JP2007223390A - Behavior control device of vehicle - Google Patents
Behavior control device of vehicle Download PDFInfo
- Publication number
- JP2007223390A JP2007223390A JP2006044680A JP2006044680A JP2007223390A JP 2007223390 A JP2007223390 A JP 2007223390A JP 2006044680 A JP2006044680 A JP 2006044680A JP 2006044680 A JP2006044680 A JP 2006044680A JP 2007223390 A JP2007223390 A JP 2007223390A
- Authority
- JP
- Japan
- Prior art keywords
- wheel
- vehicle
- lateral force
- wheels
- behavior control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000006399 behavior Effects 0.000 claims abstract description 33
- 230000028838 turning behavior Effects 0.000 claims abstract description 3
- 230000001133 acceleration Effects 0.000 claims description 40
- 230000005484 gravity Effects 0.000 claims description 13
- 230000014509 gene expression Effects 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 3
- 230000000087 stabilizing effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 25
- 238000006557 surface reaction Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 230000001052 transient effect Effects 0.000 description 2
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
Abstract
Description
本発明は、車両の挙動制御装置に関する。 The present invention relates to a vehicle behavior control apparatus.
従来、ヨー角加速度を用いた車両挙動制御装置としては、車両のヨー角加速度に応じて車両の後輪転舵角を調整することで,旋回時のコース追従性を向上させる制御装置が開示されている(例えば、特許文献1参照)。また、ヨー角加速度が所定の目標値に一致するように左右輪の駆動力配分を調整することで、路面状態などによらない安定した車両旋回性能を実現している(例えば、特許文献2参照)。さらに、さらに、ヨー角加速度が所定値以上とならないように左右のブレーキ力を調整することで、運転者の不安感を低減するような車両挙動を実現する方法も示されている(例えば,特許文献3参照)。
しかしながら上記従来技術にあっては、いずれも前輪におけるヨー角加速度と後輪におけるヨー角加速度との和に応じて車両挙動を制御するため、前後輪それぞれのヨー角加速度が独自に変化した場合であっても、前輪ヨー角加速度と後輪ヨー角加速度の和が変化しなければ結局同じ制御を行うこととなる。したがって、前後輪独自のヨー角加速度に合わせた高精度な制御を行うことができない、という問題があった。 However, in the above prior art, since the vehicle behavior is controlled according to the sum of the yaw angular acceleration at the front wheels and the yaw angular acceleration at the rear wheels, the yaw angular acceleration of each of the front and rear wheels changes independently. Even in this case, if the sum of the front wheel yaw angular acceleration and the rear wheel yaw angular acceleration does not change, the same control is eventually performed. Therefore, there is a problem that it is impossible to perform highly accurate control in accordance with the yaw angular acceleration unique to the front and rear wheels.
本発明は、上記問題に着目してなされたもので、その目的とするところは、前輪の状態と後輪の状態とを独立に推定し、前輪の状態推定値及び後輪の状態推定値に基づき、前後輪を独立に制御して車両挙動安定化制御を行う車両の挙動制御装置を提供することにある。 The present invention has been made paying attention to the above-mentioned problem, and the object of the present invention is to estimate the state of the front wheel and the state of the rear wheel independently, and to estimate the state of the front wheel and the state of the rear wheel. An object of the present invention is to provide a vehicle behavior control device that performs vehicle behavior stabilization control by independently controlling front and rear wheels.
上記目的を達成するため、本発明では、車両状態に基づき、車両の旋回挙動を制御する車両の挙動制御装置において、前輪と後輪の横力和を独立に演算する前記横力和演算手段と、演算された前記前輪と後輪それぞれの横力和に基づき、前記前輪と後輪のタイヤ作用力を独立に制御する制御手段とを備えることとした。 To achieve the above object, according to the present invention, in the vehicle behavior control device for controlling the turning behavior of the vehicle based on the vehicle state, the lateral force sum calculating means for independently calculating the lateral force sum of the front wheels and the rear wheels; The control means for independently controlling the tire acting force of the front wheel and the rear wheel based on the calculated lateral force sum of the front wheel and the rear wheel.
よって、前輪横力和および後輪横力和を独立に推定することで、前輪と後輪をそれぞれの状態に合わせて独立に制御することが可能となり、より高精度な制御を実現する車両の挙動制御装置を提供できる。 Therefore, by independently estimating the front wheel lateral force sum and the rear wheel lateral force sum, it becomes possible to independently control the front wheels and the rear wheels in accordance with the respective states, and the vehicle that realizes higher-precision control. A behavior control device can be provided.
以下、本発明の車両の状態推定及び制御装置を実現する最良の形態を、図面に示す実施例に基づいて説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS The best mode for realizing a vehicle state estimation and control apparatus according to the present invention will be described below based on an embodiment shown in the drawings.
[システム構成]
実施例1につき図1ないし図10に基づき説明する。図1は、4輪を独立の電気モータで駆動する電気自動車のシステム構成図である。電気自動車は、永久磁石をロータに設けた3相同期モータ3FL、3FR、3RL、3RRを備えており、各モータ3FL〜3RRは減速機4fl、4fr、4rl、4rrを介して各車輪2fl、2fr、2rl、2rrに連結されている。各モータ3FL〜3RR、各減速機機4fl〜4rr、各車輪2FL〜2RRの出力特性、減速比、車輪半径はいずれも同一である。
[System configuration]
The first embodiment will be described with reference to FIGS. FIG. 1 is a system configuration diagram of an electric vehicle in which four wheels are driven by independent electric motors. The electric vehicle includes three-phase synchronous motors 3FL, 3FR, 3RL, and 3RR each having a permanent magnet provided on a rotor. Each motor 3FL to 3RR is connected to each wheel 2fl, 2fr via speed reducers 4fl, 4fr, 4rl, 4rr. 2rl and 2rr. The output characteristics, the reduction ratio, and the wheel radius of each motor 3FL to 3RR, each speed reducer 4fl to 4rr, and each wheel 2FL to 2RR are the same.
