JP2007222817A - Method for treating boron fluoride-containing waste water - Google Patents

Method for treating boron fluoride-containing waste water Download PDF

Info

Publication number
JP2007222817A
JP2007222817A JP2006048700A JP2006048700A JP2007222817A JP 2007222817 A JP2007222817 A JP 2007222817A JP 2006048700 A JP2006048700 A JP 2006048700A JP 2006048700 A JP2006048700 A JP 2006048700A JP 2007222817 A JP2007222817 A JP 2007222817A
Authority
JP
Japan
Prior art keywords
boron fluoride
boron
fluoride
fluorine
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006048700A
Other languages
Japanese (ja)
Inventor
Haruo Shibayama
治雄 柴山
Tsutomu Muraki
務 村木
Fumitaka Yamamoto
文隆 山本
Makoto Ishizaki
真 石崎
Kazuyoshi Aono
一孔 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2006048700A priority Critical patent/JP2007222817A/en
Publication of JP2007222817A publication Critical patent/JP2007222817A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating boron fluoride-containing waste water at the cost lower than that of the conventional method while reducing the amount of waste to be generated. <P>SOLUTION: The method for treating boron fluoride-containing waste water comprises the steps of: adjusting the pH of the boron fluoride-containing waste water to be treated to 1-4; and bringing the pH-adjusted boron fluoride-containing waste water into contact with a boron fluoride decomposing material at normal temperature under normal pressure to decompose boron fluoride into a fluorine ion and a borate ion and simultaneously adsorb the fluorine ion on the boron fluoride decomposing material to remove the fluorine ion. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、フッ素、ホウ素およびフッ化ホウ素含有排水の処理に関し、メッキ工場排水、ガラス製造工場排水、石炭火力発電所の排煙脱硫排水やごみ焼却場の排煙洗浄排水等に含まれるフッ素およびホウ素がフッ化ホウ素を形成している排水の処理方法に関する。   The present invention relates to treatment of fluorine, boron and boron fluoride-containing wastewater, such as plating factory wastewater, glass manufacturing factory wastewater, flue gas desulfurization wastewater from coal-fired power plants, and wastewater from waste incineration. The present invention relates to a wastewater treatment method in which boron forms boron fluoride.

従来、フッ素やホウ素を単独で含有する排水の一般的な処理方法としては、カルシウム塩、マグネシウム塩およびアルミニウム塩等を多量に加えて生成するフッ化カルシウムやゲル状水酸化アルミニウム等にフッ素やホウ素を吸着させ、固液分離する方法が知られている。しかし、フッ素とホウ素が結合した安定なフッ化ホウ素錯体が形成されている場合には、カルシウム塩、マグネシウム塩およびアルミニウム塩等を添加してもほとんど除去することはできない。すなわち、カルシウム塩、マグネシウム塩およびアルミニウム塩によるフッ素の処理は、被処理水中でフッ素イオン(F-)に解離した状態の場合にのみ適用できる。また、ホウ素の処理に際しては、被処理水中でホウ酸イオン(BO3 3-)に解離した状態で除去が可能となる。 Conventionally, as a general treatment method of wastewater containing fluorine or boron alone, calcium fluoride, gel aluminum hydroxide, etc. produced by adding a large amount of calcium salt, magnesium salt, aluminum salt, etc., fluorine or boron A method of adsorbing and solid-liquid separation is known. However, when a stable boron fluoride complex in which fluorine and boron are bonded to each other is formed, it can hardly be removed by adding calcium salt, magnesium salt, aluminum salt, or the like. That is, the treatment of fluorine with a calcium salt, a magnesium salt and an aluminum salt can be applied only when it is dissociated into fluorine ions (F ) in the water to be treated. Further, in the treatment of boron, it can be removed in a state dissociated into borate ions (BO 3 3− ) in the water to be treated.

このような問題点を解決するため、従来、フッ化ホウ素含有排水の処理方法が提案されている(例えば、特許文献1参照)が、この方法は、フッ化ホウ素含有排水に硫酸アルミニウムを添加し、更にこれを50℃以上に加熱するようにしたものである。この方法では、被処理排水を加熱して形成されたフッ化ホウ素の分解反応のため、実用上は最低でも60℃以上に加熱する必要があり、エネルギーコストが大きくて、経済性を失うばかりでなく、添加された硫酸アルミニウムが最終的に廃棄物として発生するなどの問題点があった。   In order to solve such problems, conventionally, a treatment method for boron fluoride-containing wastewater has been proposed (see, for example, Patent Document 1), but this method involves adding aluminum sulfate to the boron fluoride-containing wastewater. Further, this is heated to 50 ° C. or higher. In this method, due to the decomposition reaction of boron fluoride formed by heating the wastewater to be treated, it is necessary to heat it to at least 60 ° C in practical use, resulting in high energy costs and loss of economic efficiency. However, there is a problem that the added aluminum sulfate is finally generated as waste.

また、この他にフッ化ホウ素含有排水にアルミニウム化合物および鉄化合物を添加する処理方法が提案されている(例えば、特許文献2参照)。この方法は必ずしも加熱を要しないが、鉄化合物の添加量が多く、最終的に添加した鉄化合物が大量の廃棄物となる点に問題があった。   In addition, a treatment method in which an aluminum compound and an iron compound are added to boron fluoride-containing wastewater has been proposed (see, for example, Patent Document 2). Although this method does not necessarily require heating, there is a problem in that the amount of iron compound added is large and the iron compound finally added becomes a large amount of waste.

