Embodiment of this invention. 本発明の第4の実施の形態の偏向式光路切替装置の概念図である。It is a conceptual diagram of the deflection | deviation type optical path switching device of the 4th Embodiment of this invention. 信号光の偏向を説明する図である。It is a figure explaining deflection of signal light. 信号光の偏向を説明する図である。It is a figure explaining deflection of signal light. 熱レンズ形成光素子の構成の一例を示す図である。It is a figure which shows an example of a structure of a thermal lens formation optical element. 偏向光強度分布を示す図である。It is a figure which shows deflection light intensity distribution. 制御光パワーと偏向角との関係を示すグラフである。It is a graph which shows the relationship between control light power and a deflection angle. 光吸収層の位置と偏向角との関係を示すグラフである。It is a graph which shows the relationship between the position of a light absorption layer, and a deflection angle. 非偏向光と偏向光の分離距離の関係を示すグラフである。It is a graph which shows the relationship between the separation distance of non-deflected light and deflected light. 光路切替測定データを示す図である。It is a figure which shows optical path switching measurement data. 2芯光ファイバーフェルールの概念図である。It is a conceptual diagram of a 2-core optical fiber ferrule. 3芯光ファイバーフェルールの概念図である。It is a conceptual diagram of a 3 core optical fiber ferrule. 出力された信号光の断面を示す図である。It is a figure which shows the cross section of the output signal beam | light.

符号の説明Explanation of symbols

1 信号光入力端子、2 第1のコリメートレンズ、3 制御光入力端子、4 第2のコリメートレンズ、5 光混合器、6 集光レンズ、7 熱レンズ形成光素子、8 第3のコリメートレンズ、9 波長選択透過フィルター、10 第1の分岐ミラー、11 第2の集光レンズ、12 第1の検出器、13 第3の集光レンズ、14 第2の検出器。   DESCRIPTION OF SYMBOLS 1 Signal light input terminal, 2 1st collimating lens, 3 Control light input terminal, 4 2nd collimating lens, 5 Optical mixer, 6 Condensing lens, 7 Thermal lens formation optical element, 8 3rd collimating lens, 9 wavelength selective transmission filter, 10 first branch mirror, 11 second condenser lens, 12 first detector, 13 third condenser lens, 14 second detector.

Claims (14)