前輪2fl,2frはステアリングホイール11への操舵力によりステアリングラック14を介して直接転舵されるとともに、補助転舵用モータ12(アクチュエータ)によりステアリングラック14を全体的に車幅方向へ変位させることで補助転舵される。すなわち、前輪2fl、2frの転舵角はステアリングホイール11による主転舵角と補助転舵用モータ12による補助転舵角DFとの和となる。補助転舵角DFは、制御回路13が補助転舵用モータ12の出力を調整することで、統合コントローラ30が送信する目標補助転舵角tDF(前輪のタイヤ作用力)と一致するように制御される。
The front wheels 2fl and 2fr are directly steered via the
後輪2RL,2RRは、転舵用モータ16(アクチュエータ)によりステアリングラック15を全体的に車幅方向へ変位させることで操舵される。転舵角は、制御回路17が転舵用モータ16の出力を調整することで、統合コントローラ30が送信する後輪転舵角指令値tDR(後輪のタイヤ作用力)と一致するように制御される。また、各輪2FL〜2RRの転舵角δは転舵角センサ21により検出され、統合コントローラ30へ出力される。
The rear wheels 2RL and 2RR are steered by displacing the
統合コントローラ30はトルク指令値tTFL(左前輪),tTFR(右前輪),tTRL(左後輪),tTRR(右後輪)を演算する演算装置である。ヨーレイトセンサ8、転舵角センサ21、ブレーキペダルセンサ22、アクセルペダルセンサ23、横加速度センサ24,25、前後加速度センサ26、及び車体すべり角センサ29からの各検出値に加え、現在のモータ3FL〜3RRの現在回転数と出力トルクが入力される。また、制御回路13,17から前輪転舵角の補助転舵角実際値及び後輪転舵角実際値が入力される。
The
ここで、車体すべり角センサ29は2つの空間フィルタ式速度検出器(により車両の前後速度と横すべり速度を検出し、その比から車体横すべり角を検出するタイプのセンサであり、後輪軸の左右中央の点(図3の点P)に取り付けられている。
Here, the vehicle body
これらの入力値に基づき、統合コントローラ30は各モータ3FL〜3RRに対するトルク指令値tTFL(左前輪),tTFR(右前輪),tTRL(左後輪),tTRR(右後輪)を演算する。また、前輪転舵角の補助転舵角指令値tDFおよび後輪転舵角指令値tDRを演算し、それぞれ制御回路13および制御回路17に出力する。
Based on these input values, the integrated
駆動回路5FL〜5RRは、統合コントローラ30からのトルク指令値tTFL〜tTRRに基づき、バッテリ6の電力を制御して各モータ3FL〜3RRの力行および回生トルクを制御する。
The drive circuits 5FL to 5RR control the power running and regenerative torque of the motors 3FL to 3RR by controlling the electric power of the
[前後輪指令値(トルク及び転舵角)演算制御]
前後輪独自の状態に合わせた高精度な制御を行うため、前輪横力和および後輪横力和を推定し、前輪の状態と後輪の状態とを分離して推定する。各輪荷重Wfl〜Wrr、各輪制駆動路面反力Fxfl〜Fxrr、前後輪横力和Fy_f,Fy_rなどを推定し、これらの値に基づき各輪モータトルク指令値tTFL〜tTRRを演算する。これに加え、前後輪横力和Fy_f,Fy_r、前後輪転舵角δf,δrなどから、前後輪2FL〜2RRのすべり角αfl〜αrrを演算し、このすべり角αfl〜αrrに基づく前輪補助転舵角指令値tDFおよび後輪転舵角指令値tDRを演算し、前後輪をそれぞれ独立して制御する。
[Front and rear wheel command values (torque and turning angle) calculation control]
In order to perform high-precision control according to the unique state of the front and rear wheels, the front wheel lateral force sum and the rear wheel lateral force sum are estimated, and the front wheel state and the rear wheel state are estimated separately. Each wheel load Wfl to Wrr, each wheel braking drive road surface reaction force Fxfl to Fxrr, front and rear wheel lateral force sums Fy_f, Fy_r, etc. are estimated, and each wheel motor torque command value tTFL to tTRR is calculated based on these values. In addition, the front wheel auxiliary steering is calculated based on the slip angles αfl to αrr by calculating the slip angles αfl to αrr of the front and rear wheels 2FL to 2RR from the front and rear wheel lateral force sums Fy_f, Fy_r and the front and rear wheel steering angles δf, δr. The angle command value tDF and the rear wheel turning angle command value tDR are calculated, and the front and rear wheels are controlled independently.
[前後輪指令値(トルク及び転舵角)演算制御処理]
図2は、統合コントローラ30で実行されるトルク指令値演算制御処理のメインフローチャートである。以下、各ステップごとに説明する。
[Front and rear wheel command values (torque and turning angle) calculation control processing]
FIG. 2 is a main flowchart of a torque command value calculation control process executed by the integrated
ステップS201では、各センサ信号、データを取り込む。すなわち、アクセル開度APS、ブレーキ踏力BRK、操舵角STR、横加速度YG1,YG2、前後加速度XG、ヨーレートγの各検出値を取り込み、また各モータ3FL〜3RRの回転数Nfl〜Nrr及びトルク指令値TFL〜TRRの現在値データを取り込んでステップS202へ移行する。なお、横加速度YG1,YG2は2つの横加速度センサ24,25の2つの検出値である。
In step S201, each sensor signal and data is captured. That is, the detected values of accelerator opening APS, brake pedal force BRK, steering angle STR, lateral acceleration YG1, YG2, longitudinal acceleration XG, and yaw rate γ are taken in, and the rotational speeds Nfl to Nrr and torque command values of the motors 3FL to 3RR are taken. The current value data of TFL to TRR is fetched and the process proceeds to step S202. The lateral accelerations YG1 and YG2 are two detection values of the two
ステップS202では、車速Vを次式で演算し、ステップS203へ移行する。
(数式1)
V = (Nfl/GG*R + Nfr/GG*R + Nrl/GG*R + Nrr/GG*R) /4
ここで、Rは各車輪fl〜rrの半径、GGは減速機4fl〜4rrの減速比である。
In step S202, the vehicle speed V is calculated by the following equation, and the process proceeds to step S203.
(Formula 1)
V = (Nfl / GG * R + Nfr / GG * R + Nrl / GG * R + Nrr / GG * R) / 4
Here, R is the radius of each wheel fl to rr, and GG is the reduction ratio of the reducers 4fl to 4rr.
ステップS203では、各輪加重、各輪の制駆動路面反力、前左右タイヤの横力和Fy_f、後左右タイヤの横力和Fy_rなどの車両状態を推定し、ステップS204へ移行する。 In step S203, vehicle conditions such as the weight of each wheel, the braking / driving road surface reaction force of each wheel, the lateral force sum Fy_f of the front left and right tires, the lateral force sum Fy_r of the rear left and right tires are estimated, and the process proceeds to step S204.