また、一般に、排水中にフッ化ホウ素が存在すると、法令に定められた排水基準のうち、フッ素化合物、ホウ素化合物に関する項目を満足することが困難である。フッ化ホウ素には難溶性塩が存在しないため、フッ化ホウ素の形態を維持したまま沈殿分離等の方法を適用して排水中から除去し、排水基準を満足することが困難である。したがって、フッ化ホウ素をフッ素とホウ酸に分解処理することが必要となるが、フッ化ホウ素は安定な錯体で難分解性であるため、分解処理が困難であった。
特許第2912934号公報 特公平8-11231号公報
In general, when boron fluoride is present in the waste water, it is difficult to satisfy the items relating to the fluorine compound and the boron compound among the waste water standards stipulated by laws and regulations. Since boron fluoride does not have a poorly soluble salt, it is difficult to satisfy the drainage standard by applying a method such as precipitation separation while maintaining the form of boron fluoride and removing it from the wastewater. Therefore, it is necessary to decompose boron fluoride into fluorine and boric acid. However, since boron fluoride is a stable complex and hardly decomposable, the decomposition treatment is difficult.
Japanese Patent No. 2912934 Japanese Patent Publication No.8-11231

本発明は、かかる事情に鑑みなされたものであり、その目的とするところは、排水中に含有されるフッ化ホウ素について排水基準を満足する水準まで分解処理可能であり、従来法と比較して低コストかつ廃棄物の発生量を最小限にすることができる処理方法を提供することにある。   The present invention has been made in view of such circumstances, and the object of the present invention is that the boron fluoride contained in the waste water can be decomposed to a level that satisfies the waste water standard, compared with the conventional method. It is an object of the present invention to provide a treatment method that can reduce the amount of waste generated at a low cost.

上記目的を達成するため、本発明によるフッ化ホウ素含有排水の処理方法は、フッ化ホウ素含有の被処理排水を、酸性条件下に調整し、常温・常圧下でフッ化ホウ素分解材と接触させて、フッ化ホウ素を、フッ素イオンとホウ酸イオンとに分解すると同時に、フッ素イオンを、フッ化ホウ素分解材に吸着させて除去するようにしたことを特徴とする。   In order to achieve the above object, the boron fluoride-containing wastewater treatment method according to the present invention adjusts the boron fluoride-containing wastewater to be treated under acidic conditions and is brought into contact with a boron fluoride decomposition material at normal temperature and normal pressure. Thus, boron fluoride is decomposed into fluorine ions and borate ions, and at the same time, fluorine ions are adsorbed and removed by a boron fluoride decomposition material.

また、本発明では、フッ化ホウ素分解材がジルコニウムを含有する薬剤の群から選択されることが好ましい。   Moreover, in this invention, it is preferable that a boron fluoride decomposition material is selected from the group of the chemical | medical agent containing a zirconium.

また、本発明では、フッ化ホウ素分解材がチタニウムを含有する薬剤の群から選択されることが好ましい。   Moreover, in this invention, it is preferable that a boron fluoride decomposition material is selected from the group of the chemical | medical agent containing titanium.

また、本発明では、フッ化ホウ素含有処理排水を酸性条件下に調整し、該処理排水のpHを6以下、好ましくはpH1〜4以下に調整しながら、常温・常圧下でフッ化ホウ素分解材と接触させてフッ化ホウ素をフッ素イオンとホウ酸イオンへと分解すると同時にフッ素イオンをフッ化ホウ素分解材に吸着除去させるのが好ましい。   In the present invention, the boron fluoride-containing treated wastewater is adjusted to acidic conditions, and the boron fluoride decomposition material is adjusted at normal temperature and normal pressure while adjusting the pH of the treated wastewater to 6 or less, preferably pH 1 to 4 or less. It is preferable that the boron fluoride is decomposed into fluorine ions and borate ions at the same time, and simultaneously the fluorine ions are adsorbed and removed by the boron fluoride decomposition material.

また、本発明では、フッ素イオンを吸着したフッ化ホウ素分解材とpH8〜12のアルカリ溶液とを接触させて、該フッ化ホウ素分解材からフッ素を脱離させるのが好ましい。   Moreover, in this invention, it is preferable to make the boron fluoride decomposition material which adsorb | sucked the fluorine ion, and the alkaline solution of pH 8-12 contact, and to desorb | fluoride from this boron fluoride decomposition material.

また、本発明では、フッ素を脱離させた後のフッ化ホウ素分解材を、再度酸性条件下に調整したフッ化ホウ素含有排水の処理に利用することが好ましい。   Moreover, in this invention, it is preferable to utilize the boron fluoride decomposition material after desorbing fluorine for the treatment of the boron fluoride containing waste water adjusted again under acidic conditions.

本発明によれば、排水中に含有されるフッ化ホウ素をフッ素イオンとホウ酸イオンへと分解すると同時に、フッ素イオンをフッ化ホウ素分解材に吸着させて除去することが可能であり、従来法と比較してエネルギーコストおよび廃棄物の発生量を削減することが可能である   According to the present invention, boron fluoride contained in waste water can be decomposed into fluorine ions and borate ions, and at the same time, fluorine ions can be adsorbed and removed by the boron fluoride decomposition material. Can reduce energy costs and waste generation compared to

以下にフッ化ホウ素分解材およびフッ化ホウ素含有排水の処理方法の実施形態を詳細に説明する。
本発明のフッ化ホウ素分解材は、ジルコニウムまたはチタニウムを含有する薬剤の群から選択されるものが好ましい。特にチタニウムを含有する薬剤は、ジルコニウムを含有する薬剤に比べて低価格であるため、本発明のフッ化ホウ素分解材を安価に提供できる。また、フッ化ホウ素の分解効率は、ジルコニウムまたはチタニウムを含有する薬剤の群から選択されるフッ化ホウ素分解材であれば、どちらもフッ化ホウ素の分解効率が高く、安定したフッ化ホウ素分解処理が可能である。
Hereinafter, embodiments of the boron fluoride decomposition material and the treatment method of boron fluoride-containing wastewater will be described in detail.
The boron fluoride decomposition material of the present invention is preferably selected from the group of drugs containing zirconium or titanium. In particular, since a drug containing titanium is less expensive than a drug containing zirconium, the boron fluoride decomposition material of the present invention can be provided at a low cost. Moreover, the decomposition efficiency of boron fluoride is a boron fluoride decomposition material selected from the group of chemicals containing zirconium or titanium, both of which have high decomposition efficiency of boron fluoride, and stable boron fluoride decomposition treatment Is possible.