少なくとも光吸収層を含む熱レンズ形成光素子中の光吸収層に、制御光と信号光とを入射させ、
所望の情報に応じて前記制御光を照射の有無を選択し、
前記制御光および前記信号光は、前記光吸収層にて収束するように照射されかつ前記制御光および前記信号光の各々の収束点の位置が光軸に対して垂直方向で相異なるように照射され、
前記制御光の波長と前記信号光の波長を異ならせ、前記制御光の波長は前記光吸収層が吸収する波長帯域から選ばれ、前記信号光の波長は前記光吸収層が吸収しない波長帯域から選ばれ、
前記制御光と前記信号光は、光の進行方向で前記光吸収層の入射面またはその近辺において収束したのち拡散することによって、前記光吸収層内における前記制御光を吸収した領域およびその周辺領域に起こる温度上昇に起因し可逆的に形成される熱レンズにより、屈折率が変化して、前記信号光の進行方向を変え、
前記制御光が照射されず進行方向が変わらなかった信号光と、前記制御光が照射され進行方向が変えられた信号光とは、各々の進行方向に応じてそれぞれ分別されて取り出されることを特徴とする光路切替方法。
The control light and the signal light are incident on the light absorption layer in the thermal lens forming optical element including at least the light absorption layer,
Select the presence or absence of the control light according to the desired information,
The control light and the signal light are irradiated so as to converge at the light absorption layer, and the control light and the signal light are irradiated such that the positions of the convergence points of the control light and the signal light are different in the direction perpendicular to the optical axis. And
The wavelength of the control light is different from the wavelength of the signal light, the wavelength of the control light is selected from a wavelength band that is absorbed by the light absorption layer, and the wavelength of the signal light is from a wavelength band that is not absorbed by the light absorption layer. Chosen,
The control light and the signal light are diffused after converging at or near the incident surface of the light absorption layer in the light traveling direction, thereby absorbing the control light in the light absorption layer and its peripheral region Due to the thermal lens that is formed reversibly due to the temperature rise that occurs, the refractive index changes, changing the traveling direction of the signal light,
The signal light whose traveling direction is not changed without being irradiated with the control light and the signal light whose traveling direction is changed by being irradiated with the control light are separately sorted and extracted according to the respective traveling directions. An optical path switching method.
前記制御光と前記信号光は、光の進行方向で前記光吸収層の入射面または前記光吸収層内にて収束または集光するようにしたことを特徴とする請求項1に記載の光路切替方法。   2. The optical path switching according to claim 1, wherein the control light and the signal light are converged or condensed in an incident surface of the light absorption layer or in the light absorption layer in a light traveling direction. Method. 前記制御光が照射されず進行方向が変わらなかった信号光と、前記制御光が照射され進行方向が変えられた信号光とは、ミラーによって分離することを特徴とする請求項1または請求項2に記載の光路切替方法。   3. The signal light whose traveling direction is not changed without being irradiated with the control light and the signal light whose traveling direction is changed after being irradiated with the control light are separated by a mirror. The optical path switching method described in 1. 前記制御光が照射されず進行方向が変わらなかった信号光と、前記制御光が照射され進行方向が変えられた信号光とは、レンズによって集光し検出手段に入射させることを特徴とする請求項1から請求項3のいずれか1項に記載の光路切替方法。   The signal light whose traveling direction is not changed without being irradiated with the control light and the signal light whose traveling direction is changed after being irradiated with the control light are condensed by a lens and made incident on a detecting means. The optical path switching method according to any one of claims 1 to 3. 前記検出手段は、レンズによって集光した信号光を受光する光ファイバーであることを特徴とする請求項4に記載の光路切替方法。   5. The optical path switching method according to claim 4, wherein the detection means is an optical fiber that receives signal light condensed by a lens. 前記レンズによって集光された前記光ファイバーに入射する信号光の光軸は、互いに前記光ファイバーの伝搬可能最大入射角の2倍以上の角度を有することを特徴とする請求項5に記載の光路切替方法。   6. The optical path switching method according to claim 5, wherein the optical axes of the signal lights incident on the optical fiber collected by the lens have an angle that is at least twice as large as a maximum incident angle at which the optical fiber can propagate. . 光路切替数に応じて複数の制御光を前記光吸収層に照射し、前記複数の制御光の組み合わせによって、前記信号光の進行方向を変え、前記光路切替数に応じた複数の信号光を取り出すことを特徴とする請求項1から請求項6のいずれか1項に記載の光路切替方法。   A plurality of control lights are applied to the light absorption layer according to the number of optical path switches, the traveling direction of the signal light is changed by a combination of the plurality of control lights, and a plurality of signal lights according to the number of optical path switches are extracted. The optical path switching method according to any one of claims 1 to 6, wherein: 1種類以上の波長の信号光を照射する信号光光源と、
前記信号光とは異なる波長の制御光を照射する制御光光源と、
前記信号光は透過し、前記制御光を選択的に吸収する光吸収層を含む熱レンズ形成光素子と、
前記光吸収層に前記制御光と前記信号光とを各々収束点を光軸に対して垂直方向で異ならせて集光させる集光手段と、を有し、