ステップS204では、アクセル開度APS、ブレーキ踏力BRK、操舵角STR、車速Vなどに基づき各輪2FL〜2RRのモータトルク指令値TFL〜TRRを演算し、駆動回路5FL〜5RRに出力してステップS205へ移行する。 In step S204, motor torque command values TFL to TRR for the respective wheels 2FL to 2RR are calculated based on the accelerator opening APS, the brake pedaling force BRK, the steering angle STR, the vehicle speed V, etc., and output to the drive circuits 5FL to 5RR to be output to step S205. Migrate to
ステップS205では、前後輪横力和Fy_f,Fy_r、前後輪操舵角δfl,δrrなどから、前後輪2FL〜2RRのすべり角αfl〜αrrを演算し、このすべり角αfl〜αrrに基づく前輪補助転舵角指令値tDFおよび後輪転舵角指令値tDRを演算してそれぞれ制御回路13,17へ出力し、制御を終了する。
In step S205, the slip angles αfl to αrr of the front and rear wheels 2FL to 2RR are calculated from the front and rear wheel lateral force sums Fy_f and Fy_r, the front and rear wheel steering angles δfl and δrr, and the front wheel auxiliary steering based on the slip angles αfl to αrr. The angle command value tDF and the rear wheel turning angle command value tDR are calculated and output to the
[車両状態推定]
図3は、図2のフローにおけるステップS203での車両状態推定にかかる、各車両挙動パラメータの関係を示す図である。転舵角センサ21、ブレーキペダルセンサ22、横加速度センサ24,25の検出値である操舵角STR、ブレーキ踏力BRK、横加速度YG1,YG2に基づき、転舵角δ、制駆動路面反力Fx、ヨーモーメントMM及び横力YGを演算し、これに基づき前後輪横力和Fy_f,Fy_rを演算する。
[Vehicle condition estimation]
FIG. 3 is a diagram showing the relationship between the vehicle behavior parameters related to the vehicle state estimation in step S203 in the flow of FIG. Based on the steering angle STR, the brake pedal force BRK, and the lateral accelerations YG1 and YG2 detected by the
(転舵角の演算)
本願における車両は前輪操舵タイプであるため、後輪転舵角δrl, δrrは補助舵角DRのみとなる。したがって、前輪及び後輪の転舵角−転舵角マップMAP_STRfl及びMAP_STRFから、ステアリングホイール11への操舵角STRに対応する前輪転舵角δfl、δfrの値を読み込み、以下のように演算する。ここで、DFは前輪補助舵角、DRは後輪補助舵角である。
(数式2)
δfl = MAP_STRF(STR)+前輪補助舵角値DF
δfr = MAP_STRF(STR)+前輪補助舵角値DF
δrl = DR
δrr = DR
(Calculation of turning angle)
Since the vehicle in the present application is a front wheel steering type, the rear wheel turning angles δrl and δrr are only the auxiliary steering angle DR. Therefore, the values of the front wheel turning angles δfl and δfr corresponding to the steering angle STR to the
(Formula 2)
δfl = MAP_STRF (STR) + front wheel auxiliary rudder angle value DF
δfr = MAP_STRF (STR) + front wheel auxiliary rudder angle value DF
δrl = DR
δrr = DR
(制駆動路面反力の演算)
制駆動路面反力Fxfl〜Fxrrは、モータトルク指令値TFL〜TRRと各輪2FL〜2RRの回転速度変化量から推定する。具体的な推定手法としては、例えば特開平6-98418(数式11)に開示される方法を用いる。とりわけ機械式ブレーキを用いる場合、ブレーキ踏力BRKの値から前、後輪制動力マップを読み込んで、ブレーキ制動トルクTBL_FBR(BRK)及びTBL_RBR(BRK)とモータトルクTFL〜TRRとの和に基づき、制駆動路面反力Fxfl〜Fxrrを演算する。また、アンチスキッドブレーキングシステム作動時には、システム作動による制動トルク減少分を検出し、上記制動トルクを補正する。
(Calculation of braking / driving road surface reaction force)
The braking / driving road surface reaction forces Fxfl to Fxrr are estimated from the motor torque command values TFL to TRR and the rotational speed variation of each wheel 2FL to 2RR. As a specific estimation method, for example, a method disclosed in JP-A-6-98418 (Formula 11) is used. In particular, when using a mechanical brake, the front and rear wheel braking force maps are read from the brake pedal force BRK value, and the braking torque TBL_FBR (BRK) and TBL_RBR (BRK) are combined with the motor torque TFL to TRR. The driving road surface reaction forces Fxfl to Fxrr are calculated. Further, when the anti-skid braking system is operated, a braking torque decrease due to the system operation is detected, and the braking torque is corrected.
(ヨー角加速度及び横加速度の演算)
図4は、図2のフローにおけるステップS203での車両挙動制御にかかる、横加速度YGと各車両挙動パラメータとの関係を示す図である。横力Fyは車両進行方向左向きを正とする。横加速度センサの取り付け位置を図4の位置とした場合、ヨー角加速度γ'(単位は、rad/s2、反時計回りを正とする)と重心位置の横加速度YG(単位は、m/s2、車両左向きを正とする)は次のように求められる。
(数式3)
γ' = (YG2-YG1)/L2
YG = YG1 + (YG2-YG1)*Lc/L2
(Calculation of yaw angular acceleration and lateral acceleration)
FIG. 4 is a diagram showing the relationship between the lateral acceleration YG and each vehicle behavior parameter in the vehicle behavior control in step S203 in the flow of FIG. The lateral force Fy is positive when the vehicle travels to the left. When the installation position of the lateral acceleration sensor is the position shown in FIG. 4, the yaw angular acceleration γ ′ (unit is rad / s 2 , counterclockwise is positive) and the lateral acceleration YG at the center of gravity (unit is m / s 2 , where the left direction of the vehicle is positive) is obtained as follows.
(Formula 3)
γ '= (YG2-YG1) / L2
YG = YG1 + (YG2-YG1) * Lc / L2
(横力及びヨーモーメントの演算)
ヨー角加速度γ'及び横加速度YG値から、車両のヨー慣性設計値Iγ[kgm2]、車両質量設計値M[kg]を用いて、車両に働く横力FyとヨーモーメントMMを次のように演算する。
(数式4)
Fy = M*YG
MM = Iγ*γ'
(Calculation of lateral force and yaw moment)
From the yaw angular acceleration γ 'and the lateral acceleration YG value, the lateral force Fy and yaw moment MM acting on the vehicle are calculated using the vehicle yaw inertia design value I γ [kgm 2 ] and vehicle mass design value M [kg] Calculate as follows.
(Formula 4)
Fy = M * YG
MM = I γ * γ '
(前後輪の左右横力和の演算)
図3に示すように、左前輪で発生する横力をFyfl、右前輪で発生する横力をFyfr、左後輪で発生する横力をFyrl、右後輪で発生する横力をFyrrとし、前輪の左右転舵角が等しく(δfl=δfr=δf)と後輪の左右転舵角が等しい(δrl=δrr=δr)とすると、車両に働く横力FyとヨーモーメントMMについて次の関係式が成り立つ。
(数式5)
ここでLf は前輪軸重心点距離[m]、Lr は後輪軸重心点距離[m]、Lt はトレッドベース距離(前後輪同一)[m]であり、それぞれ設計定数である。
上記数式5の第3項の影響は小さいものとして無視し、(Fyfl+Fyfr)および(Fyrl+Fyrr)を次のように求める。
(数式6)
ここでδfとして(δfl+δfr)/2を用い、δrとして(δrl+δrr)/2を用いることとし、(Fyfl+Fyfr)を第1前輪横力和Fy_f、(Fyrl+Fyrr)を第1後輪横力和Fy_rに代入する。
なお、上記数式6の近似式として以下の数式7を用いてもよいし、前輪転舵角δfおよび後輪転舵角δrが十分小さいとして以下の数式8などを用いてもよい。
(数式7)
(数式8)
(Calculation of left and right lateral force sum of front and rear wheels)
As shown in FIG. 3, the lateral force generated at the left front wheel is Fyfl, the lateral force generated at the right front wheel is Fyfr, the lateral force generated at the left rear wheel is Fyrl, and the lateral force generated at the right rear wheel is Fyrr, If the left and right turning angles of the front wheels are equal (δfl = δfr = δf) and the left and right turning angles of the rear wheels are equal (δrl = δrr = δr), the following relational expression is given for the lateral force Fy and yaw moment MM acting on the vehicle: Holds.
(Formula 5)
Here, Lf is the front wheel center of gravity distance [m], Lr is the rear wheel center of gravity center distance [m], and Lt is the tread base distance (same front and rear wheels) [m], which are design constants.
The influence of the third term of Equation 5 is ignored as being small, and (Fyfl + Fyfr) and (Fyrl + Fyrr) are obtained as follows.
(Formula 6)
Here, (δfl + δfr) / 2 is used as δf, (δrl + δrr) / 2 is used as δr, (Fyfl + Fyfr) is the first front wheel lateral force sum Fy_f, and (Fyrl + Fyrr) is the first. Substitute in the rear wheel lateral force sum Fy_r.
