JP2007221010A - Semiconductor x-ray detecting element - Google Patents

Semiconductor x-ray detecting element Download PDF

Info

Publication number
JP2007221010A
JP2007221010A JP2006041733A JP2006041733A JP2007221010A JP 2007221010 A JP2007221010 A JP 2007221010A JP 2006041733 A JP2006041733 A JP 2006041733A JP 2006041733 A JP2006041733 A JP 2006041733A JP 2007221010 A JP2007221010 A JP 2007221010A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
detection element
film
ray detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006041733A
Other languages
Japanese (ja)
Inventor
Minoru Yamada
実 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2006041733A priority Critical patent/JP2007221010A/en
Publication of JP2007221010A publication Critical patent/JP2007221010A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve reliability and productivity without occurrence of an undesirable phenomenon caused by electrification of a protective layer. <P>SOLUTION: An element surface that is not covered by an n surface electrode (4) and a p surface electrode (6) are covered by two layers, an oxide layer (7) and a nitride layer (8). The oxide layer (7) and the nitride layer (8) function as protective layers. The oxide layer (7) and the nitride layer (8) can be formed using a method suitable for mass production. Therefore, productivity can be improved. Variations in film quality can be reduced. With only the oxide layer (7), the protective layer tends to become positively charged. With only the nitride layer (8), the protective layer tends to become negatively charged. However, because of the two-layer structure, both charges are neutralized and the protective layer is not electrified. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体X線検出素子に関し、さらに詳しくは、生産性および信頼性を向上させた半導体X線検出素子に関する。   The present invention relates to a semiconductor X-ray detection element, and more particularly to a semiconductor X-ray detection element with improved productivity and reliability.

従来、n面電極、n+層、i層、p層およびp面電極を有する半導体X線検出素子が知られている(例えば、特許文献1参照。)。
特開2005−183603号公報
Conventionally, a semiconductor X-ray detection element having an n-plane electrode, an n + layer, an i layer, a p-layer, and a p-plane electrode is known (see, for example, Patent Document 1).
JP 2005-183603 A

上記従来の半導体X線検出素子では、n面電極で覆われていないn+層、p面電極に接していないi層およびp層の一部の表面を保護膜で覆っている。
しかし、この保護膜(例えばシリコン系樹脂)は、1個ずつ素子に手塗りした後、焼き固める処置をしなければならないため、生産性が低く、膜質にばらつきを生じやすかった。
さらに、この保護膜は帯電しやすかったが、保護膜が帯電すると、i層表面部分がn+層化し、n面電極−p面電極間に逆バイアスをかけたときの電界曲線(電気力線)が湾曲し、電界が一様にかからず、その結果、スペクトルのピークの低エネルギー側にテールを引いたり、バックグラウンドが大きくなるなどの好ましくない現象が発生することがあり、信頼性が低い問題点があった。
そこで、本発明の目的は、生産性および信頼性を向上させた半導体X線検出素子を提供することにある。
In the conventional semiconductor X-ray detection element, the n + layer not covered with the n-plane electrode, the i layer not in contact with the p-plane electrode, and a part of the surface of the p layer are covered with a protective film.
However, since this protective film (for example, silicon-based resin) has to be baked and hardened after hand-painting the elements one by one, the productivity is low and the film quality tends to vary.
Furthermore, this protective film was easy to be charged, but when the protective film was charged, the surface portion of the i layer became an n + layer, and an electric field curve (electric field lines) when a reverse bias was applied between the n-plane electrode and the p-plane electrode. ) Is curved and the electric field is not uniformly applied. As a result, undesired phenomena such as a tail on the low energy side of the spectrum peak or an increase in the background may occur. There was a low problem.
Therefore, an object of the present invention is to provide a semiconductor X-ray detection element with improved productivity and reliability.

第1の観点では、本発明は、n面電極、n+層、i層、p層およびp面電極を有する半導体X線検出素子であって、前記n面電極およびp面電極で覆われていない全ての素子表面を覆う酸化膜と、その酸化膜の表面を覆う窒化膜を具備したことを特徴とする半導体X線検出素子を提供する。
上記第1の観点による半導体X線検出素子では、n面電極で覆われていないn+層、p面電極に接していないi層およびp層の表面を酸化膜および窒化膜の2層で覆い、保護膜とする。酸化膜および窒化膜は、量産に適した方法で形成できるため、生産性を向上できる。また、膜質のばらつきを小さく出来る。さらに、酸化膜だけでは+に帯電しやすく、窒化膜だけでは−に帯電しやすいが、酸化膜および窒化膜の2層構造のため互いの電荷が打ち消しあって帯電しなくなる。よって、保護膜の帯電による好ましくない現象の発生が起こらず、信頼性を向上出来る。
In a first aspect, the present invention is a semiconductor X-ray detection element having an n-plane electrode, an n + layer, an i-layer, a p-layer electrode, and a p-plane electrode, which is covered with the n-plane electrode and the p-plane electrode. There is provided a semiconductor X-ray detection element comprising an oxide film covering all non-element surfaces and a nitride film covering the surface of the oxide film.
In the semiconductor X-ray detection element according to the first aspect, the surfaces of the n + layer not covered with the n-plane electrode, the i layer not in contact with the p-plane electrode, and the p layer are covered with two layers of an oxide film and a nitride film. A protective film is used. Since the oxide film and the nitride film can be formed by a method suitable for mass production, productivity can be improved. In addition, variations in film quality can be reduced. Furthermore, the oxide film alone is easily charged to +, and the nitride film alone is easily charged to-, but due to the two-layer structure of the oxide film and the nitride film, the mutual charges cancel each other and they are no longer charged. Therefore, an undesirable phenomenon due to charging of the protective film does not occur, and the reliability can be improved.

なお、従来は、素子の側面をピンセットなどで挟んで素子を保持し手塗りしていたため、素子の側面に保護膜を形成出来ない部分(シリコン系樹脂を塗れない部分)を生じており、保護が不完全であったが、そのような部分を生じず、保護が完全になる。これは、リチウム(Li)を使わない高抵抗Si結晶を使用した半導体X線検出素子(高純度Si検出素子)やGe結晶を使用した半導体X線検出素子(高純度Ge検出素子)の場合、特に有効である。   In the past, the side of the element was sandwiched between tweezers, etc., and the element was held and hand-painted. As a result, a protective film could not be formed on the side of the element. Was incomplete, but no such part occurs and the protection is complete. In the case of a semiconductor X-ray detection element (high purity Si detection element) using a high resistance Si crystal that does not use lithium (Li) or a semiconductor X-ray detection element (high purity Ge detection element) using a Ge crystal, It is particularly effective.

第2の観点では、本発明は、前記第2の観点による半導体X線検出素子において、前記酸化膜がSiO2膜であり、前記窒化膜がSi34膜であることを特徴とする半導体X線検出素子を提供する。
上記第2の観点による半導体X線検出素子では、例えば80〜90℃にしたアンモニア過酸化水素水溶液に浸漬してSiO2膜を形成出来、SiH4とN2ガスを流してのプラズマCVDによりSi34膜を形成出来るため、安定した製造プロセスを利用して製造出来る。
In a second aspect, the present invention provides the semiconductor X-ray detection element according to the second aspect, wherein the oxide film is a SiO 2 film and the nitride film is a Si 3 N 4 film. An X-ray detection element is provided.
In the semiconductor X-ray detection element according to the second aspect, for example, a SiO 2 film can be formed by immersing in an ammonia hydrogen peroxide aqueous solution at 80 to 90 ° C., and Si CVD by plasma CVD with SiH 4 and N 2 gas flowing. Since 3 N 4 film can be formed, it can be manufactured using a stable manufacturing process.

本発明の半導体X線検出素子によれば、酸化膜および窒化膜は、量産に適した方法で形成出来るため、生産性を向上出来る。また、膜質のばらつきを小さく出来る。さらに、酸化膜および窒化膜の2層構造のため互いの電荷が打ち消しあって帯電しなくなり、帯電による好ましくない現象の発生が起こらず、信頼性を向上出来る。   According to the semiconductor X-ray detection element of the present invention, since the oxide film and the nitride film can be formed by a method suitable for mass production, productivity can be improved. In addition, variations in film quality can be reduced. Furthermore, since the two-layer structure of the oxide film and the nitride film cancels each other's electric charges and becomes uncharged, an undesirable phenomenon due to charging does not occur and reliability can be improved.

以下、図に示す実施の形態により本発明をさらに詳細に説明する。なお、これにより本発明が限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings. Note that the present invention is not limited thereby.

図1は、実施例1にかかる半導体X線検出素子100を示す断面図である。
この半導体X線検出素子100は、逆バイアスをかけたとき電子を集極するn面電極4と、多数キャリアが電子であるn+層1と、真性領域であるi層2と、多数キャリアが正孔であるp層3と、正孔を集極するp面リング電極5およびp面電極6と、n面電極4およびp面電極6で覆われていない素子表面を覆う酸化膜7と、酸化膜7の表面を覆う窒化膜8と、X線が入射する受光部EWとを具備している。
FIG. 1 is a cross-sectional view illustrating a semiconductor X-ray detection element 100 according to the first embodiment.
The semiconductor X-ray detection element 100 includes an n-plane electrode 4 that collects electrons when a reverse bias is applied, an n + layer 1 in which majority carriers are electrons, an i layer 2 that is an intrinsic region, and majority carriers A p-layer 3 that is a hole; a p-plane ring electrode 5 and a p-plane electrode 6 that collect holes; and an oxide film 7 that covers an element surface that is not covered by the n-plane electrode 4 and the p-plane electrode 6; A nitride film 8 covering the surface of the oxide film 7 and a light receiving part EW on which X-rays enter are provided.

酸化膜7はSiO2膜であり、窒化膜8はSi34膜である。 The oxide film 7 is a SiO 2 film, and the nitride film 8 is a Si 3 N 4 film.

受光部EWにX線が入射すると、X線のエネルギーに比例した電子正孔対がi層2内で発生するため、n面電極4およびp面電極6から電気信号が取り出される。   When X-rays enter the light receiving unit EW, electron-hole pairs proportional to the energy of the X-rays are generated in the i layer 2, so that electric signals are taken out from the n-plane electrode 4 and the p-plane electrode 6.

なお、n+層1に連続するi層2の部分をi層本体部21と呼び、このi層本体部21の断面積を「受光面積」と呼ぶ。また、p層3へ広がっているi層2の部分をi層拡縁部22と呼ぶ。 The portion of the i layer 2 that is continuous with the n + layer 1 is referred to as an i layer body portion 21, and the cross-sectional area of the i layer body portion 21 is referred to as a “light receiving area”. Further, the portion of the i layer 2 extending to the p layer 3 is referred to as an i layer edge portion 22.

実施例1の半導体X線検出素子100によれば、酸化膜7および窒化膜8が保護膜として機能する。そして、酸化膜7および窒化膜8は量産に適した方法で形成出来るため、生産性を向上出来る。また、膜質のばらつきを小さく出来る。さらに、酸化膜7だけでは+に帯電しやすく、窒化膜8だけでは−に帯電しやすいが、酸化膜7および窒化膜8の2層構造のため互いの電荷が打ち消しあって帯電しなくなる。よって、保護膜の帯電による好ましくない現象の発生が起こらず、信頼性を向上出来る。   According to the semiconductor X-ray detection element 100 of the first embodiment, the oxide film 7 and the nitride film 8 function as a protective film. Since the oxide film 7 and the nitride film 8 can be formed by a method suitable for mass production, productivity can be improved. In addition, variations in film quality can be reduced. Furthermore, although the oxide film 7 alone is easily charged to + and the nitride film 8 alone is easily charged to-, the two-layer structure of the oxide film 7 and the nitride film 8 cancels each other out of charge. Therefore, an undesirable phenomenon due to charging of the protective film does not occur, and the reliability can be improved.

図2は、実施例1に係る半導体X線検出素子100を製造する工程を示すフロー図である。
ステップS1では、図3に示すように、p型半導体結晶PCの上面にLiを蒸着する。p型半導体結晶PCは、例えばSiの結晶にボロン(B)などの不純物をドープしたものである。
FIG. 2 is a flowchart illustrating a process of manufacturing the semiconductor X-ray detection element 100 according to the first embodiment.
In step S1, Li is vapor-deposited on the upper surface of the p-type semiconductor crystal PC as shown in FIG. The p-type semiconductor crystal PC is, for example, a silicon crystal doped with an impurity such as boron (B).

ステップS2では、図4に示すように、Liを熱拡散させ、n+層1aを形成する。 In step S2, as shown in FIG. 4, Li is thermally diffused to form the n + layer 1a.

ステップS3では、図5に示すように、Ni/Auを蒸着して、n面電極4aを形成する。   In step S3, as shown in FIG. 5, Ni / Au is vapor-deposited to form the n-plane electrode 4a.

ステップS4では、トップハット形になるようにn面電極4a、n+層1aおよびp型半導体結晶PCの一部を例えば超音波切削機により除去し、図6に示すように、n面電極4およびn+層1を形成する。 In step S4, the n-plane electrode 4a, the n + layer 1a, and a part of the p-type semiconductor crystal PC are removed by, for example, an ultrasonic cutting machine so as to form a top hat shape, and as shown in FIG. And n + layer 1 is formed.

ステップS5では、図7に示すように、温度を上げながら電圧を印加してLiを拡散させ、i層本体部21およびi層拡縁部22からなるi層2を形成する。   In step S5, as shown in FIG. 7, a voltage is applied while the temperature is increased to diffuse Li, thereby forming the i layer 2 including the i layer body portion 21 and the i layer edge portion 22.

ステップS6では、図8に示すように、p側底面31をi層拡縁部22が受光面積と同じになるまで研磨する。   In step S6, as shown in FIG. 8, the p-side bottom surface 31 is polished until the i-layer edge 22 has the same light receiving area.

ステップS7では、図9に示すように、底面にp面Au電極5aを蒸着する。   In step S7, as shown in FIG. 9, a p-plane Au electrode 5a is deposited on the bottom surface.

ステップS8では、例えば80〜90℃にしたアンモニア過酸化水素水溶液に浸漬し、図10に示すように、SiO2膜の酸化膜7を形成する。この工程では、バッチ処理により多数個の素子を一度に処理出来る。
なお、実施例1に係る半導体X線検出素子100では、Liを使用している関係上、再熱拡散を防ぐために高温プロセスは適用できない。従って、酸化膜7は、薬液中で形成されるケミカル酸化膜を使用する。
In step S8, for example, the substrate is immersed in an aqueous ammonia hydrogen peroxide solution set at 80 to 90 ° C. to form an oxide film 7 of a SiO 2 film as shown in FIG. In this step, a large number of elements can be processed at once by batch processing.
Note that, in the semiconductor X-ray detection element 100 according to the first embodiment, the high temperature process cannot be applied to prevent reheat diffusion because Li is used. Therefore, the oxide film 7 uses a chemical oxide film formed in a chemical solution.

ステップS9では、例えばSiH4とN2ガスを流してのプラズマCVDにより図11に示すようにSi34膜の窒化膜8を形成する。この工程では、バッチ処理により多数個の素子を一度に処理出来る。 In step S9, a Si 3 N 4 nitride film 8 is formed as shown in FIG. 11, for example, by plasma CVD using SiH 4 and N 2 gas. In this step, a large number of elements can be processed at once by batch processing.

ステップS10では、図12に示すように底面に、p面Au電極5aとi層2の一部分を例えばエッチングし、受光部EWおよびp面リング電極5を形成する。   In step S10, as shown in FIG. 12, the p-plane Au electrode 5a and a part of the i-layer 2 are etched on the bottom surface to form the light receiving part EW and the p-plane ring electrode 5, for example.

ステップS11では、図1に示すように、底面にNiを蒸着し、p面電極6を形成する。   In step S11, as shown in FIG. 1, Ni is vapor-deposited on the bottom surface to form the p-plane electrode 6.

以上の半導体X線検出素子の製造方法によれば、実施例1に係る半導体X線検出素子100を好適に製造することが出来る。   According to the above method for manufacturing a semiconductor X-ray detection element, the semiconductor X-ray detection element 100 according to the first embodiment can be preferably manufactured.

図13は、実施例2にかかる半導体X線検出素子200を示す断面図である。
この半導体X線検出素子200は、実施例1の半導体X線検出素子100と基本的に同じであるが、素子の容量低減のためにn面電極4およびn+層1の面積が受光面積よりも小さくなっている。
FIG. 13 is a cross-sectional view illustrating a semiconductor X-ray detection element 200 according to the second embodiment.
The semiconductor X-ray detection element 200 is basically the same as the semiconductor X-ray detection element 100 of the first embodiment, but the area of the n-plane electrode 4 and the n + layer 1 is larger than the light receiving area in order to reduce the capacitance of the element. Is also getting smaller.

本発明の半導体X線検出素子は、エネルギー分散型X線分析装置の検出器として利用することが出来る。   The semiconductor X-ray detection element of the present invention can be used as a detector of an energy dispersive X-ray analyzer.

実施例1に係る半導体X線検出素子を示す断面図である。1 is a cross-sectional view showing a semiconductor X-ray detection element according to Example 1. FIG. 実施例1に係る半導体X線検出素子の製造方法を示すフロー図である。FIG. 3 is a flowchart showing a method for manufacturing a semiconductor X-ray detection element according to Example 1. Liの蒸着工程を示す説明図である。It is explanatory drawing which shows the vapor deposition process of Li. Liの熱拡散工程を示す説明図である。It is explanatory drawing which shows the thermal diffusion process of Li. n面電極の形成工程を示す説明図である。It is explanatory drawing which shows the formation process of an n-plane electrode. トップハット形に整形する工程を示す説明図である。It is explanatory drawing which shows the process shape | molded in a top hat shape. Liのドリフト工程を示す説明図である。It is explanatory drawing which shows the drift process of Li. p側底面の研磨工程を説明図である。It is explanatory drawing for the grinding | polishing process of the p side bottom face. p面電極(Au)の形成工程を示す説明図である。It is explanatory drawing which shows the formation process of a p-plane electrode (Au). 酸化膜(SiO2)の形成工程を示す説明図である。Is an explanatory view showing the step of forming the oxide film (SiO 2). 窒化膜(Si34)の形成工程を示す説明図である。It is an explanatory view showing the step of forming the nitride film (Si 3 N 4). 受光部の形成工程を示す説明図である。It is explanatory drawing which shows the formation process of a light-receiving part. 実施例2に係る半導体X線検出素子を示す断面図である。6 is a cross-sectional view showing a semiconductor X-ray detection element according to Example 2. FIG.

符号の説明Explanation of symbols

1 n+層
2 i層
3 p層
4 n面電極
5 p面リング電極
6 p面電極
7 酸化膜
8 窒化膜
100,200 半導体X線検出素子
1 n + layer 2 i layer 3 p layer 4 n-plane electrode 5 p-plane ring electrode 6 p-plane electrode 7 oxide film 8 nitride film 100, 200 semiconductor X-ray detection element

Claims (2)

n面電極、n+層、i層、p層およびp面電極を有する半導体X線検出素子であって、前記n面電極およびp面電極で覆われていない素子表面を覆う酸化膜と、その酸化膜の表面を覆う窒化膜を具備したことを特徴とする半導体X線検出素子。 a semiconductor X-ray detection element having an n-plane electrode, an n + layer, an i-layer, a p-layer, and a p-plane electrode, and an oxide film covering the element surface not covered with the n-plane electrode and the p-plane electrode; A semiconductor X-ray detection element comprising a nitride film covering a surface of an oxide film. 請求項1に記載の半導体X線検出素子において、前記酸化膜がSiO2膜であり、前記窒化膜がSi34膜であることを特徴とする半導体X線検出素子。 In the semiconductor X-ray detector according to claim 1, wherein the oxide film is a SiO 2 film, a semiconductor X-ray detector elements, wherein the nitride film is a Si 3 N 4 film.
JP2006041733A 2006-02-20 2006-02-20 Semiconductor x-ray detecting element Withdrawn JP2007221010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006041733A JP2007221010A (en) 2006-02-20 2006-02-20 Semiconductor x-ray detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006041733A JP2007221010A (en) 2006-02-20 2006-02-20 Semiconductor x-ray detecting element

Publications (1)

Publication Number Publication Date
JP2007221010A true JP2007221010A (en) 2007-08-30

Family

ID=38497933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006041733A Withdrawn JP2007221010A (en) 2006-02-20 2006-02-20 Semiconductor x-ray detecting element

Country Status (1)

Country Link
JP (1) JP2007221010A (en)

Similar Documents

Publication Publication Date Title
EP2380203B1 (en) Solar cell
KR102223562B1 (en) Hybrid polysilicon heterojunction back contact cell
TWI601303B (en) Metal-foil-assisted fabrication of thin-silicon solar cell
US8871557B2 (en) Photomultiplier and manufacturing method thereof
TWI672818B (en) Metallization of solar cells
KR20150032878A (en) Improving the structural integrity of solar cells
AU2021225181B2 (en) Solar cell with trench-free emitter regions
JP2014060430A (en) Method of manufacturing solar cell utilizing pinhole-free mask layer by direct pattern
SG193088A1 (en) Solar cell and method of manufacturing the same
US9576791B2 (en) Semiconductor devices including semiconductor structures and methods of fabricating the same
JP2019158576A (en) Piezoresistance sensor
CN107851672B (en) Photoelectric conversion element
US10686093B2 (en) Semiconductor light receiving element including si avalanche multiplication part and compound semiconductor light receiving layer
JP2661676B2 (en) Solar cell
JP3193287B2 (en) Solar cell
JP6170379B2 (en) Semiconductor energy beam detector
JP2007221010A (en) Semiconductor x-ray detecting element
JP5533296B2 (en) Semiconductor X-ray detection element, manufacturing method thereof, and semiconductor X-ray detection sensor
US20140251421A1 (en) Solar cell and method of manufacturing the same
TWI484647B (en) Solar cell and module comprising the same
US8871608B2 (en) Method for fabricating backside-illuminated sensors
JP2011187501A (en) Silicon detector and method of manufacturing silicon detector
KR102487510B1 (en) Solar cell fabricated by simplified deposition process
CN112514033B (en) Bath for cleaning
JP2014041983A (en) Method for manufacturing interface passivation structure and photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080507

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090918