前記熱レンズ形成光素子は、前記制御光と前記信号光が、光の進行方向で前記光吸収層の入射面またはその近辺において収束したのち拡散することによって、前記光吸収層内における前記制御光を吸収した領域およびその周辺領域に起こる温度上昇に起因し可逆的に形成される熱レンズにより、屈折率が変化して、前記信号光の進行方向を変え、
さらに、前記制御光が照射されず進行方向が変わらなかった信号光と、前記制御光が照射され進行方向が変えられた信号光とを、各々の進行方向に応じてそれぞれ分別して取り出す取出手段を備えたことを特徴とする光路切替装置。
A signal light source that emits signal light of one or more wavelengths;
A control light source that emits control light having a wavelength different from that of the signal light;
A thermal lens forming optical element including a light absorbing layer that transmits the signal light and selectively absorbs the control light;
Condensing means for condensing the control light and the signal light on the light absorption layer with the convergence points different from each other in the direction perpendicular to the optical axis,
The thermal lens forming optical element is configured such that the control light and the signal light are diffused after converging at or near the incident surface of the light absorption layer in the light traveling direction, so that the control light in the light absorption layer is diffused. By the thermal lens that is reversibly formed due to the temperature rise that occurs in the region where the light is absorbed and its peripheral region, the refractive index is changed, and the traveling direction of the signal light is changed,
Further, there is provided extraction means for taking out the signal light whose traveling direction has not been changed without being irradiated with the control light and the signal light whose traveling direction has been changed by being irradiated with the control light separately according to each traveling direction. An optical path switching device comprising:
前記集光手段は、光の進行方向で前記光吸収層の入射面または前記光吸収層内にて収束または集光することを特徴とする請求項8に記載の光路切替装置。   9. The optical path switching device according to claim 8, wherein the condensing means converges or condenses on an incident surface of the light absorption layer or in the light absorption layer in a light traveling direction. 前記取出手段は、ミラーであることを特徴とする請求項8または請求項9に記載の光路切替装置。   The optical path switching device according to claim 8 or 9, wherein the extraction means is a mirror. さらに、前記制御光が照射されず進行方向が変わらなかった信号光と、前記制御光が照射され進行方向が変えられた信号光とが、レンズによって集光され入射される検出手段を有することを特徴とする請求項8から請求項10のいずれか1項に記載の光路切替装置。   Furthermore, it has a detection means in which the signal light whose traveling direction is not changed without being irradiated with the control light and the signal light whose traveling direction is changed while being irradiated with the control light are collected and incident by a lens. The optical path switching device according to any one of claims 8 to 10, wherein the optical path switching device is characterized. 前記検出手段が、光ファイバーであることを特徴とする請求項11に記載の光路切替装置。   The optical path switching device according to claim 11, wherein the detection means is an optical fiber. 前記レンズによって集光された前記光ファイバーに入射する信号光の光軸は、互いに前記光ファイバーの伝搬可能最大入射角の2倍以上の角度を有することを特徴とする請求項12に記載の光路切替装置。   13. The optical path switching device according to claim 12, wherein the optical axes of the signal lights incident on the optical fiber collected by the lens have an angle that is at least twice as large as a maximum incident angle of propagation of the optical fiber. . 前記制御光光源は、光路切替数に応じて2つ以上の複数の制御光を照射し、
前記集光手段は、前記複数の制御光の収束点を光軸に対して垂直方向で異ならせて前記光吸収層に収束または集光させることを特徴とする請求項8から請求項13のいずれか1項に記載の光路切替装置。
The control light source emits two or more control lights according to the number of optical path switching,
The said condensing means converges or condenses on the said light absorption layer by making the convergence point of these control lights differ in the orthogonal | vertical direction with respect to an optical axis. The optical path switching device according to claim 1.
JP2006046028A 2006-02-22 2006-02-22 Deflection type optical path switching method and optical path switching apparatus Active JP4822114B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006046028A JP4822114B2 (en) 2006-02-22 2006-02-22 Deflection type optical path switching method and optical path switching apparatus
EP07737467A EP1987391A1 (en) 2006-02-22 2007-02-21 Optical deflection method and optical deflection apparatus
US12/223,665 US7826696B2 (en) 2006-02-22 2007-02-21 Optical deflection method and optical deflection apparatus
PCT/JP2007/053707 WO2007099979A1 (en) 2006-02-22 2007-02-21 Optical deflection method and optical deflection apparatus
US12/801,300 US8208770B2 (en) 2006-02-22 2010-06-02 Optical deflection method and optical deflection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006046028A JP4822114B2 (en) 2006-02-22 2006-02-22 Deflection type optical path switching method and optical path switching apparatus

Publications (2)

Publication Number Publication Date
JP2007225826A true JP2007225826A (en) 2007-09-06
JP4822114B2 JP4822114B2 (en) 2011-11-24

Family

ID=38547720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006046028A Active JP4822114B2 (en) 2006-02-22 2006-02-22 Deflection type optical path switching method and optical path switching apparatus

Country Status (1)

Country Link
JP (1) JP4822114B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7509010B2 (en) 2006-09-20 2009-03-24 National Institute Of Advanced Industrial Science And Technology End-surface closely arranged multicore optical fiber and manufacturing method thereof
JP2009175164A (en) * 2007-12-25 2009-08-06 National Institute Of Advanced Industrial & Technology Thermal lens forming element
WO2011122698A1 (en) 2010-03-31 2011-10-06 National Institute Of Advanced Industrial Science And Technology Optical-path-switching apparatus and light signal optical-path-switching method
KR20120029388A (en) 2009-04-16 2012-03-26 다이니치 세이카 고교 가부시키가이샤 Optical path switching signal transmission/reception apparatus and corresponding method
WO2023145298A1 (en) * 2022-01-31 2023-08-03 株式会社フジクラ Optical switch and switching method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4585301A (en) * 1985-04-23 1986-04-29 Utah State Universtiy Foundation Optically actuated optical switch apparatus and methods
JP2005265986A (en) * 2004-03-16 2005-09-29 Dainichiseika Color & Chem Mfg Co Ltd Optically controlled optical path switching type data distribution device and distribution method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4585301A (en) * 1985-04-23 1986-04-29 Utah State Universtiy Foundation Optically actuated optical switch apparatus and methods
JP2005265986A (en) * 2004-03-16 2005-09-29 Dainichiseika Color & Chem Mfg Co Ltd Optically controlled optical path switching type data distribution device and distribution method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7509010B2 (en) 2006-09-20 2009-03-24 National Institute Of Advanced Industrial Science And Technology End-surface closely arranged multicore optical fiber and manufacturing method thereof
JP2009175164A (en) * 2007-12-25 2009-08-06 National Institute Of Advanced Industrial & Technology Thermal lens forming element
US8004748B2 (en) 2007-12-25 2011-08-23 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Thermal lens forming element
KR20120029388A (en) 2009-04-16 2012-03-26 다이니치 세이카 고교 가부시키가이샤 Optical path switching signal transmission/reception apparatus and corresponding method
US8798465B2 (en) 2009-04-16 2014-08-05 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Optical path switching signal transmission/reception apparatus and corresponding method
WO2011122698A1 (en) 2010-03-31 2011-10-06 National Institute Of Advanced Industrial Science And Technology Optical-path-switching apparatus and light signal optical-path-switching method
JP2011215381A (en) * 2010-03-31 2011-10-27 National Institute Of Advanced Industrial Science & Technology Optical-path-switching apparatus and light signal optical-path-switching method
WO2023145298A1 (en) * 2022-01-31 2023-08-03 株式会社フジクラ Optical switch and switching method

Also Published As

Publication number Publication date
JP4822114B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
US7826696B2 (en) Optical deflection method and optical deflection apparatus
JP3906926B2 (en) Optical control type optical path switching type optical signal transmission apparatus and optical signal optical path switching method
JP3972066B2 (en) Light control type optical path switching type data distribution apparatus and distribution method
JP4822115B2 (en) Optical path switching method and optical path switching apparatus
JP4822114B2 (en) Deflection type optical path switching method and optical path switching apparatus
JP2004109892A (en) Optical path switching apparatus and method for switching optical path
JP4822113B2 (en) Optical deflection method and optical deflection apparatus
Chauvet et al. Integrated optofluidic index sensor based on self-trapped beams in LiNbO3
JP4674336B2 (en) Vector-controlled optical path switching method and optical path switching apparatus
JP3504423B2 (en) Light control method using an optical element comprising a photoresponsive composition containing a polymethine dye
US6870983B2 (en) Optical switch, element therefor, and optical switching method
JP4872065B2 (en) Automatic loop collection type data collection system
JP3504418B2 (en) Light control method and light control device
JP4883305B2 (en) Optical flip-flop circuit
JP3504422B2 (en) Light control method using an optical element comprising a photoresponsive composition containing a triarylmethane dye
JP4724817B2 (en) Chromatic aberration correction method and optical apparatus capable of correcting chromatic aberration
Chen et al. Microring resonators made in poled and unpoled chromophore-containing polymers for optical communication and sensors
JP5051576B2 (en) Optical buffer memory device and optical signal recording method
JP4883306B2 (en) Wavelength conversion device and wavelength conversion method
Liu et al. Fiber-Integrated All-Optical Signal Processing Device for Storage and Computing
Azari et al. Fabrication of channel waveguides in dye-doped polymer films by a beam-processing machine based on photo induced bleaching
JP4982652B2 (en) Optical logic circuit
Abolmaali Focusing, imaging and resonance properties of microphotonics structures and devices
Robillard et al. All-optical switching with fast-response variable-index materials
Sugioka et al. Integration of Microcomponents

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110825

R150 Certificate of patent or registration of utility model

Ref document number: 4822114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250