また、フッ化ホウ素分解材の形状としては特に制限はなく、粉状、粒状、格子状、その他の任意の形状を採用することができ、用途(フッ化ホウ素分解材の使用形態)に応じて適宜決定される。即ち、本発明のフッ化ホウ素分解材を被処理水中に懸濁(スラリー状)させてフッ化ホウ素分解を行い、その後固液分離する場合には、沈降性の確保のために平均粒径10μm以上、例えば10μm〜50μmで、密度1.5g/cm2以上の粉状であることが好ましく、このようなフッ化ホウ素分解材であれば、沈降速度(理論値)0.4〜8m/dayを得ることができ、固液分離性が良好である。 Moreover, there is no restriction | limiting in particular as a shape of a boron fluoride decomposition material, A powder form, a granular form, a grid | lattice form, and other arbitrary shapes can be employ | adopted according to a use (use form of a boron fluoride decomposition material). It is determined appropriately. That is, when the boron fluoride decomposition material of the present invention is suspended (slurry) in water to be treated, boron fluoride decomposition is performed, and then solid-liquid separation is performed, the average particle diameter is 10 μm to ensure sedimentation. As described above, for example, it is preferably 10 to 50 μm and powdery with a density of 1.5 g / cm 2 or more. With such a boron fluoride decomposition material, a sedimentation rate (theoretical value) of 0.4 to 8 m / day is obtained. The solid-liquid separation property is good.

また、本発明のフッ化ホウ素分解材をカラム方式の充填塔に充填して用いる場合は、粒径0.5〜5mm程度の粒状であることが好ましい。なお、目的とする形状を保持するために、ジルコニウムまたはチタニウムを含有する薬剤と無機材料や有機高分子材料を用いて成型を行っても良く、この場合、無機材料としてはシリカ、アルミナ、ベントナイトなどが挙げられ、シリカやベントナイトはアルミナに比べて低価格であるため、本発明のフッ素ホウ素分解材を安価に提供できる。また、有機高分子材料として、ポリエーテル系樹脂、フッ素系樹脂、フッ化ビニリデン系樹脂、セルロース系樹脂、ポリアミド、ポリスチレン、ポリスルホン、ポリアクリルニトリル、及びその誘導体を挙げることができる。中でも特にポリエーテル系樹脂、フッ素系樹脂、フッ化ビニリデン系樹脂は耐水性、耐薬品性に優れ、好ましい。   In addition, when the boron fluoride decomposition material of the present invention is packed in a column-type packed tower and used, it is preferable that the particle size is about 0.5 to 5 mm. In order to maintain the target shape, molding may be performed using a chemical containing zirconium or titanium and an inorganic material or an organic polymer material. In this case, examples of the inorganic material include silica, alumina, bentonite, and the like. Since silica and bentonite are less expensive than alumina, the fluoroboron decomposition material of the present invention can be provided at a low cost. Examples of the organic polymer material include polyether resins, fluorine resins, vinylidene fluoride resins, cellulose resins, polyamides, polystyrenes, polysulfones, polyacrylonitriles, and derivatives thereof. Of these, polyether resins, fluorine resins, and vinylidene fluoride resins are particularly preferable because of their excellent water resistance and chemical resistance.

次に、本発明のフッ化ホウ素分解材を用いるフッ化ホウ素含有排水の処理方法の実施形態は、以下の反応式により示されるフッ化ホウ素分解反応工程(1)式(酸性領域)及びフッ化ホウ素分解材回収工程(2)式(アルカリ領域)とからなる。
反応式 (例;フッ化ホウ素分解材Zrの場合)
BF4 - +Zr → 4F-+BO3 3- → ZrF4+BO3 3- (1)(酸性領域)
ZrF4 +NaOH → Zr+ 4F- (2)(アルカリ領域)
Next, an embodiment of the method for treating boron fluoride-containing wastewater using the boron fluoride decomposition material of the present invention is a boron fluoride decomposition reaction step (1) (acidic region) represented by the following reaction formula and fluoride It consists of a boron decomposition material collection | recovery process (2) Formula (alkali area | region).
Reaction formula (Example: Boron fluoride decomposition material Zr)
BF 4 + Zr → 4F + BO 3 3− → ZrF 4 + BO 3 3− (1) (acidic region)
ZrF 4 + NaOH → Zr + 4F (2) (Alkali region)

まず、処理すべきフッ化ホウ素を含有する排水に硫酸や塩酸などを添加し、該排水のpHを6以下、好ましくはpH1〜4に調整しながら、フッ化ホウ素分解材と接触させてフッ化ホウ素を分解する。ここでは、主として上記式(1)に従い、該排水に含有するフッ化ホウ素イオン(BF4 -)が、分解してフッ素イオン(F-)とホウ酸イオン(BO3 3-)とに解離した状態になる。さらに化学平衡は右辺に移動し、酸性領域では解離したフッ素イオン(F-)とフッ化ホウ素分解材(Zr,Ti)との反応が進行する。なお、フッ化ホウ素の分解反応は室温で行い、特に加温を必要としない。 First, sulfuric acid, hydrochloric acid, or the like is added to wastewater containing boron fluoride to be treated, and the wastewater is brought into contact with a boron fluoride decomposition material while adjusting the pH of the wastewater to 6 or less, preferably pH1 to 4. Decomposes boron. Here, mainly in accordance with the above formula (1), boron fluoride ion (BF 4 ) contained in the waste water is decomposed and dissociated into fluorine ion (F ) and borate ion (BO 3 3− ). It becomes a state. Furthermore, the chemical equilibrium moves to the right side, and in the acidic region, the reaction between the dissociated fluorine ions (F ) and the boron fluoride decomposition material (Zr, Ti) proceeds. The decomposition reaction of boron fluoride is performed at room temperature and does not require any particular heating.

例えば、フッ化ホウ素の分解に際し、ジルコニウムまたはチタニウムの水酸化物、硫酸塩または塩化物などの溶液やスラリーを用いて被処理排水中に含まれるフッ化ホウ素を分解処理する場合、処理水中にフッ化ホウ素分解剤が溶解することがある。このような場合、当該処理液にアルカリを加えて中和すると、溶解していたフッ化ホウ素分解剤は水酸化物として再沈殿する。沈殿したジルコニウムまたはチタニウムの水酸化物はフッ化ホウ素の分解剤として再利用される。   For example, when boron fluoride contained in the wastewater to be treated is decomposed using a solution or slurry of zirconium or titanium hydroxide, sulfate, chloride, or the like when boron fluoride is decomposed, it is fluorinated in the treated water. Boron bromide decomposer may dissolve. In such a case, when the alkali is added to the treatment liquid and neutralized, the dissolved boron fluoride decomposer is reprecipitated as a hydroxide. The precipitated zirconium or titanium hydroxide is reused as a boron fluoride decomposer.

このようにフッ化ホウ素分解材が溶解されるような場合、上述したようにジルコニウムまたはチタニウムの水酸化物や含水型酸化物と樹脂または無機バインダーなどと混合し、成型加工を施したフッ化ホウ素分解材を用いることによって、フッ化ホウ素の分解処理が適切に成し遂げられる。よって、本発明ではフッ化ホウ素の分解に由来する固体廃棄物が発生しない。   When the boron fluoride decomposition material is dissolved in this way, boron fluoride obtained by mixing with a hydroxide or hydrous oxide of zirconium or titanium and a resin or an inorganic binder, as described above, and performing molding processing. By using the decomposition material, the decomposition treatment of boron fluoride is appropriately achieved. Therefore, in the present invention, solid waste derived from the decomposition of boron fluoride is not generated.

なお、本発明の方法によれば、フッ化ホウ素の分解と同時にフッ素イオンはフッ化水素吸着材に吸着される。該フッ化水素分解材からアルカリ溶液を用いてフッ素を脱離処理した後のフッ素含有水を処理する場合は、カルシウムイオン形態で含有する薬液を添加した後、難溶性のフッ化カルシウムとして沈殿除去することが可能となる。
また、フッ化ホウ素が分解されて生成したホウ酸は、既存の方法を用いて処理することが可能である。例えば、N−メチルグルカミン基を有するホウ素選択キレート吸着樹脂あるいはイオン交換樹脂などを用いて吸着除去する方法等がある。
According to the method of the present invention, fluorine ions are adsorbed on the hydrogen fluoride adsorbent simultaneously with the decomposition of boron fluoride. When treating fluorine-containing water after desorption treatment of fluorine from the hydrofluoric acid decomposition material using an alkaline solution, after adding a chemical solution containing calcium ions, precipitate is removed as hardly soluble calcium fluoride. It becomes possible to do.
In addition, boric acid generated by decomposition of boron fluoride can be processed using an existing method. For example, there is a method of adsorbing and removing using a boron selective chelate adsorption resin or ion exchange resin having an N-methylglucamine group.

本発明と、上述したような既存のフッ素およびホウ酸の処理方法を組み合わせることにより、フッ素化合物、ホウ素化合物に関する排水基準に適合した放流水を得ることができる。   By combining the present invention and the existing fluorine and boric acid treatment methods as described above, it is possible to obtain effluent water that conforms to the wastewater standards for fluorine compounds and boron compounds.

以下、本発明の実施例を説明する。
実施例1〜6
BF4 -イオン濃度500mg/Lを含有する被処理水50ml(500mg/Lのフッ化ホウ素溶液中に含まれるフッ素分の濃度は計算値で438mg-F/L、ホウ素分は62mg-B/L)をポリエチレン製ビーカーに採水し、フッ化ホウ素分解材として水酸化ジルコニウム粉末を被処理水へ6g添加し、硫酸及び水酸化ナトリウムなどを用いて表1に示すpHに調整し、室温で約60分間攪拌した。その後、固液分離を行い、得られた処理水のBF4 -イオン濃度をイオンクロマトグラフ分析装置で測定し、その結果を表1及び図1に示した。
Examples of the present invention will be described below.
Examples 1-6
BF 4 - ion concentration 500 mg / L containing treatment water 50ml (500mg / L 438mg-F / L at a concentration of the fluorine content is calculated values included in the fluoboric solution of boron content is 62 mg-B / L ) Was collected in a polyethylene beaker, 6 g of zirconium hydroxide powder as a boron fluoride decomposition material was added to the water to be treated, adjusted to the pH shown in Table 1 using sulfuric acid, sodium hydroxide, and the like. Stir for 60 minutes. Thereafter, solid-liquid separation, BF 4 treated water obtained - ion concentration was measured by ion chromatography analyzer, and the results are shown in Table 1 and Figure 1.

また、pHを1.0に調整し攪拌した後、フッ化ホウ素分解材(水酸化ジルコニウム)を固液分離により得られたフッ化ホウ素分解材を、アルカリ溶液(水酸化ナトリウム溶液)及び硫酸を用いてpH6以上の表2に示すpHの溶離液50mL中で10分間攪拌した。その後、固液分離を行い、得られた溶離液中のフッ素濃度をイオンクロマトグラフ分析装置で測定することにより、フッ素とフッ化ホウ素分解材中のフッ素残存率を求め、その結果を表2に示した。   Further, after adjusting the pH to 1.0 and stirring, the boron fluoride decomposition material obtained by solid-liquid separation of the boron fluoride decomposition material (zirconium hydroxide) is used with an alkali solution (sodium hydroxide solution) and sulfuric acid. The mixture was stirred for 10 minutes in 50 mL of an eluent having a pH shown in Table 2 of pH 6 or higher. Thereafter, solid-liquid separation was performed, and the fluorine concentration in the obtained eluent was measured with an ion chromatograph analyzer to determine the residual ratio of fluorine in the fluorine and boron fluoride decomposition material. Indicated.