The following expression 7 may be used as an approximate expression of the
(Formula 7)
(Formula 8)
(各輪荷重の演算)
車両静止状態での前輪荷重Wfと車両静止状態での後輪荷重Wr(単位はいずれもN)を次式で演算する。
(数式9)
Wf = M*Lr/(Lf+Lr)/2*9.8
Wr = M*Lf/(Lf+Lr)/2*9.8
次に、車両前後加速度XG、および、数式5で求めた重心位置の横加速度YGから、前後輪荷重移動量ΔWdと左右輪荷重移動量ΔWcを次のように演算する。
(数式10)
ここで、hは重心高[m]、Ltはトレッド幅[m]である。そして、これらの値に基づき、以下の式で各輪の輪荷重を演算する。
(数式11)
この方法以外に、センサを用いて検出した輪荷重値を用いても良い。
(Calculation of each wheel load)
The front wheel load Wf when the vehicle is stationary and the rear wheel load Wr (unit is N) when the vehicle is stationary are calculated by the following equations.
(Formula 9)
Wf = M * Lr / (Lf + Lr) /2*9.8
Wr = M * Lf / (Lf + Lr) /2*9.8
Next, the front-rear wheel load movement amount ΔWd and the left-right wheel load movement amount ΔWc are calculated as follows from the vehicle longitudinal acceleration XG and the lateral acceleration YG at the center of gravity obtained by Expression 5.
(Formula 10)
Here, h is the center of gravity height [m], and Lt is the tread width [m]. Based on these values, the wheel load of each wheel is calculated by the following equation.
(Formula 11)
In addition to this method, a wheel load value detected using a sensor may be used.
[車両状態推定処理]
図5は、図2のステップS203で実行される車両状態推定処理のルーチンである。以下、各ステップにつき説明する。
[Vehicle state estimation processing]
FIG. 5 is a routine of the vehicle state estimation process executed in step S203 of FIG. Hereinafter, each step will be described.
ステップS401では、各輪転舵角δfl〜δrrを演算し、ステップS402へ移行する。 In step S401, each wheel turning angle δfl to δrr is calculated, and the process proceeds to step S402.
ステップS402では、各輪制駆動路面反力Fxfl〜Fxrrを演算し、ステップS403へ移行する。 In step S402, each wheel drive road surface reaction force Fxfl to Fxrr is calculated, and the process proceeds to step S403.
ステップS403では、ヨーモーメントMM、横力YGを演算し、ステップS404へ移行する。 In step S403, yaw moment MM and lateral force YG are calculated, and the process proceeds to step S404.
ステップS404では、第1前後輪横力和Fy_f,Fy_rを演算し、ステップS405へ移行する。 In step S404, first front and rear wheel lateral force sums Fy_f and Fy_r are calculated, and the process proceeds to step S405.
ステップS405では、各輪荷重Wfl〜Wrrを演算し、本ルーチンを終了する。 In step S405, the wheel loads Wfl to Wrr are calculated, and this routine ends.
[モータトルク指令値演算制御]
図2のステップS204におけるモータトルク指令値演算制御では、まず車速-アクセル開度マップMAP_tTD(図6参照)から車両の目標駆動力tTDを読み込む。
[Motor torque command value calculation control]
In the motor torque command value calculation control in step S204 of FIG. 2, first, the target driving force tTD of the vehicle is read from the vehicle speed-accelerator opening degree map MAP_tTD (see FIG. 6).
次に、次式に基づき各輪2FL〜2RRのモータトルク指令値tTFL〜tTRRを演算する。なお、tUは目標駆動力車速及びステアリング操舵量STRに基づき図7の V- tU マップを読み込むことで決定される。
(数式12)
左前、後輪 tTFL,tTRL = tTD*R/GG/4-tU*R/GG/4
右前、後輪 tTFR,tTRR = tTD*R/GG/4+tU*R/GG/4
ここで、GGとは減速機4fl〜4rrにおける減速比である。なお、ヨーレートγや車両横加速度YGが所望の過渡応答となるよう補正を行ってもよく特に限定しない。補正方法については「自動車の運動と制御(山海堂、著者:安部正人)」の第8章などを参照。演算後、各輪2FL〜2RRのモータトルク指令値tTFL〜tTRRをモータ駆動回路へ出力する。
Next, motor torque command values tTFL to tTRR of the wheels 2FL to 2RR are calculated based on the following formula. Note that tU is determined by reading the V-tU map of FIG. 7 based on the target driving force vehicle speed and the steering amount STR.
(Formula 12)
Left front, rear wheel tTFL, tTRL = tTD * R / GG / 4-tU * R / GG / 4
Right front, rear wheel tTFR, tTRR = tTD * R / GG / 4 + tU * R / GG / 4
Here, GG is a reduction ratio in the reduction gears 4fl to 4rr. The yaw rate γ and the vehicle lateral acceleration YG may be corrected so as to have a desired transient response, and are not particularly limited. For the correction method, refer to
[モータトルク指令値演算制御処理]
図8は、モータトルク指令値演算制御処理ルーチンである。以下、各ステップにつき説明する。
[Motor torque command value calculation control process]
FIG. 8 is a motor torque command value calculation control processing routine. Hereinafter, each step will be described.
ステップS601では、目標駆動力tTDを演算し、ステップS602へ移行する。 In step S601, the target driving force tTD is calculated, and the process proceeds to step S602.
ステップS602では、各輪2FL〜2RRに対するモータトルク指令値tTFL〜tTRRを演算し、ステップS603へ移行する。 In step S602, motor torque command values tTFL to tTRR for the wheels 2FL to 2RR are calculated, and the process proceeds to step S603.
ステップS603では、各輪2FL〜2RRのモータトルク指令値tTFL〜tTRRを出力し、本ルーチンを終了する。 In step S603, motor torque command values tTFL to tTRR for the wheels 2FL to 2RR are output, and this routine is terminated.
[各輪転舵角制限制御]
車輪の横力は基本的に横すべり角が大きいほど大きくなる特性にあるが、ある横すべり角S以上は、逆に横滑り角が大きくなるほど減少する傾向にある(タイヤを転舵しすぎると車両が曲がりづらくなる)。したがって、本実施例では前後輪すべり角の推定値に応じ、前後輪横力和が減少に転じてしまうタイヤ横滑り角とならないよう、転舵角を制限して路面摩擦係数や車両の状態に応じた制御を行う。
[Each wheel turning angle limit control]
The lateral force of a wheel basically has a characteristic of increasing as the side slip angle increases, but it tends to decrease as the side slip angle increases beyond a certain side slip angle S (the vehicle bends if the tire is steered too much). It becomes difficult.) Therefore, in this embodiment, according to the estimated value of the front and rear wheel slip angle, the steer angle is limited according to the road surface friction coefficient and the vehicle condition so that the tire side slip angle that causes the sum of the front and rear wheel lateral forces to decrease does not occur. Control.
(各輪すべり角の演算)
車体すべり角βに対する各輪2FL〜2RRのすべり角αfl〜αrrを次式で演算する。車体すべり角βと各輪すべり角αfl〜αrrとの関係がおおよそ次の関係にあることは、「自動車の運動と制御(山海堂、著者:安部正人)」の第3章(p.54)に示されている。また、タイヤ回転面の向きに対してタイヤ中央の進行の向きが時計周りの状況を正の向きにとる(図3参照)。
(数式13)
αfl = (V*β+(Lf+Lr)*γ)/(V-Lt*γ/2) - δfl
αfr = (V*β+(Lf+Lr)*γ)/(V+Lt*γ/2) - δfr
αrl = V*β/(V-Lt*γ/2) - δrl
αrr = V*β/(V+Lt*γ/2) - δrr
演算後、前輪2FL,2FR及び後輪2RL,2RRにおける平均すべり角αf,αrを演算する。
(数式14)
αf = (αfl+αfr)/2
αr = (αrl+αrr)/2
(Calculation of each wheel slip angle)
The slip angles αfl to αrr of the wheels 2FL to 2RR with respect to the vehicle slip angle β are calculated by the following equation. The relationship between the vehicle slip angle β and the wheel slip angles αfl to αrr is roughly as follows. Chapter 3 (p.54) of “Automotive Movement and Control (Sankaido, Author: Masato Abe)” Is shown in In addition, the traveling direction of the center of the tire is a clockwise direction with respect to the direction of the tire rotation surface (see FIG. 3).
