JP2007220451A - Anode for lithium secondary battery and lithium secondary battery - Google Patents

Anode for lithium secondary battery and lithium secondary battery Download PDF

Info

Publication number
JP2007220451A
JP2007220451A JP2006039012A JP2006039012A JP2007220451A JP 2007220451 A JP2007220451 A JP 2007220451A JP 2006039012 A JP2006039012 A JP 2006039012A JP 2006039012 A JP2006039012 A JP 2006039012A JP 2007220451 A JP2007220451 A JP 2007220451A
Authority
JP
Japan
Prior art keywords
lithium secondary
carbon material
secondary battery
average particle
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006039012A
Other languages
Japanese (ja)
Inventor
Toshihiro Inoue
利弘 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006039012A priority Critical patent/JP2007220451A/en
Publication of JP2007220451A publication Critical patent/JP2007220451A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-capacity lithium secondary battery in which a material which can make an alloy with lithium is used as an anode active substance and a peeling off of this material because of swelling at a time of charging can be prevented and deterioration of service life due to a fine internal short circuit together with a work of a surface layer formed on the anode can be controlled. <P>SOLUTION: The anode for a lithium secondary battery is composed of a compound layer, made of active substance particles which can make an alloy with lithium, a carbon material and an adhesive agent, provided on a collector, and the surface layer, made of solid particles, provided on the above compound layer. An average particle diameter of the active substance particle shall be 0.1μm to 10μm, and a first kind having an average particle diameter of 0.1μm to 15μm and a second kind having an average particle diameter of 0.3μ m to 45μ m are used as the carbon materials, and furthermore, an average particle diameter ratio of the first carbon material against the second carbon material shall be 3 to 5 times. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はリチウム二次電池用負極に関し、より詳しくは高容量型のリチウム二次電池の課題を解決する技術に関する。   The present invention relates to a negative electrode for a lithium secondary battery, and more particularly to a technique for solving the problems of a high-capacity lithium secondary battery.

各種電子機器の小型軽量化に伴ってエネルギー密度の高いリチウム二次電池の需要が高まっている。市場からのさらなる高容量化に応えるためには、負極の改良が必須である。この背景として、負極活物質として広く用いられている黒鉛の理論容量(372mAh/g)を最大限活用するためのセル設計や電極製造プロセスの成熟が挙げられる。すなわち負極をさらに高容量するためには、黒鉛よりもはるかに理論容量が大きい、リチウムと合金化可能な材料の活用が不可欠である。   With the reduction in size and weight of various electronic devices, demand for lithium secondary batteries with high energy density is increasing. In order to respond to the further increase in capacity from the market, it is essential to improve the negative electrode. As this background, there is a maturation of cell design and electrode manufacturing process for maximizing the theoretical capacity (372 mAh / g) of graphite widely used as a negative electrode active material. That is, in order to further increase the capacity of the negative electrode, it is indispensable to use a material having a theoretical capacity much larger than that of graphite and capable of being alloyed with lithium.

リチウムと合金化可能な材料は一般的に導電性が低いため、導電性が高い炭素材料と併用して負極が構成される。加えてこの材料は、充放電における体積の膨張収縮が顕著である。特に充電時にこの材料が膨張した際に、正極と負極との距離が狭まるために微小な内部短絡を誘発し、寿命特性が低下する虞がある。そこで汎用されているポリエチレンなどの樹脂製セパレータに加えて、負極の上にリチウムイオンを透過しうる表面層を形成する技術(例えば特許文献1および2)、硬いリチウムイオン伝導性ガラスセラミックスを固体電解質として用いる技術(例えば特許文献3)を活用することが有効と考えられる。
特開平07−220759号公報 再公表97/001870号公報 特開2000−026135号公報
Since materials that can be alloyed with lithium generally have low conductivity, a negative electrode is formed in combination with a carbon material having high conductivity. In addition, this material has significant volume expansion and contraction during charging and discharging. In particular, when this material expands during charging, the distance between the positive electrode and the negative electrode is narrowed, so that a minute internal short circuit is induced and the life characteristics may be deteriorated. Therefore, in addition to a widely used resin separator such as polyethylene, a technique for forming a surface layer capable of transmitting lithium ions on the negative electrode (for example, Patent Documents 1 and 2), hard lithium ion conductive glass ceramics as a solid electrolyte It is considered to be effective to utilize the technique used for the above (for example, Patent Document 3).
Japanese Patent Laid-Open No. 07-220759 Republication 97/001870 Japanese Patent Laid-Open No. 2000-026135

しかしながら如何に特許文献1および2の技術を活用しても、無作為に負極を構成した場合はリチウムと合金化可能な材料の体積変化に伴う剥離が起こるため、微小な内部短絡を十分には防ぎきれないことが分かった。特許文献3の固体電解質はこの材料の体積変化を抑制しうる硬さを有しているが、従来の非水電解液と比べてイオン伝導性に劣るため、実用的な放電特性を実現することができない。   However, no matter how the techniques of Patent Documents 1 and 2 are utilized, if a negative electrode is randomly formed, peeling occurs due to a volume change of a material that can be alloyed with lithium. I found that I could not prevent it. Although the solid electrolyte of Patent Document 3 has hardness that can suppress the volume change of this material, it is inferior in ionic conductivity as compared with the conventional non-aqueous electrolyte, so that practical discharge characteristics can be realized. I can't.

本発明は上記課題に基づいてなされたものであり、リチウムと合金化可能な材料を負極活物質として用いつつ、この材料が充電時の膨張によって剥離しないようにし、負極上に形成した表面層の働きと相まって微小な内部短絡による寿命特性の低下が抑制できる、高容量なリチウム二次電池を提供することを目的とする。   The present invention has been made on the basis of the above-mentioned problems. While using a material that can be alloyed with lithium as a negative electrode active material, the material is prevented from peeling off due to expansion during charging, and the surface layer formed on the negative electrode An object of the present invention is to provide a high-capacity lithium secondary battery capable of suppressing a decrease in life characteristics due to a minute internal short circuit in combination with the function.

上記課題を鑑みて、本発明のリチウム二次電池用負極は、集電体の上にリチウムと合金化可能な活物質粒子と炭素材料と結着剤とからなる合剤層を設け、かつこの合剤層の上に固体粒子からなる表面層を設けたリチウム二次電池用負極であって、活物質粒子の平均粒子径を0.1〜10μmとし、炭素材料として平均粒子径が0.1〜15μmである第1の炭素材料と平均粒子径が0.3〜45μmである第2の炭素材料とを用い、かつ第1の炭素材料に対する第2の炭素材料の平均粒子径比が3〜5倍となるようにしたことを特徴とする。   In view of the above problems, the negative electrode for a lithium secondary battery according to the present invention is provided with a mixture layer composed of active material particles that can be alloyed with lithium, a carbon material, and a binder on a current collector. A negative electrode for a lithium secondary battery in which a surface layer made of solid particles is provided on a mixture layer, wherein the active material particles have an average particle diameter of 0.1 to 10 μm, and the carbon material has an average particle diameter of 0.1 A first carbon material having a particle diameter of ˜15 μm and a second carbon material having an average particle diameter of 0.3 to 45 μm are used, and the average particle diameter ratio of the second carbon material to the first carbon material is 3 It is characterized by having become 5 times.

本発明者は鋭意検討の結果、合剤層に含ませた炭素材料は活物質粒子に導電性を付与するほかに、結着剤となじみやすいために合剤層と集電体との密着性を高める効果を有する
ことを解明した。ただし一般的な「主剤と添加剤との関係」とは異なり、炭素材料は活物質粒子とほぼ同等の平均粒子径を有するため、単純にこれを活物質粒子と併用すると炭素材料間の空隙がデッドスペースとなり、集電体の表面近くに効率的に炭素材料を配置できなくなり、密着性が低下して活物質粒子が剥離しやすくなる。そこで炭素材料として2種の平均粒子径を有するものを用いてデッドスペースを減らし、炭素材料を集電体の表面近くに効率的に配置することにより合剤層と集電体との密着性を高めることができる。さらには電気的に絶縁な表面層が存在することにより、合剤層に軽微な剥離が起こっても微小な内部短絡が抑制できるので、寿命特性を向上させることができる。以上の効果により、リチウムと合金化可能な活物質粒子を用いたリチウム二次電池用負極を実用的なものにすることができる。
As a result of intensive studies, the inventor has made the carbon material contained in the mixture layer not only impart conductivity to the active material particles, but also easily adheres to the binder, so that the adhesion between the mixture layer and the current collector is good. It was clarified that it has the effect of increasing However, unlike the general “relationship between the main agent and additive”, the carbon material has an average particle diameter almost equal to that of the active material particles. A dead space is formed, and the carbon material cannot be efficiently disposed near the surface of the current collector, the adhesiveness is lowered, and the active material particles are easily separated. Therefore, the carbon material having two kinds of average particle diameters is used to reduce dead space, and the carbon material is efficiently arranged near the surface of the current collector, thereby improving the adhesion between the mixture layer and the current collector. Can be increased. Furthermore, the presence of an electrically insulating surface layer can suppress a minute internal short circuit even if a slight peeling occurs in the mixture layer, so that the life characteristics can be improved. By the above effects, a negative electrode for a lithium secondary battery using active material particles that can be alloyed with lithium can be made practical.

以上のように本発明によれば、高容量ながら導電性に乏しく体積変化に伴う不具合が多い活物質粒子を活用できるので、市場の要望に応えうる高容量なリチウム二次電池を広く提供できる。   As described above, according to the present invention, it is possible to utilize active material particles that have high capacity but poor conductivity and have many problems associated with volume changes. Therefore, high-capacity lithium secondary batteries that can meet market demands can be widely provided.

以下、本発明を実施するための最良の形態について、図を用いて説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

第1の発明は、集電体の上にリチウムと合金化可能な活物質粒子と炭素材料と結着剤とからなる合剤層を設け、かつこの合剤層の上に固体粒子からなる表面層を設けたリチウム二次電池用負極であって、活物質粒子の平均粒子径を0.1〜10μmとし、炭素材料として平均粒子径が0.1〜15μmである第1の炭素材料と平均粒子径が0.3〜45μmである第2の炭素材料とを用い、かつ第1の炭素材料に対する第2の炭素材料の平均粒子径比が3〜5倍となるようにしたことを特徴とする。   1st invention provides the mixture layer which consists of an active material particle which can be alloyed with lithium, a carbon material, and a binder on a collector, and the surface which consists of solid particles on this mixture layer A lithium secondary battery negative electrode provided with a layer, wherein the average particle diameter of the active material particles is 0.1 to 10 μm, and the average carbon particle diameter is 0.1 to 15 μm as the carbon material and the average The second carbon material having a particle diameter of 0.3 to 45 μm is used, and the average particle diameter ratio of the second carbon material to the first carbon material is 3 to 5 times. To do.

図1は本発明のリチウム二次電池用負極を示す概略断面図である。集電体1の上には合剤層2が設けられており、さらに合剤層2の上には表面層3が設けられている。合剤層2において、リチウムと合金化可能な活物質粒子21の周辺には第1の炭素材料22と、これより平均粒子径が大きい第2の炭素材料23と、結着剤24とが配置されている。活物質粒子21は導電性に乏しいが、周辺に配置された第1の炭素材料22および第2の炭素材料23が活物質粒子21を導電ネットワーク内に取り込むことができる。さらに活物質粒子21および第2の炭素材料23で構成されるデッドスペースに第1の炭素材料22が配置されているので、炭素材料が合剤層2の中に万遍なく存在している。この構造によって上述した導電ネットワークがさらに強固になるだけでなく、結着剤24となじみやすい炭素材料が集電体1の上に多く存在できるため、結果的に集電体1と合剤層2との密着性が高くなる。この効果により、活物質粒子21が充放電時に体積変化しても炭素材料で構成される三次元構造によって保護されるので負極上から剥離しにくくなる。さらには表面層3における固体粒子31は絶縁性が高いので、微小な内部短絡による寿命特性の低下が抑制できる。加えて固体粒子31は適度な硬度を有するため、充電時に活物質粒子21の膨張によって合剤層2が表面層3を圧迫した際にも変形せず、固体粒子31の隙間が適度に保持できるのでイオン伝導性を高く保って寿命特性を高める効果も有する。   FIG. 1 is a schematic cross-sectional view showing a negative electrode for a lithium secondary battery of the present invention. A mixture layer 2 is provided on the current collector 1, and a surface layer 3 is provided on the mixture layer 2. In the mixture layer 2, a first carbon material 22, a second carbon material 23 having an average particle diameter larger than this, and a binder 24 are arranged around the active material particles 21 that can be alloyed with lithium. Has been. Although the active material particles 21 are poor in conductivity, the first carbon material 22 and the second carbon material 23 arranged in the periphery can take the active material particles 21 into the conductive network. Furthermore, since the first carbon material 22 is disposed in the dead space composed of the active material particles 21 and the second carbon material 23, the carbon material is uniformly present in the mixture layer 2. This structure not only further strengthens the conductive network described above, but also allows a large amount of carbon material that is easily compatible with the binder 24 to be present on the current collector 1, and as a result, the current collector 1 and the mixture layer 2. Adhesion with is increased. Due to this effect, even if the volume of the active material particles 21 changes during charging and discharging, the active material particles 21 are protected by the three-dimensional structure composed of the carbon material, and thus are difficult to peel off from the negative electrode. Furthermore, since the solid particles 31 in the surface layer 3 have high insulation properties, it is possible to suppress a decrease in life characteristics due to a minute internal short circuit. In addition, since the solid particles 31 have an appropriate hardness, they are not deformed even when the mixture layer 2 presses the surface layer 3 due to the expansion of the active material particles 21 during charging, and the gaps between the solid particles 31 can be maintained appropriately. Therefore, it also has the effect of keeping the ionic conductivity high and improving the life characteristics.

集電体1としては、電解銅箔および圧延銅箔を挙げることができる。またその厚みは、機械的強度を確保する観点から8〜15μmであるのが好ましい。   Examples of the current collector 1 include an electrolytic copper foil and a rolled copper foil. Moreover, it is preferable that the thickness is 8-15 micrometers from a viewpoint of ensuring mechanical strength.

活物質粒子21としては、チタンシリコン化合物などが、高容量化の観点から好ましい。なお活物質粒子21の平均粒子径は0.1〜10μmである必要がある。平均粒子径が0.1μm未満だとかさ密度が低くなるために充填性が低下し、圧延時の負荷によって合剤層2が顕著に剥離する。逆に10μmを超えると反応に関与する表面積が低下するので
、電池反応が不活性化する。
As the active material particles 21, a titanium silicon compound or the like is preferable from the viewpoint of increasing the capacity. The average particle diameter of the active material particles 21 needs to be 0.1 to 10 μm. When the average particle size is less than 0.1 μm, the bulk density is lowered, so that the filling property is lowered, and the mixture layer 2 is remarkably peeled by the load during rolling. On the other hand, if it exceeds 10 μm, the surface area involved in the reaction is reduced, and the battery reaction is inactivated.

第1の炭素材料22としては、平均粒子径が0.1〜15μmである必要があり、具体的にはTIMCAL製黒鉛KS4(商品名)などが挙げられる。平均粒子径が0.1μm未満だと全体的に充填性が低下し、圧延時の負荷によって合剤層2が顕著に剥離する。逆に15μmを超えると第2の炭素材料との粒子径差が小さくなって充填性が低下し、圧延時の負荷によって合剤層2が顕著に剥離する。   The first carbon material 22 needs to have an average particle diameter of 0.1 to 15 μm, and specifically includes TIMCAL graphite KS4 (trade name). When the average particle size is less than 0.1 μm, the filling property is lowered as a whole, and the mixture layer 2 is remarkably peeled by the load during rolling. On the other hand, if it exceeds 15 μm, the particle size difference from the second carbon material becomes small, the filling property is lowered, and the mixture layer 2 is remarkably peeled by the load during rolling.

第2の炭素材料23としては、平均粒子径が0.3〜45μmである必要があり、具体的には日立化成製黒鉛MAG(商品名)などが挙げられる。平均粒子径が0.3μm未満だと第1の炭素材料との粒子径差が小さくなって充填性が低下し、圧延時の負荷によって合剤層2が顕著に剥離する。逆に45μmを超えると合剤層2における分散性が低下し、電池反応が不活性化する。   As the 2nd carbon material 23, an average particle diameter needs to be 0.3-45 micrometers, and specifically, Hitachi Chemical graphite MAG (brand name) etc. are mentioned. When the average particle size is less than 0.3 μm, the particle size difference from the first carbon material is reduced, the filling property is lowered, and the mixture layer 2 is remarkably peeled by the load during rolling. On the other hand, when it exceeds 45 μm, the dispersibility in the mixture layer 2 is lowered and the battery reaction is inactivated.

なおここで第1の炭素材料に対する第2の炭素材料の平均粒子径比は3〜5倍である必要がある。この比が上記範囲を逸脱すると、第2の炭素材料23で構成されるデッドスペースに第1の炭素材料22がうまく配置されなくなるので充填性が低下し、圧延時の負荷によって合剤層2が顕著に剥離する。   Here, the average particle diameter ratio of the second carbon material to the first carbon material needs to be 3 to 5 times. When this ratio deviates from the above range, the first carbon material 22 is not well disposed in the dead space formed by the second carbon material 23, so that the filling property is lowered, and the mixture layer 2 is formed by the load during rolling. Remarkably peels off.

結着剤24としては、第1の炭素材料22および第2の炭素材料23となじみやすいという観点から、PTFEなどのフッ素系材料などが好ましい。なお結着剤24と炭素材料とのなじみは、結着剤成分が炭素材料へ吸着することによって発現すると考えられる。   As the binder 24, a fluorine-based material such as PTFE is preferable from the viewpoint of being easily compatible with the first carbon material 22 and the second carbon material 23. The familiarity between the binder 24 and the carbon material is considered to be manifested when the binder component is adsorbed on the carbon material.

表面層3を構成する固体粒子31としては、表面層3に適度な空隙を設けてリチウムイオン伝導性を与えうるものであればよい。なお固体粒子31の平均粒子径が0.1〜3μmであれば、表面層3の隙間構造が適正化されて電解液の注入性が高まるのでより好ましい。   The solid particles 31 constituting the surface layer 3 may be any solid particles that can provide lithium ion conductivity by providing appropriate voids in the surface layer 3. In addition, it is more preferable that the average particle diameter of the solid particles 31 is 0.1 to 3 μm because the gap structure of the surface layer 3 is optimized and the injection property of the electrolytic solution is increased.

第2の発明は、第1の発明において、活物質粒子21の表面の少なくとも一部を活物質粒子21よりも導電性が高い材料で被覆したことを特徴する。このような材料としてはケッチェンブラックなどが挙げられる。第2の発明の構成によって、導電性の乏しい活物質粒子21の電池反応が活性化する。   The second invention is characterized in that, in the first invention, at least a part of the surface of the active material particles 21 is coated with a material having higher conductivity than the active material particles 21. An example of such a material is ketjen black. The battery reaction of the active material particles 21 with poor conductivity is activated by the configuration of the second invention.

第3の発明は、第1の発明において、合剤層21の表面粗さRaが0.4〜3μmであることを特徴とする。圧延などの工程により合剤層21が平滑化すると、反応面積の低下からリチウムイオンの拡散が阻害されるので、適度な表面粗さが必要である。合剤層21の表面粗さを0.4μm以上にするためには、剛性が高く圧延後も元の粒子形状を保持しやすいものを用いるほかに、サンドブラスト処理などで粗面化する方法が挙げられる。しかし表面粗さを3μm以上にしようとすると過度にサンドブラスト処理を行う必要があり、削られた合剤層21の欠片が混入することによる短絡が懸念されるので好ましくない。   The third invention is characterized in that, in the first invention, the surface roughness Ra of the mixture layer 21 is 0.4 to 3 μm. When the mixture layer 21 is smoothed by a process such as rolling, the diffusion of lithium ions is hindered due to the reduction in the reaction area, and therefore an appropriate surface roughness is required. In order to make the surface roughness of the mixture layer 21 0.4 μm or more, there is a method of roughening by sandblasting or the like in addition to using a material having high rigidity and easily maintaining the original particle shape after rolling. It is done. However, if the surface roughness is to be 3 μm or more, it is necessary to perform an excessive sandblast treatment, which is not preferable because a short circuit due to mixing of the scraped mixture layer 21 may occur.

第4の発明は、第1の発明において、表面層3に電解液を保持する機能を持たせ、かつ固体粒子31として水不溶性のものを用いたことを特徴とする。リチウム二次電池の電解液は有機溶媒系を用いてはいるものの、固体粒子31に水溶性のものを用いると固体粒子31が原形を保てなくなって電解液を保持できなくなる虞がある。   The fourth invention is characterized in that, in the first invention, the surface layer 3 has a function of holding an electrolytic solution, and the solid particles 31 are water-insoluble. Although the electrolyte solution of the lithium secondary battery uses an organic solvent system, if the water-soluble solid particles 31 are used, the solid particles 31 may not maintain the original shape and may not be able to hold the electrolyte solution.

第5の発明は、第4の発明において、固体粒子31としてアルミニウム、珪素、ジルコニウム、マグネシウムの少なくとも一種を含む酸化物を用いたことを特徴とする。これら酸化物は単に水不溶性であるだけでなく機械的強度が高いので、電池の充放電による負極の変形が生じた際も表面層3の形状を保持し続けることができるので好ましい。   The fifth invention is characterized in that, in the fourth invention, an oxide containing at least one of aluminum, silicon, zirconium, and magnesium is used as the solid particles 31. Since these oxides are not only insoluble in water but also have high mechanical strength, it is preferable because the shape of the surface layer 3 can be maintained even when the negative electrode is deformed due to charging / discharging of the battery.

第6の発明は、第1の発明において、表面層3の厚みを1〜30μmとしたことを特徴とする。この厚みが1μm未満であると表面層3の体積が過度に小さいので電解液保持力がやや低下し、30μmを超えると表面層3自体が反応抵抗となって電極界面における反応性が低下する。   The sixth invention is characterized in that, in the first invention, the thickness of the surface layer 3 is 1 to 30 μm. If the thickness is less than 1 μm, the volume of the surface layer 3 is excessively small, so that the electrolyte holding power is slightly reduced. If the thickness exceeds 30 μm, the surface layer 3 itself becomes a reaction resistance and the reactivity at the electrode interface is reduced.

第7の発明は、第1〜6のリチウム二次電池用負極を用いたことを特徴とするリチウム二次電池に関する。   A seventh invention relates to a lithium secondary battery using the first to sixth negative electrodes for lithium secondary batteries.

正極には従来からリチウム二次電池に用いられているものを限定なく用いることができる。このような正極活物質としては、LiCoO2 、LiNiO2 、LiMn24 、LiMnO2、LiCo0.5Ni0.52 、LiNi0.7Co0.2Mn0.12などのリチウム含有遷移金属酸化物や、MnO2 などのリチウムを含有していない金属酸化物、Li4TiO12などのチタンスピネル化合物のようなスピネル化合物が例示される。また、この他にも、リチウムを電気化学的に挿入・脱離する物質であれば、制限なく用いることができる。 As the positive electrode, those conventionally used for lithium secondary batteries can be used without limitation. Examples of such positive electrode active materials include lithium-containing transition metal oxides such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , LiCo 0.5 Ni 0.5 O 2 , LiNi 0.7 Co 0.2 Mn 0.1 O 2 , and MnO 2. Examples thereof include metal oxides that do not contain lithium, such as spinel compounds such as titanium spinel compounds such as Li 4 TiO 12 . In addition, any substance that electrochemically inserts and desorbs lithium can be used without limitation.

電解液は特に限定されず、溶媒としてエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネートと、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどの鎖状カーボネートとの混合溶媒が例示される。また、前記環状カーボネートと1,2−ジメトキシエタン、1,2−ジエトキシエタンなどのエーテル系溶媒との混合溶媒も例示される。また溶質としてLiPF6 、LiBF4 、LiCF3SO3 、LiN(CF3SO22 、LiN(C25SO22 、LiN(CF3SO2)(C49SO2)、LiC(CF3SO23 、LiC(C25SO23 やそれらの混合物が例示される。さらに電解液は液相に限定されず、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質や、エチル−3−メチルイミダゾリウムクロリド(EMIC)を主成分とするような溶融塩、LiI、Li3Nなどの無機固体電解質が例示される。本発明の二次電池の電解質は、イオン導電性を発現させる溶媒としてのLi化合物とこれを溶解・保持する溶媒が電池の充電時や放電時あるいは保存時の電位で分解しない限り、制約なく用いることができる。 The electrolytic solution is not particularly limited, and examples of the solvent include mixed solvents of cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate, and chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate. Further, mixed solvents of the cyclic carbonate and ether solvents such as 1,2-dimethoxyethane and 1,2-diethoxyethane are also exemplified. As solutes, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), Examples include LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 and mixtures thereof. Furthermore, the electrolytic solution is not limited to a liquid phase, and a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide or polyacrylonitrile with an electrolytic solution, or ethyl-3-methylimidazolium chloride (EMIC) as a main component. Examples thereof include inorganic solid electrolytes such as molten salt, LiI, and Li 3 N. The electrolyte of the secondary battery according to the present invention can be used without restriction unless the Li compound as a solvent that develops ionic conductivity and the solvent that dissolves and retains the lithium compound are not decomposed at the potential during charging, discharging, or storage of the battery. be able to.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は下記の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。   Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples, and can be implemented with appropriate modifications within a range not changing the gist thereof. Is.

(実施例1)
正極は以下のように作製した。まずLi2CO3 及びCoCO3 を、Li:Coが原子比として1:1となるように秤量して乳鉢で混合し、これをプレスし加圧成形した後、空気中において800℃で24時間焼成し、LiCoO2の焼成体を得た。これを乳鉢で平均粒子径20μmとなるまで粉砕した。得られたLiCoO2 粉末が100重量部、導電材としてのアセチレンブラックが10重量部、結着剤としてのポリテトラフルオロエチレンが10重量部となるように水を加えて混合し、ペースト状合剤を得た。この合剤を厚さ20μmのアルミ箔からなる正極集電体の両面に塗工後、乾燥および圧延を行い、正極を得た。この正極に正極リードをスポット溶接して取り付けた後、110℃にて3時間の真空乾燥を行った。
Example 1
The positive electrode was produced as follows. First, Li 2 CO 3 and CoCO 3 are weighed so that the atomic ratio of Li: Co is 1: 1, mixed in a mortar, pressed and pressed, and then in air at 800 ° C. for 24 hours. Firing was performed to obtain a LiCoO 2 fired body. This was pulverized with a mortar until the average particle size became 20 μm. The resulting LiCoO 2 powder is 100 parts by weight, acetylene black as a conductive material is 10 parts by weight, and polytetrafluoroethylene as a binder is 10 parts by weight. Got. This mixture was applied to both surfaces of a positive electrode current collector made of an aluminum foil having a thickness of 20 μm, and then dried and rolled to obtain a positive electrode. After the positive electrode lead was spot welded to the positive electrode, vacuum drying was performed at 110 ° C. for 3 hours.

負極は以下のように作製した。まず最大粒子径が150μm以下のチタン粉末(99.9%)と最大粒子径が100μm以下のシリコン粉末(99.9%)を重量比で1:10に混合し、ホソカワミクロン製メカノフュージョンを用いて2000rpmで168時間
のメカニカルアロイング処理を行った。得られたチタンシリコン化合物を微粉砕した後に解析した結果、平均粒子径は0.3μmであり、X線回折では非晶質化の証であるブロードなピークが観察された。この活物質粒子21(96重量部)に対し、さらにケッチェンブラックを4重量部添加してメカニカルアロイング処理法(2000rpmで10分間)を行い、活物質粒子21の表面の大半を導電性の高いケッチェンブラックで被覆した。この活物質粒子21を20重量部と、第1の炭素材料22として平均粒子径が4μmの黒鉛(TIMCAL製KS4)30重量部と、第2の炭素材料23として平均粒子径が12μmの黒鉛(日立化成製MAG)30重量部と、導電材としてアセチレンブラック10重量部と、結着剤24としてポリフッ化ビニリデンのN−メチル−2−ピロリドン(NMP)溶液を固形分として10重量部とを加えて練合し、ペースト状負極合剤を得た。このペーストを圧延銅箔からなる負極集電体の両面に片面厚み100μmとなるよう塗着した後60℃で8時間乾燥し、圧延して合剤層2を形成した。このときの表面粗さRaは0.48μmであった。この合剤層2の両面に、固体粒子31としてアルミナ970gと、結着剤として日本ゼオン(株)製ポリアクリロニトリル変性ゴム結着剤BM−720H(商品名/固形分8重量%)375gとを適量のNMPとともに練合して得たペーストを塗布乾燥し、片面の厚みが10μmである表面層3を作製した。
The negative electrode was produced as follows. First, titanium powder having a maximum particle size of 150 μm or less (99.9%) and silicon powder having a maximum particle size of 100 μm or less (99.9%) are mixed at a weight ratio of 1:10, and using a meso-fusion made by Hosokawa Micron. Mechanical alloying treatment was performed at 2000 rpm for 168 hours. As a result of analysis after finely pulverizing the obtained titanium silicon compound, the average particle diameter was 0.3 μm, and a broad peak as proof of amorphization was observed by X-ray diffraction. 4 parts by weight of ketjen black is further added to the active material particles 21 (96 parts by weight), and a mechanical alloying method (at 2000 rpm for 10 minutes) is performed, so that most of the surfaces of the active material particles 21 are made conductive. Coated with high ketjen black. 20 parts by weight of the active material particles 21, 30 parts by weight of graphite (KS4 made by TIMCAL) having an average particle diameter of 4 μm as the first carbon material 22, and graphite having an average particle diameter of 12 μm as the second carbon material 23 ( MAG manufactured by Hitachi Chemical Co., Ltd.), 10 parts by weight of acetylene black as a conductive material, and 10 parts by weight of a solid solution of N-methyl-2-pyrrolidone (NMP) solution of polyvinylidene fluoride as a binder 24 And kneaded to obtain a paste-like negative electrode mixture. This paste was applied to both sides of a negative electrode current collector made of rolled copper foil so as to have a thickness of 100 μm on one side, dried at 60 ° C. for 8 hours, and rolled to form a mixture layer 2. The surface roughness Ra at this time was 0.48 μm. On both surfaces of this mixture layer 2, 970 g of alumina as solid particles 31 and 375 g of polyacrylonitrile modified rubber binder BM-720H (trade name / solid content 8% by weight) manufactured by Nippon Zeon Co., Ltd. as binders. The paste obtained by kneading together with an appropriate amount of NMP was applied and dried to prepare a surface layer 3 having a thickness of 10 μm on one side.

リチウム二次電池は以下のように作製した。まず上述した正極および負極を厚さ25μmのポリエチレン製セパレータを介して略楕円状に捲回し、幅5.3mm、長さ30mm、総高48mmのアルミニウム製角形ケースに挿入した。これにエチレンカーボネートとジエチルカーボネートとの等体積混合溶媒にLiPF6を1モル/リットル溶解してなる電解液を注入し、密閉化して理論容量950mAhのリチウム二次電池を得た。これを実施例1とする。 The lithium secondary battery was produced as follows. First, the positive electrode and the negative electrode were wound in an approximately elliptical shape through a 25 μm thick polyethylene separator, and inserted into an aluminum rectangular case having a width of 5.3 mm, a length of 30 mm, and a total height of 48 mm. An electrolyte solution prepared by dissolving 1 mol / liter of LiPF 6 in an equal volume mixed solvent of ethylene carbonate and diethyl carbonate was poured into this, and sealed to obtain a lithium secondary battery having a theoretical capacity of 950 mAh. This is Example 1.

(実施例2〜4)
実施例1に対し、チタンシリコン化合物の微粉砕条件を変えることにより、活物質粒子21の平均粒子径を0.1μm(実施例2)、1μm(実施例3)および10μm(実施例3)としたこと以外は、実施例1と同様のリチウム二次電池を得た。これを実施例2〜4とする。
(Examples 2 to 4)
Compared to Example 1, by changing the finely pulverizing conditions of the titanium silicon compound, the average particle diameter of the active material particles 21 was 0.1 μm (Example 2), 1 μm (Example 3), and 10 μm (Example 3). A lithium secondary battery similar to that of Example 1 was obtained except that. Let this be Examples 2-4.

(実施例5〜6)
実施例1に対し、第2の炭素材料23として平均粒子径が16μmの黒鉛(日立化成製MAG/実施例5)および平均粒子径が20μmの黒鉛(日立化成製MAG/実施例6)を用いたこと以外は、実施例1と同様のリチウム二次電池を得た。これを実施例5〜6とする。
(Examples 5-6)
In contrast to Example 1, as the second carbon material 23, graphite having an average particle size of 16 μm (Hitachi Chemical MAG / Example 5) and graphite having an average particle size of 20 μm (Hitachi Chemical MAG / Example 6) are used. A lithium secondary battery similar to that of Example 1 was obtained except that there was Let this be Examples 5-6.

(実施例7)
実施例1に対し、第1の炭素材料22として平均粒子径が0.1μmの黒鉛を用い、第2の炭素材料23として平均粒子径が0.3μmの黒鉛を用いたこと以外は、実施例1と同様のリチウム二次電池を得た。これを実施例7とする。
(Example 7)
Example 1 is different from Example 1 except that graphite having an average particle diameter of 0.1 μm is used as the first carbon material 22 and graphite having an average particle diameter of 0.3 μm is used as the second carbon material 23. A lithium secondary battery similar to 1 was obtained. This is Example 7.

(実施例8)
実施例1に対し、第1の炭素材料22として平均粒子径が1μmの黒鉛を用い、第2の炭素材料23として平均粒子径が3μmの黒鉛を用いたこと以外は、実施例1と同様のリチウム二次電池を得た。これを実施例8とする。
(Example 8)
In contrast to Example 1, graphite having an average particle diameter of 1 μm was used as the first carbon material 22, and graphite having an average particle diameter of 3 μm was used as the second carbon material 23. A lithium secondary battery was obtained. This is Example 8.

(実施例9)
実施例1に対し、第1の炭素材料22として平均粒子径が10μmの黒鉛(日立化成製MAG)を用い、第2の炭素材料23として平均粒子径が30μmの黒鉛(日立化成製MAG)を用いたこと以外は、実施例1と同様のリチウム二次電池を得た。これを実施例9
とする。
Example 9
In contrast to Example 1, graphite (MAG made by Hitachi Chemical) having an average particle diameter of 10 μm is used as the first carbon material 22, and graphite (MAG made by Hitachi Chemical) having an average particle diameter of 30 μm is used as the second carbon material 23. A lithium secondary battery similar to that of Example 1 was obtained except that it was used. This is shown in Example 9.
And

(実施例10)
実施例1に対し、第1の炭素材料22として平均粒子径が15μmの黒鉛(日立化成製MAG)を用い、第2の炭素材料23として平均粒子径が45μmの黒鉛(日立化成製MAG)を用いたこと以外は、実施例1と同様のリチウム二次電池を得た。これを実施例10とする。
(Example 10)
For Example 1, graphite having an average particle diameter of 15 μm (MAG made by Hitachi Chemical) is used as the first carbon material 22, and graphite having an average particle diameter of 45 μm (MAG made by Hitachi Chemical) is used as the second carbon material 23. A lithium secondary battery similar to that of Example 1 was obtained except that it was used. This is Example 10.

(実施例11〜13)
実施例1に対し、圧延条件を変えることにより合剤層2の表面粗さRaを0.32μm(実施例11)、0.4μm(実施例12)および1μm(実施例13)としたこと以外は、実施例1と同様のリチウム二次電池を得た。これを実施例11〜13とする。
(Examples 11 to 13)
In contrast to Example 1, the surface roughness Ra of the mixture layer 2 was changed to 0.32 μm (Example 11), 0.4 μm (Example 12), and 1 μm (Example 13) by changing the rolling conditions. Obtained the same lithium secondary battery as Example 1. This is designated as Examples 11 to 13.

(実施例14〜15)
実施例1に対し、条件を変えてサンドブラスト処理を行うことにより合剤層2の表面粗さRaを3μm(実施例14)および3.5μm(実施例15)としたこと以外は、実施例1と同様のリチウム二次電池を得た。これを実施例14〜15とする。
(Examples 14 to 15)
Example 1 is performed except that the surface roughness Ra of the mixture layer 2 is set to 3 μm (Example 14) and 3.5 μm (Example 15) by performing sandblasting treatment under different conditions with respect to Example 1. The same lithium secondary battery was obtained. Let this be Examples 14-15.

(実施例16〜19)
実施例1に対し、表面層3の厚みを0.5μm(実施例16)、1μm(実施例17)、30μm(実施例18)および35μm(実施例19)としたこと以外は、実施例1と同様のリチウム二次電池を得た。これを実施例16〜19とする。
(Examples 16 to 19)
Example 1 except that the thickness of the surface layer 3 was set to 0.5 μm (Example 16), 1 μm (Example 17), 30 μm (Example 18) and 35 μm (Example 19) with respect to Example 1. The same lithium secondary battery was obtained. Let this be Examples 16-19.

(実施例20〜22)
実施例3に対し、表面層3の固体粒子31としてアルミナに代えて同一の平均粒子径を有するジルコニア(実施例20)、シリカ(実施例21)およびマグネシア(実施例22)を用いたこと以外は、実施例1と同様のリチウム二次電池を得た。これを実施例20〜22とする。
(Examples 20 to 22)
In contrast to Example 3, zirconia (Example 20), silica (Example 21), and magnesia (Example 22) having the same average particle diameter are used as the solid particles 31 of the surface layer 3 instead of alumina. Obtained the same lithium secondary battery as Example 1. Let this be Examples 20-22.

(比較例1〜2)
実施例1に対し、チタンシリコン化合物の微粉砕条件を変えることにより、活物質粒子21の平均粒子径を0.05μm(比較例1)および12μm(比較例2)としたこと以外は、実施例1と同様のリチウム二次電池を得た。これを比較例1〜2とする。
(Comparative Examples 1-2)
Example 1 is different from Example 1 except that the average particle size of the active material particles 21 is set to 0.05 μm (Comparative Example 1) and 12 μm (Comparative Example 2) by changing the finely pulverizing conditions of the titanium silicon compound. A lithium secondary battery similar to 1 was obtained. This is referred to as Comparative Examples 1 and 2.

(比較例3)
実施例1に対し、第1の炭素材料22として平均粒子径が0.05μmの黒鉛を用い、第2の炭素材料23として平均粒子径が0.15μmの黒鉛を用いたこと以外は、実施例1と同様のリチウム二次電池を得た。これを比較例3とする。
(Comparative Example 3)
In contrast to Example 1, graphite having an average particle diameter of 0.05 μm was used as the first carbon material 22, and graphite having an average particle diameter of 0.15 μm was used as the second carbon material 23. A lithium secondary battery similar to 1 was obtained. This is referred to as Comparative Example 3.

(比較例4)
実施例1に対し、第1の炭素材料22として平均粒子径が18μmの黒鉛(日立化成製MAG)を用い、第2の炭素材料23として平均粒子径が54μmの黒鉛(日立化成製MAG)を用いたこと以外は、実施例1と同様のリチウム二次電池を得た。これを比較例4とする。
(Comparative Example 4)
In contrast to Example 1, graphite (MAG made by Hitachi Chemical) having an average particle diameter of 18 μm is used as the first carbon material 22, and graphite (MAG made by Hitachi Chemical) having an average particle diameter of 54 μm is used as the second carbon material 23. A lithium secondary battery similar to that of Example 1 was obtained except that it was used. This is referred to as Comparative Example 4.

(比較例5〜6)
実施例1に対し、第2の炭素材料23として平均粒子径が10μmの黒鉛(日立化成製MAG/比較例5)および平均粒子径が23μmの黒鉛(日立化成製MAG/比較例6)を用いたこと以外は、実施例1と同様のリチウム二次電池を得た。これを比較例5〜6とする。
(Comparative Examples 5-6)
For Example 1, graphite having an average particle size of 10 μm (MAG / Comparative Example 5) and graphite having an average particle size of 23 μm (MAG / Comparative Example 6 made by Hitachi Chemical) are used as the second carbon material 23. A lithium secondary battery similar to that of Example 1 was obtained except that there was This is designated as Comparative Examples 5-6.

得られた各例のリチウム二次電池に対し、20℃において充電制御電圧4.2V、最大電流950mAの定電圧定電流充電を34mA終止まで行い、20分間の休止後950mAの定電流にて2.5Vまで連続放電するサイクルを1サイクルとして、200サイクル繰り返した。2サイクル目の放電容量に対する200サイクル目の放電容量を、寿命特性の指標として(表1)に示す。   The obtained lithium secondary battery of each example was charged at a constant voltage and constant current with a charging control voltage of 4.2 V and a maximum current of 950 mA at 20 ° C. until the end of 34 mA. The cycle of continuous discharge to 5 V was set as one cycle, and 200 cycles were repeated. The discharge capacity at the 200th cycle relative to the discharge capacity at the second cycle is shown in (Table 1) as an index of life characteristics.

活物質粒子21の平均粒子径が好適範囲(0.1〜10μm)を逸脱した比較例1および2、第1の炭素材料22の平均粒子径が好適範囲(0.1〜15μm)を逸脱しかつ第2の炭素材料23の平均粒子径が好適範囲(0.3〜45μm)を逸脱した比較例3および4、第1の炭素材料22に対する第2の炭素材料23の平均粒子径比が好適範囲(3〜5倍)を逸脱した比較例5および6は、いずれも著しい寿命特性の低下を示した。その理由として、比較例2の場合は反応に関与する表面積が低下するので、電池反応が不活性化したと考えられる。また比較例1および3〜6の場合は充填性が低下して圧延時の負荷によって合剤層2が顕著に剥離するため、微小な内部短絡が起こったと考えられる。さらに比較例4の場合は第2の炭素材料23が大きすぎるために合剤層2における分散性が低下し、電池反応が不活性化したことも加わったと考えられる。 Comparative Examples 1 and 2 in which the average particle size of the active material particles 21 deviated from the preferred range (0.1 to 10 μm), and the average particle size of the first carbon material 22 deviated from the preferred range (0.1 to 15 μm). And the average particle diameter ratio of the 2nd carbon material 23 with respect to the comparative examples 3 and 4 and the 1st carbon material 22 from which the average particle diameter of the 2nd carbon material 23 deviated from the suitable range (0.3-45 micrometers) is suitable. Comparative Examples 5 and 6 that deviated from the range (3 to 5 times) both showed a significant decrease in life characteristics. As the reason, in the case of the comparative example 2, since the surface area which participates in reaction falls, it is thought that the battery reaction was inactivated. In the case of Comparative Examples 1 and 3 to 6, since the filling property was lowered and the mixture layer 2 was remarkably peeled by the load during rolling, it is considered that a minute internal short circuit occurred. Furthermore, in the case of the comparative example 4, since the 2nd carbon material 23 is too large, it is thought that the dispersibility in the mixture layer 2 fell and the battery reaction was deactivated.

これら比較例に対し、各実施例のリチウム二次電池は比較的良好な寿命特性を示した。ただし合剤層21の表面粗さRaが0.4μm未満である実施例11は、反応面積の低下からリチウムイオンの拡散が阻害されるので、実施例1と比較して寿命特性が若干低下した。逆に表面粗さRaが3μmを超える実施例15は、過度にサンドブラスト処理を行う
必要があったので、削られた合剤層21の欠片が混入することによって微小な内部短絡が僅かながら起こったために、実施例1と比較して寿命特性が若干低下した。また表面層3の厚みが1μm未満の実施例16は、表面層3の体積が過度に小さいので電解液保持力がやや低下し、実施例1と比較して寿命特性が若干低下した。逆に表面層3の厚みが30μmを超える実施例19は、表面層3自体が反応抵抗となって電極界面における反応性が低下し、実施例1と比較して寿命特性が若干低下した。
In contrast to these comparative examples, the lithium secondary batteries of the respective examples exhibited relatively good life characteristics. However, in Example 11 in which the surface roughness Ra of the mixture layer 21 is less than 0.4 μm, the diffusion characteristics of lithium ions are hindered due to the reduction in the reaction area, so that the life characteristics are slightly lowered as compared with Example 1. . On the contrary, in Example 15 in which the surface roughness Ra exceeds 3 μm, it was necessary to excessively perform the sand blasting process, so that a slight internal short circuit occurred due to the mixing of the scraped pieces of the mixture layer 21. In addition, the life characteristics were slightly deteriorated as compared with Example 1. Further, in Example 16 in which the thickness of the surface layer 3 was less than 1 μm, the volume of the surface layer 3 was excessively small, so that the electrolytic solution holding power was slightly reduced, and the life characteristics were slightly deteriorated as compared with Example 1. On the contrary, in Example 19 in which the thickness of the surface layer 3 exceeds 30 μm, the surface layer 3 itself becomes a reaction resistance, the reactivity at the electrode interface is lowered, and the life characteristics are slightly lowered as compared with Example 1.

本発明は高容量化を目指したリチウム二次電池の実用化に不可欠なので、その利用可能性が高いだけでなく、有用性が高い。   Since the present invention is indispensable for practical use of a lithium secondary battery aiming at high capacity, it is not only highly available but also highly useful.

本発明のリチウム二次電池用負極を示す概略断面図Schematic sectional view showing a negative electrode for a lithium secondary battery of the present invention

符号の説明Explanation of symbols

1 集電体
2 合剤層
3 表面層
21 活物質粒子
22 第1の炭素材料
23 第2の炭素材料
24 結着剤
31 固体粒子

DESCRIPTION OF SYMBOLS 1 Current collector 2 Mixture layer 3 Surface layer 21 Active material particle 22 1st carbon material 23 2nd carbon material 24 Binder 31 Solid particle

Claims (7)

集電体の上にリチウムと合金化可能な活物質粒子と炭素材料と結着剤からなる合剤層を設け、かつこの合剤層の上に固体粒子からなる表面層を設けたリチウム二次電池用負極であって、
前記活物質粒子の平均粒子径を0.1〜10μmとし、
前記炭素材料として、平均粒子径が0.1〜15μmである第1の炭素材料と、平均粒子径が0.3〜45μmである第2の炭素材料とを用い、
かつ前記第1の炭素材料に対する第2の炭素材料の平均粒子径比が3〜5倍となるようにしたことを特徴とするリチウム二次電池用負極。
Lithium secondary in which a mixture layer composed of active material particles that can be alloyed with lithium, a carbon material, and a binder is provided on a current collector, and a surface layer composed of solid particles is provided on the mixture layer A negative electrode for a battery,
The average particle diameter of the active material particles is 0.1 to 10 μm,
As the carbon material, using a first carbon material having an average particle diameter of 0.1 to 15 μm and a second carbon material having an average particle diameter of 0.3 to 45 μm,
The negative electrode for a lithium secondary battery is characterized in that the average particle size ratio of the second carbon material to the first carbon material is 3 to 5 times.
前記活物質粒子の表面の少なくとも一部を、この活物質粒子よりも導電性が高い材料で被覆したことを特徴する、請求項1記載のリチウム二次電池用負極。 The negative electrode for a lithium secondary battery according to claim 1, wherein at least a part of the surface of the active material particles is coated with a material having higher conductivity than the active material particles. 前記合剤層の表面粗さRaが0.4〜3μmであることを特徴とする、請求項1記載のリチウム二次電池用負極。 2. The negative electrode for a lithium secondary battery according to claim 1, wherein the mixture layer has a surface roughness Ra of 0.4 to 3 μm. 前記表面層に電解液を保持する機能を持たせ、かつ前記固体粒子として水不溶性のものを用いたことを特徴とする、請求項1に記載のリチウム二次電池用負極。 2. The negative electrode for a lithium secondary battery according to claim 1, wherein the surface layer has a function of holding an electrolytic solution and water-insoluble solid particles are used. 前記固体粒子としてアルミニウム、珪素、ジルコニウム、マグネシウムの少なくとも一種を含む酸化物を用いたことを特徴とする、請求項4記載のリチウム二次電池用負極。 The negative electrode for a lithium secondary battery according to claim 4, wherein an oxide containing at least one of aluminum, silicon, zirconium, and magnesium is used as the solid particles. 前記表面層の厚みを1〜30μmとしたことを特徴とする、請求項1記載のリチウム二次電池用負極。 The negative electrode for a lithium secondary battery according to claim 1, wherein the thickness of the surface layer is 1 to 30 μm. 請求項1〜6のリチウム二次電池用負極を用いたことを特徴とするリチウム二次電池。

A lithium secondary battery using the negative electrode for a lithium secondary battery according to claim 1.

JP2006039012A 2006-02-16 2006-02-16 Anode for lithium secondary battery and lithium secondary battery Pending JP2007220451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006039012A JP2007220451A (en) 2006-02-16 2006-02-16 Anode for lithium secondary battery and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006039012A JP2007220451A (en) 2006-02-16 2006-02-16 Anode for lithium secondary battery and lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2007220451A true JP2007220451A (en) 2007-08-30

Family

ID=38497501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006039012A Pending JP2007220451A (en) 2006-02-16 2006-02-16 Anode for lithium secondary battery and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2007220451A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258989A (en) * 2012-02-21 2013-08-21 三星Sdi株式会社 Electrode for lithium secondary battery, manufacturing method thereof and lithium secondary battery
WO2015107910A1 (en) * 2014-01-20 2015-07-23 ソニー株式会社 Cell, cell pack, electronic device, electric vehicle, electricity storage apparatus, and power system
JP2015138597A (en) * 2014-01-20 2015-07-30 ソニー株式会社 Battery, battery pack, electronic device, electric motor vehicle, power storage device and electric power system
JP2015138598A (en) * 2014-01-20 2015-07-30 ソニー株式会社 Battery, battery pack, electronic device, electric motor vehicle, power storage device and electric power system
JP2015156370A (en) * 2014-01-20 2015-08-27 ソニー株式会社 Battery, battery pack, electronic device, electric motor vehicle, power storage device, and electric power system
JP2015207471A (en) * 2014-04-21 2015-11-19 日産自動車株式会社 Method for manufacturing negative electrode active material slurry for nonaqueous electrolyte secondary battery
JP2016119212A (en) * 2014-12-19 2016-06-30 ソニー株式会社 Battery, battery pack, electronic apparatus, electric vehicle, power storage device, and power system
JP2016119213A (en) * 2014-12-19 2016-06-30 ソニー株式会社 Battery, battery pack, electronic apparatus, electric vehicle, power storage device, and power system
JP2016119211A (en) * 2014-12-19 2016-06-30 ソニー株式会社 Battery, battery pack, electronic apparatus, electric vehicle, power storage device, and power system
CN105917513A (en) * 2014-01-20 2016-08-31 索尼公司 Cell, cell pack, electronic device, electric vehicle, electricity storage apparatus, and power system
WO2017073585A1 (en) * 2015-10-26 2017-05-04 株式会社日立製作所 Lithium ion secondary battery and method for producing lithium ion secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1125981A (en) * 1997-07-03 1999-01-29 Nippon Carbon Co Ltd Negative electrode material for li ion secondary battery
JP2000036323A (en) * 1998-05-13 2000-02-02 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JP2000188095A (en) * 1998-12-24 2000-07-04 Toyota Central Res & Dev Lab Inc Lithium-ion secondary battery
JP2003323895A (en) * 2002-02-26 2003-11-14 Sony Corp Nonaqueous electrolyte battery
JP2004311429A (en) * 2003-03-26 2004-11-04 Canon Inc Electrode material for lithium secondary battery, electrode structure having the electrode material, and secondary battery having the electrode structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1125981A (en) * 1997-07-03 1999-01-29 Nippon Carbon Co Ltd Negative electrode material for li ion secondary battery
JP2000036323A (en) * 1998-05-13 2000-02-02 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JP2000188095A (en) * 1998-12-24 2000-07-04 Toyota Central Res & Dev Lab Inc Lithium-ion secondary battery
JP2003323895A (en) * 2002-02-26 2003-11-14 Sony Corp Nonaqueous electrolyte battery
JP2004311429A (en) * 2003-03-26 2004-11-04 Canon Inc Electrode material for lithium secondary battery, electrode structure having the electrode material, and secondary battery having the electrode structure

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258989A (en) * 2012-02-21 2013-08-21 三星Sdi株式会社 Electrode for lithium secondary battery, manufacturing method thereof and lithium secondary battery
JP2013171839A (en) * 2012-02-21 2013-09-02 Samsung Sdi Co Ltd Electrode for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
KR101914561B1 (en) * 2012-02-21 2018-11-02 삼성에스디아이 주식회사 Electrode for lithium secondary battery, manufacturing method thereof and lithium secondary battery comprising the same
US9716264B2 (en) 2012-02-21 2017-07-25 Samsung Sdi Co., Ltd. Electrode for lithium secondary battery, method of manufacturing the electrode, and lithium secondary battery including the electrode
CN105917513A (en) * 2014-01-20 2016-08-31 索尼公司 Cell, cell pack, electronic device, electric vehicle, electricity storage apparatus, and power system
CN105917513B (en) * 2014-01-20 2018-12-07 株式会社村田制作所 Battery, battery pack, electronic device, electric vehicle, electric energy storage device and electric system
KR102086887B1 (en) 2014-01-20 2020-03-09 가부시키가이샤 무라타 세이사쿠쇼 Cell, cell pack, electronic device, electric vehicle, electricity storage apparatus, and power system
US10343527B2 (en) 2014-01-20 2019-07-09 Murata Manufacturing Co., Ltd. Cell, cell pack, electronic device, electric vehicle, electricity storage apparatus, and power system
JP2015156370A (en) * 2014-01-20 2015-08-27 ソニー株式会社 Battery, battery pack, electronic device, electric motor vehicle, power storage device, and electric power system
WO2015107910A1 (en) * 2014-01-20 2015-07-23 ソニー株式会社 Cell, cell pack, electronic device, electric vehicle, electricity storage apparatus, and power system
JP2015138598A (en) * 2014-01-20 2015-07-30 ソニー株式会社 Battery, battery pack, electronic device, electric motor vehicle, power storage device and electric power system
KR20160111378A (en) * 2014-01-20 2016-09-26 소니 주식회사 Cell, cell pack, electronic device, electric vehicle, electricity storage apparatus, and power system
JP2015138597A (en) * 2014-01-20 2015-07-30 ソニー株式会社 Battery, battery pack, electronic device, electric motor vehicle, power storage device and electric power system
JP2015207471A (en) * 2014-04-21 2015-11-19 日産自動車株式会社 Method for manufacturing negative electrode active material slurry for nonaqueous electrolyte secondary battery
JP2016119211A (en) * 2014-12-19 2016-06-30 ソニー株式会社 Battery, battery pack, electronic apparatus, electric vehicle, power storage device, and power system
JP2016119213A (en) * 2014-12-19 2016-06-30 ソニー株式会社 Battery, battery pack, electronic apparatus, electric vehicle, power storage device, and power system
JP2016119212A (en) * 2014-12-19 2016-06-30 ソニー株式会社 Battery, battery pack, electronic apparatus, electric vehicle, power storage device, and power system
WO2017073585A1 (en) * 2015-10-26 2017-05-04 株式会社日立製作所 Lithium ion secondary battery and method for producing lithium ion secondary battery
CN108140876A (en) * 2015-10-26 2018-06-08 株式会社日立制作所 The manufacturing method of lithium rechargeable battery and lithium rechargeable battery
JPWO2017073585A1 (en) * 2015-10-26 2018-06-14 株式会社日立製作所 Lithium ion secondary battery and method for producing lithium ion secondary battery
EP3370293A4 (en) * 2015-10-26 2019-05-15 Hitachi, Ltd. Lithium ion secondary battery and method for producing lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP2007220451A (en) Anode for lithium secondary battery and lithium secondary battery
JP5219387B2 (en) Nonaqueous electrolyte secondary battery
JP4942319B2 (en) Lithium secondary battery
US7556881B2 (en) Lithium secondary battery
JP4868786B2 (en) Lithium secondary battery
JP4945967B2 (en) Non-aqueous electrolyte secondary battery
JP4497899B2 (en) Lithium secondary battery
JP2007234336A (en) Lithium secondary battery
JP5103961B2 (en) Lithium ion secondary battery
JP2007207490A (en) Lithium secondary battery
JP3430058B2 (en) Cathode active material and non-aqueous electrolyte secondary battery
JP2003331825A (en) Nonaqueous secondary battery
JP2005285563A (en) Lithium secondary battery
JP4953557B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP4649862B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP2006172860A (en) Negative electrode for lithium secondary battery and its manufacturing method, and lithium secondary battery
JP2010140737A (en) Nonaqueous electrolyte secondary battery
JP2006252999A (en) Lithium secondary battery
JP2006228544A (en) Lithium ion secondary battery
CN107078274B (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using same
US20230090463A1 (en) Battery
JP3582823B2 (en) Positive electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP2001143708A (en) Non-aqueous electrolyte secondary battery
JP2007258084A (en) Lithium secondary battery
JP2012009270A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081104

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120605