Figure 2007222817
Figure 2007222817

実施例1〜6で得られた結果から、フッ化ホウ素含有の被処理水の各pHとフッ化ホウ素分解率との関係を作成すると、図1に示す如く、室温でpH1以下では99%以上と高いフッ化ホウ素分解率が得られる。従って、pHを調整することで被処理水中のフッ化ホウ素の分解が良好に行なわれることが分る。   From the results obtained in Examples 1 to 6, when the relationship between each pH of boron fluoride-containing water to be treated and the decomposition rate of boron fluoride was created, as shown in FIG. A high boron fluoride decomposition rate is obtained. Therefore, it can be seen that the boron fluoride in the water to be treated is favorably decomposed by adjusting the pH.

Figure 2007222817
Figure 2007222817

また、表2の結果に示した通り、フッ化ホウ素分解材に吸着したフッ素をpH10以上のアルカリ溶離液を用いることで、99%以上のフッ素脱離率が得られることが分る。
なお、表2の結果に示した通り、pH10以上の溶離液中のF濃度から、全フッ素量を計算で求めると、そのほとんどがフッ化ホウ素分解材(水酸化ジルコニウム)に吸着していることが分る。
Further, as shown in the results of Table 2, it can be seen that a fluorine desorption rate of 99% or more can be obtained by using an alkali eluent having a pH of 10 or more for the fluorine adsorbed on the boron fluoride decomposition material.
As shown in the results in Table 2, when the total fluorine content is calculated from the F concentration in the eluent having a pH of 10 or higher, most of the amount is adsorbed on the boron fluoride decomposition material (zirconium hydroxide). I understand.

実施例7
フッ化ホウ素濃度500mg/Lの被処理水50mlをポリエチレン製ビーカーに採水した。次に、水酸化ジルコニウムスラリー(塩化ジルコニウム溶液からジルコニウムを水酸化物として沈殿させたもの)を被処理水へ、粉末換算で6g相当を添加し、室温で攪拌しながらpHを1に調整した。約45分間攪拌を続けた後、水酸化ナトリウム溶液を加えて中和し、固形分を固液分離し、その後、処理水中のBF4 -イオン濃度をイオンクロマトグラフ分析装置で測定した結果、処理水中のBF4 -イオン濃度は5mg/L未満(5mg/Lのフッ化ホウ素溶液中に含まれるフッ素分の濃度は計算値で4.4mg-F/L、ホウ素分は0.6mg-B/L)であった。
Example 7
50 ml of water to be treated with a boron fluoride concentration of 500 mg / L was collected in a polyethylene beaker. Next, a zirconium hydroxide slurry (a product obtained by precipitating zirconium as a hydroxide from a zirconium chloride solution) was added to the water to be treated in an amount equivalent to 6 g in terms of powder, and the pH was adjusted to 1 while stirring at room temperature. Stirring was continued for about 45 minutes, then neutralized by addition of sodium hydroxide solution, the solid liquid separation, then, BF 4 in the treated water - results of ion concentration was measured by ion chromatography analysis device, processing water BF 4 - ion concentration less than 5mg / L (5mg / L 4.4mg -F / L at a concentration of the fluorine content is calculated values included in the fluoboric solution of boron content is 0.6mg-B / L) Met.

実施例8
フッ化ホウ素濃度500mg/Lの被処理水50mlをポリエチレン製ビーカーに採水した。次に、塩化ジルコニウム溶液(0.2molZr/L)を10ml加え、室温で攪拌しながらpHを1に調整した。60分間攪拌を続けた後、水酸化ナトリウム溶液を加えて中和し、生成した沈殿を固液分離し、その後、処理水中のBF4 -イオン濃度をイオンクロマトグラフ分析装置で測定した結果、処理水中のBF4 -イオン濃度は5mg/L未満(5mg/Lのフッ化ホウ素溶液中に含まれるフッ素分の濃度は計算値で4.4mg-F/L、ホウ素分は0.6mg-B/L)であった。
Example 8
50 ml of water to be treated with a boron fluoride concentration of 500 mg / L was collected in a polyethylene beaker. Next, 10 ml of a zirconium chloride solution (0.2 molZr / L) was added, and the pH was adjusted to 1 while stirring at room temperature. Stirring was continued for 60 minutes, neutralized by addition of sodium hydroxide solution, the precipitate formed was subjected to solid-liquid separation, then, BF 4 in the treated water - results of ion concentration was measured by ion chromatography analysis device, processing water BF 4 - ion concentration less than 5mg / L (5mg / L 4.4mg -F / L at a concentration of the fluorine content is calculated values included in the fluoboric solution of boron content is 0.6mg-B / L) Met.

