JP2007225312A - Reflection characteristic measuring apparatus - Google Patents
Reflection characteristic measuring apparatus Download PDFInfo
- Publication number
- JP2007225312A JP2007225312A JP2006043928A JP2006043928A JP2007225312A JP 2007225312 A JP2007225312 A JP 2007225312A JP 2006043928 A JP2006043928 A JP 2006043928A JP 2006043928 A JP2006043928 A JP 2006043928A JP 2007225312 A JP2007225312 A JP 2007225312A
- Authority
- JP
- Japan
- Prior art keywords
- light
- sample
- illumination
- reflection characteristic
- optical path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Spectrometry And Color Measurement (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
本発明は、試料面を所定方向から照明したときの、所定方向の反射光の分光特性から試料面の反射特性を測定する反射特性測定装置、特に試料面を法線から45°の方向から照明し、法線方向の反射光成分を受光する45/0ジオメトリーの反射特性測定装置に関する。 The present invention relates to a reflection characteristic measuring apparatus for measuring a reflection characteristic of a sample surface from a spectral characteristic of reflected light in a predetermined direction when the sample surface is illuminated from a predetermined direction, in particular, illuminating the sample surface from a direction at 45 ° from the normal line. The present invention relates to a 45/0 geometry reflection characteristic measuring apparatus that receives reflected light components in the normal direction.
第1の従来例として、図15に示す45/0ジオメトリーの反射特性測定装置900では、試料面901は、その法線901nから45°の方向に配置された複数の光源(例えば光源902、903)によって照明される。この照明光が試料面901により反射された試料面反射光の成分901s(試料光901sという)が、反射鏡904とレンズ905とによってシングルチャンネルポリクロメータ906の入射スリットに収束されて入射し、分光強度が測定される。測定された試料面反射光の分光強度から、試料面901の分光反射率係数が求められる。
As a first conventional example, in the reflection characteristic measuring
第2の従来例として、図16に示す45/0ジオメトリーの反射特性測定装置920では、ダブルチャンネルポリクロメータ921を用い、試料光901sをダブルチャンネルポリクロメータ921の試料光スリットに入射させるとともに、参照光として光源902の光束の一部(参照光902r)をダブルチャンネルポリクロメータ921の参照光スリットに入射させ、それぞれの分光強度を測定する。
As a second conventional example, a reflection characteristic measuring
第3の従来例として、図17に示す45/0ジオメトリーの反射特性測定装置940では、上記参照光902rの光軸を折り曲げて、試料光901sの光軸に直交させる反射鏡941と、その交点で両光軸に45°の角度で反射鏡941を挿入する反射鏡チョッパー942と、反射鏡チョッパー942を駆動するチョッパー駆動モータ943と、リレーレンズ944とを備えている。この構成では、反射鏡チョッパー942によって反射鏡941が光路(光軸)に挿入されたときには参照光902rが、反射鏡941が光路から退避したときには試料光901sが、リレーレンズ944を経てシングルチャンネルポリクロメータ906に入射する。
しかしながら、上記第1の従来例では、構成がシンプルで低コストであるが、照明光の分光強度をモニターする参照光学系をもたないため、経時的、熱的な照明光の分光強度の変動を補正することができず、高精度の測定ができない。また、上記第2の従来例では、光源902からの参照光902rの分光強度測定値に基づいて照明光の変動を補正するので、第1の従来例に比べて測定安定性は優れるものの、ダブルチャンネルポリクロメータ921と、参照光902rを参照光スリットに導くための参照光学系とを必要とするためコストが嵩むという問題がある。また、第2の従来例のように、参照光902rを複数の光源の1つから採る場合や、試料面照明光とは異なる方向の光束を参照光とする場合には、参照光が照明光の変動を正確にモニターできないという問題がある。第3の従来例は、第1及び第2の従来例の欠点を克服するべく構成されたものであるが、この従来例では、シングルチャンネルポリクロメータ906を使用できるものの、構成が複雑となり、反射鏡941や、反射鏡チョッパー942によって光束中に挿入される反射鏡941の位置、角度の許容誤差が小さいことがコストを押し上げる要因となる。
However, in the first conventional example, the configuration is simple and the cost is low, but since there is no reference optical system for monitoring the spectral intensity of the illumination light, the temporal change in the spectral intensity of the illumination light over time. Cannot be corrected, and high-precision measurement cannot be performed. Further, in the second conventional example, since the fluctuation of the illumination light is corrected based on the spectral intensity measurement value of the
本発明は上記問題に鑑みてなされたもので、試料面照明光の変動を正確に補正(モニター)することができ、高い測定安定性を有するとともに、簡易な構成で低コストな反射特性測定装置を実現することを目的とする。 The present invention has been made in view of the above problems, and can accurately correct (monitor) fluctuations in illumination light on the sample surface, has high measurement stability, and has a simple configuration and a low cost. It aims at realizing.
本発明に係る反射特性測定装置は、試料面を試料面法線に対する所定の角度から照明する照明手段と、前記照明手段による照明光が前記試料面に反射された前記試料面法線方向の試料面反射光を受光する受光手段と、前記受光手段への入射光の光路上における参照面に対して挿入及び退避可能に構成された該参照面入射光に対する光路変更を行う光路変更手段と、前記試料面と前記参照面との対称面であって、前記照明手段による照明光の一部を前記参照面へ向けて反射する部分反射面と、前記光路変更手段の挿入及び退避動作並びに前記照明手段の照明動作を制御するとともに、前記受光手段の出力情報を演算処理する制御演算手段とを備え、前記受光手段は、前記光路変更手段の参照面からの退避時に、前記試料面反射光を主として受光し、前記光路変更手段の参照面への挿入時に、前記部分反射面により反射されて且つ前記受光手段へ向けて入射されるよう前記光路変更手段によって光路変更された前記照明光の一部を主として受光し、前記制御演算手段は、前記光路変更手段の挿入及び退避時における前記受光手段の出力情報に基づいて、前記照明光の変動が補正された試料面の反射特性を算出することを特徴とする。 The reflection characteristic measuring apparatus according to the present invention includes an illumination unit that illuminates a sample surface from a predetermined angle with respect to a sample surface normal, and a sample in the sample surface normal direction in which illumination light from the illumination unit is reflected by the sample surface A light receiving means for receiving the surface reflected light; an optical path changing means for changing the optical path for the reference surface incident light configured to be inserted into and withdrawn from the reference surface on the optical path of the incident light to the light receiving means; A symmetrical surface of the sample surface and the reference surface, a partially reflecting surface for reflecting a part of the illumination light by the illumination means toward the reference surface, insertion and retraction operations of the optical path changing means, and the illumination means Control operation means for calculating output information of the light receiving means, and the light receiving means mainly receives the reflected light from the sample surface when retracted from the reference surface of the optical path changing means. When the optical path changing means is inserted into the reference surface, a part of the illumination light whose optical path has been changed by the optical path changing means so as to be reflected by the partial reflection surface and incident on the light receiving means is mainly received. The control calculation unit calculates a reflection characteristic of the sample surface in which the variation of the illumination light is corrected based on output information of the light receiving unit when the optical path changing unit is inserted and retracted. .
上記構成によれば、照明手段によって、試料面が試料面法線に対する所定の角度から照明され、受光手段によって、照明手段による照明光が試料面に反射された試料面法線方向の試料面反射光が受光される。受光手段への入射光の光路上における参照面に対して挿入及び退避可能に構成された光路変更手段によって、該参照面入射光に対する光路変更が行われる。試料面と参照面との対称面である部分反射面によって、照明手段による照明光の一部が参照面へ向けて反射され、制御演算手段によって、光路変更手段の挿入及び退避動作並びに照明手段の照明動作が制御されるとともに、受光手段の出力情報が演算処理される。上記受光手段によって、光路変更手段の参照面からの退避時に、試料面反射光が主として受光され、光路変更手段の参照面への挿入時に、部分反射面により反射されて且つ受光手段へ向けて入射されるよう光路変更手段により光路変更された照明光の一部が主として受光される。そして、制御演算手段によって、光路変更手段の挿入及び退避時における受光手段の出力情報に基づいて、照明光の変動が補正された試料面の反射特性が算出される。 According to the above configuration, the sample surface is reflected from the sample surface normal direction by the illuminating means, and the illumination light from the illuminating means is reflected on the sample surface by the light receiving means. Light is received. The optical path of the reference surface incident light is changed by the optical path changing means configured to be inserted into and retracted from the reference surface on the optical path of the incident light to the light receiving means. A part of the illumination light from the illumination unit is reflected toward the reference surface by the partial reflection surface that is a symmetrical surface of the sample surface and the reference surface, and the control operation unit inserts and retracts the optical path changing unit and the illumination unit. The lighting operation is controlled, and the output information of the light receiving means is processed. When the light path changing means is retracted from the reference surface, the sample surface reflected light is mainly received, and when the light path changing means is inserted into the reference surface, it is reflected by the partially reflecting surface and incident on the light receiving means. Thus, a part of the illumination light whose optical path is changed by the optical path changing means is mainly received. Then, based on the output information of the light receiving means when the optical path changing means is inserted and retracted, the control calculation means calculates the reflection characteristic of the sample surface in which the variation of the illumination light is corrected.
また、上記構成において、前記光路変更手段は、光を透過拡散する透過拡散面であることが好ましい。これによれば、光路変更手段が光を透過拡散する透過拡散面とされる。 In the above configuration, the optical path changing means is preferably a transmission diffusion surface that transmits and diffuses light. According to this, the light path changing means is a transmission diffusion surface that transmits and diffuses light.
また、上記構成において、前記透過拡散面は、回転駆動可能に構成されたチョッパーのブレードであり、該チョッパーのブレードは該ブレードに対する入射光を透過拡散する拡散板からなることが好ましい。これによれば、透過拡散面が、回転駆動可能に構成されたチョッパーのブレードとされ、該チョッパーのブレードが該ブレードに対する入射光を透過拡散する拡散板とされる。 In the above configuration, it is preferable that the transmission diffusion surface is a chopper blade configured to be rotationally driven, and the chopper blade is formed of a diffusion plate that transmits and diffuses incident light to the blade. According to this, the transmission diffusion surface is a chopper blade configured to be rotationally driven, and the chopper blade is a diffusion plate that transmits and diffuses incident light to the blade.
また、上記構成において、前記透過拡散面は、該透過拡散面の法線に対する略45°方向の入射光を、該入射光の光軸と前記透過拡散面の法線とを含む面内の拡散成分が面外の拡散成分より大きくなるように透過拡散する不均等透過拡散面であることが好ましい。これによれば、透過拡散面が、該透過拡散面の法線に対する略45°方向の入射光を、該入射光の光軸と透過拡散面の法線とを含む面内の拡散成分が面外の拡散成分より大きくなるように透過拡散する不均等透過拡散面とされる。 In the above configuration, the transmission diffusion surface diffuses incident light in a direction of approximately 45 ° with respect to the normal line of the transmission diffusion surface, and includes in-plane diffusion including the optical axis of the incident light and the normal line of the transmission diffusion surface. A non-uniform transmission diffusion surface that transmits and diffuses so that the component is larger than the out-of-plane diffusion component is preferable. According to this, the transmission diffusion surface has incident light in the direction of approximately 45 ° with respect to the normal line of the transmission diffusion surface, and the in-plane diffusion component including the optical axis of the incident light and the normal line of the transmission diffusion surface is the surface. A non-uniform transmission diffusion surface that diffuses and diffuses so as to be larger than the outer diffusion component.
また、上記構成において、前記制御演算手段は、前記透過拡散面の挿入及び退避時における前記受光手段の出力情報と予め与えられた補正係数の情報とを用いて、前記透過拡散面挿入時に前記照明光の一部とともに該透過拡散面に入射する試料面反射光の影響を補正する演算処理を行い、前記照明光の変動が補正された試料面の反射特性を算出することが好ましい。これによれば、制御演算手段によって、透過拡散面の挿入及び退避時における受光手段の出力情報と予め与えられた補正係数の情報とを用いて、透過拡散面挿入時に照明光の一部とともに該透過拡散面に入射する試料面反射光の影響を補正する演算処理が行われ、照明光の変動が補正された試料面の反射特性が算出される。 In the above configuration, the control calculation means uses the output information of the light receiving means at the time of insertion and retraction of the transmission diffusion surface and information on a correction coefficient given in advance, and the illumination at the time of insertion of the transmission diffusion surface. It is preferable to perform an arithmetic process for correcting the influence of the sample surface reflected light incident on the transmission diffusion surface together with a part of the light, and to calculate the reflection characteristics of the sample surface in which the variation of the illumination light is corrected. According to this, the control calculation means uses the output information of the light receiving means at the time of insertion and withdrawal of the transmission diffusion surface and the information of the correction coefficient given in advance, together with a part of the illumination light at the time of insertion of the transmission diffusion surface. A calculation process for correcting the influence of the sample surface reflected light incident on the transmission diffusion surface is performed, and the reflection characteristic of the sample surface in which the variation of the illumination light is corrected is calculated.
また、上記構成において、前記制御演算手段は、波長について移動平均した前記透過拡散面挿入時の前記受光手段の出力情報と、前記透過拡散面退避時の前記受光手段の出力情報とを用いて、前記照明光の変動が補正された試料面の反射特性を算出することが好ましい。これによれば、制御演算手段によって、波長について移動平均した透過拡散面挿入時の受光手段の出力情報と、透過拡散面退避時の受光手段の出力情報とを用いて、照明光の変動が補正された試料面の反射特性が算出される。 Further, in the above configuration, the control calculation means uses the output information of the light receiving means at the time of insertion of the transmission diffusion surface averaged with respect to the wavelength, and the output information of the light reception means at the time of retracting the transmission diffusion surface, It is preferable to calculate a reflection characteristic of the sample surface in which the variation of the illumination light is corrected. According to this, the fluctuation of the illumination light is corrected using the output information of the light receiving means when the transmission diffusing surface is inserted and the output information of the light receiving means when the transmission diffusing surface is retracted, which is moving averaged with respect to the wavelength. The reflection characteristics of the sample surface thus obtained are calculated.
また、本発明に係る反射特性測定装置は、光源と試料用開口及び測定用開口とを備える積分球で構成され、該試料用開口に配設された試料面を拡散照明する積分球照明手段と、前記積分球照明手段による拡散照明光が前記試料面に反射されてなる所定方向の試料面反射光を前記測定用開口を通して受光する受光手段と、前記測定用開口の近傍における参照面に対して挿入及び退避可能に構成された透過拡散面と、前記透過拡散面の挿入及び退避動作並びに前記積分球照明手段の照明動作を制御するとともに、前記受光手段の出力情報を演算処理する制御演算手段とを備え、前記受光手段は、前記透過拡散面の参照面からの退避時に、前記試料面反射光を主として受光し、前記透過拡散面の参照面への挿入時に、前記測定用開口から該透過拡散面に入射した前記拡散照明光の一部を主として受光し、前記制御演算手段は、前記透過拡散面の挿入及び退避時における前記受光手段の出力情報に基づいて、前記拡散照明光の変動が補正された試料面の反射特性を算出することを特徴とする。 The reflection characteristic measuring apparatus according to the present invention includes an integrating sphere that includes a light source, a sample opening, and a measurement opening, and an integrating sphere illumination unit that diffusely illuminates the sample surface disposed in the sample opening. A light receiving means for receiving the sample-surface reflected light in a predetermined direction formed by reflecting the diffuse illumination light from the integrating sphere illumination means through the measurement aperture, and a reference surface in the vicinity of the measurement aperture. A transmission diffusing surface configured to be insertable and retractable, a control arithmetic means for controlling the insertion and withdrawal operations of the transmission diffusing surface and the illumination operation of the integrating sphere illuminating means, and calculating the output information of the light receiving means; The light-receiving means mainly receives the sample-surface reflected light when the transmission diffusion surface is retracted from the reference surface, and is inserted from the measurement opening when the transmission diffusion surface is inserted into the reference surface. A part of the diffuse illumination light incident on the light is mainly received, and the control calculation means corrects fluctuations of the diffuse illumination light based on output information of the light reception means when the transmission diffusion surface is inserted and retracted. The reflection characteristic of the sample surface is calculated.
上記構成によれば、光源と試料用開口及び測定用開口とを備える積分球で構成された積分球照明手段によって、該試料用開口に配設された試料面が拡散照明され、受光手段によって、積分球照明手段による拡散照明光が試料面に反射されてなる所定方向の試料面反射光が測定用開口を通して受光される。また、透過拡散面が、測定用開口の近傍における参照面に対して挿入及び退避可能に構成され、制御演算手段によって、透過拡散面の挿入及び退避動作並びに積分球照明手段の照明動作が制御されるとともに、受光手段の出力情報が演算処理される。上記受光手段によって、透過拡散面の参照面からの退避時に、試料面反射光が主として受光され、透過拡散面の参照面への挿入時に、測定用開口から該透過拡散面に入射した拡散照明光の一部が主として受光される。そして、制御演算手段によって、透過拡散面の挿入及び退避時における受光手段の出力情報に基づいて、拡散照明光の変動が補正された試料面の反射特性が算出される。 According to the above configuration, the sample surface disposed in the sample opening is diffusely illuminated by the integrating sphere illumination means including an integrating sphere having a light source, a sample opening, and a measurement opening. Sample-surface reflected light in a predetermined direction formed by reflecting diffused illumination light from the integrating sphere illumination means on the sample surface is received through the measurement aperture. Further, the transmission diffusion surface is configured to be able to be inserted and retracted with respect to the reference surface in the vicinity of the measurement aperture, and the control operation means controls the insertion and withdrawal operation of the transmission diffusion surface and the illumination operation of the integrating sphere illumination means. In addition, the output information of the light receiving means is processed. When the light diffusing surface is retracted from the reference surface by the light receiving means, the sample-surface reflected light is mainly received, and when inserted into the reference surface of the transmissive diffusing surface, the diffused illumination light incident on the transmissive diffusing surface from the measurement opening A part of the light is mainly received. Then, based on the output information of the light receiving means when the transmission diffusion surface is inserted and retracted, the control calculation means calculates the reflection characteristic of the sample surface in which the variation of the diffuse illumination light is corrected.
また、上記構成において、前記試料用開口と測定用開口とが前記積分球の略対極に位置し、前記光源が前記試料用開口と測定用開口との略対称面の近傍に位置することが好ましい。これによれば、試料用開口と測定用開口とが積分球の略対極に配置され、光源が試料用開口と測定用開口との略対称面の近傍に配置される。 Further, in the above configuration, it is preferable that the sample opening and the measurement opening are positioned at a substantially opposite electrode of the integrating sphere, and the light source is positioned in the vicinity of a substantially symmetrical plane between the sample opening and the measurement opening. . According to this, the sample opening and the measurement opening are arranged in a substantially counter electrode of the integrating sphere, and the light source is arranged in the vicinity of the substantially symmetrical plane of the sample opening and the measurement opening.
請求項1記載の発明によれば、試料面照明光と相関性の高い参照光情報に基づいて、試料面照明光の変動を正確に補正することができ、安定性の高い測定が可能となる。また、受光手段としてシングルチャンネルのポリクロメータを使用できるとともに、参照光の取り込みのための光路変更を、光路変更手段の参照面への挿入によって行うので、構成がシンプルとなり、コストを抑えることができる。 According to the first aspect of the present invention, the fluctuation of the sample surface illumination light can be accurately corrected based on the reference light information having a high correlation with the sample surface illumination light, and a highly stable measurement is possible. . In addition, a single-channel polychromator can be used as the light receiving means, and the optical path change for taking in the reference light is performed by inserting the optical path changing means into the reference surface, thereby simplifying the configuration and reducing the cost. .
請求項2記載の発明によれば、光路変更手段による参照光の取り込みのための光路変更を、特別な光学系を用いず、位置、角度の許容範囲が広い透過拡散面の参照面への挿入によって行うことができ、よりシンプルな構成で低コストな測定装置を実現できる。 According to the second aspect of the present invention, the optical path change for taking in the reference light by the optical path changing means is inserted into the reference plane of the transmission diffusion surface having a wide allowable range of position and angle without using a special optical system. Therefore, a low-cost measuring device can be realized with a simpler configuration.
請求項3記載の発明によれば、透過拡散面の参照面に対する挿入及び退避を、ブレードが拡散板で構成されたチョッパーという単純な構成で容易に実現できる。 According to the third aspect of the present invention, insertion and retraction of the transmission diffusion surface with respect to the reference surface can be easily realized with a simple configuration of a chopper in which the blade is formed of a diffusion plate.
請求項4記載の発明によれば、不均等透過拡散面によって、該不均等透過拡散面に入射した照明光を効率良く受光手段に入射させることができる。 According to the fourth aspect of the present invention, the illumination light incident on the non-uniform transmission diffusion surface can be efficiently incident on the light receiving means by the non-uniform transmission diffusion surface.
請求項5記載の発明によれば、参照光に混入する試料面反射光の影響を除去して高精度な測定が可能となる。
According to the invention described in
請求項6記載の発明によれば、透過拡散面挿入時における受光手段の出力のS/Nを改善し、ひいては試料面の反射特性測定値の精度を向上することができる。なお、波長についての移動平均によるS/Nの改善は、透過拡散面挿入時における受光手段の出力の波長依存性が単調且つ緩やかな場合に限って適用できるが、反射特性測定装置の光源として一般的な白熱光源を光源とする場合、照明光の分光分布は単調で緩やかであり、これに混入する試料面反射光は急峻な分光分布をもち得るものの、透過拡散面挿入時の該透過拡散面への入射光に占める試料面反射光の比率は照明光と比べて僅かであるため、当該入射光の波長依存性は十分単調且つ緩やかであり、上記条件を満たしている。 According to the sixth aspect of the present invention, the S / N of the output of the light receiving means when the transmission diffusion surface is inserted can be improved, and as a result, the accuracy of the reflection characteristic measurement value on the sample surface can be improved. Note that the S / N improvement by moving average with respect to the wavelength can be applied only when the wavelength dependency of the output of the light receiving means at the time of insertion of the transmissive diffusion surface is monotonous and gentle, but is generally used as a light source of a reflection characteristic measuring apparatus. When a typical incandescent light source is used as a light source, the spectral distribution of illumination light is monotonous and gentle, and the sample surface reflection light mixed therein may have a steep spectral distribution, but the transmission diffusion surface when the transmission diffusion surface is inserted Since the ratio of the sample-surface reflected light to the incident light is small compared to the illumination light, the wavelength dependence of the incident light is sufficiently monotonous and gentle, and satisfies the above conditions.
請求項7記載の発明によれば、参照光の取り込みのための光路変更を、特別な光学系を用いず、位置、角度の許容範囲が広い透過拡散面の参照面への挿入によって行うことができるとともに、受光手段としてシングルチャンネルのポリクロメータを使用できるので、構成がシンプルとなり、コストを抑えることができる。 According to the seventh aspect of the present invention, the optical path change for taking in the reference light can be performed by inserting a transmission diffusing surface having a wide allowable range of position and angle into the reference surface without using a special optical system. In addition, since a single channel polychromator can be used as the light receiving means, the configuration becomes simple and the cost can be reduced.
請求項8記載の発明によれば、試料面照明光と参照面入射光とが相関性の高いものとなり、試料面照明光と相関の高い参照光を得ることができる。これにより、拡散照明光の変化を正確に補正することができ、安定性の高い測定が可能となる。 According to the eighth aspect of the present invention, the sample surface illumination light and the reference surface incident light have a high correlation, and the reference light having a high correlation with the sample surface illumination light can be obtained. Thereby, the change of diffuse illumination light can be correct | amended correctly, and a highly stable measurement is attained.
(反射特性測定装置の全体的な説明)
図1は、本発明に係る反射特性測定装置の一例を示す概略構成断面図である。図1に示すように、反射特性測定装置100において、測定試料の試料面1は、この試料面1の法線(試料面法線)1nを中心とする円周上に所定数配置された例えば白熱電球からなる光源2による照明光(後述の照明光I0)によって、試料面法線1nに対して約45°の角度で傾斜した方向(以降、45°の方向という)から照明される。光源2によって照明された試料面の反射光(試料面反射光)の試料面法線1n方向の成分(以降、試料面反射光成分という)1sが、反射鏡6を経て対物レンズ7によってシングルチャンネルポリクロメータ8の入射スリットに収束されて入射し、例えば約360〜700nmの波長域における分光強度が波長間隔10nm(約10nmピッチ)で測定される。
(Overall description of the reflection characteristic measuring device)
FIG. 1 is a schematic sectional view showing an example of a reflection characteristic measuring apparatus according to the present invention. As shown in FIG. 1, in the reflection
一方、駆動モータ10の回転駆動によって回転する拡散板チョッパー5が、シングルチャンネルポリクロメータ8への入射光の光路上(ここでは当該光路上の対物レンズ7の入射面近傍の位置)に位置される参照面1rに、上記試料面反射光成分1sの拡散を行う拡散板を間欠的に挿入される。ところで、拡散板チョッパー5は、入射光を透過拡散(拡散透過)する例えば円状の拡散板の一部分が切り欠かれてなる拡散板円盤(チョッパー)であり、ここでは図2の上面図に示すように、全周を例えば4等分する2つの拡散板ブレード5d(ブレード)と切り欠き部5eとから構成されている。拡散板チョッパー5が回転中心5xを軸として回転することで、対物レンズ7への入射光束中にこの拡散板ブレード5dと切り欠き部5eとが交互に挿入(配置)される。ただし、拡散板チョッパー5は拡散板の一部分が切り欠かれてなるものでなくともよく、要は、拡散板ブレード5dのように光が透過拡散される部分と切り欠き部5eのように光が透過拡散されない部分とを備えたものであればいずれの構成でもよい。
On the other hand, the
上記試料面1と参照面1rとの略中点の位置には、試料面法線1nと直交するガラス板4が配設されている。つまり、試料面1と参照面1rとはガラス板4に関して対称(鏡像の)位置関係とされている。このガラス板4は、該ガラス板4の表面及び裏面の2つの面によって光源2の放射光束2aの約20%を反射し(表面で約10%、裏面で約10%反射し、裏表の合計で約20%反射する)、残りの約80%は透過する。この光源2のガラス板4による反射光2rは参照面1rに向かい、透過光2sは試料面1を照明する。
A
拡散板チョッパー5が回転して参照面1rに拡散板ブレード5dが挿入された状態では、反射光2rによって拡散板ブレード5dが照明され、この反射光2rの拡散板ブレード5dによる透過拡散光の試料面法線1n近傍の成分が(拡散板ブレード5dの法線方向は試料面法線1nと同じ方向である)、参照光として反射鏡6及び対物レンズ7を経てシングルチャンネルポリクロメータ8の入射スリットに入射する。これと同時に、試料面反射光の試料面法線1nの試料面反射光成分1sがガラス板4を透過して拡散板ブレード5dに到達し、上記透過拡散光つまり参照光に混入する。
In a state where the
一方、参照面1rから拡散板ブレード5dが退避した状態では、試料面反射光の試料面法線1nの試料面反射光成分1sは直接、反射鏡6を経て(拡散板ブレード5dにより透過拡散されず)対物レンズ7に入射する。このとき、ガラス板4からの反射光2rは、拡散板ブレード5dが無いため透過拡散が行われず、これにより透過拡散光の試料面法線1n方向近傍の成分も生じず、すなわち反射光2rは、該反射方向から試料面法線1nへの光路変更(光路切り替え)が行われず、参照面1rを試料面法線1n(試料面法線1n方向の光軸)に対して約45°で通過することになり、対物レンズ7、さらにシングルチャンネルポリクロメータ8には入射しない。
On the other hand, in a state where the
制御部9は、各制御プログラム等を記憶するROM(Read Only Memory)、演算処理や制御処理用のデータを格納するRAM(Random Access Memory)、及び当該制御プログラム等をROMから読み出して実行するCPU(中央演算処理装置)等を備え、反射特性測定装置100全体の動作制御を司る。制御部9は、光源2の照明動作を照明駆動回路2dを介して制御するとともに、駆動モータ10(例えばパルスモータ)をモータ制御回路10dを介して駆動制御し、拡散板チョッパー5を回転させる。また制御部9は、シングルチャンネルポリクロメータ8を制御し、拡散板チョッパー5の回転による拡散板ブレード5dの挿入時及び退避時のシングルチャンネルポリクロメータ8の出力をそれぞれ参照信号データ及び試料信号データとして受け取る。制御部9は、この受け取った参照信号及び試料信号データから、光源2の変動を補正した試料の反射率係数(分光反射率係数)を算出する。この反射率係数の算出方法については後に詳述する。なお、制御部9は、該制御部9と接続された所定の操作部(図示省略)からの測定開始信号を受け付けて当該測定(制御)動作を開始する。
The
(測定のタイミングチャート)
図3は、反射特性測定装置100各部の反射特性測定動作に関するタイミングチャートである。本実施形態では、光源2の照明光による1回の測定ごとに拡散板チョッパー5が2回転し、この回転に伴い、拡散板ブレード5d及び切り欠き部5eが参照面1rに4回挿入される。制御部9は、測定開始信号201を受けて、光源2を点灯し(符号202で示す光出力レベルにまで上昇させる)、駆動モータ10を起動して拡散板チョッパー5を回転させる。符号203で示す箇所は参照面1rに切り欠き部5eが挿入(配置)されている区間を、符号204で示す箇所は参照面1rに拡散板ブレード5dが挿入されている区間を示している。切り欠き部5eの挿入時には、符号205で示す試料光(後述の試料光Is)が、拡散板ブレード5dの挿入時には符号206で示す参照光(後述の参照光Ir)がシングルチャンネルポリクロメータ8に入射する。なお、ここでは、それぞれ4回入射されることをIs1〜Is4及びIr1〜Ir4で表している。制御部9は、光源2の光出力及び拡散板チョッパー5の回転の安定を待って、すなわち符号207、208で示す立ち上がり期間を経て、シングルチャンネルポリクロメータ8から連続的に分光データを取り込む。
(Measurement timing chart)
FIG. 3 is a timing chart regarding the reflection characteristic measurement operation of each part of the reflection
制御部9は、拡散板チョッパー5の回転位置を検出するチョッパー位置検出手段(図示省略)によるマスク情報によって、拡散板ブレード5d及び切り欠き部5e挿入の過渡状態を排除してデータを積算し、拡散板ブレード5d及び切り欠き部5eの挿入毎の符号209で示す試料光データDs1〜Ds4及び符号210で示す参照光データDr1〜Dr4を求め、さらに最終的な試料光データ及び参照光データとして、それぞれ試料光データDs1〜Ds4の積算値Ds及び参照光データDr1〜Dr4の積算値Drを求める。
The
(照明光変動の補正の原理)
次に、照明光変動の補正の原理について説明する。以下の説明における試料光Is及び参照光Irは、それぞれの測定値である上記試料光データの積算値Ds及び参照光データの積算値Drと置き換えられる。
(Principle of correction of illumination light fluctuation)
Next, the principle of correction of illumination light fluctuation will be described. The sample light Is and the reference light Ir in the following description are replaced with the integrated value Ds of the sample light data and the integrated value Dr of the reference light data, which are the respective measured values.
切り欠き部5e挿入時のシングルチャンネルポリクロメータ8への入射光(試料光Isとする)には、試料面反射光だけでなく、照明光I0の一部が混入しており、一方、拡散板ブレード5d挿入時の当該入射光には、照明光I0だけでなく(照明光I0の上記ガラス板4による20%反射光だけでなく)、試料面反射光の一部が混入している。このことから、試料光Is及び参照光Irは以下の(1)、(2)式で表すことができる。なお、前者における“照明光I0の一部”とは、例えば、試料面1の外周部近傍における、試料を位置固定する部材或いはカバー体の表面で散乱反射され、いくつかの経路を経てシングルチャンネルポリクロメータ8に入射する試料面反射光以外の所謂迷光であり、(1)式右辺の第2項(I0*bS)を示す。また、後者の“照明光I0”とは、(2)式右辺の第2項(I0*br)を示す。
The
Is=I0*R*aS+I0*bS ・・・(1)
Ir=I0*R*ar+I0*br ・・・(2)
但し、I0:照明光、R:試料の反射率係数
aS及びbS:試料光Isに占める試料面反射光I0*R及び照明光I0の寄与を表す係数
ar及びbr:参照光Irに占める試料面反射光I0*R及び照明光I0の寄与を表す係数
また、記号「*」は乗算を示す(以下同様)。
Is = I 0 * R * a S + I 0 * b S (1)
Ir = I 0 * R * ar + I 0 * b r (2)
However, I 0 : Illumination light, R: Reflectivity coefficients a S and b S of the sample: Coefficients a r and b r representing the contribution of the sample surface reflected light I 0 * R and the illumination light I 0 to the sample light Is: A coefficient representing the contribution of the sample surface reflected light I 0 * R and the illumination light I 0 to the reference light Ir, and the symbol “*” indicates multiplication (the same applies hereinafter).
ここで、本発明における反射特性測定装置100による照明光変動の補正について説明する前に、従来における(上記図16に示す反射特性測定装置920参照)当該補正について説明する。上記(1)、(2)式は、従来でも基本的には同じであるが、従来では、参照光への試料面反射光の寄与を無視できる(ar≒0、すなわちI0*R*ar≒0)ため、上記(2)式は、以下の(3)式で表される。これは、光源902からの参照光902rが、直接、ダブルチャンネルポリクロメータ921に入射されることによる。
Ir=I0*br ・・・(3)
Here, before explaining the correction of illumination light fluctuation by the reflection
Ir = I 0 * b r (3)
このとき、試料光Isと参照光Irとの比rは以下の(4)式で表される。
r(=Is/Ir)=R*aS/br+bS/br ・・・(4)
At this time, the ratio r between the sample light Is and the reference light Ir is expressed by the following equation (4).
r (= Is / Ir) = R * a S / b r + b S / b r (4)
上記(4)式における右辺第2項(試料光に混入した照明光の寄与)を除去するために、測定に先立ってダーク校正を行う。 In order to remove the second term on the right side (contribution of illumination light mixed in the sample light) in the above equation (4), dark calibration is performed prior to measurement.
<ダーク校正>
試料の無い状態(R=0)で試料光(この場合の試料光を(Is)0とする)と参照光(この場合の参照光を(Ir)0とする)とを測定し、比r0を求める。このr0は、以下の(5)式で表される。
r0=(Is)0/(Ir)0=bS/br ・・・(5)
<Dark calibration>
Measure the sample light (the sample light in this case is (Is) 0 ) and the reference light (the reference light in this case is (Ir) 0 ) in the absence of the sample (R = 0), and the ratio r Find 0 . The r 0 is expressed by the following equation (5).
r 0 = (Is) 0 / (Ir) 0 = b S / b r (5)
<試料xの測定>
試料(この場合の試料を試料xとし、この試料xの反射率係数をRxとする)の試料光(この場合の試料光を(Is)xとする)と参照光(この場合の参照光を(Ir)xとする)とを測定して比rXを求める。そして、以下の(6)式に示すようにrX−r0の演算(このように上記ダーク校正で求めたr0を用いてrXに対する補正つまりrX−r0の演算を行うことをダーク補正という)を行う。
rX−r0=(Is)x/(Ir)x−(Is)0/(Ir)0
=Rx*aS/br ・・・(6)
<Measurement of sample x>
The sample light (sample light in this case is assumed to be sample x and the reflectance coefficient of this sample x is assumed to be Rx) and the sample light (in this case, the sample light is assumed to be (Is) x) and the reference light (the reference light in this case is referred to as the reference light) (Ir) and x) and the measured by determining the ratio r X. Then, as shown in the following equation (6), the calculation of r X -r 0 (the correction of r X using r 0 obtained in the dark calibration as described above, that is, the calculation of r X -r 0 is performed. Dark correction).
r X -r 0 = (Is) x / (Ir) x- (Is) 0 / (Ir) 0
= Rx * a S / b r (6)
上記(6)式から、以下の(7)式に示すように、反射率係数Rxを求める。
Rx=(rX−r0)*C ・・・(7)
但し、C:校正係数(=br/aS)
この校正係数Cは、白色校正によって求められる。
From the above equation (6), the reflectance coefficient Rx is obtained as shown in the following equation (7).
Rx = (r X −r 0 ) * C (7)
However, C: Calibration coefficient (= b r / a S )
This calibration coefficient C is obtained by white calibration.
<白色校正>
既知の反射率係数Rwを有する白色基準面のrWを測定し、以下の(8)式によって校正係数Cを求める。
C=RW/(rW−r0) ・・・(8)
<White calibration>
The r W of a white reference surface having a known reflectance coefficient Rw is measured, and the calibration coefficient C is obtained by the following equation (8).
C = R W / (r W -r 0) ··· (8)
次に、本発明における補正の原理について説明する。本発明の技術では、参照光への試料光の寄与arが無視できないので、試料光と参照光との比rは以下の(9)式で表される。
r=Is/Ir=(R*aS+bS)/(R*ar+br)
=(R+BS)/(R*Ar+Br) ・・・(9)
但し、Ar=ar/aS、Br=br/aS、BS=bS/aSであり、比rを反射率係数Rに変換するには、これらの定数Ar、Br及びBSが既知でなければならない。先ず、ダーク校正とその直後に行う白色校正とによってArを決定する。
Next, the principle of correction in the present invention will be described. In the technique of the present invention, since the contribution a r of the sample light to the reference light cannot be ignored, the ratio r of the sample light to the reference light is expressed by the following equation (9).
r = Is / Ir = (R * a S + b S ) / (R * a r + b r )
= (R + B S ) / (R * A r + B r ) (9)
However, A r = a r / a S , B r = b r / a S , B S = b S / a S , and in order to convert the ratio r into the reflectance coefficient R, these constants A r , B r and B S must be known. First, Ar is determined by dark calibration and white calibration performed immediately thereafter.
<ダーク校正>
試料のない状態(R=0)で試料光(Is)0と参照光(Ir)0とを測定し、比r0を求める(以下の(10)、(11)及び(12)式参照)。
(Is)0=I0*bS ・・・(10)
(Ir)0=I0*br ・・・(11)
r0=(Is)0/(Ir)0=BS/Br ・・・(12)
<Dark calibration>
The sample light (Is) 0 and the reference light (Ir) 0 are measured in the absence of the sample (R = 0) to obtain the ratio r 0 (see the following formulas (10), (11) and (12)) .
(Is) 0 = I 0 * b S (10)
(Ir) 0 = I 0 * b r (11)
r 0 = (Is) 0 / (Ir) 0 = B S / B r (12)
<白色校正>
続いて、既知の反射率係数Rwを有する白色基準面の試料光(この場合の試料光を(Is)wとする)と参照光(この場合の参照光を(Ir)wとする)とを測定する(以下の(13)、(14)式参照)。
(Is)w=I0*Rw*aS+I0*bS ・・・(13)
(Ir)w=I0*Rw*ar+I0*br ・・・(14)
<White calibration>
Subsequently, a sample light of a white reference surface having a known reflectance coefficient Rw (the sample light in this case is (Is) w) and a reference light (the reference light in this case is (Ir) w) Measure (see formulas (13) and (14) below).
(Is) w = I 0 * Rw * a S + I 0 * b S (13)
(Ir) w = I 0 * Rw * a r + I 0 * b r ··· (14)
上記ダーク校正及び白色校正の2つの測定間で照明光I0の変化がないとすれば、ダーク校正時の試料光(Is)0データと参照光(Ir)0データとをそれぞれ減じた(ダーク補正した)白色基準面の試料光(Is)wと(Ir)wとの比rW’によって、以下の(15)式からArを求めることができる。
rW’=[(Is)w−(Is)0]/[(Ir)w−(Ir)0]
=aS/ar=1/Ar ・・・(15)
If there is no change in the illumination light I 0 between the two measurements of the dark calibration and the white calibration, the sample light (Is) 0 data and the reference light (Ir) 0 data at the time of dark calibration are respectively reduced (dark the corrected) sample light of the white reference plane (is) w and (Ir) ratio r W of w ', can be obtained a r from the following equation (15).
r W '= [(Is) w- (Is) 0] / [(Ir) w- (Ir) 0]
= A S / ar = 1 / A r (15)
Br及びBSは測定に先立って行われる白色校正に対するダーク補正がなされた以下の(16)式に示す比rWによって求めることができる。
rW=(Is)w/(Ir)w=(Rw+BS)/(Rw*Ar+Br) ・・・(16)
B r and B S can be obtained by a ratio r W shown in the following equation (16) in which dark correction is performed for white calibration performed prior to measurement.
r W = (Is) w / (Ir) w = (Rw + B S ) / (Rw * A r + B r ) (16)
Arは既知であるため、上記(12)式及び上記(16)式から、以下の(17)、(18)式に示すようにBr及びBSを求めることができる。
Br=Rw*(1−Ar*rW)/(rW−r0) ・・・(17)
BS=r0*Br ・・・(18)
Since A r is known, from the equation (12) and Equation (16), the following (17), can be obtained B r and B S as shown in (18).
B r = Rw * (1−A r * r W ) / (r W −r 0 ) (17)
B S = r 0 * B r (18)
<試料xの測定>
試料xの上記(9)式で表される比rXは、上記で求めたAr、Br及びBSを用いて、以下の(19)式によって反射率係数Rxに変換される。
Rx=(rX*Br−BS)/(1−rX*Ar) ・・・(19)
<Measurement of sample x>
The ratio r X of the sample x expressed by the above equation (9) is converted into the reflectance coefficient Rx by the following equation (19) using the A r , B r and B S obtained above.
Rx = (r X * B r -B S) / (1-r X * A r) ··· (19)
Arを求める(10)〜(15)式は、連続して行われるダーク校正と白色校正との間での照明光の変化が無視できることを前提としているが、本実施形態のように白熱電球などの光源は短時間の変化が極めて小さく、この前提を満足する。上記の反射率係数Rxを波長毎に求めることで、分光反射率係数を得ることができる。また、上記によって、定数Ar、Br及びBSを求めた後に、従来技術の白色校正を併せて行うことで、温度変化などに起因する、処理回路を含む系の変化を補正することができる。この場合、試料の反射率係数Rxは、校正係数Cを用いて、以下の(20)式により求められる。
Rx=C*(rX*Br−BS)/(1−rX*Ar) ・・・(20)
Request A r (10) ~ (15 ) equation, a change of the illumination light between the dark calibration and white calibration performed continuously is assumed that negligible, incandescent bulbs, as in this embodiment The light source such as has a very small change in a short time and satisfies this assumption. The spectral reflectance coefficient can be obtained by obtaining the reflectance coefficient Rx for each wavelength. In addition, after obtaining the constants A r , B r and B S by the above, it is possible to correct a change in the system including the processing circuit due to a temperature change or the like by performing white calibration in the related art. it can. In this case, the reflectance coefficient Rx of the sample is obtained by the following equation (20) using the calibration coefficient C.
Rx = C * (r X * B r -B S) / (1-r X * A r) ··· (20)
上記校正係数Cは、既知の反射率係数Rwを有する白色基準面を測定して上記(19)式により求めた反射率係数Rw’と当該既知の反射率係数Rwとから、以下の(21)式により求められる。
C=Rw/Rw’ ・・・(21)
The calibration coefficient C is calculated from the reflectance coefficient Rw ′ obtained by the above equation (19) by measuring a white reference surface having a known reflectance coefficient Rw and the following known reflectance coefficient Rw (21) It is calculated by the formula.
C = Rw / Rw ′ (21)
(測定動作フローの説明)
<全体フロー>
図4は、本発明に係る反射特性測定装置による反射特性測定動作の全体的なフローを示すフローチャートである。本発明に係る反射特性測定装置は、当該全体フローで示すステップを経て試料測定に到る。このフローでは、従来技術の白色校正(白色再校正)を併用し、上記(20)式によって試料の分光反射率係数Rx(λ)を求めている。先ず、上記(19)式における3つの定数Ar、Br及びBSを波長毎に求めて記憶する(ステップS1)。これらの定数は上記(20)式によって試料の分光反射率係数Rx(λ)を算出する際に必要となる。次に、白色再校正を行う(ステップS2)。そして、試料の測定を行う(ステップS3)。
(Explanation of measurement operation flow)
<Overall flow>
FIG. 4 is a flowchart showing an overall flow of the reflection characteristic measurement operation by the reflection characteristic measuring apparatus according to the present invention. The reflection characteristic measuring apparatus according to the present invention reaches the sample measurement through the steps shown in the overall flow. In this flow, the conventional white calibration (white recalibration) is used together, and the spectral reflectance coefficient Rx (λ) of the sample is obtained by the above equation (20). First, the three constants A r , B r and B S in the above equation (19) are obtained and stored for each wavelength (step S1). These constants are necessary when calculating the spectral reflectance coefficient Rx (λ) of the sample by the above equation (20). Next, white recalibration is performed (step S2). Then, the sample is measured (step S3).
<基本測定ルーチン>
図5は、基本測定動作の一例を示すフローチャートである。ダーク校正、白色校正及び試料測定のいずれにおいても、基本測定ルーチン(後述のステップS22、S32及びS62に該当)によって試料光及び参照光の分光強度Is(λ)、Ir(λ)が測定される。先ず、制御部9は測定開始信号を受け、光源2を点灯し、拡散板チョッパー5の回転を開始する(ステップS11)。照明光と拡散板チョッパー5の回転との安定に必要な時間をおいて(ステップS12)、これらが安定した後、拡散板ブレード5dの参照面1rからの退避時におけるシングルチャンネルポリクロメータ8の出力から試料光の分光強度Is(λ)を測定して記憶する(ステップS13)。また、拡散板ブレード5dの参照面1rへの挿入時におけるシングルチャンネルポリクロメータ8の出力から参照光の分光強度Ir(λ)を測定する(ステップS14)。参照光の分光強度Ir(λ)を波長に沿って移動平均し、その結果を改めてIr(λ)とし、これを記憶する(ステップS15)。光源2を消灯し、拡散板チョッパー5の回転を停止する(ステップS16)。
<Basic measurement routine>
FIG. 5 is a flowchart showing an example of the basic measurement operation. In any of the dark calibration, the white calibration, and the sample measurement, the spectral intensities Is (λ) and Ir (λ) of the sample light and the reference light are measured by a basic measurement routine (corresponding to steps S22, S32, and S62 described later). . First, the
以下の説明では煩雑を避けるため、上記Is(λ)、Ir(λ)をそれぞれIs、Irと記す。なお、記号化された他の量もこれに準じ、実際には、これらの量は全て波長毎に求められる。 In the following description, in order to avoid complications, the above Is (λ) and Ir (λ) are referred to as Is and Ir, respectively. In addition, the other symbolized amounts are based on this, and in actuality, these amounts are all obtained for each wavelength.
<ダーク校正ルーチン>
図6は、ダーク校正動作の一例を示すフローチャートである。ダーク校正は、定数設定時に行われる。先ず、試料載置面に照明光を略完全に吸収する光トラップを配置する(ステップS21)。上記基本測定ルーチンによって、試料反射光と参照光との分光強度Is、Irを得る(ステップS22)。このIs、Irをそれぞれ(Is)0、(Ir)0として記憶する(ステップS23)。そして、比r0(=(Is)0/(Ir)0)を求めて記憶する(ステップS24)。
<Dark calibration routine>
FIG. 6 is a flowchart illustrating an example of the dark calibration operation. Dark calibration is performed when a constant is set. First, an optical trap that absorbs illumination light almost completely is disposed on the sample mounting surface (step S21). By the basic measurement routine, spectral intensities Is and Ir of the sample reflected light and the reference light are obtained (step S22). These Is and Ir are stored as (Is) 0 and (Ir) 0 , respectively (step S23). Then, the ratio r 0 (= (Is) 0 / (Ir) 0 ) is obtained and stored (step S24).
<白色校正ルーチン>
図7は、白色校正動作の一例を示すフローチャートである。白色校正は、定数設定時と試料測定時とに行われる。先ず、試料載置面に既知の分光反射率係数Rwを有する白色基準試料を配置する(ステップS31)。上記基本測定ルーチンによって、試料反射光と参照光との分光強度Is、Irを得る(ステップS32)。このIs、Irをそれぞれ(Is)w、(Ir)wとして記憶する(ステップS33)。そして、比rW(=(Is)w/(Ir)w)を求めて記憶する(ステップS34)。
<White calibration routine>
FIG. 7 is a flowchart showing an example of the white calibration operation. White calibration is performed when a constant is set and when a sample is measured. First, a white reference sample having a known spectral reflectance coefficient Rw is placed on the sample placement surface (step S31). By the basic measurement routine, spectral intensities Is and Ir of the sample reflected light and the reference light are obtained (step S32). These Is and Ir are stored as (Is) w and (Ir) w, respectively (step S33). Then, the ratio r W (= (Is) w / (Ir) w) is obtained and stored (step S34).
<定数設定フロー>
図8は、定数設定動作の一例を示すフローチャートである。先ず、上記ダーク校正ルーチンによってダーク校正し、(Is)0、(Ir)0及びr0を得る(ステップS41)。引き続き、白色校正ルーチンによって白色校正を行い、(Is)w、(Ir)w及びrWを得る(ステップS42)。次に、rW’=[(Is)w−(Is)0]/[(Ir)w−(Ir)0](上記(15)式参照)によって比rW’を求める(ステップS43)。そして、3つの定数Ar、Br及びBSを以下の各式によって求めて記憶し、校正係数Cの初期値「1」を記憶する(ステップS44)。
Ar=1/rW’;この式を(15)’式とする(上記(15)式参照)
Br=Rw*(1−Ar*rW)/(rW−r0)(上記(17)式参照)
BS=r0*Br(上記(18)式参照)
C=1
<Constant setting flow>
FIG. 8 is a flowchart showing an example of the constant setting operation. First, dark calibration is performed by the dark calibration routine to obtain (Is) 0 , (Ir) 0 and r 0 (step S 41). Subsequently performs white calibration by the white calibration routine, get (Is) w, (Ir) w and r W (step S42). Next, the ratio r W ′ is obtained by r W ′ = [(Is) w− (Is) 0 ] / [(Ir) w− (Ir) 0 ] (see the above equation (15)) (step S43). Then, the three constants A r , B r and B S are obtained and stored according to the following equations, and the initial value “1” of the calibration coefficient C is stored (step S44).
A r = 1 / r W ′; this equation is defined as equation (15) ′ (see equation (15) above)
B r = Rw * (1−A r * r W ) / (r W −r 0 ) (see the above equation (17))
B S = r 0 * B r (see the above equation (18))
C = 1
<白色再校正フロー>
図9は、白色再校正動作の一例を示すフローチャートである。白色再校正は、定数設定後の系の変化を補正するもので、白色基準試料の既知の分光反射率係数と、設定された定数Ar、Br及びBSを用いて上記(19)式によって測定した当該白色基準試料の分光反射率係数測定値との比から、校正係数Cを求めて記憶する。短期の変化を補正する白色再校正は、光学系に固有の定数を設定する定数設定よりも高頻度で行われる。先ず、白色校正ルーチンによって白色校正を行い、rWを得る(ステップS51)。次に、Rw’=(rW*Br−BS)/(1−rW*Ar)(上記(19)式参照)によってその時点の反射率係数Rw’を求める(ステップS52)。そして、C=Rw/Rw’(上記(21)式参照)によって校正係数Cを求めて記憶する(ステップS53)。
<White recalibration flow>
FIG. 9 is a flowchart showing an example of the white recalibration operation. The white recalibration is to correct a change in the system after setting the constant, and the above equation (19) is used by using the known spectral reflectance coefficient of the white reference sample and the set constants A r , B r and B S. The calibration coefficient C is obtained and stored from the ratio of the measured value of the white reference sample to the measured spectral reflectance coefficient of the white reference sample. White recalibration for correcting short-term changes is performed more frequently than constant setting for setting a constant specific to the optical system. First, the white calibration by the white calibration routine, get r W (step S51). Next, the reflectance coefficient Rw ′ at that time is obtained by Rw ′ = (r W * B r −B S ) / (1−r W * A r ) (see the above equation (19)) (step S52). Then, the calibration coefficient C is obtained and stored by C = Rw / Rw ′ (see the above equation (21)) (step S53).
<試料測定フロー>
図10は、試料測定動作の一例を示すフローチャートである。試料測定は、通常は白色再校正後に行われる。定数設定後に測定する場合は、校正係数C=1(初期値)となる。先ず、試料載置面に試料を配置する(ステップS61)。上記基本測定ルーチンによって、試料反射光と参照光との分光強度Is、Irを得る(ステップS62)。このIs、Irから比rX(=Is/Ir)を求める(ステップS63)。そして、Rx=C*(rX*Br−BS)/(1−rX*Ar)(上記(20)式参照)によって、試料の反射率係数Rxを求めて、出力する(ステップS64)。
<Sample measurement flow>
FIG. 10 is a flowchart illustrating an example of the sample measurement operation. Sample measurement is usually performed after white recalibration. When the measurement is performed after setting the constant, the calibration coefficient C = 1 (initial value). First, a sample is placed on the sample mounting surface (step S61). Spectral intensities Is and Ir of the sample reflected light and the reference light are obtained by the basic measurement routine (step S62). A ratio r X (= Is / Ir) is obtained from Is and Ir (step S63). Then, the reflectance coefficient Rx of the sample is obtained by Rx = C * (r X * B r −B S ) / (1−r X * A r ) (see the above equation (20)) and output (step) S64).
なお、上記実施形態では、参照光の取り込みのための光路変更を拡散板チョッパー5(50)を用いて行う構成としているが、要は、当該光路変更(光路変換)が可能であれば拡散板チョッパーに限らず何れの構成であってもよく、例えば光の反射又は光の屈折を利用して光路を変更する(光束の方向を切り替える)ことが可能なプリズムやミラー(或いはこれらの組み合わせ)等で構成された光学系(光路変更手段)であってもよい。この場合、図1において、当該光学系が参照面1rに対して挿入されると、光源2のガラス板4による反射光2rは、この光学系により光路変更され、参照光として反射鏡6及び対物レンズ7を経てシングルチャンネルポリクロメータ8の入射スリットに入射し、一方、光学系が参照面1rから退避すると、反射光2rは、参照面1rを上述したように約45°の角度で通過し、対物レンズ7、さらにシングルチャンネルポリクロメータ8には入射しない。
In the above embodiment, the optical path change for taking in the reference light is performed by using the diffuser plate chopper 5 (50). In short, if the optical path change (optical path conversion) is possible, the diffuser plate Any configuration, not limited to a chopper, may be used. For example, a prism or mirror (or a combination thereof) capable of changing an optical path (switching the direction of a light beam) using light reflection or light refraction. An optical system (optical path changing means) configured by In this case, in FIG. 1, when the optical system is inserted into the
以上のように本実施形態における反射特性測定装置100(200、300)によれば、光源2によって、試料面1が試料面法線1nに対する所定の角度(ここでは約45°)から照明され、シングルチャンネルポリクロメータ8(受光手段)によって、光源2による照明光が試料面1に反射された試料面法線1n方向の試料面反射光(試料面反射光成分1s)が受光される。シングルチャンネルポリクロメータ8への入射光の光路上における参照面1rに対して挿入及び退避可能に構成された光路変更手段(拡散板チョッパー5)によって、該参照面入射光に対する光路変更が行われる。試料面1と参照面1rとの対称面であるガラス板4によって、光源2による照明光(放射光束2a)の一部(反射光2r)が参照面1rへ向けて反射され、制御部9によって、光路変更手段の挿入及び退避動作並びに光源2の照明動作が制御されるとともに、シングルチャンネルポリクロメータ8の出力情報が演算処理される。上記シングルチャンネルポリクロメータ8によって、光路変更手段の参照面1rからの退避時に、試料面反射光が主として受光され、光路変更手段の参照面1rへの挿入時に、ガラス板4により参照面1rに向けて反射されて且つシングルチャンネルポリクロメータ8へ向けて入射されるよう光路変更手段により光路変更された上記照明光の一部(反射光2r;具体的には、反射光2rが光路変更されて反射鏡6へ向けて入射される光であり、光路変更手段の法線方向つまり試料面法線1n方向の成分)が主として受光される。そして、制御部9によって、光路変更手段の挿入及び退避時におけるシングルチャンネルポリクロメータ8の出力情報に基づいて、照明光(放射光束2a)の変動すなわち試料面照明光の変動が補正された試料面1の反射特性が算出される。
As described above, according to the reflection characteristic measuring apparatus 100 (200, 300) according to the present embodiment, the
これにより、試料面照明光と相関性の高い参照光情報に基づいて、試料面照明光の変動を正確に補正することができ、安定性の高い測定が可能となる。また、受光手段としてシングルチャンネルのポリクロメータ8を使用できるとともに、参照光の取り込みのための光路変更を、光路変更手段の参照面1rへの挿入によって行うので、構成がシンプルとなり、コストを抑えることができる。
Thereby, based on the reference light information highly correlated with the sample surface illumination light, the fluctuation of the sample surface illumination light can be accurately corrected, and a highly stable measurement is possible. In addition, a single-
また、光路変更手段が光を透過拡散する透過拡散面とされるので、光路変更手段による参照光の取り込みのための光路変更を、特別な光学系を用いず、位置、角度の許容範囲が広い透過拡散面の参照面への挿入によって行うことができ、よりシンプルな構成で低コストな測定装置を実現できる。 Further, since the optical path changing means is a transmission diffusing surface for transmitting and diffusing light, the optical path changing for taking in the reference light by the optical path changing means does not use a special optical system, and the allowable range of position and angle is wide. The measurement can be performed by inserting the transmission diffusion surface into the reference surface, and a low-cost measuring device can be realized with a simpler configuration.
また、図2に示すように、透過拡散面が、回転駆動可能に構成された拡散板チョッパー5の拡散板ブレード5dとされ、該拡散板チョッパー5の拡散板ブレード5dが該拡散板ブレード5dに対する入射光を透過拡散する拡散板とされるので、透過拡散面の参照面1rに対する挿入及び退避を、ブレードが拡散板で構成された拡散板チョッパー5という単純な構成で容易に実現できる。
Further, as shown in FIG. 2, the transmission diffusion surface is the
また、図11に示すように、透過拡散面が、該透過拡散面の法線に対する略45°方向の入射光(例えば入射光20c、22c)を、該入射光の光軸と透過拡散面の法線521とを含む面内の拡散成分が面外の拡散成分より大きくなるように透過拡散する不均等透過拡散面とされるので、不均等透過拡散面によって、該不均等透過拡散面に入射した照明光を効率良くシングルチャンネルのポリクロメータ8に入射させることができる。
Further, as shown in FIG. 11, the transmission diffusion surface transmits incident light (for example, incident light 20c, 22c) in a direction substantially 45 ° with respect to the normal line of the transmission diffusion surface, and the optical axis of the incident light and the transmission diffusion surface. Since the non-uniform transmission diffusion surface diffuses and diffuses so that the in-plane diffusion component including the
また、制御部9によって、透過拡散面の挿入及び退避時におけるシングルチャンネルのポリクロメータ8の出力情報と予め与えられた補正係数(上記校正係数Cや定数Ar、Br及びBS等)の情報とを用いて、透過拡散面挿入時に照明光の一部とともに該透過拡散面に入射する試料面反射光の影響を補正する演算処理が行われ、照明光の変動が補正された試料面1の反射特性が算出されるので、参照光に混入する試料面反射光の影響を除去して高精度な測定が可能となる。
Further, the
また、本発明に係る反射特性測定装置300は、光源302と試料用開口301a及び測定用開口301bとを備える積分球301で構成された積分球照明手段によって、該試料用開口301aに配設された試料面1が拡散照明され、シングルチャンネルポリクロメータ8(受光手段)によって、積分球照明手段による拡散照明光が試料面1に反射されてなる所定方向の試料面反射光(試料面反射光成分1s)が測定用開口301bを通して受光される。また、透過拡散面が、測定用開口301bの近傍における参照面1rに対して挿入及び退避可能に構成され、制御部9によって、透過拡散面の挿入及び退避動作並びに積分球照明手段の照明動作が制御されるとともに、シングルチャンネルポリクロメータ8の出力情報が演算処理される。上記シングルチャンネルポリクロメータ8によって、透過拡散面の参照面1rからの退避時に、試料面反射光が主として受光され、透過拡散面の参照面1rへの挿入時に、測定用開口301bから該透過拡散面に入射した拡散照明光の一部が主として受光される。そして、制御部9によって、透過拡散面の挿入及び退避時におけるシングルチャンネルポリクロメータ8の出力情報に基づいて、拡散照明光の変動が補正された試料面1の反射特性が算出される。
In addition, the reflection
これにより、参照光の取り込みのための光路変更を、特別な光学系を用いず、位置、角度の許容範囲が広い透過拡散面の参照面1rへの挿入によって行うことができるとともに、受光手段としてシングルチャンネルのポリクロメータ8を使用できるので、構成がシンプルとなり、コストを抑えることができる。
As a result, the optical path for taking in the reference light can be changed by inserting the transmission diffusing surface having a wide position and angle tolerance into the
また、試料用開口301aと測定用開口301bとが積分球301の略対極に配置され、光源302が試料用開口301aと測定用開口301bとの略対称面310sの近傍に配置されるので、試料面照明光と参照面入射光とが相関性の高いものとなり、試料面照明光と相関の高い参照光を得ることができ、これにより、拡散照明光の変化を正確に補正することができ、安定性の高い測定が可能となる。
In addition, since the
なお、本発明は、以下(A)〜(D)の態様をとることができる。
(A)上記実施形態では、参照光として拡散板(拡散板ブレード5d)に入射する光量は照明光の20%程度であり、参照光測定値のS/Nが試料反射光測定値より低くなり、反射率係数測定値の精度を下げることが起こり得る。参照光の分光分布が単調で、その変化の波長依存性が緩やかであれば、波長に沿って移動平均する、すなわち分光分布測定値を波長について移動平均することで、S/Nを改善することができる。上記実施形態では、可視光源が白熱電球であるので、参照光の分光分布が単調であるという条件を満たすものの、混入する試料光が急峻な波長依存性をもちえるので、移動平均によるS/N改善は大きな測定誤差を招きかねない。しかしながら、参照光に試料反射光が混入していてもその比率が小さいときには、波長依存性は緩やかなので、上記移動平均してS/Nを改善することが可能となる。このことを踏まえ、反射特性測定装置100(200、300)において、制御部9によって、波長について移動平均した即ち分光分布測定値を波長について移動平均した透過拡散面挿入時のシングルチャンネルのポリクロメータ8の出力情報と、透過拡散面退避時のシングルチャンネルのポリクロメータ8の出力情報とを用いて、照明光の変動が補正された試料面1の反射特性を算出するようにすることで、透過拡散面挿入時におけるシングルチャンネルのポリクロメータ8の出力のS/Nを改善し、ひいては試料面1の反射特性測定値の精度を向上することができる。
In addition, this invention can take the aspect of (A)-(D) below.
(A) In the above embodiment, the amount of light incident on the diffusion plate (
(B)上記拡散板チョッパー50の拡散板(拡散板ブレード5d)の代わりに、例えば図11に示すような拡散特性を有する不均等拡散板(不均等拡散面)すなわち拡散板ブレード51d、52dを備えた図12に示す拡散板チョッパー50を用いてもよい。拡散板チョッパー50における拡散板ブレード(ここでは拡散板ブレード52dを用いて説明する)は、図11の符号510で示す上面図及び符号520で示す側面図のように、拡散板ブレード52dに対する入射光、すなわち拡散板ブレード52dの法線521に対する略45°方向からの入射光20c、22cを、特定の方向52aには大きく、これと直交する方向には小さくなるように謂わば楕円状に拡散する(この拡散の様子は例えば符号52eで示す円で表される)。ただし、上記特定の方向とは、例えば入射光20c、22cの光軸(入射方向)と拡散板ブレード52d(透過拡散面)の法線(法線方向)とを含む面内の方向(面内方向)である。
(B) Instead of the diffusion plate (
したがって、この不均等拡散板からなる拡散板ブレード51d、52dを用いた拡散板チョッパー50では、図12の上面図に示すように、4つの可視光源20〜23を、互いに直交する4方位に配置し、2つの拡散板ブレード51d、52dがそれぞれ参照面1rに挿入されたときの楕円状拡散の長軸(長軸51a、52aとする)が、拡散板チョッパー50の回転に応じて、入射光20c、22c或いは入射光21c、23cの方向に略一致するように(長軸51aが入射光21c及び23cに一致するように、長軸52aが入射光20c及び22cに一致するように)、上述の不均等拡散板を配置することで、当該拡散板への入射光20c〜23cを、効率良く対物レンズ7、さらにシングルチャンネルポリクロメータ8に入射させることができる。ただし、上述の通常の拡散板を用いる場合とは異なり、楕円状拡散の軸(長軸)を可視光線の方向に略一致させて停止する必要があり、拡散板チョッパー50の厳密な制御が必要となる。
Therefore, in the
(C)上記反射特性測定装置100を、図13に示すように、参照面1rが対物レンズ7とシングルチャンネルポリクロメータ8との間に配置され(参照面1rが入射光光路における対物レンズ7の前方に位置していなくてもよい)、また、反射特性測定装置100と同様に、参照面1rに拡散板ブレード5dが挿入、退避されるように拡散板チョッパー5が配置されてなる反射特性測定装置200としてもよい。なお、図13では、光源2を図中右側に1つだけ記載しているが、これに限定されず、反射特性測定装置100と同じく所定数備えた構成となっている。
(C) In the reflection
(D)上記実施形態における技術は、図14に示すように積分球照明を行う反射特性測定装置300に対しても応用できる。この場合、制御部9によって制御回路102dを介して制御される光源302の放射光束302aは、高反射率、高拡散特性の内壁(例えば白色塗料が塗布された内壁)を有する積分球301によって拡散多重反射され、拡散照明光302sとなって、積分球301の試料用開口301aに配設された試料面1を照明する。照明された試料面からの反射光の試料面法線1nに略平行な試料面反射光成分1sが、試料用開口301aの略対極に位置する測定用開口301bを通り、反射鏡6と対物レンズ7とによって、シングルチャンネルポリクロメータ8に収束、入射する。本変形態様(D)では、測定用開口301b近傍が参照面1rとなり、拡散板チョッパー5は、測定用開口301bの直後(測定用開口301b直近の反射鏡6側の後方位置)に拡散板(拡散板ブレード5d)を挿入、退避させる。この場合も先の変形態様(C)と同様、拡散板挿入時には該拡散板に入射した拡散照明光302rが、また拡散板退避時には試料反射光が主として、対物レンズ7、シングルチャンネルポリクロメータ8に入射する。なお、図14に示すように、上記略対極に位置する試料用開口301aと測定用開口301bとの略対称面310s近傍に光源302を配置することで、試料照明光(拡散照明光302s)と相関性の高い参照面入射光(拡散照明光302r)を得ることができる。
(D) The technique in the above embodiment can be applied to a reflection
1 試料面
1n 試料面法線
1r 参照面
1s 試料面反射光成分(試料面反射光)
2 光源(照明手段)
2a、302a 放射光束
2d 照明駆動回路
2r 反射光(請求項1記載の部分反射面に反射された照明光の一部)
2s 透過光
4 ガラス板(部分反射面)
5 拡散板チョッパー(透過拡散面、チョッパー、光路変更手段)
5d 拡散板ブレード(ブレード、透過拡散面)
5e 切り欠き部
6 反射鏡
7 対物レンズ
8 シングルチャンネルポリクロメータ(受光手段)
9 制御部(制御演算手段)
10 駆動モータ
10d モータ制御回路
50 拡散板チョッパー(チョッパー、不均等透過拡散面)
100、200、300 反射特性測定装置
301 積分球(積分球照明手段)
301a 試料用開口
301b 測定用開口
302 光源(積分球照明手段)
310s 対称面(請求項8記載の対称面)
1
2 Light source (illumination means)
2a, 302a
2s Transmitted light 4 Glass plate (partial reflection surface)
5 Diffusion plate chopper (transmission diffusion surface, chopper, optical path changing means)
5d diffusion plate blade (blade, transmission diffusion surface)
5e Notch 6
9 Control unit (control calculation means)
10
100, 200, 300 Reflection
301a Sample opening
310s plane of symmetry (symmetric plane of claim 8)
Claims (8)
前記照明手段による照明光が前記試料面に反射された前記試料面法線方向の試料面反射光を受光する受光手段と、
前記受光手段への入射光の光路上における参照面に対して挿入及び退避可能に構成された該参照面入射光に対する光路変更を行う光路変更手段と、
前記試料面と前記参照面との対称面であって、前記照明手段による照明光の一部を前記参照面へ向けて反射する部分反射面と、
前記光路変更手段の挿入及び退避動作並びに前記照明手段の照明動作を制御するとともに、前記受光手段の出力情報を演算処理する制御演算手段とを備え、
前記受光手段は、前記光路変更手段の参照面からの退避時に、前記試料面反射光を主として受光し、前記光路変更手段の参照面への挿入時に、前記部分反射面により反射されて且つ前記受光手段へ向けて入射されるよう前記光路変更手段によって光路変更された前記照明光の一部を主として受光し、
前記制御演算手段は、前記光路変更手段の挿入及び退避時における前記受光手段の出力情報に基づいて、前記照明光の変動が補正された試料面の反射特性を算出することを特徴とする反射特性測定装置。 Illuminating means for illuminating the sample surface from a predetermined angle with respect to the sample surface normal,
A light receiving means for receiving the sample surface reflected light in the normal direction of the sample surface reflected by the illumination surface by the illumination means;
An optical path changing unit configured to change an optical path for the reference surface incident light configured to be inserted into and retracted from a reference surface on an optical path of the incident light to the light receiving unit;
A partially reflective surface that is a symmetrical surface of the sample surface and the reference surface, and reflects a part of the illumination light from the illumination means toward the reference surface;
The optical path changing means is inserted and retracted and the lighting means is controlled to control the lighting operation, and the control calculating means for calculating the output information of the light receiving means,
The light receiving means mainly receives the sample-surface reflected light when retracted from the reference surface of the optical path changing means, and is reflected by the partial reflection surface and inserted into the reference surface of the optical path changing means. Mainly receiving a part of the illumination light whose optical path has been changed by the optical path changing means so as to be incident on the means,
The control calculation means calculates the reflection characteristic of the sample surface in which the variation of the illumination light is corrected based on the output information of the light receiving means when the optical path changing means is inserted and withdrawn. measuring device.
前記積分球照明手段による拡散照明光が前記試料面に反射されてなる所定方向の試料面反射光を前記測定用開口を通して受光する受光手段と、
前記測定用開口の近傍における参照面に対して挿入及び退避可能に構成された透過拡散面と、
前記透過拡散面の挿入及び退避動作並びに前記積分球照明手段の照明動作を制御するとともに、前記受光手段の出力情報を演算処理する制御演算手段とを備え、
前記受光手段は、前記透過拡散面の参照面からの退避時に、前記試料面反射光を主として受光し、前記透過拡散面の参照面への挿入時に、前記測定用開口から該透過拡散面に入射した前記拡散照明光の一部を主として受光し、
前記制御演算手段は、前記透過拡散面の挿入及び退避時における前記受光手段の出力情報に基づいて、前記拡散照明光の変動が補正された試料面の反射特性を算出することを特徴とする反射特性測定装置。 An integrating sphere illuminating means configured to diffusely illuminate a sample surface disposed in the sample opening, the integrating sphere including a light source, a sample opening, and a measurement opening;
Light receiving means for receiving the sample surface reflected light in a predetermined direction formed by reflecting the diffuse illumination light by the integrating sphere illuminating means on the sample surface through the measurement aperture;
A transmission diffusion surface configured to be inserted into and retracted from a reference surface in the vicinity of the measurement opening;
Controlling the insertion and retraction operation of the transmission diffusion surface and the illumination operation of the integrating sphere illumination means, and a control calculation means for calculating the output information of the light receiving means,
The light receiving means mainly receives the sample-surface reflected light when the transmission diffusion surface is retracted from the reference surface, and enters the transmission diffusion surface from the measurement opening when the transmission diffusion surface is inserted into the reference surface. Mainly receiving a part of the diffuse illumination light,
The control calculation means calculates the reflection characteristic of the sample surface in which the variation of the diffuse illumination light is corrected based on the output information of the light receiving means when the transmission diffusion surface is inserted and retracted Characteristic measuring device.
前記光源が前記試料用開口と測定用開口との略対称面の近傍に位置することを特徴とする請求項7記載の反射特性測定装置。 The sample opening and the measurement opening are located at substantially the opposite electrode of the integrating sphere,
8. The reflection characteristic measuring apparatus according to claim 7, wherein the light source is positioned in the vicinity of a substantially symmetrical plane between the sample opening and the measurement opening.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006043928A JP4660696B2 (en) | 2006-02-21 | 2006-02-21 | Reflection characteristic measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006043928A JP4660696B2 (en) | 2006-02-21 | 2006-02-21 | Reflection characteristic measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007225312A true JP2007225312A (en) | 2007-09-06 |
JP4660696B2 JP4660696B2 (en) | 2011-03-30 |
Family
ID=38547283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006043928A Expired - Fee Related JP4660696B2 (en) | 2006-02-21 | 2006-02-21 | Reflection characteristic measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4660696B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011232268A (en) * | 2010-04-30 | 2011-11-17 | Japan Aerospace Exploration Agency | Measurement method of reflectivity and reflection density having calibration function, and system implementing the same |
WO2012128113A1 (en) * | 2011-03-18 | 2012-09-27 | コニカミノルタセンシング株式会社 | Reflectance property measurement device and reflectance property measurement method |
JP2020176873A (en) * | 2019-04-16 | 2020-10-29 | セイコーエプソン株式会社 | Calibration device, calibration method, spectroscopic camera, and display device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001356048A (en) * | 1991-05-10 | 2001-12-26 | Mitsui Mining & Smelting Co Ltd | Optical sensor apparatus |
JP2004219322A (en) * | 2003-01-16 | 2004-08-05 | Astem:Kk | Non-destructive spectrophotometric instrument |
JP2005156243A (en) * | 2003-11-21 | 2005-06-16 | Konica Minolta Sensing Inc | Spectral intensity measuring device, calibration method therefor, spectral reflection characteristic measuring device, and calibration method therefor |
-
2006
- 2006-02-21 JP JP2006043928A patent/JP4660696B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001356048A (en) * | 1991-05-10 | 2001-12-26 | Mitsui Mining & Smelting Co Ltd | Optical sensor apparatus |
JP2004219322A (en) * | 2003-01-16 | 2004-08-05 | Astem:Kk | Non-destructive spectrophotometric instrument |
JP2005156243A (en) * | 2003-11-21 | 2005-06-16 | Konica Minolta Sensing Inc | Spectral intensity measuring device, calibration method therefor, spectral reflection characteristic measuring device, and calibration method therefor |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011232268A (en) * | 2010-04-30 | 2011-11-17 | Japan Aerospace Exploration Agency | Measurement method of reflectivity and reflection density having calibration function, and system implementing the same |
WO2012128113A1 (en) * | 2011-03-18 | 2012-09-27 | コニカミノルタセンシング株式会社 | Reflectance property measurement device and reflectance property measurement method |
JP5585722B2 (en) * | 2011-03-18 | 2014-09-10 | コニカミノルタ株式会社 | Reflection characteristic measuring device |
JP2020176873A (en) * | 2019-04-16 | 2020-10-29 | セイコーエプソン株式会社 | Calibration device, calibration method, spectroscopic camera, and display device |
JP7207124B2 (en) | 2019-04-16 | 2023-01-18 | セイコーエプソン株式会社 | CALIBRATION DEVICE, CALIBRATION METHOD, SPECTRAL CAMERA, AND DISPLAY DEVICE |
Also Published As
Publication number | Publication date |
---|---|
JP4660696B2 (en) | 2011-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0146781A2 (en) | Photometric apparatus with multi-wavelength excitation | |
KR100521616B1 (en) | Spectral reflectance measuring apparatus and spectral reflectance measuring method | |
JP4660696B2 (en) | Reflection characteristic measuring device | |
JP2009008554A (en) | Spectrophotometer and liquid chromatography | |
WO2014030475A1 (en) | Spectrophotometer | |
JPH0347450B2 (en) | ||
CN105157842A (en) | Double-optical path color measuring spectrophotometer with repetitive optimization device and optimization method | |
KR100495604B1 (en) | Automatic optical measurement method | |
JPH11241949A (en) | Apparatus for measuring reflection property | |
US8717557B2 (en) | Spectrophotometer and method for determining performance thereof | |
JP5086958B2 (en) | Particle property measuring device | |
KR20140014466A (en) | Apparatus for measuring a thickness using digital light processing and method using the same | |
WO2012157190A1 (en) | Optical system for reflection characteristic measuring apparatus, and reflection characteristic measuring apparatus | |
CN221302708U (en) | Reflectivity measurement system of optical device | |
JP4007315B2 (en) | Laser distance measuring device | |
JP2007327904A (en) | Reflectance measuring instrument | |
US4708477A (en) | Photometer | |
US6870617B2 (en) | Accurate small-spot spectrometry systems and methods | |
JP4347504B2 (en) | Optical automatic measurement method | |
WO2021166403A1 (en) | Moisture detection device | |
CN213933570U (en) | Absorbance detection device | |
JP3216506B2 (en) | Optical property measurement device with measurement area confirmation function | |
JPH0783828A (en) | Variable-angle absolute reflectance measuring instrument | |
WO2024101078A1 (en) | Spectroscopic device and wavelength correction method | |
JP2788370B2 (en) | Densitometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080314 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100914 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101102 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101124 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101201 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4660696 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140114 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |