JP2007225523A - Moisture meter with grain crack inspection function in grain dryer - Google Patents

Moisture meter with grain crack inspection function in grain dryer Download PDF

Info

Publication number
JP2007225523A
JP2007225523A JP2006049288A JP2006049288A JP2007225523A JP 2007225523 A JP2007225523 A JP 2007225523A JP 2006049288 A JP2006049288 A JP 2006049288A JP 2006049288 A JP2006049288 A JP 2006049288A JP 2007225523 A JP2007225523 A JP 2007225523A
Authority
JP
Japan
Prior art keywords
grain
moisture
unit
torso
inspection function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006049288A
Other languages
Japanese (ja)
Other versions
JP4784745B2 (en
JP2007225523A5 (en
Inventor
Toshimitsu Hattori
利充 服部
Isao Shinno
功 新野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Satake Corp
Original Assignee
Satake Engineering Co Ltd
Satake Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd, Satake Corp filed Critical Satake Engineering Co Ltd
Priority to JP2006049288A priority Critical patent/JP4784745B2/en
Publication of JP2007225523A publication Critical patent/JP2007225523A/en
Publication of JP2007225523A5 publication Critical patent/JP2007225523A5/ja
Application granted granted Critical
Publication of JP4784745B2 publication Critical patent/JP4784745B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a moisture meter with a grain crack inspection function, which stably performs the grain crack inspection of grain and the measurement of a moisture value by one device, and precisely judges the grain crack of grain. <P>SOLUTION: The moisture meter with the grain crack inspection function is provided with: a grain crack detection part for performing the grain crack judgment of supplied sample grain and the measurement of the moisture of grain in one grain unit and a moisture measuring part; and a transfer means for transferring the grain inspected in the grain crack detection part to the moisture measuring part is arranged to the moisture meter, thereby to stably perform the grain crack judgment and the measurement of moisture in one grain unit. The judge part in the grain crack detection part is constituted so as to judge cracked grain on the basis of the measured moisture value of the grain measured in the moisture measuring part when a detected grain crack judging voltage value is within a range of a low voltage level value and a high voltage level value. By this constitution, even if the grain crack judging voltage value is low, and the grain crack judgment value is a difficult value, the grain crack judgment of the sample grain is accurately performed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、循環式穀粒乾燥機における穀粒の胴割れを低減する乾燥運転(以下「胴割防止乾燥運転」という)を行う際に用いる胴割検査機能付きの水分計(以下「胴割検査機能付水分計」という)に関するものである。   The present invention relates to a moisture meter with a body split inspection function (hereinafter referred to as “body split”) that is used when performing a drying operation (hereinafter referred to as “body split prevention drying operation”) that reduces the cracking of grain in a circulation type grain dryer. "Moisture meter with inspection function").

従来、胴割防止乾燥運転としては、循環式穀粒乾燥機のタンクに胴割検査装置を設け、乾燥中のサンプル穀粒を前記胴割検査装置に取り込んで胴割検査し、該検査結果から算出した胴割率が一定以上になった時点で乾燥速度を低下させるものがある(特許文献1)。   Conventionally, as a waist split prevention drying operation, a tank split inspection device is provided in a tank of a circulation type grain dryer, and a sample grain being dried is taken into the waist split inspection device and subjected to a trunk split inspection. There is one that lowers the drying rate when the calculated body split ratio reaches a certain value (Patent Document 1).

一方、特許文献2によれば、循環式穀粒乾燥機に前記胴割検査機能付水分計を備え、該胴割検査機能付水分計により乾燥中のサンプル穀粒の胴割検査及びその胴割率を算出し、該胴割率が一定以上になった場合、測定水分値が胴割れの増加が著しいとされる水分値18%になるまでは、乾燥速度(熱風温度)を低下して更なる胴割れの発生を防止する一方、測定水分値が18%よりも低下すると、測定水分値が18%になったときの乾燥速度を維持させるようにして乾燥時間の長時間化を防止し、効率的な乾燥を行うようにしてある。   On the other hand, according to Patent Document 2, a circulating grain dryer is provided with the moisture meter with a torso inspection function, and the torsion inspection of the sample grain being dried by the moisture meter with a torsion inspection function and its torso When the rate of cylinder split exceeds a certain value, the drying rate (hot air temperature) is further decreased until the measured moisture value reaches a moisture value of 18% where the increase in shell cracks is considered to be significant. While preventing the occurrence of torso cracking, when the measured moisture value is lower than 18%, the drying rate is maintained to maintain the drying rate when the measured moisture value is 18%, and the drying time is prevented from being prolonged, Efficient drying is performed.

特公昭62−60631号公報Japanese Examined Patent Publication No. 62-60631 特許第2814570号公報Japanese Patent No. 2814570

ところで、前記胴割検査機能付水分計には以下の問題点があった。すなわち、特許文献2よると、胴割検査機能付水分計の構成説明は、「水分センサには1粒ずつ移送される穀粒の胴割を検出する胴割センサを内装して構成する」との記載に止まっていた。このため、前記胴割検査機能付水分計の具体的構成が明らかでないため、1台の装置によって安定的かつ検査精度よく穀粒の胴割検査及び水分値測定を行なう装置の開発が望まれていた。
そこで、本発明は、上記問題点にかんがみ、1台の装置によって安定的に穀粒の胴割検査及び水分値測定が行え、かつ、精度よく胴割判定が行えるようにした胴割検査機能付水分計を提供することを課題とするものである。
By the way, the moisture meter with a body split inspection function has the following problems. That is, according to Patent Literature 2, the description of the configuration of the moisture meter with a torso inspection function is “the moisture sensor is configured to include a torso sensor that detects the torso of the grains to be transferred one by one”. The description was stopped. For this reason, since the specific structure of the moisture meter with a torso split inspection function is not clear, it is desired to develop an apparatus for performing the torso split inspection and moisture value measurement with a single device in a stable and accurate manner. It was.
Therefore, in view of the above problems, the present invention has a torso inspection function that can perform torso split inspection and moisture measurement of grains stably with a single device, and can perform torso split determination with high accuracy. It is an object to provide a moisture meter.

上記課題を解決するため、請求項1により、
穀粒を貯留するタンク部と、
該タンクから流下した穀粒に対して熱風を通風する乾燥部と、
該乾燥部から流下した穀粒を機外に取り出す取出部と、
該取出部が排出した穀粒を昇降機及び上部搬送部によって前記タンクに還流する還流部と、
前記昇降機に配設するとともに前記穀粒の胴割検出と水分測定とを行う胴割検査機能付水分計と、
該胴割検査機能付水分計の測定結果に基づいて乾燥運転等の制御を行う制御部と、を備えた穀粒乾燥機において、
前記胴割検査機能付水分計は、供給されたサンプル穀粒の胴割判定及び水分測定を1粒単位で行う胴割検出部及び水分測定部を設けるとともに、前記胴割検出部での検査を終えた穀粒を前記水分測定部に移送する移送手段を配設し、
前記胴割検出部は、前記サンプル穀粒における胴割判定用電圧値を演算して求めて胴割判定を行う判定部を有し、該判定部は、前記胴割判定用電圧値が、任意の低電圧レベル値よりも低い場合は胴割粒でないと判定する一方、任意の高電圧レベル値よりも高い場合は胴割粒と判定し、前記低電圧レベル値と高電圧レベル値と範囲内であるときには、前記水分測定部が測定した当該穀粒の測定水分値が所定値以下のときに当該穀粒を胴割粒と判定し、所定値よりも高いときには当該穀粒を胴割粒でないと判定する、という技術的手段を講じた。
In order to solve the above problem, according to claim 1,
A tank section for storing grains;
A drying section for passing hot air to the grains flowing down from the tank;
A take-out section for taking out the grain that has flowed down from the drying section;
A reflux part for refluxing the grains discharged by the take-out part to the tank by an elevator and an upper transport part;
A moisture meter with a torso inspection function that is disposed in the elevator and performs torso detection and moisture measurement of the grain,
In a grain dryer provided with a control unit that performs control such as drying operation based on the measurement result of the moisture meter with a body split inspection function,
The moisture meter with a torso inspection function is provided with a torso detection unit and a moisture measurement unit for performing torso split determination and moisture measurement of the supplied sample grain in units of one grain, and for performing inspection at the torso detection unit. A transfer means for transferring the finished grain to the moisture measuring unit is disposed,
The torso detection unit has a determining unit that calculates and calculates a torso split determination voltage value in the sample grain, and the torsion determination unit determines that the torso split determination voltage value is arbitrary. When it is lower than the low voltage level value, it is determined that it is not a cracked grain, while when it is higher than any high voltage level value, it is determined as a cracked grain, and the low voltage level value and the high voltage level value are within the range. When the measured moisture value of the grain measured by the moisture measuring unit is equal to or less than a predetermined value, the grain is determined to be a torn grain, and when the grain is higher than the predetermined value, the grain is not a torn grain. I took the technical means of judging.

また、請求項2により、
前記所定の水分値を21%とする、という技術的手段を講じた。
According to claim 2,
A technical measure was taken to set the predetermined moisture value to 21%.

さらに、請求項3により、
前記胴割検出部は、前記サンプル穀粒を保持する保持部を周縁に複数配設した傾斜状の回転円盤と、該回転円盤を載置するベース盤と、前記回転円盤の上位に配設した前記穀粒から透過光を検出する光学部と、前記回転円盤の下位に構成したサンプル穀粒の滞留部と、前記ベース盤に設けた前記光学部での検査を終えた穀粒を前記保持部から前記移送手段に排出する排出部、とを有し、
前記滞留部の上方にはサンプル穀粒の籾供給口を備えた、という技術的手段を講じた。
Furthermore, according to claim 3,
The torso detection unit is provided with an inclined rotating disk in which a plurality of holding parts for holding the sample grains are arranged at the periphery, a base disk on which the rotating disk is placed, and an upper layer of the rotating disk. An optical unit that detects transmitted light from the grain, a sample grain retention unit configured below the rotating disk, and a grain that has been inspected by the optical unit provided on the base plate A discharge portion for discharging from the transfer means to the transfer means,
The technical means was provided above that the retention part was provided with a cocoon supply port for sample grains.

また、請求項4により、
任意数のサンプル穀粒の検査開始前若しくは終了後、又は所定時間が経過した時点に、一時的に、前記回転円盤を逆方向に回転させる制御基盤を設けるとともに、前記滞留部における前記逆方向側には残留排出部を配設した、という技術的手段を講じた。
According to claim 4,
Provided with a control base for rotating the rotating disk in the reverse direction temporarily before or after the inspection of an arbitrary number of sample kernels or after a predetermined time has elapsed, Took the technical measure of installing a residual discharge part.

さらに、請求項5により、
前記光学部における受光センサを単素子のものとする一方、前記光学部において穀粒が光学検出されるタイミングを検出するタイミング検出手段を設けた、という技術的手段を講じた。
Furthermore, according to claim 5,
While the light receiving sensor in the optical unit is a single element, a technical means is provided that includes a timing detection unit that detects the timing at which the optical detection of the grain is performed in the optical unit.

また、請求項6により、
前記回転円盤の回転によって前記保持部が移送される経路上には、当該保持部から上方に突出した移送中の穀粒と当接する当接部材を配設した、という技術的手段を講じた。
According to claim 6,
The technical means that the contact member which contact | abuts the grain under transfer which protruded upwards from the said holding | maintenance part was arrange | positioned on the path | route where the said holding | maintenance part is transferred by rotation of the said rotation disk was taken.

さらに、請求項7により、
前記籾供給口には、穀粒が通過可能な間隔を有するくし状の夾雑物除去部を上方から下方に延設した、という技術的手段を講じた。
Furthermore, according to claim 7,
A technical means that a comb-like foreign substance removing portion having an interval through which the grain can pass was extended from the upper side to the lower side at the koji supply port.

また、請求項8により、
前記夾雑物除去部における前記回転円盤側には、その下端部と前記滞留部との間を所定間隔にした滞留量規制板を立設した、という技術的手段を講じた。
According to claim 8,
A technical means was provided on the rotating disk side of the foreign matter removing portion, in which a staying amount regulating plate having a predetermined interval between the lower end portion and the staying portion was erected.

さらに、請求項9により、
前記胴割検出部及び水分測定部を上下に順次重設した、という技術的手段を講じた。
Furthermore, according to claim 9,
The technical means that the waist detection unit and the moisture measurement unit were sequentially stacked one above the other was taken.

本発明の胴割検査機能付水分計は、サンプル穀粒の胴割判定及び水分測定を1粒単位で行う胴割検出部及び水分測定部を上位下位に順次重設するとともに、前記胴割検出部での検査を終えた穀粒を前記水分測定部に移送する移送手段を配設したことにより、サンプル穀粒の胴割検査及び水分値測定を安定的に1粒単位で行える。また、前記胴割検出部における判定部は、胴割判定用電圧値が、任意の低電圧レベル値よりも低い場合は胴割粒でないと判定する一方、任意の高電圧レベル値よりも高い場合は胴割粒と判定し、前記低電圧レベル値と高電圧レベル値との範囲内であるときには、前記水分測定部が測定した当該穀粒の測定水分値が所定値(21%)以下のときに当該穀粒を胴割粒と判定し、所定値(21%)よりも高いときには当該穀粒を胴割粒でないと判定する。よって、前記胴割判定用電圧値が、前記低電圧レベル値と高電圧レベル値との範囲内に含まれて、胴割判定が困難な小さい値であっても、サンプル穀粒の胴割判定をより正確に行うことができるので、該胴割判定結果に基づいて演算される胴割率が正確になる。このため、穀粒乾燥機において、前記胴割率に基づく胴割防止乾燥運転をより安全で的確なものにし、胴割粒の発生・増加を低減することができる。 The moisture meter with a torso inspection function of the present invention includes a torso detection unit and a moisture measuring unit for performing incision determination and moisture measurement of a sample grain in units of one grain in order of upper and lower ones, and the torso detection By disposing the transfer means for transferring the grain that has been inspected at the section to the moisture measuring section, the split inspection of the sample grain and the moisture value measurement can be stably performed in units of one grain. Further, the determination unit in the torso detection unit determines that the torso split determination voltage value is lower than an arbitrary low voltage level value, and determines that the torso split grain is not a torn split grain, but is higher than an arbitrary high voltage level value. Is determined as a torn grain, and when the measured moisture value of the grain measured by the moisture measuring unit is equal to or less than a predetermined value (21%) when it is within the range of the low voltage level value and the high voltage level value The grain is determined to be a split body grain, and when the grain is higher than a predetermined value (21%), the grain is determined not to be a split grain. Therefore, even if the voltage value for determination of the torso is included in the range of the low voltage level value and the high voltage level value and is a small value that is difficult to determine the torso split, the torsion determination of the sample grain Can be performed more accurately, and the torso ratio calculated based on the torso ratio determination result becomes accurate. For this reason, in the grain dryer, it is possible to make the torsion prevention drying operation based on the torso split rate safer and more precise, and to reduce the occurrence and increase of torso split grains.

また、前記胴割検出査部の構成について、穀粒を保持する保持部を周縁に複数配設した傾斜状の回転円盤と、該回転円盤を載置するベース盤と、前記回転円盤の上位に配設した前記穀粒から透過光を検出する光学部と、前記回転円盤の下位に構成したサンプル穀粒の滞留部と、前記ベース盤に設けた前記光学部での検査を終えた穀粒を前記保持部から前記移送手段に排出する排出部、とを有し、前記滞留部の上方にはサンプル穀粒の籾供給口を備える構成にしたことにより、前記籾供給口から供給されて滞留部に滞留したサンプル穀粒を、回転する回転円盤の保持部(溝部)に1粒ずつ入れて光学部により確実に移送することが可能になる。 In addition, regarding the configuration of the torso detection detector, an inclined rotating disk in which a plurality of holding parts for holding grains are arranged at the periphery, a base disk on which the rotating disk is placed, and a higher level of the rotating disk An optical unit that detects transmitted light from the arranged grain, a sample grain retention part that is configured below the rotating disk, and a grain that has been inspected by the optical unit provided on the base board A discharge portion that discharges from the holding portion to the transfer means, and a retention portion that is supplied from the straw supply port by being provided with a straw supply port for sample grains above the retention portion. It becomes possible to put the sample grains staying in the container one by one into the holding part (groove part) of the rotating rotating disk and to reliably transfer them by the optical part.

また、任意数のサンプル穀粒の検査開始前、若しくは終了後等において、前記回転円盤を一時的に逆方向に回転させるようにしたことにより、前記滞留部に滞留した残留穀粒等を前記残留排出部から排除できる。これにより、前記滞留部に滞留した、保持部での移送が困難でかつ詰まりの原因となる枝梗粒をも排除することができるので、常に新しいサンプル穀粒の測定が行え、より正確な測定データが安定的に得ることができる。 In addition, before starting or after completion of the inspection of an arbitrary number of sample grains, the rotating disk is temporarily rotated in the reverse direction, so that residual grains etc. retained in the staying part are retained. Can be eliminated from the discharge section. As a result, it is possible to eliminate branch infarct grains that have accumulated in the retention section and are difficult to transfer in the holding section and cause clogging. Data can be obtained stably.

さらに、前記光学部において穀粒が光学検出されるタイミングを検出するタイミング検出手段を設けたことにより、前記光学部において安価な単素子の受光センサを使用しても、前記タイミングにおける穀粒からの受光信号に基づいて胴割検出が可能である。これにより、前記光学部を安価で、しかも、CCDセンサや画像処理等の複雑な回路を必要としない簡略化したものにすることができた。 Furthermore, by providing a timing detection means for detecting the timing at which the grain is optically detected in the optical unit, even if an inexpensive single-element light receiving sensor is used in the optical unit, Based on the received light signal, it is possible to detect the body split. As a result, the optical unit can be made inexpensive and simplified without requiring a complicated circuit such as a CCD sensor or image processing.

また、前記回転円盤の回転によって前記保持部が移送される経路上に、移送中の保持部から上方に突出した穀粒と当接する当接部材を配設したことにより、移送中に、当該穀粒と当接して該穀粒の排除又は姿勢を整える作用を有するとともに、移送される穀粒が枝梗粒であった場合には、枝梗部分と当接して当該枝梗粒を前記保持部から排除することができる。このため、前記光学部には前記保持部に納まり姿勢が整った穀粒を移送することができるので、胴割検出をより正確に行うことができる。 In addition, a contact member that contacts the grain protruding upward from the holding portion being transferred is disposed on a path along which the holding portion is transferred by rotation of the rotating disk, so that the When the grain to be transported is a branch infarction, the abutment grain is brought into contact with the branch infarction and the branch infarction is brought into contact with the grain. Can be excluded from. For this reason, since the grain which is stored in the holding unit and has a well-positioned posture can be transferred to the optical unit, it is possible to more accurately detect the torso.

さらに、前記籾供給口に、くし状の夾雑物除去部を配設したことにより、前記籾供給口を通過する際に、サンプル穀粒に混入した夾雑物や枝梗粒が排除され、前記滞留部に供給されるサンプル穀粒に含まれる前記夾雑物や枝梗粒の量を低減することができる。 Further, by disposing the comb-like foreign substance removing portion at the cocoon supply port, the foreign substances and branching grains mixed in the sample grain are eliminated when passing through the cocoon supply port, and the retention The quantity of the said impurities contained in the sample grain supplied to a part and a branch infarction grain can be reduced.

また、前記夾雑物除去部における前記回転円盤側には、その下端部と前記滞留部との間が所定間隔にされた滞留量規制板を立設することにより、前記滞留部に堆積するサンプル穀粒の前記回転円盤側への流れ込みを堰止めるとともに、前記籾供給口を超えて堆積したサンプル穀粒を当該籾供給口から排出させることができる。これにより、前記滞留部におけるサンプル穀粒の堆積量を適量に維持できるので、前記回転円盤に及ぼす回転負荷等の悪影響を低減できる。 Further, a sample grain accumulated in the staying portion is provided on the rotating disk side of the foreign matter removing portion by standing a staying amount regulating plate having a predetermined interval between the lower end portion and the staying portion. In addition to blocking the flow of grains to the rotating disk side, the sample grains accumulated beyond the straw supply port can be discharged from the straw supply port. Thereby, since the accumulation amount of the sample grain in the staying portion can be maintained at an appropriate amount, it is possible to reduce adverse effects such as a rotational load exerted on the rotating disk.

さらに、前記胴割検出部及び水分測定部を上下に順次重設することにより、装置をコンパクトにできる。   Furthermore, the apparatus can be made compact by sequentially stacking the body split detection unit and the moisture measurement unit vertically.

本発明の循環式穀粒乾燥機1を説明する(図1、図2、図3参照)。前記循環式穀粒乾燥機1は、穀粒を貯留するタンク部2、熱風を通風して穀粒の乾燥を行う乾燥部3及び前記熱風通風を受けた穀粒を機外に取出す取出部4を重設して構成する。該取出部4は取り出した穀粒を前記タンク部2に還流する還流部5に接続し、また、該還流部5は、昇降機5a及び上部搬送部5bから構成する。前記上部搬送部5bの搬送終端部には、タンク部2内(天板)に配設した分散装置5cを配設する。前記乾燥部3は、中央に熱風胴6を横設し、該熱風胴6の両側に、穀粒流下通路(乾燥室)7及び排風胴8を順次横設した構成とする。前記熱風胴6の一方側となる開口部には熱風発生手段(バーナー)9を配設し、当該熱風胴6内に熱風を供給するようにしてある。前記熱風胴6の他方側となる開口部には排風機10を配設し、該排風機10の吸引作用により、前記熱風発生装置9から供給される熱風が、前記熱風胴6、前記穀粒流下通路7及び排風胴8を通風して機外に排風されるように構成してある。なお、乾燥部3の側板には、張込用の開閉蓋3aを備える。   The circulation type grain dryer 1 of this invention is demonstrated (refer FIG.1, FIG.2, FIG.3). The circulation type grain dryer 1 includes a tank part 2 for storing grain, a drying part 3 for drying the grain by ventilating hot air, and an extraction part 4 for taking out the grain subjected to the hot air ventilation to the outside. Is constructed by overlapping. The take-out unit 4 is connected to a recirculation unit 5 that recirculates the extracted grains to the tank unit 2, and the recirculation unit 5 includes an elevator 5 a and an upper transport unit 5 b. A dispersion device 5c disposed in the tank unit 2 (top plate) is disposed at the conveyance end portion of the upper conveyance unit 5b. The drying unit 3 has a configuration in which a hot air drum 6 is horizontally provided in the center, and a grain flow passage (drying chamber) 7 and a wind air drum 8 are sequentially provided on both sides of the hot air drum 6. A hot air generating means (burner) 9 is disposed in an opening on one side of the hot air drum 6 so that the hot air is supplied into the hot air drum 6. An exhaust fan 10 is disposed in the opening on the other side of the hot air drum 6, and the hot air supplied from the hot air generator 9 by the suction action of the exhaust air fan 10 is converted into the hot air drum 6, the grain. It is configured such that the downflow passage 7 and the exhausting drum 8 are exhausted and exhausted outside the machine. In addition, the side plate of the drying unit 3 includes an opening / closing lid 3a for tensioning.

前記左右の穀粒流下層7は下端を交わらせて構成し、この交わり部には、ロータリーバルブ(繰出しバルブ)11を横設する。前記取出部4は、前記ロータリーバルブ11のほか、該ロータリーバルブ11によって繰出された穀粒を集穀して機外に排出する漏斗状の集穀板(ダッシュボード)12及び下部搬送部13から構成する。該下部搬送部13の搬送終端部は前記還流部5と接続し、集穀した穀粒が前記タンク部2に還流されるように構成してある。   The left and right grain flow lower layers 7 are configured with their lower ends intersecting, and a rotary valve (feeding valve) 11 is provided laterally at the intersection. In addition to the rotary valve 11, the take-out unit 4 collects the grain fed by the rotary valve 11 and discharges it to the outside of the machine from a funnel-shaped grain collection board (dashboard) 12 and a lower conveyance unit 13. Constitute. The conveying terminal part of the lower conveying part 13 is connected to the reflux part 5 so that the collected grains are returned to the tank part 2.

次に、本発明の特徴構成である胴割検査機能付水分計15の構成について説明する(図4、図5、図6参照)。前記胴割検査機能付水分計15は前記昇降機5aに装着し、該昇降機5a内をバケットから零(こぼ)れ落ちるサンプル籾(もみ)を取り込み、該穀粒の胴割検出と水分測定とを行う機能を有する。前記胴割検査機能付水分計15は胴割検査部16を上位側に構成し、その下位側に、穀粒の水分値を測定する水分測定部17を構成する。前記胴割検査部16と水分測定部17との間には移送手段18を配設し、前記胴割検査部16での検査を終えた穀粒を前記水分測定部17に移送するようにしてある。なお、前記枠体15aは、サンプル籾を胴割検査機能付水分計15内に供給するための籾供給口15bを備える。該籾供給口15bは、後述する滞留部22の上方位置に設けてサンプル籾を滞留部22に供給するようにしてある。   Next, the structure of the moisture meter 15 with a trunk split inspection function, which is a characteristic structure of the present invention, will be described (see FIGS. 4, 5, and 6). The moisture meter 15 with a torso inspection function is mounted on the elevator 5a, takes in sample mash that falls from the bucket into the elevator 5a, detects the torso of the grain, and measures moisture. It has a function to perform. The moisture meter with body split inspection function 15 includes a body split inspection unit 16 on the upper side, and a moisture measurement unit 17 that measures the moisture value of the grain on the lower side. A transfer means 18 is disposed between the torso split inspection unit 16 and the moisture measuring unit 17 so that the grains that have been inspected by the torso split inspection unit 16 are transferred to the moisture measuring unit 17. is there. In addition, the said frame 15a is provided with the rod supply port 15b for supplying the sample rod into the moisture meter 15 with a shell split inspection function. The soot supply port 15b is provided at a position above the staying portion 22 to be described later so as to supply the sample soot to the staying portion 22.

前記胴割検査部16は、傾斜状のベース盤19、及び該ベース盤19上において回転可能にした回転円盤20を有する。該回転円盤20は図示しないモータを設け、該モータの出力によって回転させようにする。また、前記回転円盤20の周縁部には、等間隔ごとに、穀粒を1粒ずつ保持して後述する光学部24に移送するための保持部(溝部)20aを複数形成する。該溝部20aの形状は、1粒の穀粒が入る程度の大きさで、前記回転円盤20の縁部側を切り欠いた略C状にしてある。   The body split inspection unit 16 includes an inclined base board 19 and a rotating disk 20 that is rotatable on the base board 19. The rotating disk 20 is provided with a motor (not shown) and is rotated by the output of the motor. In addition, a plurality of holding portions (groove portions) 20 a for holding grains one by one and transferring them to the optical unit 24 described later are formed at the peripheral edge of the rotating disk 20 at equal intervals. The shape of the groove portion 20a is such that the size of one grain enters, and is substantially C-shaped with the edge side of the rotating disk 20 cut out.

前記回転円盤20の傾斜下位側には、前記籾供給口15bから供給されたサンプル籾を滞留させる滞留部22を構成する。該滞留部22は、前記ベース盤19の傾斜下位側において、前記回転円盤20の下位側周縁部に沿って配設した滞留用堰(せき)部21によって構成する。そして、該滞留用堰(せき)部21からさらに傾斜上方側の周縁部に沿っては、前記溝部20aに保持した穀粒が前記切り欠き部からの放出されないように堰き止めるための移送用堰部23を配設する。該移送用堰部23は、滞留用堰部21から前記回転円盤20の傾斜上位に配設した光学部24まで延設し、前記回転円盤20の上面よりも若干高くしてある。この高さは穀粒の厚さよりも小さいものとする。前記移送用堰部23の傾斜上方側であって、前記光学部24における移送方向手前側には、前記溝部20a内から上方に突出した籾を当該溝部20a内に納めて安定した姿勢に規制する当接部材20bを配設する。該当接部材20bは、合成樹脂材料等からなる柔軟性のあるシート状とし、かつ、その下端部と前記回転円盤20の上面との間隔(隙間)は1mm程度とする。前記ベース盤19は、射出成形法等により、前記滞留用堰部21及び移送用堰部23を合成樹脂材料によって一体成形するとよい。 A staying portion 22 for staying the sample soot supplied from the soot supply port 15b is formed on the lower tilt side of the rotating disk 20. The staying part 22 is constituted by a staying weir part 21 arranged along the lower side peripheral part of the rotating disk 20 on the inclined lower side of the base board 19. Further, along the peripheral edge portion on the upper side of the slope from the stay weir portion 21, the transfer weir for retaining the grain held in the groove portion 20 a so as not to be discharged from the notch portion. The part 23 is disposed. The transfer weir portion 23 extends from the retention weir portion 21 to the optical portion 24 disposed above the inclined surface of the rotating disk 20 and is slightly higher than the upper surface of the rotating disk 20. This height is assumed to be smaller than the grain thickness. On the inclined upper side of the transfer weir 23 and on the front side in the transfer direction of the optical unit 24, a ridge protruding upward from the groove 20a is placed in the groove 20a to be regulated in a stable posture. A contact member 20b is provided. The contact member 20b is a flexible sheet made of a synthetic resin material, and the interval (gap) between its lower end and the upper surface of the rotating disk 20 is about 1 mm. The base board 19 is preferably formed by integrally molding the stay weir portion 21 and the transfer weir portion 23 with a synthetic resin material by an injection molding method or the like.

前記滞留部22(滞留用堰部21)における、前記回転円盤20の回転方向(図6の矢印Y方向)の逆方向側に隣接した位置は、前記回転円盤20の逆回転により、前記滞留部22に残留した穀粒(枝梗粒含む)を排出するための残留排出部21aが配設してある。本実施例において該残留排出部21aは、開放状にして滞留用堰部21の端部を過ぎて前記残留穀粒を移送すると自然落下するようにしてある。そして、この自然落下する残留穀粒は、後述する、排出樋17gを介して昇降機5a内に排出されるようにしてある。 In the staying part 22 (the staying weir part 21), the position adjacent to the reverse side of the rotation direction of the rotary disk 20 (the direction of the arrow Y in FIG. 6) is caused by the reverse rotation of the rotary disk 20 and the staying part. The residual discharge part 21a for discharging | emitting the grain (including branch infarction grain) which remained in 22 is arrange | positioned. In the present embodiment, the residual discharge portion 21a is opened so as to fall naturally when the residual grain is transferred past the end portion of the retention weir portion 21. The naturally falling residual grains are discharged into the elevator 5a through a discharge basket 17g, which will be described later.

前記光学部24は照射部25と受光部26とを構成する(図7参照)。前記照射部25は、前記回転円盤20の下方側に配設し、前記溝部20aの移送経路における任意の位置に設定した光学検出位置Kに対して照射光を放つようにしてある。一方、前記受光部26は、光学検出位置Kを挟んで対向する上方側に配設し、当該光学検出位置Kからの光を受光するようにしてある。前記受光部26を構成する受光センサは、前記光学検出位置Kにおける移送方向(図7の矢印:Y方向)に対し、上流側の斜め上方位置に配設した第1受光センサ26aと、同下流側の斜め上方位置に配設した第2受光センサ26bとから構成する。前記第1受光センサ26a及び第2受光センサ26bは共に、シリコンフォトダイオード(単素子)などからなるアナログ式の透過光センサで構成し、各焦点は、前記光学検出位置Kを中心にして移送方向に互いに少しずらした位置にしてある。前記アナログ式の透過光センサは、フォトトランジスタ(単素子)等であってもよい。 The optical unit 24 constitutes an irradiation unit 25 and a light receiving unit 26 (see FIG. 7). The irradiation unit 25 is disposed below the rotating disk 20 and emits irradiation light to an optical detection position K set at an arbitrary position in the transfer path of the groove 20a. On the other hand, the light receiving unit 26 is arranged on the upper side facing the optical detection position K, and receives light from the optical detection position K. The light receiving sensor constituting the light receiving unit 26 is the same as the first light receiving sensor 26a disposed at an obliquely upstream position on the upstream side with respect to the transfer direction (arrow: Y direction in FIG. 7) at the optical detection position K. And a second light receiving sensor 26b disposed at an obliquely upper position on the side. Each of the first light receiving sensor 26a and the second light receiving sensor 26b is configured by an analog transmitted light sensor made of a silicon photodiode (single element) or the like, and each focal point is in the transport direction with the optical detection position K as the center. The positions are slightly shifted from each other. The analog transmitted light sensor may be a phototransistor (single element) or the like.

前記光学部24を配設する位置のベース盤19には、前記光学検出位置Kを中心とするように照射開口部19aを形成する。そして、該照射開口部19aの上縁部にはスリット孔を有するスリット板19bを嵌設し、さらに、該スリット板19bの上には透明板ガラス14を重設する。これにより、前記照射部25からの照射光が前記光学検出位置K(溝部20a内の穀粒)にその下方側から照射されるようにしてある。 An irradiation opening 19a is formed in the base plate 19 at the position where the optical unit 24 is disposed so that the optical detection position K is at the center. A slit plate 19b having a slit hole is fitted on the upper edge of the irradiation opening 19a, and a transparent plate glass 14 is placed on the slit plate 19b. Thereby, the irradiation light from the said irradiation part 25 is irradiated to the said optical detection position K (grain in the groove part 20a) from the downward side.

次に、前記受光部26に隣接した前記移送方向側には、移送された前記溝部20aの到達(通過)を検知する溝部検知センサ27を配設するとともに、前記溝部20a内から穀粒を排出する排出部28を配設する。前記溝部検知センサ27は、前記溝部20aが通過する経路上に、前記光学検出位置Kから所定距離だけ離れた位置に配設し、当該経路を上下に挟んで互いに対向配設した受光部27a及び照射部27bによって構成する(図8、図9参照)。前記所定距離は、前記溝部検知センサ27が溝部20aを通過検知するタイミングと、前記受光部26が前記光学検出位置Kに移送された溝部20a(籾)を光学検出するタイミングとが一致するように、前記溝部20aとこれに隣り合う溝部20aとの間隔距離とする。前記排出部28は、前記ベース盤19における当該排出部28を設ける部分について、前記溝部20aが通過する経路部分を開放状にして、溝部20aの底部から籾が自然落下するようにした空間部28にしてよって形成する。なお、前記溝部検知センサ27に関しては、前記受光部26が前記光学検出位置Kの溝部20a(籾)を光学検出するタイミングを検出することのできるタイミング検出手段であればよく、上記以外の方法であってもよい。 Next, a groove detection sensor 27 for detecting the arrival (passage) of the transferred groove 20a is disposed on the transfer direction side adjacent to the light receiving unit 26, and the grain is discharged from the groove 20a. A discharge portion 28 is disposed. The groove detection sensor 27 is disposed at a position away from the optical detection position K by a predetermined distance on a path through which the groove 20a passes, and the light receiving sections 27a disposed opposite to each other with the path vertically interposed therebetween. It comprises the irradiation part 27b (refer FIG. 8, FIG. 9). The predetermined distance matches the timing at which the groove detection sensor 27 detects passage through the groove 20a and the timing at which the light receiving unit 26 optically detects the groove 20a (a) transferred to the optical detection position K. The distance between the groove 20a and the groove 20a adjacent to the groove 20a. The discharge portion 28 is a space portion 28 in which a portion of the base board 19 where the discharge portion 28 is provided has an open path portion through which the groove portion 20a passes so that a heel naturally falls from the bottom portion of the groove portion 20a. Thus formed. The groove detection sensor 27 may be any timing detection unit that can detect the timing at which the light receiving unit 26 optically detects the groove 20a (籾) at the optical detection position K. There may be.

前記空間部(排出部)28の下方には前記移送手段18として、傾斜状のシュート18を配設する(図5、図6参照)。該シュート18は、左右の側面壁を設けて流下する穀粒が飛び出さないようにしてある。そして、前記シュート18の下端部は、後述する一対の電極ロールの接点(電極ロール間)に直近した位置で、かつ、前記下端部から放出される穀粒の放出軌跡が前記接点に向かう位置に配設する。 An inclined chute 18 is disposed as the transfer means 18 below the space portion (discharge portion) 28 (see FIGS. 5 and 6). The chute 18 is provided with left and right side walls so that the flowing grain does not jump out. And the lower end part of the said chute | shoot 18 is the position which adjoined the contact (between electrode rolls) of a pair of electrode roll mentioned later, and the discharge locus | trajectory of the grain discharge | released from the said lower end part is a position which goes to the said contact point. Arrange.

なお、前記胴割検査部16は、前記光学部24から検出した光学部受光信号(検出電圧値)に基づいて胴割判定を行う後述の判定部15fも備えてなる。 The torso split inspection unit 16 also includes a determination unit 15f described later that performs torso split determination based on an optical part light reception signal (detected voltage value) detected from the optical unit 24.

前記水分測定部17は公知の抵抗式水分計の構造とする(例えば、本出願人による、特許第3048006号公報など参照)(図5参照)。前記水分測定部17は、一対の電極ロール17a,17bからなる圧砕電極部17cを備えるとともに、該電極ロール17a,17bを互いに逆方向に回転させるための駆動部17dを備える。該駆動部17dは、モータ17eと、該モータ17eの出力を前記電極ロール17a,17bに伝達する複数の減速ギヤ等からなるギヤ部17fとから構成する。前記電極ロール17a,17bの下方には漏斗形状の排出樋17gを設け、水分測定を終えて落下した穀粒を機外に排出するようにしてある。なお、排出樋17gは管路30aを介して前記昇降機5a内と連通し、前記排出穀粒を昇降機5aに排出するようにしてある。なお、前記水分測定部17は、前記電極ロール17a,17bで検出した電気的抵抗値に基づいて測定水分値の演算を行う後述の判定部15fも備えてなる。 The moisture measuring unit 17 has a known resistance moisture meter structure (for example, see Japanese Patent No. 3048006 by the applicant of the present application) (see FIG. 5). The moisture measuring unit 17 includes a crushing electrode unit 17c including a pair of electrode rolls 17a and 17b, and a drive unit 17d for rotating the electrode rolls 17a and 17b in opposite directions. The drive unit 17d includes a motor 17e and a gear unit 17f including a plurality of reduction gears that transmit the output of the motor 17e to the electrode rolls 17a and 17b. A funnel-shaped discharge rod 17g is provided below the electrode rolls 17a and 17b, and the grain that has fallen after moisture measurement is discharged to the outside of the machine. The discharge basket 17g communicates with the inside of the elevator 5a through a pipe line 30a so as to discharge the discharged grains to the elevator 5a. The moisture measuring unit 17 also includes a determination unit 15f described later that calculates a measured moisture value based on the electrical resistance values detected by the electrode rolls 17a and 17b.

次に、夾雑物除去部30を説明する(図4、図5参照)。該夾雑物除去部30は、前記籾供給口15bにおける前記胴割検査機能付水分計15内部側に配設する。前記夾雑物除去部30は、直径約1mmの複数の棒体31からなる。該棒体31は、前記籾供給口15bにおける前記胴割検査機能付水分計15の内部上方側から当該籾供給口15bに向かって下方傾斜(例えば60度傾斜角)させ、かつ、前記籾供給口15bの全幅方向にわたって等間隔に並設する。前記間隔は、籾の長さ寸法が約7mmであるので、籾よりも長い藁(わら)屑等をできるだけ除去するため、約8〜12ミリメートルとするのが好ましい。また、棒体31の材質は例えばステンレスとする。また、前記棒体31の下端部は前記籾供給口15bの開口下端部まで延設してもよいが、本実施例においては、前記棒体31の下端部31aと前記籾供給口15bの開口下端部15cとの間に間隙を形成し、サンプル籾を、前記間隔を通さず、直接、前記滞留部22に供給するようにしてある。なお、図4において符号15eで示したスリット孔15eは、昇降機5a側に形成したフックに嵌合し、前記胴割検査機能付水分計15を昇降機5aに装着するためのものである。 Next, the foreign substance removal part 30 is demonstrated (refer FIG. 4, FIG. 5). The foreign matter removing unit 30 is disposed on the inside of the moisture meter 15 with a torso inspection function in the bag supply port 15b. The foreign matter removing unit 30 includes a plurality of rods 31 having a diameter of about 1 mm. The rod 31 is inclined downward (for example, at an inclination angle of 60 degrees) from the inside upper side of the moisture meter with a body split inspection function 15 to the cocoon supply port 15b at the cocoon supply port 15b, and the cocoon supply It is arranged in parallel at equal intervals over the entire width direction of the mouth 15b. Since the length of the ridge is about 7 mm, the interval is preferably about 8 to 12 mm in order to remove as much as possible cocoon (straw) waste longer than the ridge. The material of the rod 31 is stainless steel, for example. The lower end of the rod 31 may extend to the lower end of the opening of the rod supply port 15b. However, in this embodiment, the lower end 31a of the rod 31 and the opening of the rod supply port 15b are provided. A gap is formed between the lower end portion 15c and the sample basket is supplied directly to the staying portion 22 without passing through the interval. In addition, the slit hole 15e shown by the code | symbol 15e in FIG. 4 is for fitting with the hook formed in the elevator 5a side, and mounting | wearing the elevator 5a with the said moisture meter 15 with a body split inspection function.

次に、滞留量規制板32について説明する(図5参照)。該滞留量規制板32は前記複数の棒体31(夾雑物除去部30)の回転円盤20側に、略垂直状に配設する。前記滞留量規制板32は、少なくとも、前記籾供給口15bの開口幅よりも幅広のものとし、かつ、その下端部32aは前記滞留部22の上方に当該滞留部22と間隔Tを形成した位置に止めるようにする。前記間隔Tの長さを変更すると、前記滞留部22に供給・滞留されるサンプル籾の量が調節できる。 Next, the staying amount regulating plate 32 will be described (see FIG. 5). The staying amount regulating plate 32 is disposed substantially vertically on the rotating disk 20 side of the plurality of rod bodies 31 (contaminant removing unit 30). The stay amount regulating plate 32 is at least wider than the opening width of the soot supply port 15b, and the lower end portion 32a is a position where the stay portion 22 and the interval T are formed above the stay portion 22. Try to stop. When the length of the interval T is changed, the amount of sample soot supplied / storing to the staying part 22 can be adjusted.

なお、前記胴割検査機能付水分計15は制御基盤(判定部)15fを配設し、該制御基盤(判定部)15fによって、前記胴割検査部16及び水分測定部17を駆動させるとともに、前記胴割検査部16(前記光学部24)や水分測定部17から光学検出データや電気的抵抗値を取得して胴割判定及び水分値演算を行うようにしてある。   The moisture meter 15 with a waist split inspection function is provided with a control base (determination unit) 15f, and the control base (determination unit) 15f drives the body split inspection unit 16 and the moisture measurement unit 17, Optical detection data and electrical resistance values are acquired from the body split inspection unit 16 (the optical unit 24) and the moisture measurement unit 17 to perform body split determination and moisture value calculation.

次に、前記循環式穀粒乾燥機1の制御部34を説明する(図10)。該制御部34は、中央演算装置(以下「CPU」という)35を中心とし、該CPU35に接続した、入出力回路(以下「I/O」という)36、読み込み専用記憶部(以下「ROM」という)37及び読み込み・書き込み用記憶部(以下「RAM」という)38を有し、そしてさらに、前記I/O36に接続した、張込ボタン、乾燥ボタン及び停止ボタン等の各種運転の操作ボタン群39を有する。制御部34(前記I/O36)には、前記循環式穀粒乾燥機1の本機モータ等用の循環系等駆動回路40、前記熱風発生装置9及び前記胴割検査機能付水分計15がそれぞれ接続する。前記ROM37には、張込運転プログラムや乾燥運転プログラムなどが記憶してある。なお、穀粒の胴割判定用のしきい値は、前記判定部15fに設けた記憶部に記憶してある。   Next, the control part 34 of the said circulation type grain dryer 1 is demonstrated (FIG. 10). The control unit 34 is centered on a central processing unit (hereinafter referred to as “CPU”) 35, connected to the CPU 35, an input / output circuit (hereinafter referred to as “I / O”) 36, and a read-only storage unit (hereinafter referred to as “ROM”). 37) and a read / write storage unit (hereinafter referred to as "RAM") 38, and further connected to the I / O 36 are a group of operation buttons for various operations such as a tension button, a dry button, and a stop button. 39. The control unit 34 (the I / O 36) includes a circulation system drive circuit 40 for the motor and the like of the circulation grain dryer 1, the hot air generator 9, and the moisture meter 15 with a trunk inspection function. Connect each one. The ROM 37 stores a tension operation program, a drying operation program, and the like. In addition, the threshold value for the determination of the torso of the grain is stored in a storage unit provided in the determination unit 15f.

次に、上記循環式穀粒乾燥機1及び胴割検査機能付水分計15の作用を説明する。上記循環式穀粒乾燥機1において前記張込ボタンを押すと、前記CPU35による前記張込運転プログラム(張込運転)が実行され、前記循環系等駆動回路40からの信号を受けて、前記還流部5、下部搬送部13及び排風機10のそれぞれは駆動を開始するとともに、前記胴割検査機能付水分計15も駆動を開始する。穀粒の張り込み作業は、前記開閉蓋3aを開けて、前記ダッシュボード12上に穀粒を供給して行い、この供給された穀粒は、順次、前記下部搬送部13から前記昇降機5a及び上部搬送部5bを介して前記タンク部2に張り込まれる。張込運転の際に胴割検査機能付水分計15によって検出した穀粒水分値や胴割検査結果等は、乾燥運転における公知の乾燥運転(胴割防止乾燥運転を含む)を行う際に用いる。なお、本発明は、1台の装置によって安定的に穀粒の胴割検査及び水分値測定が行えるようにした胴割検査機能付水分計15を主内容とするものなので、前記乾燥運転(胴割防止乾燥運転)の詳細説明は省略する。   Next, the effect | action of the said circulation type grain dryer 1 and the moisture meter 15 with a body split inspection function is demonstrated. When the stretching button is pressed in the circulating grain dryer 1, the stretching operation program (straining operation) is executed by the CPU 35, and a signal from the circulation system etc. drive circuit 40 is received and the reflux is performed. Each of the part 5, the lower conveyance part 13, and the exhaust fan 10 starts driving, and the moisture meter 15 with a trunk split inspection function also starts driving. The grain embedding operation is performed by opening the opening / closing lid 3a and supplying the grain on the dashboard 12, and the supplied grain is sequentially supplied from the lower transport unit 13 to the elevator 5a and the upper part. It is stuck to the tank part 2 via the transport part 5b. The grain moisture value detected by the moisture meter with body split inspection function 15 during the tension operation, the result of the body split inspection, etc. are used when performing a known drying operation (including a body split prevention drying operation) in the drying operation. . The main content of the present invention is the moisture meter with a torsion inspection function 15 which can stably perform the torso split inspection and moisture value measurement with a single device. Detailed description of the split prevention drying operation) will be omitted.

次に、前記胴割検査機能付水分計15の作用を説明する。前記胴割検査機能付水分計15は、上記張込運転中のとき以外にも乾燥運転中や送風運転中にも作動し、供給されたサンプル穀粒(以下「サンプル籾」とする)について、1粒ごとの胴割検査と水分値測定とを行う。以下詳細に説明する。   Next, the operation of the moisture meter with a body split inspection function 15 will be described. The moisture meter 15 with the body split inspection function operates during the drying operation and the air blowing operation in addition to during the tension operation, and for the supplied sample kernel (hereinafter referred to as “sample rice cake”), The body split inspection and moisture value measurement are performed for each grain. This will be described in detail below.

まず、前記胴割検査部16の作用を説明する(図4、図5、図6参照)。
前記昇降機5a内において、搬送中の上位バケットからこぼれ落ちた籾の一部は、前記排風機10による吸引作用等により、前記籾供給口15bから入り前記滞留部22にサンプル籾として堆積する。前記こぼれ落ちる籾には枝梗粒や藁屑等の夾雑物が混入しているため、前記夾雑物除去部30によって前記枝梗粒及び夾雑物を出来るだけ除去し、胴割検査及び水分値測定の精度の向上を図っている。
First, the operation of the waist split inspection unit 16 will be described (see FIGS. 4, 5, and 6).
In the elevator 5a, a part of the soot spilled from the upper bucket that is being conveyed enters through the soot supply port 15b and accumulates as a sample soot in the staying portion 22 by the suction action by the exhaust fan 10 or the like. Since the spilled wrinkles are mixed with impurities such as branch rachis and debris, the fouling particles and impurities are removed as much as possible by the fouling removal unit 30, torso inspection and water content measurement The improvement of accuracy is aimed at.

前記滞留部22に供給・堆積(滞留)するサンプル籾の量は、前記滞留量規制板32による前記回転円盤20側へ流れ込みが堰止められるとともに、堆積超過分のサンプル籾は前記籾供給口15bから昇降機5a内に溢れ出るようになっているため、常に、滞留部22において適量に維持される。   The amount of the sample soot supplied / deposited (stagnation) in the staying portion 22 is blocked from flowing into the rotating disk 20 by the staying amount regulating plate 32, and the sample soot in excess of the soot is supplied to the soot supply port 15b. Since it overflows into the elevator 5a, the retention portion 22 is always maintained at an appropriate amount.

前記滞留部22の前記サンプル籾は、前記回転円盤20の回転(図6矢印Y方向、反時計回り方向)により、前記サンプル籾中を順次通過する前記各溝部20aに入り、前記光学部24に向かって移送される。この前記光学部24に移送される間において、前記当接部材20bは、各溝部20aにおける籾に対し、2粒の籾が入りそうになっている際には当該溝部20aから突出した当該籾と当接して1粒或いは2粒とも除去したり、または、溝部20aに入りきってない際にはこの1粒籾と当接して溝部20a内に籾を安定した姿勢で入れたりなどの規制を行う。また、前記夾雑物除去部30で除去しきれなかった枝梗粒が溝部20aに入って移送された場合においても、これと当接して排除を行う。以上のようにして前記各サンプル籾は前記光学部24に順次移送される。 The sample cage of the staying portion 22 enters the groove portions 20a that sequentially pass through the sample cage by the rotation of the rotary disk 20 (the arrow Y direction and the counterclockwise direction in FIG. 6), and enters the optical unit 24. It is transported toward. While being transported to the optical unit 24, the contact member 20b is configured such that when two grains of wrinkles are about to enter into the grooves 20a, the wrinkles protruding from the grooves 20a Either one or two grains are removed by contact, or when the groove 20a has not been fully received, the one grain ridge is brought into contact with the ridge and the ridge is placed in a stable posture in the groove 20a. . Further, even when branch infarct particles that could not be removed by the contaminant removal unit 30 enter the groove 20a and are transferred, they are removed in contact with this. As described above, the sample baskets are sequentially transferred to the optical unit 24.

以下、本発明の特徴事項である胴割判定フローについて説明する(図11参照)。 Hereinafter, the body split determination flow, which is a feature of the present invention, will be described (see FIG. 11).

ステップ1:
前記光学部24は、前記溝部20aによって前記光学検出位置Kに移送されたサンプル籾(溝部20a)に対して、その下方側から、スリット光を当該籾の移送方向と直交する向きで順次横断的に照射する。一方、前記溝部検知センサ27が前記溝部20aを検知すると、前記光学検出位置Kに溝部20aが移送されたタイミングであると認識し、溝部検出信号Mを発する(図12の(1),(3)参照)。前記制御基盤15f(判定部)は、前記溝部検出信号Mに合わせて、該溝部検出信号Mが検出されている間における、前記第1受光センサ26a及び第2受光センサ26bが検出した籾からの透過光に基づく光学部受光信号(検出電圧値)S1,S2を取り込む(図12の(2)参照)。
Step 1:
The optical unit 24 sequentially traverses the sample kite (groove unit 20a) transferred to the optical detection position K by the groove unit 20a from the lower side in a direction perpendicular to the direction in which the kite is transferred. Irradiate. On the other hand, when the groove detection sensor 27 detects the groove 20a, it recognizes that it is the timing when the groove 20a is transferred to the optical detection position K, and issues a groove detection signal M ((1), (3 in FIG. 12). )reference). The control board 15f (determination unit) detects the detection from the soot detected by the first light receiving sensor 26a and the second light receiving sensor 26b while the groove detection signal M is detected in accordance with the groove detection signal M. Optical part light reception signals (detection voltage values) S1 and S2 based on the transmitted light are taken in (see (2) in FIG. 12).

ステップ2:
前記判定部15fは、取り込んだ前記光学部受光信号S1,S2に、くぼみ状の波形Q1,Q2があることを検出すると、前記溝部20a内に籾が存在していることを認識する(図12の(2)参照)。そして、前記判定部15fは、前記くぼみ波形Q1,Q2に立ち上がり状の胴割れ波形W1,W2があることを検出すると、該胴割れ波形W1,W2における胴割判定用電圧値V1,V2を求め、当該1粒籾のデータとして、前記判定部15fに内蔵した記憶部に一旦記憶する。なお、前記くぼみ波形Q1,Q2に前記胴割れ波形W1,W2が検出されなかった籾(胴割粒でない籾)の検出結果も同様に記憶部に一旦記憶する。
Step 2:
When the determination unit 15f detects that the captured optical unit light reception signals S1 and S2 have hollow waveforms Q1 and Q2, it recognizes that wrinkles are present in the groove 20a (FIG. 12). (See (2)). When the determination unit 15f detects that the indentation waveforms Q1 and Q2 have rising body crack waveforms W1 and W2, the determination unit 15f obtains the body split determination voltage values V1 and V2 in the body crack waveforms W1 and W2. Then, the data for one grain is temporarily stored in the storage unit built in the determination unit 15f. In addition, the detection result of the wrinkles in which the body crack waveforms W1 and W2 are not detected in the indentation waveforms Q1 and Q2 (the wrinkles that are not the body split grains) is also temporarily stored in the storage unit.

このように、前記胴割検出部16は、前記回転円盤20に設けた溝部20aに籾を1粒ずつ前記光学部24に移送し、また、前記夾雑物除去部30により、前記滞留部22に供給される籾に混入する枝梗粒や夾雑物の量を低減しながら胴割検査することができる。さらに、仮に、枝梗粒又は夾雑物が溝部20aに入ったとしても、前記当接部材20bにより、前記枝梗粒又は夾雑物は光学部24に移送する前にはじかれて排除される。また、前記当接部材20bは、前記溝部20aに入りきっていない籾を当該溝部20aに押し込めて光学測定に適した安定した姿勢にする作用も有する。よって、前記胴割検出部16は、前記光学部24に、籾を安定的に1粒ずつ移送することができるため、胴割検査を正確に行うことができる。 As described above, the body split detection unit 16 transfers the candy to the optical unit 24 one by one in the groove 20a provided in the rotating disk 20, and also to the staying unit 22 by the contaminant removal unit 30. It is possible to inspect the torso while reducing the amount of branch infarction grains and impurities mixed in the supplied straw. Furthermore, even if branch infarction grains or impurities enter the groove portion 20 a, the abutment particles or contaminants are repelled and removed by the contact member 20 b before being transferred to the optical unit 24. Further, the contact member 20b also has an action of pushing a heel that does not fit into the groove 20a into the groove 20a so as to have a stable posture suitable for optical measurement. Therefore, since the waist detection unit 16 can stably transport the eyelids to the optical unit 24 one by one, the body split inspection can be performed accurately.

また、前記胴割検出部16は、CCDセンサや画像処理回路を用いることなく、単素子の受光センサ26a,26b及び溝部検知センサ27(タイミング検出手段)によって胴割検出できるようにしてあるので、装置が簡略化し、製造コストも安価なものとなる。 Further, since the body split detection unit 16 can detect the body split by the single-element light receiving sensors 26a and 26b and the groove detection sensor 27 (timing detection means) without using a CCD sensor or an image processing circuit. The apparatus is simplified and the manufacturing cost is low.

ステップ3:
次に、前記排出部28及び水分測定部17の作用を説明する。
前記光学部24での胴割検査を終え、前記排出部28に移送された籾は、溝部20aの開放底部から当該排出部28である前記空間部29を介して前記シュート18上に落下し、前記水分測定部17に移送される(図5参照)。前記水分測定部17は、前記駆動部17dからの出力によって、前記一対の電極ロール17a,17bが互いに逆方向に回転している。前記シュート18によって流下移送された籾は、当該シュート18の下端部から放出された後、前記一対の電極ロール17a,17b間の接点に供給されて、前記籾は当該電極ロール17a,17b間に引き込まれて圧砕される。前記制御基盤(判定部)15fは、前記圧砕時における電極ロール17a,17bからの電気的抵抗値を検出して測定水分値Tを演算し、該測定水分値Tを当該1粒籾のデータとして前記記憶部に一旦記憶する。なお、前記電極ロール17a,17b間を通過した籾は、前記排出樋17g及び管路30aを介して昇降機5a内に排出される。
Step 3:
Next, the operation of the discharging unit 28 and the moisture measuring unit 17 will be described.
The scissors that have been subjected to the body split inspection in the optical part 24 and transferred to the discharge part 28 fall onto the chute 18 from the open bottom part of the groove part 20a through the space part 29 that is the discharge part 28, It is transferred to the moisture measuring unit 17 (see FIG. 5). In the moisture measuring unit 17, the pair of electrode rolls 17a and 17b are rotated in opposite directions by the output from the driving unit 17d. The soot transported down by the chute 18 is discharged from the lower end of the chute 18 and then supplied to the contact between the pair of electrode rolls 17a and 17b, and the soot is between the electrode rolls 17a and 17b. It is drawn and crushed. The control base (determination unit) 15f detects the electrical resistance value from the electrode rolls 17a and 17b at the time of the crushing, calculates the measured moisture value T, and uses the measured moisture value T as the data for the one granule Once stored in the storage unit. Note that the soot that has passed between the electrode rolls 17a and 17b is discharged into the elevator 5a through the discharge rod 17g and the pipe line 30a.

以上のように、前記排出部28及びシュート18により、胴割検査が終った籾を1粒ずつ順次、前記電極ロール17a,17b間に確実に供給して水分値測定が行えるので、各籾における、測定水分値Tと、前記胴割検出部16での光学検出値(胴割れ波形W1,W2の有無や胴割判定用電圧値V1,V2)とを確実に取得することができる。 As described above, the drainage unit 28 and the chute 18 can be used to measure the moisture value by sequentially supplying the culverts that have undergone torsion inspection one by one between the electrode rolls 17a and 17b. The measured moisture value T and the optical detection values (the presence / absence of torso cracking waveforms W1, W2 and the torso split determination voltage values V1, V2) at the torso split detection unit 16 can be reliably acquired.

ステップ4:
前記判定部15fは、前記胴割判定用電圧値V1,V2が検出されたサンプル籾のデータを前記記憶部から読み出す。そして、胴割判定用電圧値V1,V2が検出されたサンプル籾について、当該サンプル籾の胴割判定用電圧値V1,V2と、予め記憶しておいた前記胴割判定用のしきい値(0.2v)とを比較し、前記胴割判定用電圧値V1,V2のうち、いずれか一方の値が大きい方が0.2v(ボルト)未満となる低電圧レベル値であれば、米粒亀裂から得られる値ではないと判断して当該サンプル籾は「胴割粒ではない」と判断し、一方、0.2v以上であればステップ5の判断スッテップに進む。
Step 4:
The determination unit 15f reads from the storage unit data of the sample basket in which the body split determination voltage values V1 and V2 are detected. Then, for the sample rod from which the body split determination voltage values V1 and V2 are detected, the sample split determination voltage values V1 and V2 of the sample rod and the previously stored threshold value for determining the barrel split ( 0.2v), and if the lower one is greater than the voltage value V1 or V2, the rice cracking is less than 0.2v (volt) It is determined that it is not a value obtained from the above, and it is determined that the sample basket is “not torn into grains”. On the other hand, if it is 0.2 v or more, the process proceeds to the determination step of Step 5.

ステップ5:
前記胴割判定用電圧値V1,V2が0.2v以上である場合は、前記胴割判定用電圧値V1,V2が0.8v(ボルト)以上か未満かを判定する。0.8v以上(高電圧レベル値)であると米粒亀裂から得られる明確な値であると判断して当該サンプル籾は「胴割粒ではない」と判断する。一方、0.8v未満である場合には、米粒亀裂から得られる明確な値ではないとして、更にステップ6の判断スッテップに進む。
Step 5:
When the body split determination voltage values V1 and V2 are 0.2 v or more, it is determined whether the body split determination voltage values V1 and V2 are 0.8 v (volt) or more. If it is 0.8 v or more (high voltage level value), it is judged that the value is a clear value obtained from the rice grain cracks, and the sample basket is judged to be “not torn grain”. On the other hand, if it is less than 0.8 v, it is determined that the value is not a clear value obtained from rice grain cracks, and the process proceeds to the determination step of step 6.

ステップ6:
前記判定部15fは、前記胴割判定用電圧値V1,V2が0.8v未満であるサンプル籾の測定水分値Tを前記記憶部から読み出す。そして、測定水分値Tが21%以下であれば、当該サンプル籾は「胴割粒」であると判断する一方、測定水分値Tが21%よりも大きい22%以上であれば、当該サンプル籾は「胴割粒ではない」と判断する。このような測定水分値に基づく胴割粒か否かの判断は、発明者が、原料籾や乾燥籾などの任意の籾において、胴割粒の測定水分値を調べた結果に基づき、水分値約21%を境に、胴割粒と正常籾とが区別できるとする根拠に基づくものである。また、前記胴割れ判定の測定水分値Tは、張込運転、乾燥運転及び送風運転のいずれの運転においても同じ値(固定)でよい。
Step 6:
The determination unit 15f reads, from the storage unit, the measured moisture value T of the sample basket in which the body split determination voltage values V1 and V2 are less than 0.8 v. If the measured moisture value T is 21% or less, the sample basket is judged to be “trunk grains”, while if the measured moisture value T is 22% or more, which is greater than 21%, the sample basket Judges that it is not a torn grain. Judgment as to whether or not it is a cracked grain based on the measured moisture value is based on the result of the inventor's investigation of the measured moisture value of the cracked grain in an arbitrary bowl such as a raw cake or a dried cake. This is based on the grounds that it is possible to distinguish between the split body grains and the normal sputum at about 21%. Further, the measured moisture value T for the body crack determination may be the same value (fixed) in any of the tension operation, the drying operation, and the air blowing operation.

ステップ7:
以上のステップにおいて判定された各サンプル籾における胴割検査結果及び測定水分値に基づき、前記判定部15fはこれを集計して平均水分値や胴割率を演算し、前記胴割防止乾燥運転等を行う基データとするため前記循環式穀粒乾燥機1の制御部34に送る。これらの集計・演算は、一定時間間隔置きに、例えば100粒のサンプル籾から得られた胴割検査結果及び測定水分値を一単位として行う。
Step 7:
Based on the body split inspection result and the measured moisture value in each sample bowl determined in the above steps, the determination unit 15f calculates the average moisture value and the body split rate by summing up the results, and the waist split prevention drying operation, etc. Is sent to the control unit 34 of the circulating grain dryer 1. These tabulations / calculations are performed at regular time intervals, for example, with the unit split inspection result and the measured moisture value obtained from 100 sample baskets.

ステップ8:
上記循環式穀粒乾燥機1からの運転の停止信号が送信されてくると、胴割検査機能付水分計15の駆動も停止する。一方、前記停止信号が送られてこない間は、前記ステップ4戻り、胴割れの判定等が繰り返される。
Step 8:
When the operation stop signal is transmitted from the circulation type grain dryer 1, the driving of the moisture meter 15 with body split inspection function is also stopped. On the other hand, while the stop signal is not sent, the process returns to step 4 and the determination of the case crack is repeated.

以上のように、本発明の胴割検査機能付水分計15によると、各サンプル籾における光学検出値(胴割判定用電圧値V1,V2など)・測定水分値を検出・測定することができるので、検出した光学検出値では胴割判定が難しい場合には、当該籾の測定水分値に基づいて胴割れの判定が行える。よって、胴割れ判定の精度が向上するので、乾燥運転における胴割防止乾燥運転をより安全で的確なものにし、胴割粒の発生・増加を低減できる。 As described above, according to the moisture meter 15 with a torso inspection function of the present invention, it is possible to detect and measure optical detection values (such as torsion determination voltage values V1 and V2) and measured moisture values in each sample basket. Therefore, when it is difficult to determine the case split using the detected optical detection value, it is possible to determine the case crack based on the measured moisture value of the bag. Therefore, since the accuracy of cylinder crack determination is improved, it is possible to make the cylinder split prevention drying operation in the drying operation safer and more accurate, and to reduce the occurrence and increase of cylinder split grains.

なお、本発明において、胴割判定の際に用いる低電圧レベル値と高電圧レベル値とによる前記所定範囲については、上記実施例においては0.2v〜0.8vとしたが、これに限らず適宜設定すればよいものである。
また、上記実施例では、胴割判定や水分値演算を行う前記判定部15fを胴割検査機能付水分計15に設けたが、循環式穀物乾燥機1の制御部34(CPU35)にその機能を備えるようにしてもよい。
In the present invention, the predetermined range based on the low voltage level value and the high voltage level value used at the time of the body split determination is 0.2 v to 0.8 v in the above embodiment, but is not limited thereto. What is necessary is just to set suitably.
Moreover, in the said Example, although the said determination part 15f which performs a body split determination and a moisture value calculation was provided in the moisture meter 15 with a body split test | inspection function, the function is provided to the control part 34 (CPU35) of the circulation type grain dryer 1. You may make it provide.

本発明における循環式穀粒乾燥機の前方斜視図である。It is a front perspective view of the circulation type grain dryer in the present invention. 同循環式穀粒乾燥機の後方斜視図である。It is a back perspective view of the circulation type grain dryer. 同循環式穀粒乾燥機の正面縦断面である。It is a front longitudinal section of the circulation type grain dryer. 本発明における胴割検査機能付水分計の単体斜視図である。It is a simple substance perspective view of a moisture meter with a body split inspection function in the present invention. 同胴割検査機能付水分計における内部の斜視図である。It is an internal perspective view in the moisture meter with the same body split inspection function. 同胴割検査機能付水分計における内部の側面図である。It is an internal side view in the moisture meter with the same body split inspection function. 図6におけるA−Aの断面図である。It is sectional drawing of AA in FIG. 回転円盤における溝部とタイミング検出手段(溝部検知センサ)との位置関係を示した図である。It is the figure which showed the positional relationship of the groove part in a rotary disk, and a timing detection means (groove part detection sensor). 図8におけるB−Bの断面図である。It is sectional drawing of BB in FIG. 前記循環式穀粒乾燥機及び胴割検査機能付水分計の制御ブロック図である。It is a control block diagram of the said circulation type grain dryer and a moisture meter with a body split inspection function. 胴割検査機能付水分計における胴割判定のフローを示す。The flow of the body split judgment in the moisture meter with a body split inspection function is shown. 光学検出位置(籾)、光学部検出信号及び溝部検出信号の関係を示した一例の図である。It is a figure of an example which showed the relationship between an optical detection position (籾), an optical part detection signal, and a groove part detection signal.

符号の説明Explanation of symbols

1 循環式穀粒乾燥機
2 タンク部
3 乾燥部
3a 開閉蓋
4 取出部
5 還流部
5a 昇降機
5b 上部搬送部
5c 穀粒分散装置
6 熱風胴
7 穀粒流下通路(乾燥室)
8 排風胴
9 熱風発生装置
10 排風機
11 ロータリーバルブ
12 ダッシュボード
13 下部搬送部
14 透明板ガラス
15 胴割検査機能付水分計
15a 枠体
15b 籾供給口
15c 開口下端部
15d 開口上端部
15e スリット孔
15f 制御基盤(判定部)
16 胴割検出部
17 水分測定部
17a 電極ロール
17b 電極ロール
17c 圧砕電極部
17d 駆動部
17e モータ
17f ギヤ部
17g 排出樋
18 移送手段(シュート)
19 ベース盤
19a 照射開口部
19b スリット板
20 回転円盤
20a 保持部(凹部)
20b 当接部材
21 滞留用堰部
21a 残留排出部
22 滞留部
23 移送用堰部
24 光学部
25 照射部
26 受光部
26a 第1受光センサ
26b 第2受光センサ
27 溝部検知センサ(タイミング検出手段)
27a 受光部
27b 照射部
28 排出部
29 空間部
30 夾雑物除去部
31 棒体
32 滞留量規制板
32a 下端部
33 突起
34 制御部
35 中央演算装置(CPU)
36 入出力回路(I/O)
37 読み込み専用記憶部(ROM)
38 読み込み・書き込み用記憶部(RAM)
39 運転操作ボタン群
40 循環系等駆動回路
K 光学検出位置
S 穀粒(サンプル穀粒)
DESCRIPTION OF SYMBOLS 1 Circulating grain dryer 2 Tank part 3 Drying part 3a Opening / closing lid 4 Extraction part 5 Refluxing part 5a Elevator 5b Upper conveyance part 5c Grain disperser 6 Hot air drum 7 Grain flow down passage (drying room)
8 Exhaust cylinder 9 Hot-air generator 10 Exhaust machine 11 Rotary valve 12 Dashboard 13 Lower conveyance part 14 Transparent plate glass 15 Moisture meter with body inspection function 15a Frame body 15b Trap supply port 15c Opening lower end 15d Opening upper end 15e Slit hole 15f Control infrastructure (determination unit)
16 Body split detection unit 17 Moisture measurement unit 17a Electrode roll 17b Electrode roll 17c Crushing electrode unit 17d Drive unit 17e Motor 17f Gear unit 17g Discharge rod 18 Transfer means (chute)
19 Base board 19a Irradiation opening 19b Slit plate 20 Rotating disk 20a Holding part (concave part)
20b Contact member 21 Retaining dam part 21a Residual discharge part 22 Retaining part 23 Transfer dam part 24 Optical part 25 Irradiating part 26 Light receiving part 26a First light receiving sensor 26b Second light receiving sensor 27 Groove part detecting sensor (timing detecting means)
27a Light receiving part 27b Irradiation part 28 Discharge part 29 Space part 30 Contaminant removal part 31 Rod body 32 Residence amount regulating plate 32a Lower end part 33 Projection 34 Control part 35 Central processing unit (CPU)
36 Input / output circuit (I / O)
37 Read-only memory (ROM)
38 Memory unit for reading / writing (RAM)
39 Driving button group 40 Circulating system drive circuit K Optical detection position S Grain (sample grain)

Claims (9)

穀粒を貯留するタンク部と、
該タンクから流下した穀粒に対して熱風を通風する乾燥部と、
該乾燥部から流下した穀粒を機外に取り出す取出部と、
該取出部が排出した穀粒を昇降機及び上部搬送部によって前記タンクに還流する還流部と、
前記昇降機に配設するとともに前記穀粒の胴割検出と水分測定とを行う胴割検査機能付水分計と、
該胴割検査機能付水分計の測定結果に基づいて乾燥運転等の制御を行う制御部と、を備えた穀粒乾燥機において、
前記胴割検査機能付水分計は、供給されたサンプル穀粒の胴割判定及び水分測定を1粒単位で行う胴割検出部及び水分測定部を設けるとともに、前記胴割検出部での検査を終えた穀粒を前記水分測定部に移送する移送手段を配設し、
前記胴割検出部は、前記サンプル穀粒における胴割判定用電圧値を演算して求めて胴割判定を行う判定部を有し、該判定部は、前記胴割判定用電圧値が、任意の低電圧レベル値よりも低い場合は胴割粒でないと判定する一方、任意の高電圧レベル値よりも高い場合は胴割粒と判定し、前記低電圧レベル値と高電圧レベル値との範囲内であるときには、前記水分測定部が測定した当該穀粒の測定水分値が所定値以下のときに当該穀粒を胴割粒と判定し、所定値よりも高いときには当該穀粒を胴割粒でないと判定することを特徴とする穀粒乾燥機における胴割検査機能付水分計。
A tank section for storing grains;
A drying section for passing hot air to the grains flowing down from the tank;
A take-out section for taking out the grain that has flowed down from the drying section;
A reflux part for refluxing the grains discharged by the take-out part to the tank by an elevator and an upper transport part;
A moisture meter with a torso inspection function that is disposed in the elevator and performs torso detection and moisture measurement of the grain,
In a grain dryer provided with a control unit that performs control such as drying operation based on the measurement result of the moisture meter with a body split inspection function,
The moisture meter with a torso inspection function is provided with a torso detection unit and a moisture measurement unit for performing torso split determination and moisture measurement of the supplied sample grain in units of one grain, and for performing inspection at the torso detection unit. A transfer means for transferring the finished grain to the moisture measuring unit is disposed,
The torso detection unit has a determining unit that calculates and calculates a torso split determination voltage value in the sample grain, and the torsion determination unit determines that the torso split determination voltage value is arbitrary. When it is lower than the low voltage level value, it is determined that it is not a cracked grain, while when it is higher than any high voltage level value, it is determined as a cracked grain, and the range between the low voltage level value and the high voltage level value is determined. When the measured moisture value of the grain measured by the moisture measuring unit is equal to or less than a predetermined value, the grain is determined to be a torn grain, and when the grain is higher than the predetermined value, the grain is torn into the torn grain. A moisture meter with a body split inspection function in a grain dryer, characterized in that it is not.
前記所定の水分値が21%である請求項1に記載の穀粒乾燥機における胴割検査機能付水分計。   The moisture meter with a body split inspection function in a grain dryer according to claim 1, wherein the predetermined moisture value is 21%. 前記胴割検出査部は、前記サンプル穀粒を保持する保持部を周縁に複数配設した傾斜状の回転円盤と、該回転円盤を載置するベース盤と、前記回転円盤の上位に配設した前記穀粒から透過光を検出する光学部と、前記回転円盤の下位に構成したサンプル穀粒の滞留部と、前記ベース盤に設けた前記光学部での検査を終えた穀粒を前記保持部から前記移送手段に排出する排出部、とを有し、
前記滞留部の上方にはサンプル穀粒の籾供給口を備えたことを特徴とする請求項1又は請求項2に記載の穀粒乾燥機における胴割検査機能付水分計。
The torso detection detector is provided with an inclined rotating disk in which a plurality of holding parts for holding the sample grains are arranged at the periphery, a base disk on which the rotating disk is placed, and an upper layer of the rotating disk. An optical unit that detects transmitted light from the grain, a sample grain retention unit that is configured in a lower part of the rotating disk, and the grain that has been inspected by the optical unit provided on the base plate A discharge part for discharging from the part to the transfer means,
The moisture meter with a body split inspection function in a grain dryer according to claim 1 or 2, further comprising a straw supply port for sample grains above the staying portion.
任意数のサンプル穀粒の検査開始前若しくは終了後、又は所定時間が経過した時点に、一時的に、前記回転円盤を逆方向に回転させる制御基盤を設けるとともに、前記滞留部における前記逆方向側には残留排出部を配設したことを特徴とする請求項3に記載の穀粒乾燥機における胴割検査機能付水分計。   Provided with a control base for rotating the rotating disk in the reverse direction temporarily before or after the inspection of an arbitrary number of sample kernels or after a predetermined time has elapsed, 4. A moisture meter with a body split inspection function in a grain dryer according to claim 3, wherein a residual discharge part is provided in the grain dryer. 前記光学部における受光センサを単素子のものとする一方、前記光学部において穀粒が光学検出されるタイミングを検出するタイミング検出手段を設けたことを特徴とする請求項3又は請求項4に記載の穀粒乾燥機における胴割検査機能付水分計。   5. The light receiving sensor in the optical unit is a single element, and a timing detection unit is provided for detecting timing at which grains are optically detected in the optical unit. Moisture meter with torso inspection function in a grain dryer. 前記回転円盤の回転によって前記保持部が移送される経路上には、当該保持部から上方に突出した移送中の穀粒と当接する当接部材を配設したことを特徴とする請求項3乃至請求項5のいずれかに記載の穀粒乾燥機における胴割検査機能付水分計。   The contact member which contact | abuts the grain under transfer which protruded upwards from the said holding | maintenance part was arrange | positioned on the path | route where the said holding | maintenance part is transferred by rotation of the said rotation disk. A moisture meter with a body split inspection function in the grain dryer according to claim 5. 前記籾供給口には、穀粒が通過可能な間隔を有するくし状の夾雑物除去部を上方から下方に延設したことを特徴とする請求項3乃至請求項6のいずれかに記載の穀粒乾燥機における胴割検査機能付水分計。   The grain according to any one of claims 3 to 6, wherein a comb-like foreign substance removing portion having an interval through which the grain can pass is extended downward from above. Moisture meter with body split inspection function for grain dryers. 前記夾雑物除去部における前記回転円盤側には、その下端部と前記滞留部との間を所定間隔にした滞留量規制板を立設したことを特徴とする請求項3乃至請求項7のいずれかに記載の穀粒乾燥機における胴割検査機能付水分計。   8. The retention amount regulating plate having a predetermined interval between the lower end portion and the retention portion is provided on the rotating disk side of the contaminant removal portion. Moisture meter with a body split inspection function in the grain dryer according to claim 1. 前記胴割検出部及び水分測定部を上下に順次重設してなることを特徴とする請求項1乃至請求項8のいずれかに記載の穀粒乾燥機における胴割検査機能付水分計。
The moisture meter with a body split inspection function in a grain dryer according to any one of claims 1 to 8, wherein the body split detection unit and the moisture measurement unit are sequentially stacked one above the other.
JP2006049288A 2006-02-24 2006-02-24 Moisture meter with torso inspection function in grain dryer Active JP4784745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006049288A JP4784745B2 (en) 2006-02-24 2006-02-24 Moisture meter with torso inspection function in grain dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006049288A JP4784745B2 (en) 2006-02-24 2006-02-24 Moisture meter with torso inspection function in grain dryer

Publications (3)

Publication Number Publication Date
JP2007225523A true JP2007225523A (en) 2007-09-06
JP2007225523A5 JP2007225523A5 (en) 2009-03-26
JP4784745B2 JP4784745B2 (en) 2011-10-05

Family

ID=38547471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006049288A Active JP4784745B2 (en) 2006-02-24 2006-02-24 Moisture meter with torso inspection function in grain dryer

Country Status (1)

Country Link
JP (1) JP4784745B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879142A (en) * 1981-11-05 1983-05-12 Satake Eng Co Ltd Measurement of broken rice grain and device therefor
JPH04247244A (en) * 1991-02-01 1992-09-03 Iseki & Co Ltd Device for adjusting light quantity of hulling rate sensor for rice-hulling and screening machine
JPH07318488A (en) * 1994-05-30 1995-12-08 Iseki & Co Ltd Near infrared spectral analyzer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879142A (en) * 1981-11-05 1983-05-12 Satake Eng Co Ltd Measurement of broken rice grain and device therefor
JPH04247244A (en) * 1991-02-01 1992-09-03 Iseki & Co Ltd Device for adjusting light quantity of hulling rate sensor for rice-hulling and screening machine
JPH07318488A (en) * 1994-05-30 1995-12-08 Iseki & Co Ltd Near infrared spectral analyzer

Also Published As

Publication number Publication date
JP4784745B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP2007175027A (en) Method for treatment of eggs in in-line egg collecting system
JP5365968B2 (en) Belt type optical sorter
JP2008114204A (en) Color sorting apparatus for tea leaves
JP4784745B2 (en) Moisture meter with torso inspection function in grain dryer
JP5257837B2 (en) Circulating grain dryer
JP4941638B2 (en) Moisture meter with torso inspection function in grain dryer
JPH07103966A (en) Method and device for determining purity of processed used glass before recycling
KR20110007274A (en) Natural salt debris removal device
JPH07218132A (en) Drying apparatus of flower bulb
CN111511692A (en) Electroosmosis dewatering machine
JP4697536B2 (en) Circulation prevention operation method of circulation type grain dryer
JP3755280B2 (en) Kazuri Rice Mill Facility
JP3337661B2 (en) Unique material discharge device
JPS61237035A (en) Apparatus for picking-up sample grain particle
KR0173557B1 (en) Paddy automatic examiner
JP3728795B2 (en) Shattered paddy detection equipment for threshing equipment
CN210053918U (en) Corn thresher of measurable humidity of doing
JP3755531B2 (en) Kazuri Rice Mill Facility
JPH0320765Y2 (en)
JP2007170734A (en) Circulation type grain drying machine
JPS6349347Y2 (en)
JPH09257536A (en) Erroneous detection preventing device for grain flow measuring device of grain thresher
JPH10160391A (en) Automatic inspection system for sponge rubber ball
BR102022011273A2 (en) DEVICE FOR ANALYZING A GRAIN SAMPLE, COMBINED HARVESTER, METHOD FOR ANALYZING A GRAIN SAMPLE AND COMPUTER READABLE MEDIA
JPS60156591A (en) Detector for thickness of fluidized bed in rotary type cereal grain selector

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4784745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250