実施例9〜実施例14
BF4 -イオン濃度500mg/Lを含有する被処理水50ml(500mg/Lのフッ化ホウ素溶液中に含まれるフッ素分の濃度は計算値で438mg-F/L、ホウ素分は62mg-B/L)をポリエチレン製ビーカーに採水し、フッ化ホウ素分解材として水酸化チタニウム粉末を被処理水へ2g添加し、硫酸及び水酸化ナトリウム溶液などを用いて表3に示すpHに調整し、室温で約60分間攪拌した。その後、固液分離を行い、得られた処理水のBF4 -イオン濃度をイオンクロマトグラフ分析装置で測定し、その結果を表3及び図2に示した。
また、pHを1.0に調整し攪拌した後、フッ化ホウ素分解材(水酸化チタニウム)を固液分離により得られたフッ化ホウ素分解材を、アルカリ溶液(水酸化ナトリウム溶液)及び硫酸を用いてpH6以上の表4に示すpHの溶離液50mLで10分間攪拌した。その後、固液分離を行い、得られた溶離脱着液中のフッ素濃度をイオンクロマトグラフ分析装置で測定することにより、フッ素とフッ化ホウ素分解材中のフッ素残存率を求め、その結果を表4に示した。
Examples 9 to 14
BF 4 - ion concentration 500 mg / L containing treatment water 50ml (500mg / L 438mg-F / L at a concentration of the fluorine content is calculated values included in the fluoboric solution of boron content is 62 mg-B / L ) In a polyethylene beaker, 2 g of titanium hydroxide powder as boron fluoride decomposition material is added to the water to be treated, adjusted to the pH shown in Table 3 using sulfuric acid and sodium hydroxide solution, etc., at room temperature. Stir for about 60 minutes. Thereafter, solid-liquid separation, BF 4 treated water obtained - ion concentration was measured by ion chromatography analyzer, and the results are shown in Table 3 and Figure 2.
Further, after adjusting the pH to 1.0 and stirring, the boron fluoride decomposition material obtained by solid-liquid separation of the boron fluoride decomposition material (titanium hydroxide) is used with an alkali solution (sodium hydroxide solution) and sulfuric acid. The mixture was stirred for 10 minutes with 50 mL of an eluent having a pH shown in Table 4 of pH 6 or higher. Thereafter, solid-liquid separation was performed, and the fluorine concentration in the obtained elution / desorption liquid was measured with an ion chromatograph analyzer to determine the residual ratio of fluorine in the fluorine and boron fluoride decomposition material. It was shown to.

Figure 2007222817
Figure 2007222817

実施例9〜14で得られた結果から、フッ化ホウ素含有の被処理水の各pHとフッ化ホウ素分解率との関係を作成すると図2に示す如く、室温でpH1以下では90%以上と高いフッ化ホウ素分解率が得られ、pH4以上では低下する。従って、pHを調整することで被処理水中のフッ化ホウ素分解が良好に行なわれることが分る。   From the results obtained in Examples 9 to 14, when the relationship between each pH of boron fluoride-containing water to be treated and the decomposition rate of boron fluoride is created, as shown in FIG. A high boron fluoride decomposition rate is obtained, and the pH decreases at pH 4 or higher. Therefore, it can be seen that the boron fluoride is satisfactorily decomposed in the water to be treated by adjusting the pH.


Figure 2007222817
Figure 2007222817

また、表4の結果に示した通り、フッ化ホウ素分解材に吸着したフッ素をpH10以上のアルカリ溶離液を用いることで99%以上のフッ素脱離率が得られることが分る。
なお、フッ素はそのほとんどがフッ化ホウ素分解材(水酸化チタニウム)へ吸着していることが分る。
Further, as shown in the results of Table 4, it can be seen that a fluorine desorption rate of 99% or more can be obtained by using an alkali eluent having a pH of 10 or more for fluorine adsorbed on the boron fluoride decomposition material.
It can be seen that most of the fluorine is adsorbed on the boron fluoride decomposition material (titanium hydroxide).

実施例15
フッ化ホウ素濃度500mg/Lの被処理水50mlをポリエチレン製ビーカーに採水した。次に、水酸化チタニウムスラリー(塩化チタニウム溶液からチタニウムを水酸化物として沈殿させたもの)を被処理水へ、粉末換算で2g相当を添加し、室温で攪拌しながらpHを1に調整した。約45分間攪拌を続けた後、固形分を固液分離し、その後、処理水中のBF4 -イオン濃度をイオンクロマトグラフ分析装置で測定した結果、処理水中のBF4 -イオン濃度は5mg/L未満(5mg/Lのフッ化ホウ素溶液中に含まれるフッ素分の濃度は計算値で4.4mg-F/L、ホウ素分は0.6mg-B/L)であった。
Example 15
50 ml of water to be treated with a boron fluoride concentration of 500 mg / L was collected in a polyethylene beaker. Next, a titanium hydroxide slurry (in which titanium was precipitated as a hydroxide from a titanium chloride solution) was added to the water to be treated in an amount equivalent to 2 g in terms of powder, and the pH was adjusted to 1 while stirring at room temperature. After stirring for about 45 minutes, the solid content was separated into solid and liquid, and then the BF 4 - ion concentration in the treated water was measured with an ion chromatograph analyzer. As a result, the BF 4 - ion concentration in the treated water was 5 mg / L. The concentration of fluorine contained in a 5 mg / L boron fluoride solution was calculated to be 4.4 mg-F / L and the boron content was 0.6 mg-B / L.

実施例16
フッ化ホウ素濃度500mg/Lの被処理水50mlをポリエチレン製ビーカーに採水した。次に、フッ化ホウ素分解材として、塩化チタン(IV)溶液(0.2molTi/L)を10ml加え、室温で攪拌しながらpHを1に調整した。60分間攪拌を続けた後、水酸化ナトリウム溶液を加えて中和し、生成した沈殿を固液分離し、その後、処理水中のBF4 -イオン濃度をイオンクロマトグラフ分析装置で測定した結果、処理水中のBF4 -イオン濃度は5mg/L未満(5mg/Lのフッ化ホウ素溶液中に含まれるフッ素分の濃度は計算値で4.4mg-F/L、ホウ素分は0.6mg-B/L)であった。
Example 16
50 ml of water to be treated with a boron fluoride concentration of 500 mg / L was collected in a polyethylene beaker. Next, 10 ml of titanium chloride (IV) solution (0.2 mol Ti / L) was added as a boron fluoride decomposition material, and the pH was adjusted to 1 while stirring at room temperature. Stirring was continued for 60 minutes, neutralized by addition of sodium hydroxide solution, the precipitate formed was subjected to solid-liquid separation, then, BF 4 in the treated water - results of ion concentration was measured by ion chromatography analysis device, processing water BF 4 - ion concentration less than 5mg / L (5mg / L 4.4mg -F / L at a concentration of the fluorine content is calculated values included in the fluoboric solution of boron content is 0.6mg-B / L) Met.

実施例17
フッ化ホウ素濃度500mg/Lを含有する被処理水50mlをポリエチレン製ビーカーに採水し、実施例1においてpH10.0でフッ素を脱離後のフッ化ホウ素分解材を被処理水へ添加し、塩酸を用いてpHを1に調整し、室温で約60分間攪拌した。その後、固液分離を行い、得られた処理水のBF4 -イオン濃度をイオンクロマトグラフ分析装置で測定したところ、処理水中のBF4 -イオン濃度は<5mg/L未満(5mg/Lのフッ化ホウ素溶液中に含まれるフッ素分の濃度は計算値で4.4mg-F/L、ホウ素分は0.6mg-B/L)であった。
Example 17
50 ml of treated water containing a boron fluoride concentration of 500 mg / L is collected in a polyethylene beaker, and the boron fluoride decomposition material after desorption of fluorine at pH 10.0 in Example 1 is added to the treated water. The pH was adjusted to 1 with hydrochloric acid and stirred at room temperature for about 60 minutes. Thereafter, solid-liquid separation, BF treated water obtained 4 - where the ion concentration was measured by ion chromatography analysis apparatus, treated water BF 4 - ion concentration less than <5mg / L (5mg / L of fluoride The calculated concentration of fluorine contained in the boron bromide solution was 4.4 mg-F / L, and the boron content was 0.6 mg-B / L).

実施例18
フッ化ホウ素濃度500mg/Lを含有する被処理水50mlをポリエチレン製ビーカーに採水し、実施例9においてpH10.0でフッ素脱離後のフッ化ホウ素分解材を被処理水へ添加し、塩酸を用いてpHを1に調整し、室温で約60分間攪拌した。その後、固液分離を行い、得られた処理水のBF4 -イオン濃度をイオンクロマトグラフ分析装置で測定したところ、処理水中のBF4 -イオン濃度は5mg/L未満(5mg/Lのフッ化ホウ素溶液中に含まれるフッ素分の濃度は計算値で4.4mg-F/L、ホウ素分は0.6mg-B/L)であった。
Example 18
50 ml of treated water containing a boron fluoride concentration of 500 mg / L was collected in a polyethylene beaker, and the boron fluoride decomposition material after fluorine desorption at pH 10.0 in Example 9 was added to the treated water, and hydrochloric acid was added. Was used to adjust the pH to 1, and the mixture was stirred at room temperature for about 60 minutes. After that, solid-liquid separation was performed, and the BF 4 - ion concentration in the treated water obtained was measured with an ion chromatograph analyzer. The BF 4 - ion concentration in the treated water was less than 5 mg / L (5 mg / L fluoride). The calculated concentration of fluorine contained in the boron solution was 4.4 mg-F / L, and the boron content was 0.6 mg-B / L).

実施例17および18で得られた結果より、本発明によれば、排水中に含有するフッ化ホウ素の分解に用いられたフッ化ホウ素分解材は、アルカリ溶液でフッ素を脱離した後、フッ化ホウ素含有排水のフッ化ホウ素分解材として繰り返し使用が可能であり、2次廃棄物の発生が少ない有効的なフッ化ホウ素分解処理方法である。   From the results obtained in Examples 17 and 18, according to the present invention, the boron fluoride decomposing material used for decomposing boron fluoride contained in the wastewater is depleted of fluorine with an alkaline solution, and then fluorinated. This is an effective boron fluoride decomposition treatment method that can be repeatedly used as a boron fluoride decomposition material for boron fluoride-containing wastewater and that generates little secondary waste.

なお、上述の本発明のフッ化ホウ素含有排水の処理方法は、本発明の概念を逸脱しない範囲で、任意の適切な様式で実施することができる。例えば、本発明の処理方法は、連続式及びバッチ式のいずれで実施してもよい。   In addition, the processing method of the boron fluoride containing waste_water | drain of the above-mentioned this invention can be implemented by arbitrary appropriate forms in the range which does not deviate from the concept of this invention. For example, the treatment method of the present invention may be carried out either continuously or batchwise.

実施例1〜6で得られた被処理水のBF4 -イオン濃度をイオンクロマトグラフ分析装置で測定した結果を示した図である。BF treated water obtained in Example 6 4 - a view of the ion concentration shows results of measurement by ion chromatography analyzer. 実施例9〜14から得られた結果から作成された被処理水の各pHとフッ化ホウ素との関係を示した図である。It is the figure which showed the relationship between each pH of the to-be-processed water created from the result obtained from Examples 9-14, and boron fluoride.

Claims (6)

フッ化ホウ素含有排水の処理方法において、フッ化ホウ素含有の被処理排水を、酸性条件下に調整し、常温・常圧下でフッ化ホウ素分解材と接触させて、フッ化ホウ素を、フッ素イオンとホウ酸イオンとに分解すると同時に、フッ素イオンを、フッ化ホウ素分解材に吸着させて除去するようにしたことを特徴とするフッ化ホウ素含有排水の処理方法。   In the treatment method of boron fluoride-containing wastewater, the treated wastewater containing boron fluoride is adjusted under acidic conditions and brought into contact with a boron fluoride decomposition material at normal temperature and normal pressure, and boron fluoride is converted into fluorine ions. A method for treating boron fluoride-containing wastewater, wherein fluorine ion is adsorbed and removed by a boron fluoride decomposition material simultaneously with decomposition into borate ions. 前記フッ化ホウ素分解材がジルコニウムを含有する薬剤の群から選択されることを特徴とする請求項1に記載のフッ化ホウ素含有排水の処理方法。   The method for treating boron fluoride-containing wastewater according to claim 1, wherein the boron fluoride decomposition material is selected from the group of chemicals containing zirconium. 前記フッ化ホウ素分解材がチタニウムを含有する薬剤の群から選択されることを特徴とする請求項1に記載のフッ化ホウ素含有排水の処理方法。   The method for treating boron fluoride-containing wastewater according to claim 1, wherein the boron fluoride decomposition material is selected from the group of drugs containing titanium. フッ化ホウ素含有の被処理排水を、酸性条件下に調整して、被処理排水のpHを6以下、好ましくはpH1〜4に調整することを特徴とする請求項1に記載のフッ化ホウ素含有排水の処理方法。   The boron fluoride-containing wastewater containing boron fluoride according to claim 1, wherein the treated wastewater containing boron fluoride is adjusted under acidic conditions, and the pH of the wastewater to be treated is adjusted to 6 or less, preferably pH1 to 4. Wastewater treatment method. フッ素イオンを吸着したフッ化ホウ素分解材とpH8〜12のアルカリ溶液とを接触させて、該フッ化ホウ素分解材からフッ素を脱離させるようにしたことを特徴とする請求項1に記載のフッ化ホウ素含有排水の処理方法。   The fluorine fluoride decomposing material adsorbing fluorine ions and an alkaline solution having a pH of 8 to 12 are brought into contact with each other to desorb fluorine from the boron fluoride decomposing material. Treatment method of wastewater containing boron fluoride. フッ素を脱離させた後のフッ化ホウ素分解材を、酸性溶液に調整したフッ化ホウ素含有の被処理排水の処理に再利用するようにしたことを特徴とする請求項1に記載のフッ化ホウ素含有排水の処理方法。   2. The fluoride fluoride according to claim 1, wherein the boron fluoride decomposition material after desorption of fluorine is reused in the treatment of wastewater containing boron fluoride adjusted to an acidic solution. Treatment method for boron-containing wastewater.
JP2006048700A 2006-02-24 2006-02-24 Method for treating boron fluoride-containing waste water Pending JP2007222817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006048700A JP2007222817A (en) 2006-02-24 2006-02-24 Method for treating boron fluoride-containing waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006048700A JP2007222817A (en) 2006-02-24 2006-02-24 Method for treating boron fluoride-containing waste water

Publications (1)

Publication Number Publication Date
JP2007222817A true JP2007222817A (en) 2007-09-06

Family

ID=38545116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006048700A Pending JP2007222817A (en) 2006-02-24 2006-02-24 Method for treating boron fluoride-containing waste water

Country Status (1)

Country Link
JP (1) JP2007222817A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026981A (en) * 2010-07-27 2012-02-09 Maezawa Ind Inc Tetrafluoroborate ion detection agent, tetrafluoroborate ion detection kit, and tetrafluoroborate ion detection method
JP2012056803A (en) * 2010-09-09 2012-03-22 Sasakura Engineering Co Ltd Method for recovering boron
JP2018199097A (en) * 2017-05-25 2018-12-20 株式会社 イージーエス Water treatment method and water treatment apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192385A (en) * 1985-02-22 1986-08-26 Asahi Chem Ind Co Ltd Treatment of fluorine-containing waste solution

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192385A (en) * 1985-02-22 1986-08-26 Asahi Chem Ind Co Ltd Treatment of fluorine-containing waste solution

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026981A (en) * 2010-07-27 2012-02-09 Maezawa Ind Inc Tetrafluoroborate ion detection agent, tetrafluoroborate ion detection kit, and tetrafluoroborate ion detection method
JP2012056803A (en) * 2010-09-09 2012-03-22 Sasakura Engineering Co Ltd Method for recovering boron
JP2018199097A (en) * 2017-05-25 2018-12-20 株式会社 イージーエス Water treatment method and water treatment apparatus
JP7089345B2 (en) 2017-05-25 2022-06-22 株式会社 イージーエス Water treatment method and water treatment equipment

Similar Documents

Publication Publication Date Title
Liu et al. Adsorption mechanisms of thallium (I) and thallium (III) by titanate nanotubes: ion-exchange and co-precipitation
Hodi et al. Removal of pollutants from drinking water by combined ion exchange and adsorption methods
KR101415656B1 (en) adsorbent for adsorption treatment of anion in waste water, and method for manufacturing the adsorbent
CN110885147B (en) Ion exchange defluorination method for efficiently complexing fluorine-containing wastewater
CN109967134A (en) A kind of Nano ferric hydroxide modified anion resin composite materials and the preparation method and application thereof
JP2007222817A (en) Method for treating boron fluoride-containing waste water
JP2013244481A (en) Method and apparatus for treating strontium-containing wastewater, and strontium adsorbent slurry
Han et al. Adsorption of Low-Concentrated U (VI) on a Preferable Crystalline Boehmite (γ-AlOOH) in Alkaline Conditions
CN104045123B (en) Carboxylated magnetic oxygenated Graphene is utilized to remove cadmic method in waste water
CN107686156B (en) A kind of Fenton method of efficient degradation organic pollutants
CN103721689B (en) Magnetic mesoporous silicon, preparation method and magnetic mesoporous silicon adsorbent, preparation method and application
WO2008001442A1 (en) Anion adsorbent, water or soil cleanup agent and process for producing the same
WO2017099099A1 (en) Treatment method for radioactive waste liquid comprising radioactive cesium and radioactive strontium
CN108452764A (en) The adsorbent of halide ion in a kind of removal waste water
JP2001340872A (en) Method for treating wastewater containing boron and/or fluorine
JPH0256958B2 (en)
JP2008029985A (en) Apparatus for regenerating anion adsorbent and method of regenerating anion adsorbent using the same
JP2007283216A (en) Boron-containing wastewater treatment method
JP2006341139A (en) Harmful inorganic anion fixing and removing method, and fixing agent used therefor
JP4617476B2 (en) Method for removing potassium ions
JP3715677B2 (en) Acid exhaust gas treatment method
JP4633272B2 (en) Treatment method for boron-containing wastewater
JP4696017B2 (en) Treatment method for boron-containing wastewater
CN109173340B (en) Method for removing chlorine from strong acidic solution by adsorption
CN110302747A (en) A method of arsenic ion and fluorine ion in mining removing barren rock synchronous purification industrial wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080425

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Effective date: 20090403

Free format text: JAPANESE INTERMEDIATE CODE: A711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090526

A521 Written amendment

Effective date: 20090617

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20101221

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110419

Free format text: JAPANESE INTERMEDIATE CODE: A02