(Formula 13)
αfl = (V * β + (Lf + Lr) * γ) / (V-Lt * γ / 2)-δfl
αfr = (V * β + (Lf + Lr) * γ) / (V + Lt * γ / 2)-δfr
αrl = V * β / (V-Lt * γ / 2)-δrl
αrr = V * β / (V + Lt * γ / 2)-δrr
After the calculation, average slip angles αf and αr at the front wheels 2FL and 2FR and the rear wheels 2RL and 2RR are calculated.
(Formula 14)
αf = (αfl + αfr) / 2
αr = (αrl + αrr) / 2
(各輪すべり角制限値演算)
各輪すべり角の最大制限値αfmax,αrmaxを演算する。演算にあたり、所定時間内の前後輪すべり角αf、αr、前後輪横力和Fy_f,Fy_rを記憶する。例えば、所定時間2秒内に(αf、αr),(Fy_f,Fy_r)をそれぞれ400個ずつサンプリングし、αf[1]〜αf[400]、αr[1]〜αr[400]、Fy_f[1]〜Fy_f[400]、Fy_r[1]〜Fy_r[400]として記憶する。
(Each wheel slip angle limit value calculation)
The maximum limit values αfmax and αrmax for each wheel slip angle are calculated. In the calculation, the front and rear wheel slip angles αf and αr and the front and rear wheel lateral force sums Fy_f and Fy_r within a predetermined time are stored. For example, (αf, αr), (Fy_f, Fy_r) are sampled 400 times each within a predetermined time of 2 seconds, and αf [1] to αf [400], αr [1] to αr [400], Fy_f [1 ] To Fy_f [400] and Fy_r [1] to Fy_r [400].
図9は、サンプリングした前輪すべり角絶対値|αf[j]|と前輪横力和絶対値 |Fy_f[j]| (j=1,2,3・・・400)の関係を示す図である。まず、図9に基づき前輪すべり角の最大制限値αfmaxを求める。前輪横力和絶対値 |Fy_f[1]| 〜 |Fy_f[400]| の中で最も大きい値のものを選び、 |Fy_f[k]| (kは、1〜400の間の整数)とする。 FIG. 9 is a diagram showing a relationship between the sampled front wheel slip angle absolute value | αf [j] | and the front wheel lateral force sum absolute value | Fy_f [j] | (j = 1, 2, 3... 400). . First, the maximum limit value αfmax of the front wheel slip angle is obtained based on FIG. The absolute value of the front wheel lateral force sum | Fy_f [1] | ~ | Fy_f [400] | is chosen as the largest value, and | Fy_f [k] | (k is an integer between 1 and 400) .
この前輪横力和絶対値 |Fy_f[k]| に対応する前輪すべり角絶対値 |αf[k]| を求め、 |αf[1]| 〜 |αf[400]| のうちこの前輪すべり角絶対値 |αf[k]| よりも値が大きい |αf[m]| (|αf[m]|>|αf[k]|) を全て選択する。該当する |αf[m]| が存在しなければ、αfmax=1rad(十分大きな値)とする。 The absolute absolute value of the front wheel slip angle corresponding to the absolute value of the front wheel lateral force | Fy_f [k] | is obtained, and the absolute value of the front wheel slip angle is determined from among | αf [1] | to | αf [400] | Select all | αf [m] | (| αf [m] |> | αf [k] |) values greater than the value | αf [k] |. If the corresponding | αf [m] | does not exist, αfmax = 1rad (a sufficiently large value).
選択された |αf[m]| に対応する |Fy_f[m]| を選定し、この |Fy_f[m]| のうち、以下の数式15を満たす |Fy_f[n]| を求める。なお、Δ(>0)の値は、各輪すべり角制限値の要求精度に応じて決定される係数である。
(数式15)
|Fy_f[k]|-Δ > |Fy_f[n]| かつ |αf[n]| > |αf[k]|
この数式15に該当する|Fy_f[n]| が存在すれば、対応する |αf[n]| の最小値を前輪すべり角最大制限値αfmaxとする。該当する |Fy_f[n]| が存在しなければ、αfmax=1rad(十分大きな値)とする。
(数式16)
|Fy_f[n]| が存在すれば |αf[n]|min = αfmax
|Fy_f[n]| が存在しなければ αfmax=1rad
| Fy_f [m] | corresponding to the selected | αf [m] | is selected, and among these | Fy_f [m] |, | Fy_f [n] | Note that the value of Δ (> 0) is a coefficient determined according to the required accuracy of each wheel slip angle limit value.
(Formula 15)
| Fy_f [k] | -Δ> | Fy_f [n] | and | αf [n] |> | αf [k] |
If | Fy_f [n] | corresponding to
(Formula 16)
| Αf [n] | min = αfmax if | Fy_f [n] |
If | Fy_f [n] | does not exist, αfmax = 1rad
後輪すべり角最大制限値αrmaxも、以下の式17に基づき前輪と同様に求める。
(数式17)
|Fy_r[k]|-Δ > |Fy_r[n]| かつ |αr[n]| > |αr[k]|
|Fy_r[n]| が存在すれば |αr[n]|min = αrmax
|Fy_r[n]| が存在しなければ αrmax=1rad
The rear wheel slip angle maximum limit value αrmax is also obtained in the same manner as the front wheel based on the following
(Formula 17)
| Fy_r [k] | -Δ> | Fy_r [n] | and | αr [n] |> | αr [k] |
| Αr [n] | min = αrmax if | Fy_r [n] |
If | Fy_r [n] | does not exist, αrmax = 1 rad
(補助舵角指令値演算)
1. 前輪補助舵角指令値tDF
前輪補助舵角指令値tDFは基本的に0とするが、ドライバがステアリングホイール11を切り増した時に旋回性が低下しない前輪すべり角αfに制限するよう、次式に基づき前輪補助転舵角指令値tDFを演算する。
(数式18)
tDF = max[-αfmax+{V*β+(Lf+Lr)*γ}/V - MAP_STRF(STR) ,
min〔αfmax+{V*β+(Lf+Lr)*γ}/V - MAP_STRF(STR), 0 〕]
(Auxiliary rudder angle command value calculation)
1. Front wheel auxiliary rudder angle command value tDF
The front wheel auxiliary steering angle command value tDF is basically set to 0, but the front wheel auxiliary steering angle command is based on the following formula so as to limit the front wheel slip angle αf so that the turning performance does not deteriorate when the driver turns the
(Formula 18)
tDF = max [-αfmax + {V * β + (Lf + Lr) * γ} / V-MAP_STRF (STR),
min [αfmax + {V * β + (Lf + Lr) * γ} / V-MAP_STRF (STR), 0]]
2.後輪補助舵角指令値tDR
後輪補助舵角指令値tDRについては、基本的にステアリングホイール11の操舵による前輪転舵角δfに対し、逆位相かつ比例的に補助舵角指令値tDRを次のように演算する。
(数式19)
(- K * MAP_STRF(STR))
前輪同様、ドライバがステアリングを切り増した時に旋回性が低下しない後輪すべり角αrに制限するよう、Kを定数として次のように後輪転舵角指令値tDRを演算する。
(数式20)
tDR = max[-αrmax+β,min{αrmax+β,- K*MAP_STRF(STR) }]
2. Rear wheel auxiliary rudder angle command value tDR
As for the rear wheel auxiliary steering angle command value tDR, basically, the auxiliary steering angle command value tDR is calculated in the following manner in proportion to and in reverse phase with respect to the front wheel turning angle δf by the steering of the
(Formula 19)
(-K * MAP_STRF (STR))
As with the front wheels, the rear wheel turning angle command value tDR is calculated as follows using K as a constant so as to limit the rear wheel slip angle αr so that the turning performance does not deteriorate when the driver turns the steering wheel.
(Formula 20)
tDR = max [-αrmax + β, min {αrmax + β, -K * MAP_STRF (STR)}]
[各輪転舵角制限制御処理]
図10は、各輪転舵角制限制御処理ルーチンである。以下、各ステップにつき説明する。
[Each wheel turning angle limit control process]
FIG. 10 shows each wheel turning angle restriction control processing routine. Hereinafter, each step will be described.
ステップS501では、車体すべり角βに対する前輪2FL,2FRのすべり角αfl,αfrを演算し、平均前輪すべり角αfを求めてステップS502へ移行する。 In step S501, the slip angles αfl and αfr of the front wheels 2FL and 2FR with respect to the vehicle slip angle β are calculated to obtain the average front wheel slip angle αf, and the process proceeds to step S502.
ステップS502では、車体すべり角βに対する後輪2RL,2RRのすべり角αrl,αrrを演算し、平均後輪すべり角αrを求めてステップS503へ移行する。 In step S502, the slip angles αrl and αrr of the rear wheels 2RL and 2RR with respect to the vehicle slip angle β are calculated to obtain the average rear wheel slip angle αr, and the process proceeds to step S503.
ステップS503では、所定時間内の前後輪すべり角αf、αr、前後輪横力和Fy_f,Fy_rをサンプリングしてステップS504へ移行する。 In step S503, the front and rear wheel slip angles αf and αr and the front and rear wheel lateral force sums Fy_f and Fy_r within a predetermined time are sampled, and the process proceeds to step S504.
ステップS504では前輪補助舵角指令値αfmaxを演算し、ステップS505へ移行する。 In step S504, a front wheel auxiliary steering angle command value αfmax is calculated, and the process proceeds to step S505.
ステップS505では後輪補助舵角指令値αrmaxを演算し、ステップS506へ移行する。 In step S505, the rear wheel auxiliary rudder angle command value αrmax is calculated, and the process proceeds to step S506.
ステップS506では前後輪補助舵角指令値tDF,tDRを演算し、制御を終了する。 In step S506, the front and rear wheel auxiliary rudder angle command values tDF and tDR are calculated, and the control is terminated.
[本願実施例の効果]
(1)本願実施例では、車両状態に基づき、車両各輪2FL〜2RRの横力和Fy_f,Fy_rを演算する横力和演算手段を備えた車両の挙動制御装置において、横力和演算手段は、前輪2FL,2FRと後輪2RL,2RRの横力和Fy_f,Fy_rを独立に演算し、前輪2FL,2FRと後輪2RL,2RRのタイヤ作用力である前輪補助転舵角指令値tDFおよび後輪転舵角指令値tDR
を独立に制御する制御手段を備えることとした。これにより、前輪2FL,2FRと後輪2RL,2RRをそれぞれの状態に応じて独立して制御することが可能となり、より正確な車両挙動制御を行うことができる。
[Effect of the embodiment of the present application]
(1) In the embodiment of the present application, in the vehicle behavior control device including the lateral force sum calculating means for calculating the lateral force sums Fy_f and Fy_r of the vehicle wheels 2FL to 2RR based on the vehicle state, the lateral force sum calculating means includes: The lateral force sums Fy_f and Fy_r of the front wheels 2FL and 2FR and the rear wheels 2RL and 2RR are independently calculated, the front wheel auxiliary turning angle command value tDF which is the tire acting force of the front wheels 2FL and 2FR and the rear wheels 2RL and 2RR, and the rear Wheel turning angle command value tDR
It was decided to provide a control means for independently controlling. As a result, the front wheels 2FL and 2FR and the rear wheels 2RL and 2RR can be controlled independently according to the respective states, and more accurate vehicle behavior control can be performed.
(2)車両状態に基づき、前輪2FL,2FRと後輪2RL,2RRの横力和Fy_f, 和Fy_fをそれぞれ独立に演算し、前輪の横力和Fy_fに基づき前輪のタイヤ作用力を制御し、後輪の横力和Fy_fに基づき後輪のタイヤ作用力を制御することとした。これにより、前後輪でそれぞれ異なる状態をより精度よく把握し、これに基づいて前後輪の独立制御を確実に行うことができる。 (2) Based on the vehicle condition, the lateral force sums Fy_f and Fy_f of the front wheels 2FL and 2FR and the rear wheels 2RL and 2RR are independently calculated, and the tire acting force of the front wheels is controlled based on the front wheel lateral force sum Fy_f. The tire acting force of the rear wheel is controlled based on the lateral force sum Fy_f of the rear wheel. As a result, the different states of the front and rear wheels can be grasped with higher accuracy, and independent control of the front and rear wheels can be reliably performed based on this.
(3)各輪2FL〜2RRの転舵角δfl〜δrrを検出する転舵角検出手段と、各輪2FL〜2RRの制駆動反力Fxfl〜Fxrrを演算する制駆動反力演算手段と、車両上の2箇所の横加速度YG1,YG2を検出する横加速度検出手段と、2箇所の横加速度YG1,YG2に基づき、車両重心位置における横力FYを演算する横力演算手段と、2箇所の横加速度YG1,YG2に基づき、車両重心位置におけるヨーモーメントγ'を演算するヨーモーメント演算手段とを備え、横力和演算手段は、各輪転舵角δfl〜δrr、各輪制駆動反力Fxfl〜Fxrr、前記横力FY、及び前記ヨーモーメントγ'に基づき前輪と後輪の横力和Fy_f,Fy_rを演算することとした。 (3) Steering angle detecting means for detecting the turning angles δfl to δrr of the wheels 2FL to 2RR, braking / driving reaction force calculating means for calculating the braking / driving reaction forces Fxfl to Fxrr of the wheels 2FL to 2RR, and a vehicle Lateral acceleration detecting means for detecting the two lateral accelerations YG1 and YG2 above, lateral force calculating means for calculating the lateral force FY at the vehicle center of gravity based on the two lateral accelerations YG1 and YG2, and two lateral forces Yaw moment calculating means for calculating the yaw moment γ 'at the center of gravity of the vehicle based on the accelerations YG1 and YG2, and the lateral force sum calculating means each wheel turning angle δfl ~ δrr, each wheel braking drive reaction force Fxfl ~ Fxrr The lateral force sums Fy_f and Fy_r of the front wheels and the rear wheels are calculated based on the lateral force FY and the yaw moment γ ′.
これにより、前後輪で独立してヨーモーメントγ'を演算することが可能となり、前後輪のヨーモーメントγ'の和が変化しない場合であっても、前後輪のヨーモーメントγ'が独自に変化していれば、前後輪の状態を独立して把握することで、車両状態をより正確に把握することができる。 This makes it possible to independently calculate the yaw moment γ ′ for the front and rear wheels, and the yaw moment γ ′ for the front and rear wheels changes independently even if the sum of the yaw moment γ ′ for the front and rear wheels does not change. If so, the vehicle state can be more accurately grasped by grasping the state of the front and rear wheels independently.
(4)横力和演算手段は、Lfを前輪軸と車両重心点との前後距離、Lrを後輪軸と車両重心点との前後距離、Ltをトレッドベース距離、δfを前輪舵角、δrを後輪舵角として、以下の数式
によって、またはこの数式の近似式によって、横力和Fy_f,Fy_rを演算することとした。これにより、数式を用いて演算することで、横力和Fy_f,Fy_rをより高精度かつ高速度で演算することができる。
(4) The lateral force sum calculation means is such that Lf is the longitudinal distance between the front wheel axis and the vehicle center of gravity, Lr is the longitudinal distance between the rear wheel axis and the vehicle center of gravity, Lt is the tread base distance, δf is the front wheel steering angle, and δr is As the rear wheel rudder angle, the following formula
The lateral force sums Fy_f and Fy_r are calculated according to the above or an approximate expression of this mathematical expression. Accordingly, the lateral force sums Fy_f and Fy_r can be calculated with higher accuracy and higher speed by calculating using mathematical expressions.
(5)タイヤ作用力として各輪の転舵角を用い、制御手段は、前輪2FL,2FR及び/または後輪2RL,2RRの転舵角を制御する補助転舵用モータ12及び転舵用モータ16とした。これにより、前後輪のヨーモーメントを独立して制御可能となり、車両挙動制御をより高精度に行うことができる。
(5) The turning angle of each wheel is used as the tire acting force, and the control means controls the
(6)制御手段は、前後輪横力和Fy_f,Fy_rが減少しない範囲で、この前後輪横力和Fy_f,Fy_rに応じて前後輪転舵角δfl〜δrrを制御することとした。車輪の横力は基本的に横すべり角が大きいほど大きくなる特性にあるが、ある横すべり角S以上は、逆に横滑り角が大きくなるほど減少する傾向にある(タイヤを転舵しすぎると車両が曲がりづらくなる)。転舵角δfl〜δrrを制限して路面摩擦係数や車両の状態に応じた制御を行うため、前後輪すべり角αfl〜αrrに応じて前後輪横力和Fy_f,Fy_rが減少に転じてしまうことを回避し、車両挙動をより安定させることができる。 (6) The control means controls the front and rear wheel turning angles δfl to δrr according to the front and rear wheel lateral force sums Fy_f and Fy_r within a range in which the front and rear wheel lateral force sums Fy_f and Fy_r do not decrease. The lateral force of a wheel basically has a characteristic of increasing as the side slip angle increases, but it tends to decrease as the side slip angle increases beyond a certain side slip angle S (the vehicle bends if the tire is steered too much). It becomes difficult.) The front and rear wheel lateral force sums Fy_f and Fy_r start to decrease in accordance with the front and rear wheel slip angles αfl to αrr because the steering angles δfl to δrr are limited to perform control according to the road surface friction coefficient and vehicle condition. Can be avoided and the vehicle behavior can be made more stable.
(他の実施例)
以上、本発明の操舵装置を実施例に基づき説明してきたが、具体的な構成についてはこれらに限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り設計の変更や追加等は許容される。
(Other examples)
As mentioned above, although the steering device of the present invention has been described based on the embodiments, the specific configuration is not limited to these, and the design of the steering device is not limited unless it deviates from the gist of the invention according to each claim of the claims. Changes and additions are allowed.
例えば、各輪すべり角αfl〜αrrが発生してから各輪に横力が発生するまでには過渡的な遅れがあるが、以下の式に基づき、タイヤ横滑り角が発生してからタイヤ横力が発生するまでの伝達特性をT(s)とした場合に、数式14を次の式で置き換え、この遅れを補正した上で図10のフローチャートを実施してもよい。ここでsは微分演算子である。
(数式21)
αf = T(s) * (αfl+αfr)/2
αr = T(s) * (αrl+αrr)/2
For example, there is a transient delay from the occurrence of each wheel slip angle αfl to αrr to the occurrence of lateral force on each wheel. When the transfer characteristic until occurrence of T is defined as T (s),
(Formula 21)
αf = T (s) * (αfl + αfr) / 2
αr = T (s) * (αrl + αrr) / 2
また、本願実施例ではタイヤ作用力として前輪2FL,2FRと後輪2FL,2RRの前輪補助転舵角指令値tDFおよび後輪転舵角指令値tDRを用いたが、タイヤ作用力として前輪2FL,2FRと後輪2FL,2RRの制駆動力Fxf,Fxrを用い、それぞれを独立に制御することで、車両挙動制御を行ってもよい。 In the embodiment of the present invention, the front wheel auxiliary turning angle command value tDF and the rear wheel turning angle command value tDR of the front wheels 2FL, 2FR and the rear wheels 2FL, 2RR are used as the tire acting force, but the front wheels 2FL, 2FR are used as the tire acting force. The vehicle behavior control may be performed by using the braking / driving forces Fxf and Fxr of the rear wheels 2FL and 2RR and independently controlling them.
3FL〜3RR 車輪
4fl〜4rr 減速機
5FL〜5RR 駆動回路
6 バッテリ
8 ヨーレイトセンサ
11 ステアリングホイール
12 補助転舵用モータ
14 ステアリングラック
15 ステアリングラック
16 転舵用モータ
17 制御回路
21 転舵角センサ
22 ブレーキペダルセンサ
23 アクセルペダルセンサ
24,25 横加速度センサ
26 前後加速度センサ
29 車体すべり角センサ
30 統合コントローラ
3FL to 3RR Wheel 4fl to 4rr Reducer 5FL to
Claims (6)
前輪と後輪の横力和を独立に演算する前記横力和演算手段と、
演算された前記前輪と後輪それぞれの横力和に基づき、前記前輪と後輪のタイヤ作用力を独立に制御する制御手段と
を備えることを特徴とする車両の挙動制御装置。 In a vehicle behavior control device that controls the turning behavior of a vehicle based on the vehicle state,
The lateral force sum calculating means for independently calculating the lateral force sum of the front wheel and the rear wheel;
A vehicle behavior control device comprising: control means for independently controlling tire acting forces of the front wheels and the rear wheels based on the calculated lateral force sum of the front wheels and the rear wheels.
前記車両状態に基づき、前記前輪と後輪の横力和をそれぞれ独立に演算し、前記前輪の横力和に基づき前記前輪のタイヤ作用力を制御し、前記後輪の横力和に基づき前記後輪のタイヤ作用力を制御すること
を特徴とする車両の挙動制御装置。 The vehicle behavior control apparatus according to claim 1,
Based on the vehicle state, the lateral force sum of the front wheel and the rear wheel is independently calculated, the tire acting force of the front wheel is controlled based on the lateral force sum of the front wheel, and based on the lateral force sum of the rear wheel, A vehicle behavior control device characterized by controlling a tire acting force on a rear wheel.
