JP2007218257A - タービンブレード、タービンロータアセンブリ及びタービンブレードのエアフォイル - Google Patents

タービンブレード、タービンロータアセンブリ及びタービンブレードのエアフォイル Download PDF

Info

Publication number
JP2007218257A
JP2007218257A JP2007032864A JP2007032864A JP2007218257A JP 2007218257 A JP2007218257 A JP 2007218257A JP 2007032864 A JP2007032864 A JP 2007032864A JP 2007032864 A JP2007032864 A JP 2007032864A JP 2007218257 A JP2007218257 A JP 2007218257A
Authority
JP
Japan
Prior art keywords
airfoil
cooling channel
cooling
turbine blade
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007032864A
Other languages
English (en)
Inventor
Edward F Pietraszkiewicz
エフ.ピートラスズキュービッチ エドワード
Kar D Chin
ディー.チン カー
Om P Sharma
ピー.シャルマ オム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of JP2007218257A publication Critical patent/JP2007218257A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/185Two-dimensional patterned serpentine-like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2212Improvement of heat transfer by creating turbulence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

【課題】エンジンを過冷却することなしに効率的にタービンブレードを冷却する改良型のタービンブレードを提供する。
【解決手段】タービンブレード14は、冷却チャネル40、42、44を通って流れる冷却空気によって冷却される。冷却チャネル40、42を通る冷却空気は、冷却チャネル44内の圧力を下げるために、予備計量オリフィス52によって制限される。この圧力低下は、予備計量オリフィス52の断面積が冷却チャネル44の断面積より小さいことにより生じる。冷却空気は、冷却チャネル40、42、44を通った後に、フィルム穴38から外側に出る。この冷却空気は、タービンブレード14を冷却し、かつ高温ガスから該ブレード14を保護するために、エアフォイル22上にフィルム層を形成する。これにより、エンジンを過冷却することなくタービンブレード14を効率的に冷却することができる。
【選択図】図3

Description

本発明は、ガスタービンエンジンに関し、特にガスタービンエンジンのタービンブレードの冷却に関する。
軸流タービンエンジンなどのガスタービンエンジンは、ロータディスク及びこのディスクの周囲に配置された多数のロータブレードを有するロータアセンブリを備える。ロータブレードは、ディスクに係合する根元部分と、エンジンのガス通路内に配置されるエアフォイル部と、を備える。このガス通路内の温度は、極めて高く、ロータブレードの加熱をもたらす。ロータブレードが過度に高温である場合、エアフォイルの耐久性に悪影響を及ぼす。故に、タービンブレードを冷却する種々の方法が、タービンブレードの寿命及び耐久性を改善するために用いられてきた。
ロータブレードを冷却する1つの方法は、単一の半径流によるフィルム冷却として知られている。この方法においては、内側通路が、ベース部分から先端部に一直線の穴を開けることによって、ロータブレード内に形成される。内側通路は、ドリルによる穴開けによって形成されるので、ベース部分から先端部にかけて単一の直径を有する円筒型の通路になっている。その後、フィルム穴が、内側通路に隣接するようにロータブレードの側壁に穴を開けることによって形成される。それから、冷却空気が、この通路を強制的に通って、フィルム穴から流れ出る。ブレードの冷却は、冷却空気が内側通路を通り抜け、かつこの冷却空気がタービンブレードの周囲に流出することによって生じる。単一の半径流によるフィルム冷却は、主としてこの方法によって過度の冷却空気がエンジンに放出されるので使われなくなっている。冷却空気により、エンジン内の圧力が減少し、これによってエンジンの効率及びスラスト(推力)が低下するので、エンジンを過冷却することは望ましくない。
この問題を解消するために、エアフォイルの設計は、蛇行した通路の設計などの複雑な形状の内側通路の設計を含む。これらのエアフォイルにおいては、内側通路は、第一に冷却空気をエアフォイルのベース部分から先端部に案内するように形成される。それから、この通路は、冷却空気を先端部からもとのベース部分に案内するように急角度に曲がっている。さらに、この通路は、冷却空気を先端部に向けて戻って案内するように再度曲がっており、またこの通路は、冷却空気が全ての蛇行した通路を通り抜けるまで続いている。
蛇行通路の設計は、多数の問題点を示している。1つの問題点は、エンジンの回転中に蛇行通路を具備するシステムを通る空気流及び圧力分布の予測及びモデリングが困難な点である。特に、回転力が、エアフォイルの先端部からベース部分に向かう方向の冷却空気の流れに逆らう。冷却空気に対する回転力の詳細な影響を予測し、かつモデリングすることが、極めて困難である。エアフォイルの先端部からベース部分に向かう冷却空気の流れに逆らう回転力に打ち勝って、冷却空気をエアフォイルのベース部分に強制的に引き下げるために、十分な圧力が、内側通路の先端部に生じていなければならない。十分な圧力が生じない場合は、冷却空気が、所望の蛇行通路を通って流れず、その結果、タービンブレードの冷却が不十分になる。
さらに、冷却チャネル内の不十分な圧力により、逆流が生じる。逆流は、冷却空気がエアフォイルのフィルム穴から流出するのではなく、ガス通路からの高温ガスが、該エアフォイルのフィルム穴に流れ込むときに発生する。これにより、タービンブレードの望ましくない加熱が生じる。一方で、過度の冷却空気が冷却チャネル内に存在している場合には、この過度の冷却空気がフィルム穴から漏れ出し、その結果、エンジンが過冷却される。
ガスタービンエンジンのタービンブレードは、冷却空気を複数のフィルム穴に供給する半径方向に延びている冷却チャネルを用いることによって効果的に冷却することができる。冷却チャネルを通る冷却空気の量が、該冷却チャネルの一方の端部に配置された予備計量オリフィスによって調節される。予備計量オリフィスは、十分な量の冷却空気をタービンブレードを十分に冷却するために、冷却チャネルに流し込むことができるだけでなく、エンジンを過冷却しないように、冷却空気の流れも制限する断面積を有する。
図1は、ガスタービンエンジンのタービンロータアセンブリ10の斜視図である。タービンロータアセンブリ10は、ディスク12と、タービンブレード14と、を備える。ディスク12は、該ディスク12の周囲に配置された複数の凹部16と、回転中心線18と、を備え、この中心線18の周囲を、ディスク12が回転する。タービンブレード14は、根元部分20と、エアフォイル22と、プラットフォーム24と、を備える。根元部分20は、ディスク12の凹部16(図のようなもみの木形状など)の1つに係合するように形成される。エアフォイル22は、半径方向の中心線25に沿ってディスク12から延びている。エアフォイル22は、正圧面側の壁26と、負圧面側の壁28と、を備える。プラットフォーム24は、ディスク12の外周部分に対して接しているとともに、このプラットフォーム24により、エアフォイル14が左右に安定する。タービンブレード14は、インベストメント鋳造などの従来技術の製造方法を用いて製造することができる。
運転中は、高温ガスがエアフォイル14を通過すると、タービンロータアセンブリ10が、回転中心線18に沿って回転する。高温ガスによって、タービンブレード14が加熱する。必要な所望の耐久性を満たすために、タービンブレード14を最高温度以下に維持しなければならない。これを行うために、高温ガスの温度より低い温度の冷却空気が、タービンロータアセンブリ10を通して送り込まれる。その後、冷却空気が、タービンブレードの根元部分20に案内される。冷却空気は、冷却チャネルを通り、側壁26、28のフィルム穴(図2に図示)を通って出る。冷却空気がフィルム穴から出ると、タービンブレード14上に冷却空気のフィルム層が形成される。このフィルム層が、タービンブレード14を冷却して、該ブレード14を高温ガスから遮断する。
図2は、タービンブレード14の斜視図である。タービンブレード14は、根元部分20と、エアフォイル22と、プラットフォーム24と、を備える。エアフォイル22は、ベース部分30と、先端部32と、前縁34と、後縁36と、を備える。正圧面側の壁26及び負圧面側の壁28が、ベース部分30と先端部32との間に延びているとともに、前縁34及び後縁36で互いに接している。フィルム穴38が、正圧面側の壁26及び負圧面側の壁28を貫通して延びており、これらの穴38が貫通していることによって、冷却空気をエアフォイル22の内側から該エアフォイル22の外側に通すことができる。これにより、冷却空気の断熱フィルムが側壁26、28の面に沿って発生し、タービンブレード14を冷却して、該ブレード14を高温ガスから遮断する。
図3は、一実施例のタービンブレード14の断面図である。タービンブレード14は、根元部分20と、エアフォイル22と、プラットフォーム24と、を備える。エアフォイル22は、ベース部分30と、先端部32と、前縁34と、後縁36と、を備える。タービンブレード14内部においては、正圧面側の壁26と負圧面側の壁28との間に、ベース部分30から先端部32に延びた(いくつかは、根元部分20から先端部32に延びている)複数のリブ48が存在し、これらのリブ48により、冷却チャネル40の間にバリアが形成され、冷却空気の流れがタービンブレード14内に案内される。冷却チャネル40は、根元部分冷却チャネル42と、エアフォイル冷却チャネル44と、を備える。エアフォイル冷却チャネル44内部においては、一方または両方の側壁26、28の内側の面に設けられた複数のトリップストリップ50が存在する。
冷却チャネル40は、図1に示される半径方向の中心線25に沿った方向に、タービンブレード14内を半径方向に延びている。冷却チャネル40は、根元部分冷却チャネル42と、エアフォイル冷却チャネル44と、を備え、これらのチャネル42、44は、予備計量オリフィス52によって隔てられる。エアフォイル冷却チャネル44は、円形、長方形、三角形などの所望の断面形状を有してもよい。所望の形状及び大きさは、特定の運転規格によって異なる。さらに、冷却空気をフィルム穴38から放出したときに、エアフォイル冷却チャネル44内の所望の圧力を維持するために、該冷却チャネル44を、ベース部分30から先端部32にかけて先細にする(これにより、断面積が、ベース部分30から先端部32にかけて小さくなる)ことが望ましい。
予備計量オリフィス52が、エアフォイル冷却チャネル44内の空気流を調節するために、根元部分冷却チャネル42とエアフォイル冷却チャネル44との間に配置される。エアフォイル冷却チャネル44内への空気流を、予備計量オリフィス52の大きさを調整することによって調節することができる。予備計量オリフィス52の断面積を小さくすると、エアフォイル冷却チャネル44内を流れることができる冷却空気の量が少なくなる。“計量(meter)”という用語は、フィルム穴38からの冷却空気の流量を適切な量に設定することを意味する。“予備計量(pre−meter)”という用語は、オリフィス52が、フィルム穴38を通る冷却空気の流れを大まかに調節するために、エアフォイル冷却チャネル44内の空気圧を概算即ち大まかに設定することを意味する。
各々の予備計量オリフィス52の断面積は、ベース部分30における対応するエアフォイル冷却チャネル44の断面積より小さい。予備計量オリフィス52とベース部分30のエアフォイル冷却チャネル44との間の断面積の違いにより、圧力低下が、根元部分冷却チャネル42からエアフォイル冷却チャネル44にかけて発生する。エアフォイル冷却チャネル44内の低下した圧力は、より大きいフィルム穴38を、エンジンを過冷却することなく用いることができることを意味する。特に、フィルム穴38を出る冷却空気の流れを、タービンブレード14の特定の領域に適切な量の冷却空気を供給するために、予備計量オリフィス52の断面積、冷却チャネル40の断面積、及びフィルム穴38(図2に図示)の断面積を平衡させることによって調節することができる。これは、図4を参照して詳細に説明される。
トリップストリップ50は、冷却空気の流れの方向に対して傾斜する角度でエアフォイル冷却チャネル44内に配置される。好ましくは、トリップストリップ50は、冷却空気の流れの方向に対して約45°の角度で配向される。トリップストリップ50によって、冷却空気の流れに乱流が加えられ、エアフォイル冷却チャネル44内の熱伝達率が向上する。これにより、エアフォイル22から冷却空気への熱伝達が改善される。
運転中は、冷却空気が、タービンブレード14の根元部分20の冷却チャネル40に入る。冷却空気は、根元部分20から予備計量オリフィス52を通ってエアフォイル22のベース部分30に流れ、先端部32に向けて案内される。冷却空気が、冷却チャネル40内をベース部分30から先端部32に向けて流れると、この冷却空気の一部が、フィルム穴38を通って放出する。冷却空気がフィルム穴38から放出すると、この冷却空気が側壁26または側壁28に沿って流れ、エアフォイル22の表面に冷却空気のフィルム層を形成する。このフィルム層が、エアフォイル22を冷却し、また該エアフォイル22を高温ガスから遮断する。このように、タービンブレード14は、ガスタービンエンジン内の該ブレード14の寿命及び耐久性を維持するために、所望の温度以下に保たれる。
図4は、フィルム穴38と、冷却チャネル40と、予備計量オリフィス52と、を備える一実施例のタービンブレード14の拡大断面図である。従来のタービンブレードの設計において直面する1つの問題は、フィルム穴からの冷却空気の流れを十分に調節できない点である。過度の冷却空気がフィルム穴から放出される場合、この冷却空気によって、燃焼ガスが過冷却されるとともに、エンジン内の圧力も低下させてしまうので、ガスタービンエンジンの効率が低減する。しかしながら、不十分な冷却空気の流れによりタービンブレードが十分に冷却されない結果、該タービンブレードの寿命及び耐久性が低下する。
半径方向の冷却チャネルを有する従来のタービンブレードの設計は、主としてエンジンの過冷却または砂や他の塵の目詰まりのいずれかの理由から断念していた。ガスタービンエンジンは、砂塵や粉塵の多い環境で作動する航空機や他の機械によく用いられている。過冷却を防止するために、従来のシステムにおいては、冷却空気の流れを制限する極小のフィルム穴が使用されていた。しかしながら、これらのフィルム穴の大きさは、極めて小さく、砂や他の塵が詰まりやすかった。フィルム穴が詰まってしまうと、冷却空気が、この穴から極僅かに放出されるか、或いは放出されなくなる。その結果、冷却システムは、タービンブレード14を冷却する効果を失ってしまう。小型のフィルム穴を用いる従来のタービンブレードの別の問題点は、該フィルム穴において発生する全体的な圧力低下である。その結果、フィルム穴を出る冷却空気の流れが高速になってしまう。高速の冷却空気を、外気及び高温ガスと混合しなければならなくなり、結果として混合時に大幅な損失を生み出してしまう。この混合による損失により、タービンブレードの空気力学的効率が悪くなる。
従って、大きいフィルム穴を、目詰まりを防止し、かつガスタービンエンジンの過冷却を引き起こす冷却空気の流出速度を緩和するために用いなければならないことが考えられてきた。その結果、半径方向の冷却チャネルを有するタービンブレードの設計は、主として蛇行した冷却チャネルなどの複雑な形状の冷却チャネルの設計が好まれたことから使用されなくなっていた。
蛇行した冷却チャネルや他の複雑な形状の冷却チャネルに対する半径方向の冷却チャネルの1つの利点は、この冷却チャネル内の冷却空気の流れを予測して算出することがより簡単な点である。タービンロータアセンブリ10(図1に図示)の高速回転によって、タービンブレード14及び該ブレード14内に存在する冷却空気に作用する大きな回転力が発生する。半径方向の冷却チャネルは、冷却空気をエアフォイル22のベース部分30から先端部32に押し出すために、この半径方向の力を用いる。蛇行した冷却チャネルの設計は、冷却空気を、回転力と逆向き(先端部32からベース部分30への方向)に配向された通路に強制的に流すことによって、回転力と逆に作用することを意図している。これにより、タービンブレード14内の冷却空気の流れを予測することがより複雑になる。
本発明の実施例により、蛇行した冷却チャネルのより複雑な設計で生じた問題点を解消するだけでなく、従来の半径方向の冷却チャネルの設計で生じた問題点も解消する半径方向冷却チャネル40がもたらされる。特に、予備計量オリフィス52によって、エンジンの過冷却を防止し、かつタービンブレード14の不十分な冷却を防止するための、エアフォイル冷却チャネル44への冷却空気の流れを調節する手段が提供される。
ベース部分30の各エアフォイル冷却チャネル44の断面積(AC)は、隣接する予備計量オリフィス52のそれぞれの断面積(AO)より大きい。冷却空気が予備計量オリフィス52を通ってベース部分30の冷却チャネル44に入ると、断面積の変化によって、圧力が変化する。その結果、ベース部分30のエアフォイル冷却チャネル44の圧力P2が、根元部分20内の冷却チャネル40内の圧力P1より小さくなる。エアフォイル冷却チャネル44内の圧力低下により、断面積AFを有するフィルム穴38の大きさを、砂や他の塵による目詰まりを防止する程度の大きさにすることができる。
予備計量オリフィス52の大きさ及び形状は、システムの特定の基準及び特定の冷却チャネルの基準によって異なる。
予備計量オリフィス52の断面形状を、冷却チャネル42に入る冷却空気の流れの向きを調整するために設計することができる。例えば、三角形断面を、より多くの空気流を他方の側より一方の側に案内するために用いることができる。多種多様な断面形状が、検討される。予備計量オリフィス52の断面積は、適切な量の冷却空気をフィルム穴38に送り込んで該フィルム穴38から放出するように設計される。従って、断面積は、タービンブレード14の外側の高温ガスの温度、冷却空気の温度、それぞれの予備計量オリフィス52によって供給されるフィルム穴38の数及び大きさ、タービンロータの回転速度、ガスタービンエンジンの所望のスラスト(推力)、ならびに当業者によるタービンブレードの設計によって理解される他の変数を含む多数の変数によって決まる。
タービンロータアセンブリの斜視図。 タービンブレードの斜視図。 タービンブレードの断面図。 タービンブレードの拡大断面図。
符号の説明
20…根元部分
22…エアフォイル
24…プラットフォーム
30…ベース部分
32…先端部
34…前縁
36…後縁
40…冷却チャネル
42…根元部分冷却チャネル
44…エアフォイル冷却チャネル
48…リブ
50…トリップストリップ
52…予備計量オリフィス

Claims (20)

  1. 前縁と、後縁と、第1の側壁と、第2の側壁と、を有するエアフォイルと、
    第1の端部と、第2の端部と、この第1の端部においてある断面積と、を有し、かつ冷却空気を上記エアフォイルを通して案内する該エアフォイル内に半径方向に延びている冷却チャネルと、
    断面積が上記冷却チャネルの第1の端部の断面積より小さく、かつこの冷却チャネルの第1の端部に隣接するオリフィスと、を備えることを特徴とするタービンブレード。
  2. さらに、上記冷却チャネルから上記側壁の少なくとも一方を貫通して延びているフィルム穴を備えることを特徴とする請求項1に記載のタービンブレード。
  3. 上記フィルム穴の各々は、上記冷却チャネルの第1の端部の断面積より小さい断面積を有することを特徴とする請求項2に記載のタービンブレード。
  4. さらに、上記第1の側壁と上記第2の側壁との間の上記エアフォイル内において半径方向に延びており、かつ上記冷却チャネルに隣接するリブを備えることを特徴とする請求項1に記載のタービンブレード。
  5. さらに、上記エアフォイルと根元部分との間にプラットフォームを備えることを特徴とする請求項1に記載のタービンブレード。
  6. 上記冷却チャネルの第1の端部の断面積は、上記冷却チャネルの第2の端部の断面積より大きいことを特徴とする請求項1に記載のタービンブレード。
  7. さらに、
    実質的に上記エアフォイルと平行に延びている根元部分と、
    上記エアフォイルと上記根元部分との間に結合したプラットフォームと、を備えることを特徴とする請求項1に記載のタービンブレード。
  8. 上記根元部分は、冷却空気を上記エアフォイル内に案内するために、上記根元部分内において半径方向に延びている根元部分冷却チャネルを備えることを特徴とする請求項7に記載のタービンブレード。
  9. ディスクの周囲に配置された複数の凹部を有するディスクと、
    根元部分と、プラットフォームと、エアフォイルと、を有する複数のタービンブレードと、を備え、
    上記根元部分は、1つの上記凹部に係合するように形成され、上記エアフォイルは、
    第1の端部と、第2の端部と、この第1の端部においてある断面積と、を有する半径方向の冷却チャネルと、
    上記冷却チャネルの第1の端部の断面積より小さい断面積を有し、かつ上記冷却チャネルに隣接するオリフィスと、を備えることを特徴とするタービンロータアセンブリ。
  10. 上記エアフォイルは、さらに、
    第1の側壁と、
    上記第1の側壁と反対側の第2の側壁と、
    上記第1の側壁と上記第2の側壁との間の上記エアフォイル内において半径方向に延びており、かつ上記冷却チャネルに隣接するリブと、を備えることを特徴とする請求項9に記載のタービンロータアセンブリ。
  11. 上記エアフォイルは、さらに、上記第1の側壁及び上記第2の側壁の少なくとも一方に位置し、かつ上記冷却チャネルに隣接する複数のフィルム穴を備えることを特徴とする請求項10に記載のタービンロータアセンブリ。
  12. 上記オリフィスは、上記フィルム穴の1つの断面積より大きい断面積を有するとともに、上記冷却チャネルの第1の端部の断面積より大きい断面積を有することを特徴とする請求項11に記載のタービンロータアセンブリ。
  13. 上記冷却チャネルの第1の端部は、上記エアフォイルの先端部と反対側のベース部分に位置することを特徴とする請求項11に記載のタービンロータアセンブリ。
  14. 上記根元部分は、半径方向の冷却チャネルを備えることを特徴とする請求項9に記載のタービンロータアセンブリ。
  15. さらに、上記冷却空気の乱流を増大させるために、上記冷却チャネル内に複数のトリップストリップを備えることを特徴とする請求項9に記載のタービンロータアセンブリ。
  16. 半径方向の冷却チャネルと、
    上記冷却チャネルへの冷却空気の流れを制限する手段と、
    上記冷却チャネルからの冷却空気の流れを制限する手段と、を備えることを特徴とするタービンブレードのエアフォイル。
  17. 上記冷却チャネルへの冷却空気の流れを制限する手段は、オリフィスであることを特徴とする請求項16に記載のエアフォイル。
  18. 上記冷却チャネルからの冷却空気の流れを制限する手段は、フィルム穴であることを特徴とする請求項16に記載のエアフォイル。
  19. さらに、上記エアフォイル内において半径方向に延びており、かつ上記冷却チャネルに隣接するリブを備えることを特徴とする請求項16に記載のエアフォイル。
  20. さらに、
    前縁と、後縁と、を有する第1の側壁と、
    上記第1の側壁の反対側に位置し、かつこの第1の側壁の前縁及び後縁に結合した第2の側壁と、
    上記冷却チャネルを画定するために、上記第1の側壁と上記第2の側壁との間に位置し、かつ上記エアフォイル内において半径方向に延びているリブと、を備えることを特徴とする請求項16に記載のエアフォイル。
JP2007032864A 2006-02-15 2007-02-14 タービンブレード、タービンロータアセンブリ及びタービンブレードのエアフォイル Pending JP2007218257A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/355,278 US7413406B2 (en) 2006-02-15 2006-02-15 Turbine blade with radial cooling channels

Publications (1)

Publication Number Publication Date
JP2007218257A true JP2007218257A (ja) 2007-08-30

Family

ID=37896062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007032864A Pending JP2007218257A (ja) 2006-02-15 2007-02-14 タービンブレード、タービンロータアセンブリ及びタービンブレードのエアフォイル

Country Status (6)

Country Link
US (1) US7413406B2 (ja)
EP (1) EP1820937B1 (ja)
JP (1) JP2007218257A (ja)
CN (1) CN101021166A (ja)
AU (1) AU2007200773A1 (ja)
SG (1) SG135099A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167934A (ja) * 2008-01-17 2009-07-30 Mitsubishi Heavy Ind Ltd ガスタービン動翼およびガスタービン
CN102454426A (zh) * 2010-11-04 2012-05-16 通用电气公司 用于冷却涡轮机叶片的系统和方法
JP2015135113A (ja) * 2014-01-16 2015-07-27 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド スワーリング冷却チャネルを備えたタービンブレードおよびその冷却方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7547190B1 (en) * 2006-07-14 2009-06-16 Florida Turbine Technologies, Inc. Turbine airfoil serpentine flow circuit with a built-in pressure regulator
FR2927356B1 (fr) * 2008-02-07 2013-03-01 Snecma Aubes pour roue a aubes de turbomachine avec rainure pour le refroidissement.
US8303252B2 (en) * 2008-10-16 2012-11-06 United Technologies Corporation Airfoil with cooling passage providing variable heat transfer rate
US8113780B2 (en) 2008-11-21 2012-02-14 United Technologies Corporation Castings, casting cores, and methods
US9145779B2 (en) * 2009-03-12 2015-09-29 United Technologies Corporation Cooling arrangement for a turbine engine component
US8113784B2 (en) * 2009-03-20 2012-02-14 Hamilton Sundstrand Corporation Coolable airfoil attachment section
US8506251B2 (en) 2010-03-03 2013-08-13 Mitsubishi Heavy Industries, Ltd. Gas turbine blade, manufacturing method therefor, and gas turbine using turbine blade
WO2011108164A1 (ja) * 2010-03-03 2011-09-09 三菱重工業株式会社 ガスタービンの動翼およびその製造方法ならびに動翼を用いたガスタービン
US8491264B1 (en) * 2010-03-18 2013-07-23 Florida Turbine Technologies, Inc. Turbine blade with trailing edge cooling
US8622702B1 (en) 2010-04-21 2014-01-07 Florida Turbine Technologies, Inc. Turbine blade with cooling air inlet holes
US8651805B2 (en) * 2010-04-22 2014-02-18 General Electric Company Hot gas path component cooling system
EP2392775A1 (en) 2010-06-07 2011-12-07 Siemens Aktiengesellschaft Blade for use in a fluid flow of a turbine engine and turbine engine
EP2476863A1 (de) * 2011-01-14 2012-07-18 Siemens Aktiengesellschaft Turbinenschaufel für eine Gasturbine
US20120315139A1 (en) * 2011-06-10 2012-12-13 General Electric Company Cooling flow control members for turbomachine buckets and method
US8628298B1 (en) * 2011-07-22 2014-01-14 Florida Turbine Technologies, Inc. Turbine rotor blade with serpentine cooling
US9995150B2 (en) * 2012-10-23 2018-06-12 Siemens Aktiengesellschaft Cooling configuration for a gas turbine engine airfoil
US11149548B2 (en) * 2013-11-13 2021-10-19 Raytheon Technologies Corporation Method of reducing manufacturing variation related to blocked cooling holes
EP2886798B1 (en) 2013-12-20 2018-10-24 Rolls-Royce Corporation mechanically machined film cooling holes
US9777574B2 (en) 2014-08-18 2017-10-03 Siemens Energy, Inc. Method for repairing a gas turbine engine blade tip
US10101030B2 (en) 2014-09-02 2018-10-16 Honeywell International Inc. Gas turbine engines with plug resistant effusion cooling holes
CN105673089B (zh) * 2016-03-31 2018-06-29 中国船舶重工集团公司第七�三研究所 一种燃气轮机涡轮无冠气膜冷却转子叶片
US10683763B2 (en) 2016-10-04 2020-06-16 Honeywell International Inc. Turbine blade with integral flow meter
FR3062675B1 (fr) * 2017-02-07 2021-01-15 Safran Helicopter Engines Aube haute pression ventilee de turbine d'helicoptere comprenant un conduit amont et une cavite centrale de refroidissement
US10577954B2 (en) 2017-03-27 2020-03-03 Honeywell International Inc. Blockage-resistant vane impingement tubes and turbine nozzles containing the same
US10519782B2 (en) * 2017-06-04 2019-12-31 United Technologies Corporation Airfoil having serpentine core resupply flow control
US10502069B2 (en) * 2017-06-07 2019-12-10 General Electric Company Turbomachine rotor blade
US10539026B2 (en) 2017-09-21 2020-01-21 United Technologies Corporation Gas turbine engine component with cooling holes having variable roughness
CN108757047A (zh) * 2018-05-25 2018-11-06 哈尔滨工程大学 带有水滴型柱肋内部冷却结构的燃气轮机涡轮叶片
KR102113682B1 (ko) 2018-10-01 2020-05-21 두산중공업 주식회사 터빈 블레이드
DE102019214667A1 (de) * 2019-09-25 2021-03-25 Siemens Aktiengesellschaft Komponente mit einem zu kühlenden Bereich und Mittel zur additiven Herstellung derselben

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE552972A (ja) * 1955-11-28
US3542486A (en) * 1968-09-27 1970-11-24 Gen Electric Film cooling of structural members in gas turbine engines
US4626169A (en) * 1983-12-13 1986-12-02 United Technologies Corporation Seal means for a blade attachment slot of a rotor assembly
IE861475L (en) * 1985-07-03 1987-01-03 Tsnii Kozhevenno Obuvnoi Ptomy Improved coolant passage structure especially for cast rotor¹blades in a combustion turbine
KR20000052372A (ko) * 1999-01-25 2000-08-25 제이 엘. 차스킨, 버나드 스나이더, 아더엠. 킹 인접한 냉각 통로를 연결하는 타원형 횡단 개구를 갖는가스 터빈 부품
US6422817B1 (en) * 2000-01-13 2002-07-23 General Electric Company Cooling circuit for and method of cooling a gas turbine bucket
US6491496B2 (en) * 2001-02-23 2002-12-10 General Electric Company Turbine airfoil with metering plates for refresher holes
US6637500B2 (en) * 2001-10-24 2003-10-28 United Technologies Corporation Cores for use in precision investment casting
US6997679B2 (en) 2003-12-12 2006-02-14 General Electric Company Airfoil cooling holes
US7097419B2 (en) * 2004-07-26 2006-08-29 General Electric Company Common tip chamber blade

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167934A (ja) * 2008-01-17 2009-07-30 Mitsubishi Heavy Ind Ltd ガスタービン動翼およびガスタービン
CN102454426A (zh) * 2010-11-04 2012-05-16 通用电气公司 用于冷却涡轮机叶片的系统和方法
CN102454426B (zh) * 2010-11-04 2015-11-25 通用电气公司 用于冷却涡轮机叶片的系统和方法
JP2015135113A (ja) * 2014-01-16 2015-07-27 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド スワーリング冷却チャネルを備えたタービンブレードおよびその冷却方法
US9810073B2 (en) 2014-01-16 2017-11-07 Doosan Heavy Industries & Construction Co., Ltd Turbine blade having swirling cooling channel and cooling method thereof

Also Published As

Publication number Publication date
AU2007200773A1 (en) 2008-09-04
EP1820937A3 (en) 2011-02-23
CN101021166A (zh) 2007-08-22
SG135099A1 (en) 2007-09-28
EP1820937B1 (en) 2020-01-08
US7413406B2 (en) 2008-08-19
EP1820937A2 (en) 2007-08-22
US20070189897A1 (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP2007218257A (ja) タービンブレード、タービンロータアセンブリ及びタービンブレードのエアフォイル
JP6283462B2 (ja) タービンエーロフォイル
US6616406B2 (en) Airfoil trailing edge cooling construction
JP4902157B2 (ja) 先端に溝を備えたタービン動翼
JP3954034B2 (ja) ブレードおよびブレードの製造方法
JP4256704B2 (ja) ガスタービンエンジンのノズル組立体を冷却する方法及び装置
EP2148042B1 (en) A blade for a rotor having a squealer tip with a partly inclined surface
CA2867847C (en) Turbine airfoil trailing edge cooling slots
CN103119247B (zh) 燃气涡轮叶片
JP4311919B2 (ja) ガスタービンエンジン用のタービン翼形部
JP2006144800A (ja) 補助冷却チャンネルを備えたエーロフォイルおよびこれを含んだガスタービンエンジン
US5695322A (en) Turbine blade having restart turbulators
US20060210390A1 (en) Film cooling for microcircuits
JP2005180439A (ja) タービンブレードの振動数調整式ピンバンク
JP2005264934A (ja) タービンエアフォイルおよび冷却回路の入口の配置方法
JP2005337258A (ja) ロータブレード
CA2868536C (en) Turbine airfoil trailing edge cooling slots
JP2004308658A (ja) エーロフォイルの冷却方法とその装置
JP2002364305A (ja) タービンエンジン用の冷却可能なブレードまたはベーン
US8613597B1 (en) Turbine blade with trailing edge cooling
JP2005061406A (ja) 冷却回路および中空エアフォイル
CN104364581A (zh) 燃气涡轮发动机壁
CN101779001A (zh) 燃气轮机的叶片冷却结构
CN104285038A (zh) 涡轮翼型件后缘冷却槽口
CN108026775A (zh) 具有流动移位特征件的内部冷却的涡轮翼型件