JP2007224130A - Optical molded item - Google Patents
Optical molded item Download PDFInfo
- Publication number
- JP2007224130A JP2007224130A JP2006046081A JP2006046081A JP2007224130A JP 2007224130 A JP2007224130 A JP 2007224130A JP 2006046081 A JP2006046081 A JP 2006046081A JP 2006046081 A JP2006046081 A JP 2006046081A JP 2007224130 A JP2007224130 A JP 2007224130A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- optical
- molded body
- optical molded
- copolymer resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Graft Or Block Polymers (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
Abstract
Description
本発明は、光学用成形体に関するものである。 The present invention relates to an optical molded body.
従来、光学用成形体にはメタクリル樹脂が広く使用されている。しかしながら、メタクリル樹脂は、透明性や低複屈折等の光学特性が良好な反面、耐衝撃性が低く、また吸湿性が高いことから、光学用成形体とした場合に吸湿による変形が課題となっていた。一方ポリスチレンは透明で成形加工性が良好で、吸湿性が低く変形が少ないが、耐衝撃性が低く、また複屈折(率)が高いため、この分野での使用には制限があった。
このような光学用成形体に関する刊行物としては以下のようなものが知られているが、複屈折や耐光性の問題は十分解決されているとは言いがたい。
The following publications relating to such optical molded articles are known, but it is difficult to say that the problems of birefringence and light resistance have been sufficiently solved.
本発明の目的は、透明性・色相・耐衝撃性が良好で、吸湿による変形が少なく、かつ複屈折の小さい光学用成形体を提供するものである。 An object of the present invention is to provide an optical molded article having good transparency, hue, impact resistance, little deformation due to moisture absorption, and low birefringence.
即ち本発明は、次の組成の共重合樹脂と、耐熱安定剤を含有する樹脂組成物を用いた光学用成形体である。この共重合樹脂は、ブタジエン系ゴムの存在下でスチレン系単量体と(メタ)アクリル酸エステル系単量体を塊状連続重合して得られた共重合樹脂であって、かつ共重合樹脂を構成する単量体の比率がスチレン系単量体単位10〜38質量%、ブタジエン系単量体単位5〜18質量%、(メタ)アクリル酸エステル系単量体単位85〜44質量%であることを特徴とし、耐熱性安定剤はヒンダードフェノール系化合物、ラクトン系化合物、リン系化合物およびイオウ系化合物の中から選ばれた1種以上であって、その合計量が共重合樹脂100質量部に対して0.01〜2質量部である。
また、本発明は、光学用成形体が、光ディスク基板あるいは導光板、レンズ、前面板、光学シート用ベースシート、光学フィルム用ベースフィルムであることを特徴とする光学用成形体である。
That is, the present invention is an optical molded body using a copolymer resin having the following composition and a resin composition containing a heat resistance stabilizer. This copolymer resin is a copolymer resin obtained by continuously polymerizing a styrene monomer and a (meth) acrylate monomer in the presence of a butadiene rubber, and the copolymer resin is The proportion of the constituent monomers is 10 to 38% by mass of styrene monomer units, 5 to 18% by mass of butadiene monomer units, and 85 to 44% by mass of (meth) acrylate monomer units. The heat resistance stabilizer is at least one selected from a hindered phenol compound, a lactone compound, a phosphorus compound and a sulfur compound, and the total amount thereof is 100 parts by mass of the copolymer resin. It is 0.01-2 mass parts with respect to.
Further, the present invention is an optical molded body, wherein the optical molded body is an optical disk substrate or a light guide plate, a lens, a front plate, an optical sheet base sheet, or an optical film base film.
本発明の光学用成形体は、透明性・色相・耐衝撃性が良好で、吸湿による変形が少なく、かつ複屈折の小さいことから、例えば、光ディスク基板、導光板、レンズ、前面板、位相差フィルムや反射防止フィルム等の光学フィルムのベースフィルムや、レンチキュラーレンズやフレネルレンズ等の光学シートのベースシートに適しており有用である。 The optical molded body of the present invention has good transparency, hue, impact resistance, little deformation due to moisture absorption, and low birefringence. For example, an optical disk substrate, a light guide plate, a lens, a front plate, a phase difference It is suitable and useful for base films of optical films such as films and antireflection films, and base sheets of optical sheets such as lenticular lenses and Fresnel lenses.
本発明に使用する共重合樹脂は、ブタジエン系ゴムの存在下でスチレン系単量体と(メタ)アクリル酸エステル系単量体を塊状連続重合して得られた共重合樹脂である。このような3元系の樹脂の製造方法にはいくつかの方法が知られているが、本発明に使用する共重合樹脂にあっては、ブタジエン系ゴムをスチレン系単量体と(メタ)アクリル酸エステル系単量体に溶解した状態で連続的に塊状重合することによって得られることを特徴とする。この塊状連続重合以外にも乳化重合で得られたグラフトゴム粒子とスチレン−(メタ)アクリル酸エステル共重合樹脂を配合する方法やブタジエン系ゴムの存在下、スチレン系単量体と(メタ)アクリル酸エステル系単量体を塊状重合後に懸濁重合で得る方法などあるが、これらの場合では十分な透明性が得られず、これを光路の長い導光板等に使用すると光の減衰が大きく問題となる場合がある。 The copolymer resin used in the present invention is a copolymer resin obtained by continuously polymerizing a styrene monomer and a (meth) acrylic acid ester monomer in the presence of a butadiene rubber. Several methods are known for producing such a ternary resin. However, in the copolymer resin used in the present invention, a butadiene rubber is combined with a styrene monomer and (meth). It is characterized by being obtained by continuous bulk polymerization in a state dissolved in an acrylate monomer. In addition to this bulk continuous polymerization, a method of blending the graft rubber particles obtained by emulsion polymerization with a styrene- (meth) acrylate copolymer resin, or in the presence of a butadiene rubber, a styrene monomer and (meth) acrylic There is a method to obtain acid ester monomer by suspension polymerization after bulk polymerization, but in these cases sufficient transparency cannot be obtained, and if this is used for a light guide plate with a long optical path, light attenuation is seriously problematic It may become.
この連続塊状重合時に、エチルベンゼン、トルエン等の溶剤をスチレン系単量体、(メタ)アクリル酸エステル系単量体の合計100質量部に対して好ましくは25質量部以下、さらに好ましくは5〜20質量部使用することができる。溶剤の使用により重合時の粘度が下がり重合が制御し易くなり、また得られる共重合樹脂の物性が安定する傾向がある。重合温度は、好ましくは80〜170℃、さらに好ましくは100〜160℃である。また重合時、t−ブチルパーオキシベンゾエート、t−ブチルパーオキシ−2−エチルヘキサノエート、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−シクロヘキサン、2,2−ビス(4,4−ジ−ブチルパーオキシシクロヘキシル)プロパン、t−ブチルパーオキシイソプロピルモノカーボネート、ジ−t−ブチルパーオキサイド、ジクミルパーオキサイド、エチル−3,3−ジ−(t−ブチルパーオキシ)ブチレート等の公知の重合開始剤を添加することが好ましく、特に半減期温度の異なる重合開始剤を2種以上用いると耐衝撃性が向上する場合があり好ましい。 During the continuous bulk polymerization, a solvent such as ethylbenzene or toluene is preferably 25 parts by mass or less, more preferably 5 to 20 parts per 100 parts by mass in total of the styrene monomer and the (meth) acrylic acid ester monomer. Part by mass can be used. Use of a solvent tends to lower the viscosity at the time of polymerization, making it easier to control the polymerization, and stabilizing the physical properties of the resulting copolymer resin. The polymerization temperature is preferably 80 to 170 ° C, more preferably 100 to 160 ° C. At the time of polymerization, t-butylperoxybenzoate, t-butylperoxy-2-ethylhexanoate, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1- Bis (t-butylperoxy) -cyclohexane, 2,2-bis (4,4-di-butylperoxycyclohexyl) propane, t-butylperoxyisopropyl monocarbonate, di-t-butyl peroxide, dicumylper It is preferable to add a known polymerization initiator such as oxide, ethyl-3,3-di- (t-butylperoxy) butyrate, and particularly when two or more polymerization initiators having different half-life temperatures are used, impact resistance is increased. May improve.
重合開始剤の添加量は、スチレン系単量体と(メタ)アクリル酸エステル系単量体との合計100質量部に対し、好ましくは0.005〜5質量部、さらに好ましくは0.01〜1質量部である。この範囲を外れると透明性と耐衝撃性のバランスが劣る場合がある。
また、重合時、4−メチル−2,4−ジフェニルペンテン−1、t−ドデシルメルカプタン、n−ドデシルメルカプタン等の公知の分子量調整剤を添加しても差し支えない。
The addition amount of the polymerization initiator is preferably 0.005 to 5 parts by mass, more preferably 0.01 to 100 parts by mass with respect to the total of 100 parts by mass of the styrene monomer and the (meth) acrylate monomer. 1 part by mass. Outside this range, the balance between transparency and impact resistance may be poor.
Further, a known molecular weight modifier such as 4-methyl-2,4-diphenylpentene-1, t-dodecyl mercaptan, n-dodecyl mercaptan may be added during the polymerization.
共重合樹脂のマトリックスの重量平均分子量(Mw)は、5万〜15万が好ましく、より好ましくは7万〜13万である。なお、本発明の重量平均分子量(Mw)はGPCにて測定されるポリスチレン換算の重量平均分子量(Mw)であり、下記記載の測定条件で測定したものである。
装置名:SYSTEM−21 Shodex(昭和電工社製)
カラム:PL gel MIXED−Bを3本直列
温度:40℃
検出:示差屈折率
溶媒:テトラハイドロフラン
濃度:2質量%
検量線:標準ポリスチレン(PS)(PL社製)を用いて作製し、重量平均分子量はPS換算値で表した。
The weight average molecular weight (Mw) of the matrix of the copolymer resin is preferably 50,000 to 150,000, more preferably 70,000 to 130,000. In addition, the weight average molecular weight (Mw) of this invention is a weight average molecular weight (Mw) of polystyrene conversion measured by GPC, and is measured on the measurement conditions of the following description.
Device name: SYSTEM-21 Shodex (manufactured by Showa Denko)
Column: 3 series PL gel MIXED-B Temperature: 40 ° C
Detection: Differential refractive index Solvent: Tetrahydrofuran Concentration: 2% by mass
Calibration curve: produced using standard polystyrene (PS) (manufactured by PL), and the weight average molecular weight was expressed in terms of PS.
共重合樹脂中のゴム粒子径は、特に限定するものではないが0.1〜1.0μmの範囲が好ましく、より好ましいのは0.1〜0.5μmである。なお、ゴム粒子径とは、樹脂の超薄切片法透過型電子顕微鏡写真より、写真中のゴム粒子約3000個の粒子径Di(円相当径)を測定し、次式[数1]により得られる平均粒子径である。
共重合樹脂のトルエン不溶分は、特に限定するものではないが8〜30質量%の範囲が好ましく、より好ましくは12〜25質量%である。なお、トルエン不溶分は以下の様に測定するものである。
試料0.35gを精秤(a)しトルエン35mlに温度25℃で24時間かけて溶解させた後、溶解液を事前に質量(b)を測定した容量50mlの遠心管に移し、最大遠心半径10.7cmのアングルローターを用いて、温度10℃以下、14000rpmで40分間遠心分離し、非沈殿物をデカンテーションにより取り除き、温度70℃の真空乾燥器で24時間乾燥させ、乾燥後の遠心管の質量(d)を測定し、下式[数2]によりトルエン不溶分を算出する。
A sample of 0.35 g was precisely weighed (a) and dissolved in 35 ml of toluene at a temperature of 25 ° C. for 24 hours, and then the lysate was transferred to a centrifuge tube having a mass (b) measured in advance and having a maximum centrifugal radius. Using a 10.7 cm angle rotor, centrifuge at 14,000 rpm for 40 minutes at a temperature of 10 ° C. or less, remove the non-precipitate by decantation, and dry for 24 hours in a vacuum dryer at a temperature of 70 ° C. The mass (d) is measured, and the toluene insoluble matter is calculated by the following formula [Equation 2].
共重合樹脂の膨潤指数は8〜20が好ましく、より好ましくは9〜17である。なお、膨潤指数は以下の様に測定したものである。試料0.35gを精秤(a)しトルエン35mlに温度25℃で24時間かけて溶解させた後、溶解液を事前に質量(b)を測定した容量50mlの遠心管に移し、最大遠心半径10.7cmのアングルローターを用いて、温度10℃以下、14000rpmで40分間遠心分離し、非沈殿物をデカンテーションにより取り除いた後、乾燥前の遠心管の質量(c)を測定する。温度70℃の真空乾燥器で24時間乾燥させ、乾燥後の遠心管の質量(d)を測定し、下式[数3]により膨潤指数を算出する。
本発明で用いられるスチレン系単量体としては、スチレン、α−メチルスチレン、p−メチルスチレン、o−メチルスチレン、m−メチルスチレン、エチルスチレン、p−t−ブチルスチレン等を挙げることができるが、好ましくはスチレンである。これらのスチレン系単量体は、単独でもよいが二種以上を併用してもよい。 Examples of the styrene monomer used in the present invention include styrene, α-methylstyrene, p-methylstyrene, o-methylstyrene, m-methylstyrene, ethylstyrene, pt-butylstyrene, and the like. Is preferably styrene. These styrenic monomers may be used alone or in combination of two or more.
本発明で用いられる(メタ)アクリル酸エステル系単量体としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレートのメタクリル酸エステル、メチルアクリレート、エチルアクリレート、n−ブチルアクリレート、2−メチルヘキシルアクリレート、2−エチルヘキシルアクリレート、デシルアクリレート等のアクリル酸エステルが挙げられるが、好ましくはメチル(メタ)アクリレート、またはn−ブチルアクリレートであって、特に好ましくはメチル(メタ)アクリレートである。これらの(メタ)アクリル酸エステル系単量体は単独で用いてもよいが二種以上を併用してもよい。 As the (meth) acrylic acid ester monomer used in the present invention, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate methacrylate ester, methyl acrylate Acrylates such as ethyl acrylate, n-butyl acrylate, 2-methylhexyl acrylate, 2-ethylhexyl acrylate, decyl acrylate, etc., preferably methyl (meth) acrylate, or n-butyl acrylate, Methyl (meth) acrylate is preferred. These (meth) acrylic acid ester monomers may be used alone or in combination of two or more.
さらに、必要に応じてこれらの単量体と共重合可能なビニル系単量体を共重合してもよく、そのような単量体として例えば、アクリル酸、メタクリル酸、アクリロニトリル、メタアクリロニトリル、N−フェニルマレイミド、N−シクロヘキシルマレイミド等が挙げられる。 Further, if necessary, a vinyl monomer copolymerizable with these monomers may be copolymerized. Examples of such monomers include acrylic acid, methacrylic acid, acrylonitrile, methacrylonitrile, N -Phenylmaleimide, N-cyclohexylmaleimide and the like.
本発明で用いられるブタジエン系ゴムとしては、ポリブタジエン、スチレン−ブタジエンブロック共重合体、およびスチレン−ブタジエンランダム共重合体等が挙げられる。この中では、温度25℃における5質量%スチレン溶液粘度が100mPa・s以下でブタジエンに基づく不飽和結合のうちの1,2−ビニル結合の割合が20モル%以下のポリブタジエンが好ましく、5質量%スチレン溶液粘度が60mPa・s以下でブタジエンに基づく不飽和結合のうちの1,2−ビニル結合の割合が14モル%以下のポリブタジエンであるとより好ましい。 Examples of the butadiene rubber used in the present invention include polybutadiene, styrene-butadiene block copolymer, and styrene-butadiene random copolymer. Of these, a polybutadiene having a 5 mass% styrene solution viscosity at a temperature of 25 ° C. of 100 mPa · s or less and a proportion of 1,2-vinyl bonds of unsaturated bonds based on butadiene of 20 mol% or less is preferable, and 5 mass%. More preferably, the styrene solution has a viscosity of 60 mPa · s or less and the proportion of 1,2-vinyl bonds among unsaturated bonds based on butadiene is 14 mol% or less.
共重合樹脂は、共重合樹脂を構成する単量体の比率がスチレン系単量体単位10〜38質量%、ブタジエン系単量体単位5〜18質量%、(メタ)アクリル酸エステル系単量体単位85〜44質量%であることを特徴とする。単量体の比率がスチレン系単量体単位15〜33質量%、ブタジエン系単量体単位5〜17質量%、(メタ)アクリル酸エステル系単量体単位80〜50質量%であると好ましく、スチレン系単量体単位15〜30質量%、ブタジエン系単量体単位7〜15質量%、(メタ)アクリル酸エステル系単量体単位78〜55質量%であるとより好ましい。共重合樹脂の組成がこのより好ましい範囲のある場合、得られる樹脂組成物は硬質の光学成形体用として特に優れている。
スチレン系単量体単位が10%未満では、得られる光学成形体の吸湿による変形が問題となる場合があり、38質量%を超えると、複屈折が大きくなるので好ましくない。ブタジエン系単量体が5%未満では、衝撃強度が劣り、18%を超えると塊状連続重合時の粘度が高くなり過ぎて重合が安定しない。(メタ)アクリル酸エステル系単量体単位が44質量%未満では複屈折が大きくなり、85質量%を超えると、得られた共重合樹脂の金型転写性が劣る傾向があり好ましくない。
As for copolymer resin, the ratio of the monomer which comprises copolymer resin is 10-38 mass% of styrene-type monomer units, 5-18 mass% of butadiene-type monomer units, (meth) acrylic acid ester-type single quantity The body unit is 85 to 44% by mass. The monomer ratio is preferably 15 to 33% by mass of styrene monomer units, 5 to 17% by mass of butadiene monomer units, and 80 to 50% by mass of (meth) acrylate monomer units. More preferably, the styrene monomer unit is 15 to 30% by mass, the butadiene monomer unit is 7 to 15% by mass, and the (meth) acrylic acid ester monomer unit is 78 to 55% by mass. When the composition of the copolymer resin is in a more preferable range, the resulting resin composition is particularly excellent for a hard optical molded body.
If the styrenic monomer unit is less than 10%, deformation due to moisture absorption of the obtained optical molded product may be a problem. If it exceeds 38% by mass, birefringence increases, which is not preferable. If the butadiene monomer is less than 5%, the impact strength is inferior, and if it exceeds 18%, the viscosity at the time of bulk continuous polymerization becomes too high and the polymerization is not stable. If the (meth) acrylic acid ester monomer unit is less than 44% by mass, the birefringence increases, and if it exceeds 85% by mass, the mold transferability of the obtained copolymer resin tends to be inferior, which is not preferable.
樹脂組成物は、前述の共重合樹脂と、耐熱安定剤を含有することを特徴とする。
耐熱安定剤は、その効果を有するものであれば特に限定されるものではないが、例えば、ヒンダードフェノール系化合物、ラクトン系化合物、リン系化合物、イオウ系化合物などの耐熱安定剤が挙げられる。これらは一種のみ用いてもよく、2種以上組み合わせて用いても良い。その配合量は、共重合樹脂100質量部に対して0.01〜2質量部が好ましく、より好ましくは0.01〜1質量部である。耐熱安定剤を含むと、高温で加工できることから複屈折の低減に繋がり、さらには光があたった場合の外観変化が少なくなり、好ましい。
The resin composition contains the copolymer resin described above and a heat stabilizer.
The heat resistance stabilizer is not particularly limited as long as it has the effect, and examples thereof include heat resistance stabilizers such as hindered phenol compounds, lactone compounds, phosphorus compounds, and sulfur compounds. These may be used alone or in combination of two or more. The blending amount is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the copolymer resin. The inclusion of a heat-resistant stabilizer is preferable because it can be processed at a high temperature, leading to a reduction in birefringence, and further, an appearance change when exposed to light is reduced.
樹脂組成物にはこれ以外に耐光安定剤や滑剤、可塑剤、着色剤、帯電防止剤、鉱油等の添加剤を含んでも差し支えないが、透明性を阻害する可能性もあり、その添加量は少ないかあるいは添加しないのが好ましい。具体的には、耐熱安定剤を含め添加剤の総配合量は20質量%以下であり、好ましくは90質量%以下、更に好ましくは5質量%以下である。
耐光安定剤としては、その効果を有するものであれば特に限定されるものではないが、例えば、ヒンダードアミン系化合物やベンゾトリアゾール系化合物が挙げられる。これらは一種のみ用いてもよく、2種以上組み合わせて用いても良い。耐光安定剤を含むと、光があたった場合の外観変化が少なくなり、さらには保管時の外観変化も少なくなり、好ましい。
In addition to this, the resin composition may contain additives such as a light-resistant stabilizer, a lubricant, a plasticizer, a colorant, an antistatic agent, and mineral oil, but there is a possibility that the transparency may be hindered. Less or no addition is preferred. Specifically, the total amount of additives including the heat stabilizer is 20% by mass or less, preferably 90% by mass or less, and more preferably 5% by mass or less.
The light-resistant stabilizer is not particularly limited as long as it has the effect, and examples thereof include hindered amine compounds and benzotriazole compounds. These may be used alone or in combination of two or more. The inclusion of a light-resistant stabilizer is preferable because it reduces the change in appearance when exposed to light, and also reduces the change in appearance during storage.
樹脂組成物の配合方法や造粒方法は特に制限されず、公知の方法を採用することができる。例えば、共重合樹脂、耐熱安定剤、耐光安定剤および必要に応じて使用する添加剤をあらかじめタンブラーやヘンシェルミキサー等で均一に混合して、単軸押出機または二軸押出機等に供給して溶融混練する方法や、塊状連続重合の単量体を供給する段階で添加する方法、重合の最終段階で系内に添加・混合し、その後に造粒する方法がある。
The blending method and granulation method of the resin composition are not particularly limited, and known methods can be employed. For example, copolymer resin, heat stabilizer, light stabilizer and additives to be used as needed are mixed uniformly in advance with a tumbler or Henschel mixer, and supplied to a single screw extruder or twin screw extruder. There are a method of melt-kneading, a method of adding at the stage of supplying the monomer for bulk continuous polymerization, and a method of adding and mixing in the system at the final stage of polymerization, followed by granulation.
以下、詳細な内容について実施例を用いて説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, although detailed content is demonstrated using an Example, this invention is not limited to a following example.
[実施例1]
撹拌機を付した容積約5リットルの第1完全混合型反応器、撹拌機を付した容積約15リットルの第2完全混合型反応器、容積約40リットルの塔式プラグフロー型反応器、予熱器を付した脱揮槽を直列に接続して構成した。ブタジエンゴム(旭化成ケミカルズ社製ジエン35AS:温度25℃における5質量%スチレン溶液粘度が85mPa・s、ブタジエンに基づく不飽和結合のうちの1,2−ビニル結合の割合が13モル%)12質量部を、スチレン20質量部、メタクリル酸メチル(以下、MMAと称す。)68質量部、エチルベンゼン12質量部で構成される混合溶液に溶解し、さらに1,1−ビス(t−ブチルパーオキシ)−シクロヘキサン(日本油脂社製パーヘキサC)0.05質量部、耐熱安定剤としてオクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート(チバ・スペシャリティ・ケミカルズ社製IRGANOX1076)0.2質量部を混合し、原料溶液とした。この原料溶液を毎時7kgで温度108℃に制御した第1完全混合型反応器に導入した。第1完全混合型反応器より反応液を連続的に抜き出し、この反応液にn−ドデシルメルカプタン(花王社製チオカルコール20)を毎時2.0g加えた後、温度130℃に制御した第2完全混合型反応器に導入した。なお、第2完全混合型反応器の撹拌数は180rpmで実施した。次いで第2完全混合型反応器より反応液を連続的に抜き出し、この反応液にn−ドデシルメルカプタンを毎時2.0gとジ−t−ブチルパーオキサイド(日本油脂社製パーブチルD)を毎時0.5g加えた後、流れの方向に向かって温度130℃から150℃の勾配がつくように調整した塔式プラグフロー型反応器に導入した。この反応液を予熱器で加温しながら、温度240℃で圧力1.0kPaに制御した脱揮槽に導入し、未反応単量体等の揮発分を除去した。この樹脂液をギアポンプで抜き出し、ストランド状に押出し切断することによりペレット形状の樹脂組成物を得た。評価結果を表1に示した。
得られた樹脂組成物を名機社製射出成形機MDM−Iにて成形温度250℃、金型温度60℃で射出成形することにより、直径180mm、センターホール15mm、厚み1.2mmの光ディスク基板を得た。次に得られた光ディスク基板の特性評価を行った。その評価結果は表1に示した。
[Example 1]
A first fully mixed reactor having a volume of about 5 liters equipped with a stirrer, a second fully mixed reactor having a volume of about 15 liters equipped with a stirrer, a column type plug flow reactor having a volume of about 40 liters, preheating A devolatilizing tank equipped with a vessel was connected in series. Butadiene rubber (Diene 35AS manufactured by Asahi Kasei Chemicals Co., Ltd .: 5 mass% styrene solution viscosity at a temperature of 25 ° C. is 85 mPa · s, and the proportion of 1,2-vinyl bonds out of unsaturated bonds based on butadiene is 12 parts by mass. Is dissolved in a mixed solution composed of 20 parts by mass of styrene, 68 parts by mass of methyl methacrylate (hereinafter referred to as MMA) and 12 parts by mass of ethylbenzene, and 1,1-bis (t-butylperoxy)- 0.05 part by mass of cyclohexane (Perhexa C manufactured by NOF Corporation), octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (IRGANOX 1076 manufactured by Ciba Specialty Chemicals) as a heat stabilizer 0.2 parts by mass was mixed to obtain a raw material solution. This raw material solution was introduced into a first complete mixing type reactor controlled at a temperature of 108 ° C. at 7 kg / hour. The reaction solution was continuously withdrawn from the first complete mixing reactor, and 2.0 g / h of n-dodecyl mercaptan (Kio Co., thiocalcol 20) was added to the reaction solution, and then the temperature was controlled at 130 ° C. It was introduced into the type reactor. The second complete mixing reactor was stirred at 180 rpm. Subsequently, the reaction solution was continuously withdrawn from the second complete mixing type reactor, and 2.0 g / h of n-dodecyl mercaptan and di-t-butyl peroxide (Perbutyl D manufactured by NOF Corporation) were added to the reaction solution at a rate of 0.000 / h. After adding 5 g, it was introduced into a tower-type plug flow reactor adjusted so as to have a gradient of 130 ° C. to 150 ° C. in the direction of flow. While this reaction solution was heated with a preheater, it was introduced into a devolatilization tank controlled at a temperature of 240 ° C. and a pressure of 1.0 kPa to remove volatile components such as unreacted monomers. The resin liquid was extracted with a gear pump and extruded and cut into a strand shape to obtain a pellet-shaped resin composition. The evaluation results are shown in Table 1.
The obtained resin composition was injection-molded at a molding temperature of 250 ° C. and a mold temperature of 60 ° C. using an injection molding machine MDM-I manufactured by Meiki Co., Ltd. Got. Next, the characteristics of the obtained optical disk substrate were evaluated. The evaluation results are shown in Table 1.
[実施例2]
ブタジエンゴムを8.5質量部とした以外は、実施例1と同様に行った。評価結果を表1に示す。
[Example 2]
The same operation as in Example 1 was conducted except that 8.5 parts by mass of butadiene rubber was used. The evaluation results are shown in Table 1.
[実施例3]
ブタジエンゴムを宇部興産社製ウベポールBR13HB(温度25℃における5質量%スチレン溶液粘度が41mPa・s、ブタジエンに基づく不飽和結合のうちの1,2−ビニル結合の割合が2モル%)を使用した以外は、実施例1と同様に行った。評価結果を表1に示す。
[Example 3]
Ubepol BR13HB manufactured by Ube Industries, Ltd. (viscosity of 5 mass% styrene solution at a temperature of 25 ° C. is 41 mPa · s, and the proportion of 1,2-vinyl bonds out of unsaturated bonds based on butadiene is used as butadiene rubber). Except for this, the same procedure as in Example 1 was performed. The evaluation results are shown in Table 1.
[実施例4]
ブタジエンゴムを5質量部とした以外は、実施例1と同様に行った。評価結果を表1に示す。
[Example 4]
The same operation as in Example 1 was performed except that the butadiene rubber was changed to 5 parts by mass. The evaluation results are shown in Table 1.
[実施例5]
ブタジエンゴムを17質量部とした以外は、実施例1と同様に行った。評価結果を表1に示す。
[Example 5]
The same operation as in Example 1 was performed except that the butadiene rubber was changed to 17 parts by mass. The evaluation results are shown in Table 1.
[実施例6]
ブタジエンゴムの代わりにスチレンブタジエンゴム(旭化成ケミカルズ社製タフデン2000A:温度25℃における5質量%スチレン溶液粘度が50mPa・s、ブタジエンに基づく不飽和結合のうちの1,2−ビニル結合の割合が13モル%)10質量部を用い、さらにスチレン40質量部、MMA60質量部、エチルベンゼン12質量部で構成される混合溶液とした以外は、実施例1と同様に行った。評価結果を表1に示す。
[Example 6]
Styrene butadiene rubber instead of butadiene rubber (Toughden 2000A manufactured by Asahi Kasei Chemicals Co., Ltd .: Viscosity of 5 mass% styrene solution at a temperature of 25 ° C. is 50 mPa · s. This was performed in the same manner as in Example 1 except that 10 parts by mass) and 40 parts by mass of styrene, 60 parts by mass of MMA, and 12 parts by mass of ethylbenzene were used. The evaluation results are shown in Table 1.
[実施例7]
実施例6に記載したスチレンブタジエンゴム17質量部を用いた以外は、実施例3と同様に行った。評価結果を表1に示す。
[Example 7]
The same procedure as in Example 3 was performed except that 17 parts by mass of the styrene butadiene rubber described in Example 6 was used. The evaluation results are shown in Table 1.
[実施例8]
実施例1の樹脂組成物100質量部に、更に耐光安定剤としてヒンダードアミン系化合物としてビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ベンゾトリアゾール系化合物として2−(2H−ベンゾトリアゾール−2−イル)−4,6−ジ−t−ペンチルフェノールを各0.1質量部ヘンシェルミキサーで混合した後、二軸押出機(東芝機械(株)社製 TEM−35B)を用いシリンダー温度220℃で溶融混練して樹脂組成物を得た。評価結果を表1に示す。
[Example 8]
To 100 parts by mass of the resin composition of Example 1, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate as a hindered amine compound as a light-resistant stabilizer and 2- (2H— as a benzotriazole compound After mixing benzotriazol-2-yl) -4,6-di-t-pentylphenol with 0.1 parts by mass of each Henschel mixer, a twin screw extruder (TEM-35B manufactured by Toshiba Machine Co., Ltd.) was used. The resin composition was obtained by melt-kneading at a cylinder temperature of 220 ° C. The evaluation results are shown in Table 1.
[比較例1]
ブタジエンゴムを添加しなかった以外は、実施例1と同様に行った。評価結果を表1に示す。
[Comparative Example 1]
The same procedure as in Example 1 was performed except that butadiene rubber was not added. The evaluation results are shown in Table 1.
[比較例2]
ブタジエンゴムを23質量部とした以外は、実施例1と同様に行った。評価結果を表1に示す。
[Comparative Example 2]
The same operation as in Example 1 was carried out except that 23 parts by mass of butadiene rubber was used. The evaluation results are shown in Table 1.
[比較例3]
実施例6に記載したスチレンブタジエンゴム5質量部を用いた以外は、実施例3と同様に行った。評価結果を表1に示す。
[Comparative Example 3]
The same procedure as in Example 3 was performed except that 5 parts by mass of the styrene butadiene rubber described in Example 6 was used. The evaluation results are shown in Table 1.
[比較例4]
スチレンを0質量部、MMAを100質量部とした以外は、実施例1と同様に行った。評価結果を表1に示す。
[Comparative Example 4]
The same procedure as in Example 1 was conducted except that styrene was 0 parts by mass and MMA was 100 parts by mass. The evaluation results are shown in Table 1.
[比較例5]
容積200リットルのオートクレーブに純水56kg、オレイン酸カリウム400g、ロジン酸カリウム1200g、炭酸ナトリウム1.2kg、過硫酸カリウム400gを加えて攪拌下で均一に溶解した。次いでブタジエン80kg、t−ドデシルメルカプタン400gを加え、攪拌しながら温度60℃で30時間重合し、さらに70℃に昇温して30時間放置して重合を完結し、ブタジエンゴムラテックスを得た。
このブタジエンゴムラテックスを固形分換算で30kg計量して容積200Lのオートクレーブに移し、純水80kgを加え、撹拌しながら窒素気流下で温度50℃に昇温した。ここに硫酸第一鉄1.25g、エチレンジアミンテトラ酢酸ナトリウム2.5g、ロンガリット100gを溶解した純水2kgを加え、スチレン6.9kg、MMA23.1kg、t−ドデシルメルカプタン60gからなる混合物と、ジイソプロピルベンゼンハイドロパーオキサイド120gをオレイン酸カリウム450gを含む純水8kgに分散した溶液とを、別々に6時間かけて連続添加した。添加終了後、温度を70℃に昇温して、さらにジイソプロピルベンゼンハイドロパーオキサイド30g添加した後2時間放置して重合を終了した。得られた乳化液に酸化防止剤を加え、純水で固形分を15質量%に希釈した後に温度60℃に昇温し、激しく攪拌しながら希硫酸を加えて塩析を行い、その後温度を90℃に昇温して凝固させ、次に脱水、水洗、乾燥して粉末状の乳化グラフトを得た。
この乳化グラフト24質量部と、比較例1で得られたMMA−スチレン樹脂76質量部をヘンシェルミキサーで混合した後、二軸押出機(東芝機械(株)社製 TEM−35B)を用いシリンダー温度220℃で溶融混練してペレット形状の共重合樹脂を得た。評価結果を表1に示す。
[Comparative Example 5]
To an autoclave having a capacity of 200 liters, 56 kg of pure water, 400 g of potassium oleate, 1200 g of potassium rosinate, 1.2 kg of sodium carbonate, and 400 g of potassium persulfate were added and dissolved uniformly with stirring. Next, 80 kg of butadiene and 400 g of t-dodecyl mercaptan were added, polymerization was carried out at 60 ° C. for 30 hours while stirring, and the mixture was further heated to 70 ° C. and allowed to stand for 30 hours to complete the polymerization to obtain a butadiene rubber latex.
30 kg of this butadiene rubber latex was weighed in terms of solid content, transferred to an autoclave having a volume of 200 L, added with 80 kg of pure water, and heated to 50 ° C. under a nitrogen stream while stirring. To this was added 2 kg of pure water in which 1.25 g of ferrous sulfate, 2.5 g of sodium ethylenediaminetetraacetate and 100 g of Rongalite were dissolved. A solution in which 120 g of hydroperoxide was dispersed in 8 kg of pure water containing 450 g of potassium oleate was continuously added separately over 6 hours. After completion of the addition, the temperature was raised to 70 ° C., 30 g of diisopropylbenzene hydroperoxide was further added, and the mixture was left for 2 hours to complete the polymerization. Antioxidant is added to the obtained emulsion, the solid content is diluted to 15% by mass with pure water, the temperature is raised to 60 ° C., dilute sulfuric acid is added with vigorous stirring, and salting out is performed. The mixture was heated to 90 ° C. and solidified, and then dehydrated, washed with water, and dried to obtain a powdered emulsion graft.
24 parts by mass of this emulsified graft and 76 parts by mass of the MMA-styrene resin obtained in Comparative Example 1 were mixed with a Henschel mixer, and then cylinder temperature using a twin screw extruder (TEM-35B manufactured by Toshiba Machine Co., Ltd.). It was melt-kneaded at 220 ° C. to obtain a pellet-shaped copolymer resin. The evaluation results are shown in Table 1.
[比較例6]
耐熱安定剤のオクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネートを添加しなかった以外は、実施例1と同様に行った。評価結果を表1に示す。
[Comparative Example 6]
The same procedure as in Example 1 was performed except that the heat stabilizer octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate was not added. The evaluation results are shown in Table 1.
上記の試料のうち、実施例1、実施例8および比較例6の光ディスク基盤について光安定性およびその後の保管後の外観変化を調べ、評価結果を表2に示した。
なお、光安定性は、東洋精機製作所社製キセノンウエザオメーター、アトラスCI65Aを用いて24Hr照射後の外観(黄味や透明性)を目視にて下記基準で判断し、保管後の外観変化はこの試験片を60℃で相対湿度80%の環境下に24時間放置したときの変化を下記基準で評価した。評価結果を表2に示した。
○:変化なし
△:やや外観変化有り
×:顕著な外観変化有り
Among the samples described above, the optical stability of the optical disk substrates of Examples 1, 8 and Comparative Example 6 was examined for the light stability and the appearance change after storage, and the evaluation results are shown in Table 2.
The light stability was determined by visual inspection of the appearance (yellowishness and transparency) after irradiation for 24 hours using a xenon weatherometer, Atlas CI65A, manufactured by Toyo Seiki Seisakusho, based on the following criteria. The change when this test piece was left in an environment of 60 ° C. and 80% relative humidity for 24 hours was evaluated according to the following criteria. The evaluation results are shown in Table 2.
○: No change △: Some change in appearance ×: Some change in appearance
実施例1、実施例8の樹脂組成物および比較例6の共重合樹脂を用い、成形温度のみを270℃に上げて光ディスク基盤を成形し、b値とReを測定した。評価結果を表3に示した。 Using the resin compositions of Example 1 and Example 8 and the copolymer resin of Comparative Example 6, the optical disk substrate was molded by raising only the molding temperature to 270 ° C., and the b value and Re were measured. The evaluation results are shown in Table 3.
なお、評価は下記の方法によった。
(1)透明性
ASTM D1003に基づき、ヘーズメーター(日本電色工業社製NDH−1001DP型)を用いてヘーズを測定し、成形品内のヘーズ(単位:%)の最大値で示した。1%以下を合格とした。
(2)色相
色差計(日本電色工業社製Σ―80)を用いてb値を測定し、成形品内のb値の最大値で示した。1以下を合格とした。
(3)耐衝撃性
JIS K7211に準拠して、錘先端5R、錘径14mmφ、質量200gfの錘を用い、成形品のセンターホールと外側の中間部に錘を落とすことで、50%破壊高さ(単位:cm)を測定した。20cm以上を合格とした。
(4)吸湿変形性
成形品を温度70℃で湿度90%の環境下に5日間放置したときの直径の寸法変化率(単位:%)を測定した。変化率0.3%以下を合格とした。
(5)複屈折
位相差測定装置(王子計測社製KOBRA−WR)を用いてリタデーション(Re)を測定し、成形品内のRe(単位:nm)の最大値で示した。50nm以下を合格とした。
(6)メルトマスフローレイト(MFR)
JIS K7210に基づき、温度200℃、荷重49Nで樹脂ペレットを用いて測定した。なお、測定機は東洋精機製作所社製メルトインデックサ(F−F01)を使用した。
The evaluation was based on the following method.
(1) Transparency Based on ASTM D1003, the haze was measured using a haze meter (NDH-1001DP type manufactured by Nippon Denshoku Industries Co., Ltd.), and indicated by the maximum value of haze (unit:%) in the molded product. 1% or less was accepted.
(2) The b value was measured using a hue color difference meter (Σ-80 manufactured by Nippon Denshoku Industries Co., Ltd.), and indicated by the maximum value of the b value in the molded product. 1 or less was accepted.
(3) Impact resistance In accordance with JIS K7211, using a weight with a weight tip of 5R, a weight diameter of 14mmφ, and a mass of 200gf, the weight is dropped to the center hole of the molded product and the middle part on the outside. (Unit: cm) was measured. 20 cm or more was accepted.
(4) The dimensional change rate (unit:%) of the diameter when the hygroscopic deformable molded product was left in an environment of 70 ° C. and 90% humidity for 5 days was measured. A change rate of 0.3% or less was accepted.
(5) Retardation (Re) was measured using a birefringence phase difference measuring apparatus (KOBRA-WR manufactured by Oji Scientific Co., Ltd.) and indicated by the maximum value of Re (unit: nm) in the molded product. 50 nm or less was regarded as acceptable.
(6) Melt mass flow rate (MFR)
Based on JIS K7210, measurement was performed using resin pellets at a temperature of 200 ° C. and a load of 49 N. The measuring machine used was a melt indexer (F-F01) manufactured by Toyo Seiki Seisakusho.
このように、塊状連続重合で得られた共重合樹脂を用いると乳化重合法で得られた場合に比べてヘーズの値が小さくなる。また、スチレン系単量体とブタジエン単量体の比率は常に前者が後者より高いとReの値が小さく、特に前者が後者の1.7倍から2.3倍であると好ましい。
Thus, when the copolymer resin obtained by bulk continuous polymerization is used, the haze value becomes smaller than that obtained by the emulsion polymerization method. The ratio of styrene monomer to butadiene monomer is always higher when the former is higher than the latter, and the former is preferably 1.7 to 2.3 times the latter.
Claims (8)
共重合樹脂:ブタジエン系ゴムの存在下でスチレン系単量体と(メタ)アクリル酸エステル系単量体とを塊状連続重合して得られた共重合樹脂であって、かつ共重合樹脂を構成する単量体の比率がスチレン系単量体単位10〜38質量%、ブタジエン系単量体単位5〜18質量%、(メタ)アクリル酸エステル系単量体単位85〜44質量%である共重合樹脂。 An optical molded article using a resin composition containing a copolymer resin having the following composition and a heat stabilizer.
Copolymer resin: A copolymer resin obtained by continuous polymerization of styrene monomer and (meth) acrylate monomer in the presence of butadiene rubber, and constitutes copolymer resin The ratio of the monomer to be used is 10 to 38% by mass of styrene monomer units, 5 to 18% by mass of butadiene monomer units, and 85 to 44% by mass of (meth) acrylic acid ester monomer units. Polymerized resin.
The optical molding according to claim 1 or 2, wherein the optical molding is a base film for an optical film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006046081A JP2007224130A (en) | 2006-02-23 | 2006-02-23 | Optical molded item |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006046081A JP2007224130A (en) | 2006-02-23 | 2006-02-23 | Optical molded item |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007224130A true JP2007224130A (en) | 2007-09-06 |
Family
ID=38546232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006046081A Pending JP2007224130A (en) | 2006-02-23 | 2006-02-23 | Optical molded item |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007224130A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02302459A (en) * | 1989-05-18 | 1990-12-14 | Japan Synthetic Rubber Co Ltd | Thermoplastic resin composition |
JPH05117515A (en) * | 1991-10-28 | 1993-05-14 | Mitsubishi Gas Chem Co Inc | Polycarbonate resin composition |
JP2002105150A (en) * | 2000-07-26 | 2002-04-10 | Toray Ind Inc | Rubber-reinforced styrene-based transparent resin composition and method for producing the same |
JP2002243917A (en) * | 2001-02-19 | 2002-08-28 | Asahi Kasei Corp | Negative sheet for fresnel lens |
JP2002284946A (en) * | 2001-01-22 | 2002-10-03 | Sumitomo Chem Co Ltd | Resin composition and sheet for optical screen |
JP2004217784A (en) * | 2003-01-15 | 2004-08-05 | Teijin Chem Ltd | Flame-retardant thermoplastic resin composition |
-
2006
- 2006-02-23 JP JP2006046081A patent/JP2007224130A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02302459A (en) * | 1989-05-18 | 1990-12-14 | Japan Synthetic Rubber Co Ltd | Thermoplastic resin composition |
JPH05117515A (en) * | 1991-10-28 | 1993-05-14 | Mitsubishi Gas Chem Co Inc | Polycarbonate resin composition |
JP2002105150A (en) * | 2000-07-26 | 2002-04-10 | Toray Ind Inc | Rubber-reinforced styrene-based transparent resin composition and method for producing the same |
JP2002284946A (en) * | 2001-01-22 | 2002-10-03 | Sumitomo Chem Co Ltd | Resin composition and sheet for optical screen |
JP2002243917A (en) * | 2001-02-19 | 2002-08-28 | Asahi Kasei Corp | Negative sheet for fresnel lens |
JP2004217784A (en) * | 2003-01-15 | 2004-08-05 | Teijin Chem Ltd | Flame-retardant thermoplastic resin composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6148802B1 (en) | Method for producing methacrylic resin | |
JP7176122B2 (en) | THERMOPLASTIC RESIN COMPOSITION, MANUFACTURING METHOD THEREOF AND MOLDED PRODUCT CONTAINING THE SAME | |
JP3469865B2 (en) | Transparent rubber-modified styrenic resin composition | |
JP2013104042A (en) | Transparent rubber-modified styrenic resin composition and molding of the same | |
JP4767565B2 (en) | Transparent resin composition excellent in surface hardness and transparent resin molded product formed by molding the resin composition | |
JP2007224221A (en) | Optical molded item | |
WO2010082613A1 (en) | Rubber-modified thermoplastic resin composition, injection molded article comprising the same, and washing machine lid using the same | |
JP6111770B2 (en) | Method for producing transparent styrenic thermoplastic resin composition | |
JP5010184B2 (en) | Optical molded body | |
EP3960814B1 (en) | Thermoplastic resin composition and molded article thereof | |
CN116615487A (en) | Acrylic resin composition and resin film | |
JP2012207074A (en) | Transparency styrene-based thermoplastic resin composition | |
JP4101175B2 (en) | Transparent rubber-modified copolymer resin and resin composition thereof | |
JP5043257B2 (en) | Thermoplastic resin composition | |
CN109476899B (en) | Resin composition and film made of the same | |
JP2007224130A (en) | Optical molded item | |
JP4386772B2 (en) | Rubber-modified copolymer resin and production method | |
JP7145271B1 (en) | Transparent rubber-modified styrenic resin composition | |
JP4863744B2 (en) | Optical molded body | |
JP5016199B2 (en) | Transparent resin composition excellent in surface hardness and transparent resin molded product formed by molding the resin composition | |
JP4458931B2 (en) | Transparent rubber-modified copolymer resin composition, molded product obtained therefrom, and method for producing the composition | |
EP4001331A1 (en) | Transparent thermoplastic resin composition and article molded thereof | |
JP4727116B2 (en) | Rubber-modified copolymer resin composition | |
JP2004339357A (en) | Transparent rubber-modified polystyrene resin | |
JP4776148B2 (en) | Rubber-modified copolymer resin and molded article thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110823 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120104 |