前記各輪の転舵角を検出する転舵角検出手段と、
前記各輪の制駆動反力を演算する制駆動反力演算手段と、
前記車両上の2箇所の横加速度を検出する横加速度検出手段と、
前記2箇所の横加速度に基づき、前記車両重心位置における横力を演算する横力演算手段と、
前記2箇所の横加速度に基づき、前記車両重心位置におけるヨーモーメントを演算するヨーモーメント演算手段と
を備え、
前記横力和演算手段は、前記各輪の転舵角、前記各輪の制駆動反力、前記横力、及び前記ヨーモーメントに基づき前記前輪と後輪の横力和を演算すること
を特徴とする車両の挙動制御装置。 In the vehicle behavior control device according to claim 1 or 2,
A turning angle detection means for detecting a turning angle of each wheel;
Braking / driving reaction force calculating means for calculating the braking / driving reaction force of each wheel;
Lateral acceleration detecting means for detecting lateral acceleration at two locations on the vehicle;
Lateral force calculating means for calculating lateral force at the vehicle center of gravity based on the two lateral accelerations;
A yaw moment calculating means for calculating a yaw moment at the center of gravity of the vehicle based on the two lateral accelerations;
The lateral force sum calculating means calculates a lateral force sum of the front and rear wheels based on a turning angle of each wheel, a braking / driving reaction force of each wheel, the lateral force, and the yaw moment. A vehicle behavior control device.
前記横力和演算手段は、Lfを前輪軸と車両重心点との前後距離、Lrを後輪軸と車両重心点との前後距離、Ltをトレッドベース距離、δfを前輪舵角、δrを後輪舵角として、以下の数式
によって、または該数式の近似式によって、前記横力和を演算すること
を特徴とする車両の挙動制御装置。 In the vehicle behavior control apparatus according to claim 3,
The lateral force sum calculating means is such that Lf is the front-rear distance between the front wheel axis and the vehicle center of gravity, Lr is the front-rear distance between the rear wheel axis and the vehicle center of gravity, Lt is the tread base distance, δf is the front wheel steering angle, and δr is the rear wheel As the steering angle, the following formula
Or the approximate expression of the mathematical formula is used to calculate the lateral force sum.
前記タイヤ作用力は各輪の転舵角であって、
前記前輪及び/または後輪の転舵角を制御するアクチュエータを備えたこと
を特徴とする車両の挙動制御装置。 In the vehicle behavior control apparatus according to any one of claims 1 to 4,
The tire acting force is a turning angle of each wheel,
A vehicle behavior control device comprising an actuator for controlling a turning angle of the front wheel and / or the rear wheel.
前記前後輪の横力和が減少しない範囲で、前記前後輪の横力和に応じて前記前後輪転舵角を制御すること
を特徴とする車両の挙動制御装置。 In the vehicle behavior control apparatus according to claim 5,
The vehicle behavior control device characterized by controlling the front-rear wheel turning angle in accordance with the lateral force sum of the front and rear wheels within a range in which the lateral force sum of the front and rear wheels does not decrease.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006044680A JP4835198B2 (en) | 2006-02-22 | 2006-02-22 | Vehicle behavior control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006044680A JP4835198B2 (en) | 2006-02-22 | 2006-02-22 | Vehicle behavior control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007223390A true JP2007223390A (en) | 2007-09-06 |
JP4835198B2 JP4835198B2 (en) | 2011-12-14 |
Family
ID=38545606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006044680A Expired - Fee Related JP4835198B2 (en) | 2006-02-22 | 2006-02-22 | Vehicle behavior control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4835198B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009214774A (en) * | 2008-03-12 | 2009-09-24 | Honda Motor Co Ltd | Rear wheel steering control device |
EP2105371A1 (en) * | 2008-03-27 | 2009-09-30 | Honda Motor Co., Ltd. | Rear wheel toe angle control device |
DE102009001987A1 (en) | 2008-03-31 | 2009-10-01 | Advics Co., Ltd., Kariya | Motion control device for a vehicle |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0550938A (en) * | 1991-08-20 | 1993-03-02 | Kayaba Ind Co Ltd | Rear wheel steering angle control device |
JPH09240458A (en) * | 1995-12-27 | 1997-09-16 | Toyota Motor Corp | Detecting device for quantity of lateral slipping state of vehicle |
JP2000264238A (en) * | 1999-03-15 | 2000-09-26 | Toyota Motor Corp | Steering control device of vehicle |
-
2006
- 2006-02-22 JP JP2006044680A patent/JP4835198B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0550938A (en) * | 1991-08-20 | 1993-03-02 | Kayaba Ind Co Ltd | Rear wheel steering angle control device |
JPH09240458A (en) * | 1995-12-27 | 1997-09-16 | Toyota Motor Corp | Detecting device for quantity of lateral slipping state of vehicle |
JP2000264238A (en) * | 1999-03-15 | 2000-09-26 | Toyota Motor Corp | Steering control device of vehicle |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009214774A (en) * | 2008-03-12 | 2009-09-24 | Honda Motor Co Ltd | Rear wheel steering control device |
EP2105371A1 (en) * | 2008-03-27 | 2009-09-30 | Honda Motor Co., Ltd. | Rear wheel toe angle control device |
US7871085B2 (en) | 2008-03-27 | 2011-01-18 | Honda Motor Co., Ltd. | Rear wheel toe angle control device |
DE102009001987A1 (en) | 2008-03-31 | 2009-10-01 | Advics Co., Ltd., Kariya | Motion control device for a vehicle |
US8082087B2 (en) | 2008-03-31 | 2011-12-20 | Advics Co., Ltd. | Motion control device for vehicle |
DE102009001987B4 (en) | 2008-03-31 | 2021-11-18 | Advics Co., Ltd. | Motion control device for a vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP4835198B2 (en) | 2011-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4867369B2 (en) | Driving force control device for electric vehicle, automobile and driving force control method for electric vehicle | |
JP5830554B2 (en) | Control method for four-wheel steering vehicle | |
CN101657345B (en) | Device and method for estimating frictional condition of ground contact surface of wheel | |
JP5035419B2 (en) | Road surface friction coefficient estimation device and road surface friction coefficient estimation method | |
CN107848526B (en) | Vehicle turning control device | |
EP2891591B1 (en) | Steer-by-wire steering reaction force control device | |
CN111559379A (en) | Road friction coefficient estimation using steering system signals | |
JP2008087724A (en) | Tire lateral force arithmetic unit | |
JP2005297622A (en) | Steering system | |
JP5540641B2 (en) | Tire condition estimation device | |
JP4423961B2 (en) | Motor output control device for electric vehicle | |
JP5007542B2 (en) | Vehicle turning behavior control device | |
JP6267440B2 (en) | Vehicle control device | |
JP6577850B2 (en) | Vehicle control apparatus and vehicle control method | |
JP2008239115A (en) | Vehicle operation controller | |
JP2007190942A (en) | Driving force distributing device for vehicle | |
JP4862422B2 (en) | Vehicle state estimation and control device | |
JP4835198B2 (en) | Vehicle behavior control device | |
JP2010188918A (en) | Behavior control device | |
JP4725431B2 (en) | Driving force estimation device for electric vehicle, automobile and driving force estimation method for electric vehicle | |
JP4862423B2 (en) | Vehicle state estimation and control device | |
JP2006187047A (en) | Driving force controller for four-wheel independent drive vehicle | |
JP2006096230A (en) | Vehicular motion control device and vehicular motion control method | |
JP6900877B2 (en) | Steering by wire system | |
JP5104102B2 (en) | Vehicle driving force distribution control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110524 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110526 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110610 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110830 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110912 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141007 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |