JP2007216237A - Method for manufacturing casting apparatus and mold-surrounding member, and mold-surrounding member - Google Patents

Method for manufacturing casting apparatus and mold-surrounding member, and mold-surrounding member Download PDF

Info

Publication number
JP2007216237A
JP2007216237A JP2006036490A JP2006036490A JP2007216237A JP 2007216237 A JP2007216237 A JP 2007216237A JP 2006036490 A JP2006036490 A JP 2006036490A JP 2006036490 A JP2006036490 A JP 2006036490A JP 2007216237 A JP2007216237 A JP 2007216237A
Authority
JP
Japan
Prior art keywords
mold
porous sintered
sintered body
casting apparatus
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006036490A
Other languages
Japanese (ja)
Other versions
JP3864176B1 (en
Inventor
Masashige Toyomoto
正成 豊本
Norio Nakao
昇生 中尾
Makoto Honda
誠 本多
Hiroshi Matsumura
浩史 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MATSUMURA SEIKEI KK
Original Assignee
MATSUMURA SEIKEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MATSUMURA SEIKEI KK filed Critical MATSUMURA SEIKEI KK
Priority to JP2006036490A priority Critical patent/JP3864176B1/en
Application granted granted Critical
Publication of JP3864176B1 publication Critical patent/JP3864176B1/en
Publication of JP2007216237A publication Critical patent/JP2007216237A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a casting apparatus and a mold-surrounding member, and the mold-surrounding member with which a heat-resistance property can be improved and a manufacturing term can be shortened. <P>SOLUTION: Since a molten metal pouring part constituted member composed of a surface layer made of an intermetallic compound as the base material and a main body part made of a metallic material as the base material is manufactured from a process, in which mixed powder of raw material elements for intermetallic compound are filled up in a master mold having a turning-over shape of the molten metal pouring constituted member, and a process for manufacturing the intermetallic compound surface layer by reacting the filled-up mixed powder in the master mold, especially, a large scaled facility is not necessary and the high melting point intermetallic compound surface layer is simply manufactured in a second unit or a minute unit and further, the main body part of the metallic material as the base material is quickly and efficiently manufactured with overlaying and a high functional mold-surrounding member can be manufactured for extremely short time. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、重力鋳造や低圧鋳造若しくはダイカスト鋳造等に用いられる鋳造装置及びこれらの鋳造装置の鋳型に対し溶湯を供給する経路を構成する注湯部構成部材(以下「注湯部構成部材」と記す)等の鋳型廻り部材及びその製造方法に関する。   The present invention relates to a casting apparatus used for gravity casting, low pressure casting, die casting, or the like, and a pouring part constituting member (hereinafter referred to as a "pouring part constituting member") constituting a path for supplying molten metal to a mold of these casting apparatuses. And the like, and a manufacturing method thereof.

一般に鋳造装置における鋳造対象となる材料溶湯に接触する部位を有する注湯部構成部材等の鋳型廻り部材には以下の性質が求められる。
(1)高温まで降伏せず、高強度である。
(2)熱応力によるクリープ変形をし難い。
(3)加熱、冷却の繰返しに伴う熱サイクル疲労に強い。
(4)溶湯との接触、急激な温度変化による熱衝撃に強い。
(5)溶湯の衝突による機械的損傷に強い。
(6)溶湯との反応性が低く、侵食に強い。
(7)耐酸化性に優れる。
Generally, the following properties are required for a member around a mold such as a pouring member constituting member having a portion that contacts a molten material to be cast in a casting apparatus.
(1) High strength without yielding to high temperatures.
(2) It is difficult for creep deformation due to thermal stress.
(3) Resistant to thermal cycle fatigue accompanying repeated heating and cooling.
(4) Resistant to thermal shock due to contact with molten metal and sudden temperature changes.
(5) Resistant to mechanical damage due to molten metal collision.
(6) Low reactivity with molten metal and strong against erosion.
(7) Excellent oxidation resistance.

係る鋳型廻り部材材料としては従来SKD61材等が用いられ、現在以下の問題が指摘されている。
(1)製作に長期間を必要とする。
(2)たとえばSKD61材については高温でのクリープや熱疲労の問題がある。
Conventionally, the SKD61 material or the like has been used as the material around the mold, and the following problems have been pointed out.
(1) A long time is required for production.
(2) For example, the SKD61 material has problems of creep at high temperatures and thermal fatigue.

さらに具体的には例えば鋳型廻り部材である鋳型用注湯スリーブは、一般には例えば鉄製の筒体の内壁面にNi・Cr等の金属溶射層を設け、さらに、その表面にセラミック層を設けることによって耐衝撃性および溶湯に対する耐久性を図っていた。しかし、かかる従来における注湯スリーブにあっては、熱変化の繰り返しから剥離などが現れやすくセラミック層が破れた場合、下層の金属溶射層のみならず母材の層が溶損し、この結果、鋳造物を離脱できないという不都合を生じる。   More specifically, for example, a mold pouring sleeve, which is a mold surrounding member, is generally provided with a metal spray layer such as Ni / Cr on the inner wall surface of a steel cylinder and a ceramic layer on the surface thereof. Thus, the impact resistance and the durability against the molten metal were achieved. However, in such a conventional pouring sleeve, when the ceramic layer is easily broken due to repeated heat changes, not only the lower metal spray layer but also the base metal layer is melted, resulting in casting. This causes the inconvenience of not being able to leave things.

またアルミニウムその他の金属からなる機械部品の製造に適用される低圧鋳造法では、下金型の最も低い位置に設けられた湯口に接続されたストークから湯口スリーブを介して溶湯が鋳型内に供給され、鋳造品が指向性凝固をしながら最終的に湯口が凝固したときにストーク内の圧力を下げて、鋳造品とストーク内の溶湯を分離する。そのため、ストーク内では溶湯が高頻度で流通し、溶損が生じ易い。   In addition, in the low pressure casting method applied to the manufacture of machine parts made of aluminum or other metals, the molten metal is supplied into the mold from the stalk connected to the gate provided at the lowest position of the lower mold through the gate sleeve. When the casting finally solidifies while the casting is directional solidified, the pressure in the stalk is lowered to separate the casting from the molten metal in the stalk. For this reason, the molten metal circulates frequently in the stalk, so that melting damage is likely to occur.

さらに、ダイカスト鋳造装置についても次の様な問題があった。
図45は、自動車、通信機器などの部品の製造に広く適用されているダイカスト鋳造装置である横鋳込み型コールドチャンバーダイカスト鋳造装置を示す。
図に示すように、この横鋳込み型コールドチャンバーダイカスト鋳造装置では、プランジャスリーブ40の給湯口41からプランジャ穴42に640℃〜650℃のアルミ合金溶湯が供給される。その後、プランジャ43のプランジャチップ43aをプランジャスリーブ40の内側において摺動往復させて金型44の湯口スリーブ45を通じてキャビティ内にアルミ合金溶湯を射出して鋳造が行われる。このプランジャ穴42を有する筒状体のプランジャスリーブ40は、一般に熱間用工具鋼のSKD−61に窒化処理して製作され、その前方部分40cは、ブッシュ46を介して固定ダイプレート47に固定支持される。一方、給湯口41がある後方部分40dは固定ダイプレート47には支持されず、片持梁状態で固定される。
Furthermore, the following problems have also occurred with respect to the die casting apparatus.
FIG. 45 shows a horizontal casting type cold chamber die casting apparatus which is a die casting apparatus widely applied to manufacture of parts such as automobiles and communication equipment.
As shown in the figure, in this horizontal casting type cold chamber die casting apparatus, molten aluminum alloy at 640 ° C. to 650 ° C. is supplied from the hot water supply port 41 of the plunger sleeve 40 to the plunger hole 42. Thereafter, the plunger tip 43a of the plunger 43 is slid and reciprocated inside the plunger sleeve 40, and the molten aluminum alloy is injected into the cavity through the gate sleeve 45 of the mold 44, thereby performing casting. The tubular plunger sleeve 40 having the plunger hole 42 is generally manufactured by nitriding the SKD-61 of hot tool steel, and its front portion 40c is fixed to the fixed die plate 47 via the bush 46. Supported. On the other hand, the rear portion 40d where the hot water supply port 41 is located is not supported by the fixed die plate 47 but is fixed in a cantilever state.

このプランジャスリーブ40の内側、特にはプランジャ穴42の下方部分には、高温の溶湯が接触して急速に加熱されて溶湯による浸蝕が生じ、係る浸蝕によってプランジャスリーブ40の内側に凹凸が生じると、プランジャチップ43aのプランジャスリーブ40の内側における摺動が円滑に行えなくなる。またこの浸蝕を防止するために、プランジャスリーブ全体を脆いセラミック材料で形成した場合には、破損しやすく取り扱いが困難になるという問題がある。   The inside of the plunger sleeve 40, particularly the lower part of the plunger hole 42, is heated rapidly by contact with the high-temperature molten metal, and erosion occurs due to the molten metal. The plunger tip 43a cannot slide smoothly inside the plunger sleeve 40. Further, in order to prevent this erosion, when the entire plunger sleeve is made of a brittle ceramic material, there is a problem that it is easily broken and difficult to handle.

そこで以上のような各種鋳造装置における問題を解消し得る材料として、多孔質焼結体、特にはTiAl、NiAl、FeAl、MgAlに代表される金属間化合物の適用を検討することができる。
これらの多孔質焼結体としての金属間化合物は、高温強度が室温と比べ、数倍に高まる性質から、鋳型廻り部材へ応用した場合では、鋳型廻り部材の高温強度の向上が期待される。しかし、一般に、金属間化合物は高融点であり、TiやAlのように活性金属を高温で溶解する場合には極めて酸化し易く、また坩堝材との反応を防止する対策が必要となる。そのためそのような溶解装置も超高温真空炉を準備する必要があり過大な設備投資が必要となる。さらに、TiとAl、NiとAl、FeとAlでは、相互間に比重差もあり、重力偏析や、鋳造偏析も起こり、均質材が得にくいという問題がある。また、硬く、延性に乏しい性質から、鋳造後の機械加工も困難であり、加工方法に相当の検討が必要となり実際的には、鋳型廻り部材材料としての適用は困難であった。
具体的にはたとえばFeAl金属間化合物の鋳造品を得ようとする場合には、FeとAlを主材とするFeAl金属間化合物は延性に乏しく鋳造する際に溶湯が鋳型内で凝固する過程において製品内部の粒界に亀甲状の割れが生じ健全な鋳造品を得ることは出来ない。
Therefore, as a material capable of solving the problems in various casting apparatuses as described above, application of a porous sintered body, particularly, intermetallic compounds typified by TiAl, Ni 3 Al, FeAl, and MgAl can be studied.
These intermetallic compounds as porous sintered bodies are expected to improve the high temperature strength of the mold periphery member when applied to the mold periphery member because of the property that the high temperature strength is several times higher than room temperature. However, in general, an intermetallic compound has a high melting point, and when an active metal such as Ti or Al is dissolved at a high temperature, it is very easy to oxidize, and measures to prevent reaction with a crucible material are required. Therefore, it is necessary to prepare an ultra-high temperature vacuum furnace for such a melting apparatus, which requires excessive capital investment. Furthermore, Ti and Al, Ni and Al, and Fe and Al also have a difference in specific gravity between them. Gravity segregation and casting segregation also occur, and there is a problem that it is difficult to obtain a homogeneous material. In addition, since it is hard and poor in ductility, machining after casting is difficult, and considerable consideration is required for the processing method, and practically it has been difficult to apply it as a material around a mold.
Specifically, for example, when trying to obtain a cast product of FeAl intermetallic compound, the FeAl intermetallic compound mainly composed of Fe and Al has poor ductility, and in the process where the molten metal solidifies in the mold. Tortoise-shaped cracks occur at the grain boundaries inside the product, making it impossible to obtain a sound casting.

このような金属間化合物の鋳造を試みた公知文献として特許文献1が存在する。
この特許文献1では原子濃度でAlを37から53%とし、残りをFeとするFeAl金属間化合物の溶湯を鋳型に鋳込んで凝固冷却速度を1000℃/時間に制御することにより製品の粒界の亀甲状の割れが防止され、耐酸化、耐腐蝕、耐摩耗性部品として優れた鋳造品を得ることができる旨開示された。
しかし係る鋳造方法を採用する場合であっても、金属間化合物の硬く、延性に乏しい性質から、鋳造後の機械加工も困難であり、実際的には、鋳造装置の鋳型廻り部材材料としての適用は困難であるという問題は解消されない。
特開平6−228706
Patent Document 1 exists as a known document that attempts to cast such an intermetallic compound.
In this patent document, the grain boundary of a product is controlled by casting a molten FeAl intermetallic compound in which Al is 37 to 53% in atomic concentration and the remainder is Fe, and controlling the solidification cooling rate to 1000 ° C./hour. It is disclosed that a tortoiseshell-shaped crack is prevented, and an excellent cast product can be obtained as an oxidation-resistant, corrosion-resistant, and wear-resistant part.
However, even when such a casting method is adopted, it is difficult to machine after casting due to the hard and poor ductility of the intermetallic compound. The problem of being difficult is not solved.
JP-A-6-228706

本発明は以上の従来技術における問題点に鑑み、耐熱性の向上と、製作期間の短縮を可能とする鋳造装置及び鋳型廻り部材の製造方法並びに鋳型廻り部材を提供することを目的とする。   The present invention has been made in view of the above problems in the prior art, and an object of the present invention is to provide a casting apparatus, a mold rotating member manufacturing method, and a mold rotating member capable of improving heat resistance and shortening the production period.

本発明者らは金属間化合物の製造法として知られる粉末の熱爆発反応を利用する燃焼合成法を適用して高温強度が大きい金属間化合物からなる鋳型廻り部材を極めて高効率に製作することができることを見いだし本発明に想到した。   The inventors can apply a combustion synthesis method using a thermal explosion reaction of powder, which is known as a method for producing an intermetallic compound, to manufacture a member around a mold made of an intermetallic compound having a high high-temperature strength with extremely high efficiency. I found what I could do and came up with the present invention.

すなわち本発明の鋳造装置は、多孔質焼結体層を備える鋳型廻り部材を有することを特徴とする。   That is, the casting apparatus of the present invention is characterized by having a mold surrounding member provided with a porous sintered body layer.

この様に多孔質焼結体層を備える鋳型廻り部材を有することによって、本発明の鋳造装置は、鋳型廻り部材につき高温でのクリープや熱疲労の問題を解消して長期の耐用期間を備えることができる。この鋳型廻り部材は例えば鋳型に対し溶湯を供給する経路の少なくとも一部を構成する注湯部構成部材である。   By having a mold-around member having a porous sintered body layer in this way, the casting apparatus of the present invention has a long service life by eliminating the problems of creep and thermal fatigue at high temperatures for the mold-around member. Can do. This mold periphery member is, for example, a pouring portion constituting member that constitutes at least a part of a path for supplying molten metal to the mold.

多孔質焼結体層が耐食バリア層を有するようにすることができる。これにより耐酸化性を向上することができる。   The porous sintered body layer can have a corrosion-resistant barrier layer. Thereby, oxidation resistance can be improved.

鋳型廻り部材が金属材料を基材とする本体部に取り付けられ、さらにその本体部は、金属材料によって造型されて多孔質焼結体層の強度を補充する第一の本体部と、金属材料によって造型されて鋳造機構との取り付け機能部を構成する第2の本体部とよりなるようにしてもよい。   A member around the mold is attached to a main body part made of a metal material, and the main body part is made of a metal material, and a first main body part that replenishes the strength of the porous sintered body layer and a metal material. You may make it consist of the 2nd main-body part which is shape-molded and comprises the attachment function part with a casting mechanism.

このように本発明の鋳造装置の鋳型廻り部材はアルミ等の鋳造対象となる溶湯に接触する面を金属間化合物等の多孔質焼結体を基材とする表面層とし、保温性と耐溶損性を持たせる。また、金属間化合物単体では強度が不足するために、金属材料を基材とする本体部を使用する。
この金属材料としては通常使用されるSKD61やSUSが適当かと思われるが、必要に応じてTiやNi系の合金としても良い。
As described above, the mold-turning member of the casting apparatus of the present invention has a surface layer based on a porous sintered body such as an intermetallic compound as a surface layer that comes into contact with the molten metal to be cast, such as aluminum, and maintains heat retention and resistance to erosion. Give sex. Further, since the strength of the intermetallic compound alone is insufficient, a main body portion using a metal material as a base material is used.
As this metal material, normally used SKD61 and SUS seem to be appropriate, but Ti or Ni-based alloy may be used as necessary.

さらに本発明の鋳造装置は、鋳型の湯口に設置され鋳型に溶湯を供給する注湯部構成部材である鋳型用注湯スリーブが多孔質焼結体層を備えることを特徴とする。   Furthermore, the casting apparatus according to the present invention is characterized in that a pouring sleeve for a mold, which is a pouring part constituting member that is installed in a pouring gate of a mold and supplies molten metal to the mold, includes a porous sintered body layer.

さらに本発明の鋳造装置は、上金型と、下金型とからなる鋳型を備え、その両金型の間に形成された空間に下方から溶湯を供給するようにその下金型に湯口が設けられ、その湯口に連通する注湯部構成部材である湯口スリーブおよび/またはストークが多孔質焼結体層を備えることを特徴とする。   Furthermore, the casting apparatus of the present invention comprises a mold composed of an upper mold and a lower mold, and a gate is provided in the lower mold so as to supply molten metal from below into a space formed between the two molds. A pouring sleeve and / or stalk, which is provided and is a pouring portion constituting member communicating with the pouring gate, includes a porous sintered body layer.

加えて本発明の鋳造装置は、注湯用の給湯口を開口した注湯部構成部材であるプランジャスリーブが少なくともその一部に多孔質焼結体層を備えることを特徴とする。   In addition, the casting apparatus of the present invention is characterized in that a plunger sleeve, which is a pouring part constituting member having an open hot water supply port, has a porous sintered body layer at least in part.

係る鋳造装置は、プランジャ穴を有し、後端側上部に注湯用の給湯口を開口した筒形状のプランジャスリーブを備えるダイカスト用プランジャスリーブを備えた鋳造装置とすることができる。   Such a casting apparatus can be a casting apparatus having a plunger sleeve for die casting having a plunger hole and a cylindrical plunger sleeve having a hot water supply port for pouring at the upper part on the rear end side.

以上の本発明の各鋳造装置は注湯部構成部材である鋳型用注湯スリーブや湯口スリーブおよび/またはストーク、プランジャスリーブが多孔質焼結体層を備えることによって、溶湯による浸蝕を防止でき、耐久性に優れ低コストの鋳造装置とすることができる。   Each casting apparatus of the present invention described above can prevent erosion due to the molten metal by providing the molten metal pouring sleeve and the pouring sleeve and / or the stalk, the plunger sleeve as the pouring part constituting member with the porous sintered body layer, A casting apparatus having excellent durability and low cost can be obtained.

また以上の本発明の各鋳造装置の多孔質焼結体層が耐食バリア層を有するようにすることによって、例えばダイカスト用プランジャスリーブを備えた鋳造装置では、プランジャのプランジャチップの摺動往復運動の阻害要因となる、プランジャスリーブの給湯口の下側部分の溶湯による浸蝕を防止でき、耐久性をさらに向上することができる。   In addition, by making the porous sintered body layer of each of the above-described casting apparatuses of the present invention have a corrosion-resistant barrier layer, for example, in a casting apparatus having a plunger sleeve for die casting, the reciprocating movement of the plunger tip of the plunger can be performed. It is possible to prevent erosion caused by the molten metal at the lower portion of the hot water outlet of the plunger sleeve, which becomes an impediment factor, and the durability can be further improved.

また、本発明の鋳造装置ではプランジャスリーブの一部に設けた嵌合部に多孔質焼結体で形成した浸蝕防止部材を嵌入して配置してなるようにすることもできる。この構成により、給湯口から給湯される溶湯が直接当たる浸蝕の激しい部分に耐熱、耐摩耗性に優れた多孔質焼結体で形成した浸蝕防止部材を設けることができ、プランジャの円滑な摺動往復運動を長期間維持できる。また、多孔質焼結体を、比較的に小部品として、他の部分を金属などの取り扱い易い材質で全体を構成することによって取り扱いプランジャスリーブとすることができる。   In the casting apparatus of the present invention, an erosion preventing member formed of a porous sintered body can be fitted into a fitting portion provided in a part of the plunger sleeve. With this configuration, it is possible to provide an erosion prevention member formed of a porous sintered body having excellent heat resistance and wear resistance in a portion where the erosion is struck directly by the molten metal supplied from the hot water supply port, and smooth sliding of the plunger Reciprocating motion can be maintained for a long time. Also, the porous sintered body can be made into a handling plunger sleeve by forming the whole as a relatively small part and making the other part as a whole with an easy-to-handle material such as metal.

加えて本発明の鋳型廻り部材の製造方法は、鋳型廻り部材の溶湯との接触表面形状に対する反転形状をもつグラファイト製マスタ型内に多孔質焼結体の原料元素の混合粉末、特には金属間化合物の原料元素の混合粉末を充填する工程と、充填した混合粉末をマスタ型内で反応させ、多孔質焼結体層すなわち金属間化合物層を製造する工程とを有してなることを特徴とする。
グラファイト製マスタ型内への混合粉末充填にあたっては単軸加圧あるいはCIP(静水圧加圧)法を適用することが出来る。
In addition, the method for producing a mold turning member of the present invention is a mixed powder of raw material elements of a porous sintered body in a graphite master mold having a reversal shape with respect to the contact surface shape of the mold turning member with the molten metal, particularly between metals. A step of filling a mixed powder of raw material elements of the compound and a step of producing a porous sintered body layer, that is, an intermetallic compound layer, by reacting the filled mixed powder in a master mold. To do.
In filling the mixed powder into the graphite master mold, a uniaxial pressurization or a CIP (hydrostatic pressurization) method can be applied.

多孔質焼結体の原料元素の混合粉末、特には金属間化合物の原料元素の混合粉末の混合比率は、目的とする多孔質焼結体、特には金属間化合物の化学量論組成に基づき調整することができる。さらに多孔質焼結体の原料元素の混合粉末、特には金属間化合物の原料元素の混合粉末の混合比率を化学量論組成に対し、所要の原料元素が過剰となるよう調整することもできる。さらに目的とする多孔質焼結体の原料元素の混合粉末、特には金属間化合物の原料元素の混合粉末に加え、助剤となる金属元素粉末を添加してもよい。その場合に助剤となる金属元素粉末添加量は0.01%〜10%とするのが良く、さらには0.1〜8%とするのが望ましく、もっとも望ましくは0.3〜6%とするのがよい。   The mixing ratio of the raw material element mixed powder of the porous sintered body, especially the mixed powder of the intermetallic compound raw material element, is adjusted based on the desired porous sintered body, particularly the stoichiometric composition of the intermetallic compound. can do. Furthermore, the mixing ratio of the mixed powder of the raw material elements of the porous sintered body, in particular, the mixed powder of the raw material elements of the intermetallic compound can be adjusted so that the required raw material elements are excessive with respect to the stoichiometric composition. Furthermore, in addition to the mixed powder of the raw material elements of the target porous sintered body, particularly the mixed powder of the raw material elements of the intermetallic compound, a metallic element powder serving as an auxiliary agent may be added. In this case, the additive amount of the metal element powder as an auxiliary is preferably 0.01% to 10%, more preferably 0.1 to 8%, and most preferably 0.3 to 6%. It is good to do.

マスタ型内に充填した混合粉末を反応させるには混合粉末を充填したマスタ型を加熱し、混合粉末の熱爆発反応によってマスタ型上に多孔質焼結体、特には金属間化合物の合成を行うことができる。その際に加熱温度は、多孔質焼結体、特には金属間化合物原料元素及び助剤金属元素の中でもっとも低い融点を示す材料の融点に対して、その融点以上で融点よりも50℃高い温度以下とするのが良く、さらにはその融点よりも5℃〜40℃以上高い温度とするのが望ましく、その融点よりも10℃〜30℃以上高い温度とするのがもっとも望ましい。
以上において加熱温度は、ごくわずかに液相ができる状態に管理されることが望ましく、液相が過剰である場合には混合粉末相互の連結が失われてメルトダウンによって形状保持が困難になって、メルトダウンした場合にはグラファイトマスタとの濡れ性の問題から液滴状となり粉末成形性が消失する。
したがって、粉末間に微量な液相を生成させて粉末を焼結させる加熱温度に制御して、混合粉末がいわゆる半溶融状態とされるのが望ましい。
To react the mixed powder filled in the master mold, the master mold filled with the mixed powder is heated, and a porous sintered body, especially an intermetallic compound, is synthesized on the master mold by a thermal explosion reaction of the mixed powder. be able to. In this case, the heating temperature is higher than the melting point by 50 ° C. above the melting point of the porous sintered body, in particular, the melting point of the intermetallic compound raw material element and auxiliary metal element having the lowest melting point. The temperature is preferably lower than the temperature, more preferably higher than the melting point by 5 ° C to 40 ° C, most preferably higher than the melting point by 10 ° C to 30 ° C.
In the above, it is desirable that the heating temperature be controlled so that a slight liquid phase is formed. When the liquid phase is excessive, the mixed powders lose their connection with each other and the shape cannot be easily maintained due to meltdown. When melted down, it becomes droplets due to the problem of wettability with the graphite master, and powder formability is lost.
Therefore, it is desirable that the mixed powder is brought into a so-called semi-molten state by controlling the heating temperature at which a small amount of liquid phase is generated between the powders to sinter the powder.

その際の加熱雰囲気は不活性ガスもしくは真空雰囲気とし、加えて誘導加熱またはパルス印加通電などの補助熱源を用いることもできる。さらには混合粉末を充填したマスタ型の加熱を加圧下で行うことも可能である。この加圧下での加熱を行う方法としてはよく知られたHIP法などを適用することができる。なお、マスタ型裏面側の気孔を封し、かつ冷却することによって安定した反応を進めることができる。
なおその他にHP(ホットプレス)法、通電焼結法を適用することもできる。
The heating atmosphere at that time may be an inert gas or a vacuum atmosphere, and in addition, an auxiliary heat source such as induction heating or pulse application energization may be used. Furthermore, it is possible to perform heating of the master mold filled with the mixed powder under pressure. A well-known HIP method or the like can be applied as a method of heating under pressure. A stable reaction can be promoted by sealing the pores on the back side of the master mold and cooling.
In addition, an HP (hot press) method and an electric current sintering method can also be applied.

さらに本発明の鋳型廻り部材の製造方法ではマスタ型上に合成された多孔質焼結体、特には金属間化合物層上に肉盛溶接層を形成する。これによって鋳型廻り部材が金属材料を基材とする本体部に取り付けられる。すなわちかかる肉盛溶接層が鋳型廻り部材の本体部を構成し、この鋳型廻り部材本体部によって多孔質焼結体、特には金属間化合物表面層が支持される。   Furthermore, in the method for producing a mold periphery member of the present invention, a build-up weld layer is formed on the porous sintered body synthesized on the master mold, particularly on the intermetallic compound layer. As a result, the mold surrounding member is attached to the main body having the metal material as the base material. That is, the build-up weld layer constitutes the main body portion of the mold surrounding member, and the porous sintered body, particularly the intermetallic compound surface layer, is supported by the mold surrounding member main body portion.

以上の本発明の鋳型廻り部材の製造方法によって製造される鋳型廻り部材の多孔質焼結体、特には金属間化合物層の理論真密度に対する相対密度は50〜97%程度とされ、好ましくは75%以上で、もっとも好ましくは85%以上とされる。   The relative density with respect to the theoretical true density of the porous sintered body of the mold periphery member, particularly the intermetallic compound layer, produced by the above method for producing a mold periphery member of the present invention is about 50 to 97%, preferably 75. % Or more, and most preferably 85% or more.

本発明の鋳型廻り部材表面部には耐食バリア層を設けることができ、この耐食バリア層は多孔質焼結体、特には金属間化合物層表面に形成した酸化皮膜若しくは多孔質焼結体、特には金属間化合物層表面に溶射によって形成された耐食層及び/又は離型層とすることができる。   A corrosion-resistant barrier layer can be provided on the surface of the mold surrounding member of the present invention, and this corrosion-resistant barrier layer is a porous sintered body, particularly an oxide film or porous sintered body formed on the surface of the intermetallic compound layer, particularly Can be a corrosion-resistant layer and / or a release layer formed by thermal spraying on the surface of the intermetallic compound layer.

一般に多孔質材料は、構造材の軽量化、ろ過作用、熱交換作用、耐衝撃性などの特徴を有し、現在広く用いられている。多孔質材の製造法としては、ガス注入法やガス封入法などあるが、気泡の大きさのバラつきにより材料特性のバラつきになったり、相対密度に限度があり超軽量の素材製造が困難であったりなどという問題もある。   In general, a porous material has features such as weight reduction of a structural material, filtration action, heat exchange action, and impact resistance, and is currently widely used. There are gas injection method and gas sealing method as a method for producing porous materials. However, it is difficult to produce ultra-light materials due to variations in material characteristics due to variations in the size of bubbles, or due to limitations in relative density. There is also a problem such as.

本発明の鋳型廻り部材を構成する多孔質焼結体、特には金属間化合物の製造法としては、粉末の熱爆発反応を利用する迅速製造法が知られている。この迅速製造法すなわち燃焼合成法によれば効率よく高融点化合物が製造でき、超高温炉などの大規模な設備を必要とすることもない。さらに効率よく多孔質材を作製でき、粉末冶金的手法の一種であるので、鋳型廻り部材表面層としての多孔質材の組織制御も可能となる。
そのような粉末の熱爆発反応の迅速性を生かす燃焼合成法の利点と多孔質焼結体、特には金属間化合物の高温強度特性を組み合わせることによって、本発明の鋳造装置及び鋳型廻り部材の製造方法並びに鋳型廻り部材が成立した。
As a method for producing a porous sintered body constituting the member around the mold of the present invention, particularly an intermetallic compound, a rapid production method using a thermal explosion reaction of powder is known. According to this rapid production method, that is, the combustion synthesis method, a high melting point compound can be produced efficiently, and a large-scale facility such as an ultrahigh temperature furnace is not required. Furthermore, since the porous material can be produced efficiently and is a kind of powder metallurgy technique, it is possible to control the structure of the porous material as the surface layer of the mold surrounding member.
By combining the advantages of the combustion synthesis method that takes advantage of the rapid thermal explosion reaction of such powder and the high-temperature strength characteristics of porous sintered bodies, particularly intermetallic compounds, the production of the casting apparatus and the mold surrounding members of the present invention A method and a mold surrounding member were established.

以下に本発明の鋳型廻り部材の製造方法が用いる燃焼合成の原理ならびに断熱燃焼温度につき説明する。
燃焼合成では、粉末の反応を断熱的に生じさせ、その反応を加速度的、爆発的に生じさせることで化合物を合成しつつ、粉末を焼結する。
これをNiAlを例にとり説明すると3/4molのNi粉末と1/4molのAl粉末を反応させ、合計1molのNiAlを生じさせた場合(NiAlは、化学式の中にNiが3mol、Alが1mol含まれるため、1/4NiAlが化合物1molとなる。)には、42.9kJの熱が発生する。
3/4Ni+1/4Al = 1/4NiAl+42.9kJ/mol
この場合に、単にNi粉末とAl粉末を反応させただけでは、反応熱は、系外に放散されるため、燃焼合成は起こらない。しかし、粉末を密に充填し、かつ断熱容器内で反応させた場合では、反応熱が系内にとどまり、反応熱による温度上昇が生じ、温度上昇の結果、あたかも燃焼するようにして、化合物の合成と粉末の焼結が短時間に生じる。この現象が燃焼合成と称されている。
そのときの理論燃焼温度は、温度エンタルピー線図により計算される。この場合の温度エンタルピー線図を図8に示す。
図中、上部の実線がNi+Al粉末の内部エネルギー(エンタルピー)であり、下部の実線及び破線がNiAlの内部エネルギーである。
固体状態の金属相互間では金属元素の拡散が遅いことから一般に反応が生じにくい。このため室温で単に粉末を混合しても燃焼や反応は生じない。しかし、Ni+Al粉末を炉で加熱し、Alを融解させるなどのきっかけを与えると、金属元素の活発な拡散が生じて反応を開始する。
Ni+Al混合粉末を933K(Alの融点)に加熱し、断熱反応を生させた場合では、反応熱は全て温度上昇に費やされ、粉末は、エネルギー不滅の法則から、1668K(NiAlの融点)まで加熱される。この高温を利用し、化合物合成と粉末の焼結を行うことが可能となる。
係る原理はTiAl、FeAlでも同様であり、反応熱はそれぞれ
1/2Ti + 1/2Al = 1/2TiAl +41.8kJ
1/2Fe + 1/2Al = 1/2FeAl +31.0kJ
で与えられ、また、断熱燃焼温度は図9、図10に示す温度エンタルピー線図から、TiAlの断熱燃焼温度は1733K(TiAlの融点)、FeAlの断熱燃焼温度は1538K(FeAlの融点)、となる。
Hereinafter, the principle of combustion synthesis and the adiabatic combustion temperature used by the method for producing a mold-around member of the present invention will be described.
In combustion synthesis, a powder reaction is adiabatically generated, and the reaction is accelerated and explosively generated to synthesize the compound while sintering the powder.
This is explained by taking Ni 3 Al as an example. When 3/4 mol of Ni powder and 1/4 mol of Al powder are reacted to generate a total of 1 mol of Ni 3 Al (Ni 3 Al is represented by the formula Since 3 mol and 1 mol of Al are contained, 1 / 4Ni 3 Al becomes 1 mol of compound.) 42.9 kJ of heat is generated.
3 / 4Ni + 1 / 4Al = 1 / 4Ni 3 Al + 42.9 kJ / mol
In this case, if the Ni powder and the Al powder are simply reacted, the reaction heat is dissipated outside the system, so that combustion synthesis does not occur. However, when the powder is closely packed and the reaction is carried out in an insulated container, the heat of reaction stays in the system, resulting in a temperature rise due to the heat of reaction. Synthesis and powder sintering occur in a short time. This phenomenon is called combustion synthesis.
The theoretical combustion temperature at that time is calculated by a temperature enthalpy diagram. The temperature enthalpy diagram in this case is shown in FIG.
In the figure, the upper solid line is the internal energy (enthalpy) of the Ni + Al powder, and the lower solid line and the broken line are the internal energy of Ni 3 Al.
In general, the reaction between the metals in the solid state hardly occurs because the diffusion of the metal element is slow. For this reason, combustion and reaction do not occur even if the powder is simply mixed at room temperature. However, when Ni + Al powder is heated in a furnace to trigger the melting of Al, active diffusion of metal elements occurs and the reaction starts.
When the Ni + Al mixed powder is heated to 933 K (the melting point of Al) and an adiabatic reaction is caused, the reaction heat is all consumed for temperature rise, and the powder is 1668 K (the melting point of Ni 3 Al from the law of energy immortality). ) Until heated. Using this high temperature, compound synthesis and powder sintering can be performed.
The principle is the same for TiAl and FeAl, and the reaction heat is 1/2 Ti + 1/2 Al = 1/2 TiAl + 41.8 kJ, respectively.
1 / 2Fe + 1 / 2Al = 1 / 2FeAl + 31.0kJ
9 and FIG. 10, the adiabatic combustion temperature is 1733 K (melting point of TiAl), the adiabatic combustion temperature of FeAl is 1538 K (melting point of FeAl), Become.

本発明の鋳造装置並びに鋳型廻り部材は多孔質焼結体、特には金属間化合物層を備え、多孔質焼結体、特には金属間化合物の高温強度が高く、高硬度、化学的に安定という性質から、
(1)高温まで降伏せず、高強度である。
(2)熱応力によるクリープ変形をし難い。
(3)溶湯の衝突による機械的損傷に強い。
(4)耐酸化性に優れる。
という利点を備える。
またかかる鋳型廻り部材を製造する本発明の鋳型廻り部材の製造方法は鋳型廻り部材の溶湯との接触表面形状に対する反転形状をもつマスタ型内に多孔質焼結体の原料元素の混合粉末、特には金属間化合物の原料元素の混合粉末を充填する工程と、充填した混合粉末をマスタ型内で反応させ、多孔質焼結体、特には金属間化合物表面層を製造する工程とを有してなるので、特には大規模な設備を必要とせず、効率よく高融点の多孔質焼結体、特には金属間化合物層を製造して、さらに金属材料を基材とする本体部を肉盛溶接によって迅速に効率よく造型して極めて短時間に高機能の鋳型廻り部材を製造することができる。
The casting apparatus and the mold surrounding member of the present invention include a porous sintered body, particularly an intermetallic compound layer, and the porous sintered body, particularly the intermetallic compound has high high-temperature strength, high hardness, and chemically stable. From the nature
(1) High strength without yielding to high temperatures.
(2) It is difficult for creep deformation due to thermal stress.
(3) Resistant to mechanical damage due to molten metal collision.
(4) Excellent oxidation resistance.
It has the advantage of.
In addition, the method for producing a mold turning member of the present invention for producing such a mold turning member is a mixed powder of raw material elements of a porous sintered body in a master die having a reversal shape with respect to a contact surface shape of the mold turning member with molten metal, in particular, Has a step of filling a mixed powder of raw material elements of intermetallic compound and a step of producing a porous sintered body, particularly an intermetallic compound surface layer, by reacting the filled mixed powder in a master mold. Therefore, it does not require large-scale equipment, and efficiently manufactures a high-melting-point porous sintered body, especially an intermetallic compound layer, and further overlays the main body using a metal material as a base material. As a result, it is possible to produce a high-functional mold-turning member in a very short time by molding quickly and efficiently.

また一般に線膨張係数の異なる複数の材料を加熱する場合、隣接し密着する材料間においては膨張量の違いから、応力による割れ、歪みを発生する。本発明の鋳型廻り部材の製造方法においても、マスタ型の線膨張と金属間化合物の線膨張の違いに起因して、その製造過程における加熱による膨張後、徐冷及びマスタ型の脱型を経て得られる鋳型廻り部材の形状はマスタ型の形状がそのまま正確には転写されず、実質的に相似形で転写された形状が得られる。しかし、鋳型廻り部材はそれ自体が溶湯を鋳込んで製品形状を創出する鋳型として機能するものではなく、鋳型それ自体の様に正確にマスタ型の形状が転写される必要はない。すなわち、本発明の鋳型廻り部材の製造方法ではマスタ型の線膨張と金属間化合物の線膨張の違いに起因するマスタ型と鋳型廻り部材との形状誤差は予め計算若しくは実測データに基づき見込んでおくことによって、問題のない程度にとどめることができ、十分に実際の鋳造装置に適用することのできる実用性を備えた鋳型廻り部材を製造することができる。   In general, when a plurality of materials having different linear expansion coefficients are heated, cracking and distortion due to stress occur due to the difference in expansion amount between adjacent and closely contacting materials. Also in the manufacturing method of the mold periphery member of the present invention, due to the difference between the linear expansion of the master type and the linear expansion of the intermetallic compound, after the expansion by heating in the manufacturing process, through slow cooling and demolding of the master type As for the shape of the mold surrounding member to be obtained, the shape of the master mold is not accurately transferred as it is, and a shape transferred in a substantially similar shape is obtained. However, the mold surrounding member itself does not function as a mold for casting a molten metal to create a product shape, and the shape of the master mold does not need to be accurately transferred like the mold itself. That is, in the manufacturing method of the mold periphery member of the present invention, the shape error between the master mold and the mold periphery member due to the difference between the linear expansion of the master mold and the intermetallic compound is estimated in advance based on calculation or actual measurement data. Therefore, it is possible to manufacture a mold-around member that can be used to a practical extent and can be applied to an actual casting apparatus.

以下に鋳型の湯口に設置され鋳型に溶湯を供給する際に使用される本発明の鋳型廻り部材である鋳型用注湯スリーブの実施の形態に関して説明する。   In the following, an embodiment of a pouring sleeve for a mold, which is a member around a mold of the present invention, which is used when a molten metal is supplied to a mold installed in a pouring gate of the mold will be described.

図1は本発明に係る鋳造装置の使用状態を示す断面図、図2は本発明に係る鋳造装置の鋳型用注湯スリーブの断面図である。   FIG. 1 is a cross-sectional view showing a use state of a casting apparatus according to the present invention, and FIG. 2 is a cross-sectional view of a mold pouring sleeve of the casting apparatus according to the present invention.

図1は自動二輪車用ホイールの鋳造装置11を示す。鋳造装置11の鋳造空間11Aは主下型12,第一補助下型13,第二補助下型14,入子15,横型16,主上型17によって形成される。また、鋳造空間11Aによって鋳造して得られる鋳造製品であるホイールにおけるハブ部の上面を鋳造する環状の補助上型18が主上型17の内周に嵌挿され、この補助上型18の軸心には湯口19が設けられている。前記補助上型18の湯口19には注湯スリーブ11Bが嵌着されて上方に延び、その上端部は基板20に固定されている。   FIG. 1 shows a casting apparatus 11 for a motorcycle wheel. A casting space 11 </ b> A of the casting apparatus 11 is formed by the main lower mold 12, the first auxiliary lower mold 13, the second auxiliary lower mold 14, the insert 15, the horizontal mold 16, and the main upper mold 17. An annular auxiliary upper mold 18 for casting the upper surface of the hub portion of the wheel, which is a cast product obtained by casting in the casting space 11A, is fitted into the inner periphery of the main upper mold 17, and the shaft of the auxiliary upper mold 18 is inserted. A spout 19 is provided in the heart. A pouring sleeve 11 </ b> B is fitted into the pouring gate 19 of the auxiliary upper mold 18 and extends upward, and an upper end portion thereof is fixed to the substrate 20.

図2に示す様に、押湯としての機能をも有する注湯スリーブ11Bは鋳造空間11A側に拡開する円筒体21に装着され、この円筒体21を介して、鋳造装置11に取り付けられる。この注湯スリーブ11Bは多孔質焼結体を基材とする本体部22とこの多孔質焼結体からなる本体部22表面に形成した酸化皮膜であるに耐食バリア層23とよりなる。なお、多孔質焼結体を基材とする本体部22の熱膨張係数は金属製の円筒体21に近似するものとされる。   As shown in FIG. 2, a pouring sleeve 11 </ b> B that also functions as a feeder is attached to a cylindrical body 21 that expands toward the casting space 11 </ b> A, and is attached to the casting apparatus 11 via the cylindrical body 21. The pouring sleeve 11B is composed of a main body portion 22 having a porous sintered body as a base material and an oxide film formed on the surface of the main body portion 22 made of the porous sintered body, but also a corrosion-resistant barrier layer 23. In addition, the thermal expansion coefficient of the main-body part 22 which uses a porous sintered compact as a base material shall be approximated to the cylindrical body 21 made from metal.

以上の図1、図2に示す本発明に係る鋳造装置の鋳型用注湯スリーブ11Bは、鋳造装置11に対する取り付け部である円筒体21の内壁面に多孔質焼結体を基材とする本体部22を設けるとともにこの本体部22が酸化皮膜である耐食バリア層23を有してなる。その多孔質焼結体を基材とする本体部22の熱膨張係数は前記円筒体21の母材の膨張係数に近似し、円筒体21と本体部22との膨張係数の差異に起因する本体部22の破損は生じ難い。また、耐食バリア層23の存在によって、多孔質焼結体を基材とする本体部22の溶損も生じない。   The casting pouring sleeve 11B for a casting apparatus according to the present invention shown in FIGS. 1 and 2 is a main body having a porous sintered body as a base material on the inner wall surface of a cylindrical body 21 which is an attachment portion to the casting apparatus 11. While providing the part 22, this main-body part 22 has the corrosion-resistant barrier layer 23 which is an oxide film. The thermal expansion coefficient of the main body 22 based on the porous sintered body approximates the expansion coefficient of the base material of the cylindrical body 21, and the main body due to the difference in expansion coefficient between the cylindrical body 21 and the main body 22. The portion 22 is hardly damaged. Further, the presence of the corrosion-resistant barrier layer 23 does not cause melting of the main body 22 having the porous sintered body as a base material.

図3は本発明に係る他の鋳造装置である重力鋳造装置の概略断面図である。
図3に示す鋳造装置において、鋳造装置24の鋳造空間24Aは下型25,中子26,上型27によって形成される。また、鋳造空間24Aに通じる湯道28には湯道入子28aが設けられている。さらに係る湯道28に溶湯を注入するための湯口カップ29が取り付けられる。一方、上型27に対しては鋳造空間24Aに通じる押湯としての機能を有する押湯カップ30が装着される。
FIG. 3 is a schematic sectional view of a gravity casting apparatus which is another casting apparatus according to the present invention.
In the casting apparatus shown in FIG. 3, a casting space 24 </ b> A of the casting apparatus 24 is formed by a lower mold 25, a core 26, and an upper mold 27. In addition, a runner 28a is provided in the runway 28 that leads to the casting space 24A. Further, a spout cup 29 for injecting molten metal into the runner 28 is attached. On the other hand, a feeder cup 30 having a function as a feeder that leads to the casting space 24 </ b> A is attached to the upper mold 27.

以上の図3に示す本発明に係る鋳造装置においては、湯道入子28、湯口カップ29、押湯カップ30が本発明の鋳型廻り部材として、多孔質焼結体を基材とする本体部とこの多孔質焼結体からなる本体部表面に形成した耐食バリア層としての酸化皮膜を有してなる。この鋳型廻り部材である湯道入子28、湯口カップ29、押湯カップ30はその多孔質焼結体からなる本体部に形成された表面部である耐食バリア層が鋳造過程においてアルミ溶湯等と接触するが溶湯によって浸食されることはない。   In the casting apparatus according to the present invention shown in FIG. 3, the main body portion having the porous sintered body as a base material is the runner insert 28, the spout cup 29, and the feeder cup 30 as the mold surrounding members of the present invention. And an oxide film as a corrosion-resistant barrier layer formed on the surface of the main body made of the porous sintered body. The mold surrounding members, such as the runway insert 28, the sprue cup 29, and the feeder cup 30, are formed with a corrosion-resistant barrier layer, which is a surface portion formed on the main body made of the porous sintered body. Contact but not eroded by molten metal.

以下に図4及び図5を参照して本発明の鋳型廻り部材として構成される低圧鋳造装置の湯口スリーブ(堰入子)及びストークにつき説明する。
低圧鋳造装置は上金型31と、下金型32とを備え、その両金型の間に形成された空間に下方から溶湯を供給するように下金型32には湯口スリーブ33が設けられ、さらにその湯口スリーブ33に連通するほぼ鉛直状のストーク34を備え、ストーク34、湯口スリーブ33を介して相互に型締めされた上金型31と下金型32間に溶湯35が供給される。
Hereinafter, a gate sleeve (weir insert) and stalk of a low pressure casting apparatus configured as a mold surrounding member of the present invention will be described with reference to FIGS. 4 and 5.
The low-pressure casting apparatus includes an upper mold 31 and a lower mold 32. The lower mold 32 is provided with a gate sleeve 33 so as to supply molten metal from below into a space formed between the two molds. Further, a substantially vertical stalk 34 communicating with the gate sleeve 33 is provided, and the molten metal 35 is supplied between the upper mold 31 and the lower mold 32 clamped to each other via the stalk 34 and the gate sleeve 33. .

以上の湯口スリーブ33は図5に示される様に多孔質焼結体を基材とする本体部33aに耐食バリア層としての酸化皮膜33bを形成してなり、一方ストーク34は多孔質焼結体を基材とする本体部34aに耐食バリア層としての酸化皮膜34bを形成してなる。なお、下金型32は、図4に示すように、溶湯35が蓄積された加熱保持炉36上の固定プレート37に載置される。   As shown in FIG. 5, the sprue sleeve 33 is formed by forming an oxide film 33b as a corrosion-resistant barrier layer on a main body 33a having a porous sintered body as a base material, while the stalk 34 is formed of a porous sintered body. An oxide film 34b as a corrosion-resistant barrier layer is formed on a main body 34a having a base material. As shown in FIG. 4, the lower mold 32 is placed on a fixed plate 37 on the heating and holding furnace 36 in which the molten metal 35 is accumulated.

このように構成された低圧鋳造装置にあっては、金型加圧用シリンダ38により上金型31が下金型32に載置され加圧(型締め)された状態で、加熱保持炉36内の溶湯35に空気圧供給口39からの圧縮空気が供給されると、溶湯35が重力に抗してストーク34内を上昇して湯口スリーブ33を経由し金型空間内に供給される。
その後、溶湯35の凝固が開始され空気圧供給口39から加熱保持炉36内への圧縮空気の供給が停止されると、ストーク34内に押し上げられていた溶湯35は重力により、加熱保持炉36内に戻される。
In the low-pressure casting apparatus configured as described above, the inside of the heating and holding furnace 36 is in a state where the upper mold 31 is placed on the lower mold 32 and pressed (clamped) by the mold pressurizing cylinder 38. When the compressed air from the air pressure supply port 39 is supplied to the molten metal 35, the molten metal 35 rises in the stalk 34 against gravity and is supplied into the mold space via the molten metal sleeve 33.
Thereafter, when the molten metal 35 starts to solidify and the supply of compressed air from the air pressure supply port 39 to the heating and holding furnace 36 is stopped, the molten metal 35 pushed up into the stalk 34 is brought into the heating and holding furnace 36 by gravity. Returned to

以上の低圧鋳造を適用して製造する自動車や自動二輪車のエンジンを構成する代表的構成部品は、シリンダーヘッドとシリンダーブロックである。このシリンダーヘッドは、(i)燃焼室へ混合ガソリンを供給し、(ii)燃焼後の排気を取り出す働きを持つ最重要保安部品として位置づけられている。その製造方法は、溶融アルミを上金型31と下金型32内に下から上方向に注入する低圧鋳造を用いる。この方法でできたアルミ鋳物は、ガソリンが燃焼する際に発生する熱を受けるため、高温になっても割れにくいよう、空気の巻き込みが少ない組織になっていることが特徴である。本発明では係る低圧鋳造装置につき、溶融アルミを一定の温度に保つための保持炉36から、上金型31と下金型32内に注入される際に通り道となる湯口スリーブ33(堰入子)について、(i)耐溶損性、(ii)断熱性、(iii)一定強度という(i)〜(iii)の特性をもつポーラスな金属間化合物(多孔質焼結体)を適用し、その金属間化合物(多孔質焼結体)からなる本体部33aに耐食バリア層としての酸化皮膜33bを形成する。   Typical components constituting the engine of automobiles and motorcycles manufactured by applying the above-described low pressure casting are a cylinder head and a cylinder block. This cylinder head is positioned as the most important safety part having the function of (i) supplying mixed gasoline to the combustion chamber and (ii) taking out exhaust gas after combustion. The manufacturing method uses low pressure casting in which molten aluminum is injected into the upper mold 31 and the lower mold 32 from the bottom upward. Since the aluminum casting made by this method receives heat generated when gasoline burns, it is characterized by having a structure with less air entrainment so that it is hard to break even at high temperatures. In the present invention, the low pressure casting apparatus according to the present invention has a gate sleeve 33 (weir insert) which becomes a passage when being poured into the upper mold 31 and the lower mold 32 from the holding furnace 36 for maintaining the molten aluminum at a constant temperature. ), A porous intermetallic compound (porous sintered body) having the characteristics (i) to (iii) of (i) resistance to erosion, (ii) heat insulation, and (iii) constant strength is applied. An oxide film 33b as a corrosion-resistant barrier layer is formed on the main body 33a made of an intermetallic compound (porous sintered body).

特に湯口スリーブ33(堰入子)は、まだ凝固していない溶融アルミを上金型31と下金型32内に押し上げるために必要となる下からの押し上げ圧力が開放されることにより保持炉36へ戻される未凝固溶融アルミと凝固の進行する製品部分から、確実に引きはなすため、比較的薄肉に作成される。この様に薄肉に作成されることによって、凝固の進行する製品部分と、保持炉36側の溶融アルミ部分との温度差を大きくすることができる。この目的からこの湯口スリーブ33(堰入子)は、従来はその材質としてSKD61をを用いて一体ものとして作成されていた。   In particular, the gate sleeve 33 (weir insert) is formed in the holding furnace 36 by releasing the pushing-up pressure from below necessary for pushing up the molten aluminum that has not yet solidified into the upper mold 31 and the lower mold 32. It is made relatively thin so as to be surely pulled from the unsolidified molten aluminum returned to the product and the product part where solidification proceeds. Thus, by making it thin, the temperature difference of the product part which solidification advances and the molten aluminum part by the side of the holding furnace 36 can be enlarged. For this purpose, the gate sleeve 33 (weir insert) has been conventionally made as a single piece using SKD61 as its material.

一方、鋳造時の酸化皮膜を除去する目的で堰入子の製品側部分に金網が取り付けられる。この金網の脱着が頻繁に行われる結果としてこの金網の堰入子の製品側部分に生じる金網による引っ掻きキズから、堰入子には溶損が生じる。そこで、湯口スリーブ33(堰入子)の先端(下金型32に接する部分)と、取出し時に凝固して製品に引かれる部分と、減圧時に、保持炉36に戻される部分の境界を含んだ部分だけをセラミック化する試みがある。しかし、下型入子と湯口スリーブ(堰入子)33の基材が金属であり、その基材が大きく膨張する結果としてセラミック湯口スリーブ(堰入子)を用いた場合には熱膨張差に起因する割れが発生する。   On the other hand, a wire mesh is attached to the product side portion of the weir for the purpose of removing the oxide film during casting. As a result of frequent desorption of the wire mesh, the weir insert is melted due to scratches caused by the wire mesh on the product side portion of the wire mesh insert. Therefore, the boundary between the tip of the gate sleeve 33 (the weir insert) (the portion in contact with the lower mold 32), the portion that solidifies when taken out and pulled by the product, and the portion that is returned to the holding furnace 36 during decompression is included. There are attempts to ceramicize only the part. However, when the base material of the lower mold insert and the spigot sleeve (weir insert) 33 is a metal, and the base material expands greatly, the ceramic spout sleeve (weir insert) is used, resulting in a difference in thermal expansion. The resulting cracking occurs.

この点で本発明の鋳造装置における湯口スリーブ(堰入子)33は金属間化合物(多孔質焼結体)を適用し、その金属間化合物(多孔質焼結体)からなる本体部33aに耐食バリア層としての酸化皮膜33bを形成したことが有効となり、湯口スリーブ33(堰入子)の線膨張係数をSKD61の線膨張係数(使用温度500〜600℃として13.6x10−6)に極めて近いものとすることができ、膨張差に起因する破損を防止することができる。   In this respect, the sprue sleeve (weir insert) 33 in the casting apparatus of the present invention uses an intermetallic compound (porous sintered body), and is corrosion-resistant to the main body 33a made of the intermetallic compound (porous sintered body). The formation of the oxide film 33b as a barrier layer is effective, and the linear expansion coefficient of the gate sleeve 33 (weir insert) is very close to the linear expansion coefficient of SKD61 (13.6 × 10−6 when the operating temperature is 500 to 600 ° C.). It is possible to prevent damage caused by the difference in expansion.

次に図面を参照して本発明の鋳造装置としてのダイカスト鋳造装置の実施の形態を説明する。本発明に係るプランジャスリーブ40は、図6の断面模式図に示すように、多孔質焼結体である金属間化合物部材で形成された本体部40aと、その本体部40aの内側表面に形成された酸化皮膜である表面バリア層40bとよりなる。このプランジャスリーブ40によれば、給湯口41からプランジャ穴42に溶湯が注入された時に、この溶湯を浸蝕に強い金属間化合物部材で形成された本体部40aと、その本体部40aの内側表面に形成された酸化皮膜である表面バリア層40bで受けることができるので、プランジャスリーブ40内側の浸蝕を防止することができる。   Next, an embodiment of a die casting apparatus as a casting apparatus of the present invention will be described with reference to the drawings. As shown in the schematic cross-sectional view of FIG. 6, the plunger sleeve 40 according to the present invention is formed on a main body portion 40a formed of an intermetallic compound member that is a porous sintered body and an inner surface of the main body portion 40a. And a surface barrier layer 40b which is an oxide film. According to this plunger sleeve 40, when molten metal is poured into the plunger hole 42 from the hot water supply port 41, the molten metal is formed on the inner surface of the main body portion 40a and the main body portion 40a formed of an intermetallic compound member that is resistant to corrosion. Since it can be received by the surface barrier layer 40b which is the formed oxide film, erosion inside the plunger sleeve 40 can be prevented.

さらに図7(a)、(b)は本発明の鋳造装置としてのダイカスト鋳造装置の他の実施の形態を示す。
この実施の形態のプランジャスリーブ40は筒状体48、浸蝕防止部材49から構成される。この筒状体48は窒化処理した熱間用工具鋼であるSKD−61を用いて製作することができる。また、この筒状体48の後端側の下部には内側が削られて半円筒状の浸蝕防止部材49を嵌入するための嵌合部である嵌合凹部48aが設けられている。
Furthermore, Fig.7 (a), (b) shows other embodiment of the die-casting apparatus as a casting apparatus of this invention.
The plunger sleeve 40 according to this embodiment includes a cylindrical body 48 and an erosion preventing member 49. This cylindrical body 48 can be manufactured using SKD-61 which is a nitriding hot tool steel. In addition, a fitting concave portion 48 a that is a fitting portion into which a semicylindrical erosion preventing member 49 is fitted is provided in a lower portion on the rear end side of the cylindrical body 48.

浸蝕防止部材49は、内側をプランジャ43に対する摺接面とする半円筒状に形成され、筒状体48の嵌合凹部48aに配設される。この浸蝕防止部材49は多孔質焼結体である金属間化合物部材で形成された本体部49aと、その本体部49a表面に形成された酸化皮膜である表面バリア層49bとよりなる。   The erosion preventing member 49 is formed in a semi-cylindrical shape with the inner side being in sliding contact with the plunger 43, and is disposed in the fitting recess 48 a of the tubular body 48. The erosion preventing member 49 includes a main body portion 49a formed of an intermetallic compound member that is a porous sintered body, and a surface barrier layer 49b that is an oxide film formed on the surface of the main body portion 49a.

以上の実施の形態のダイカスト鋳造装置におけるプランジャスリーブ40によれば、給湯口41からプランジャ穴42に溶湯が注入された時に、この溶湯を給湯口41の下側部分に設けた浸蝕に強い浸蝕防止部材49の多孔質焼結体である金属間化合物部材で形成された本体部49aと、その表面に形成された酸化皮膜である表面バリア層49bで受けることができるので、この給湯口41の下側部分の浸蝕を防止でき、プランジャ43のプランジャチップ43aの円滑な摺動往復運動を長期間維持できる。また本体部49aの金属間化合物材料は、熱膨張係数が低くて熱変形しにくく、耐熱性、耐摩耗性に優れているので、注湯による温度変化があっても、プランジャチップ43aの摺動が阻害されることはない。   According to the plunger sleeve 40 in the die casting apparatus of the above embodiment, when molten metal is injected into the plunger hole 42 from the hot water supply port 41, this molten metal is provided in the lower portion of the hot water supply port 41 and is resistant to corrosion. Since it can be received by the main body 49a formed of an intermetallic compound member which is a porous sintered body of the member 49 and the surface barrier layer 49b which is an oxide film formed on the surface thereof, Erosion of the side portions can be prevented, and smooth sliding reciprocation of the plunger tip 43a of the plunger 43 can be maintained for a long period of time. The intermetallic compound material of the main body 49a has a low coefficient of thermal expansion, is not easily deformed by heat, and is excellent in heat resistance and wear resistance. Therefore, even if the temperature changes due to pouring, the plunger tip 43a slides. Is not disturbed.

しかもこの実施の形態では金属間化合物部材を用いてなる浸蝕防止部材49を、半筒状の小さい部品にしたので、コストを低く押さえることができる。また、プランジャスリーブ40の全体は例えばSKD−61等を用いて製作するので、取り扱いも容易にすることができる。   In addition, in this embodiment, the erosion preventing member 49 using the intermetallic compound member is made into a small semi-cylindrical part, so that the cost can be reduced. Moreover, since the whole plunger sleeve 40 is manufactured using SKD-61 etc., it can also handle easily.

次に以上の本発明の各鋳造装置の鋳型廻り部材に適用される代表的多孔質焼結体、特には金属間化合物につき説明する。
係る多孔質焼結体、特には金属間化合物として表1に示すものが挙げられる。
Next, a typical porous sintered body, particularly an intermetallic compound, applied to the mold surrounding member of each casting apparatus of the present invention will be described.
Examples of the porous sintered body, particularly those shown in Table 1 as intermetallic compounds.

以上の多孔質焼結体である金属間化合物を用い、本発明では次のようにして鋳型廻り部材の製造を行う。
1.出発原料、粉末の混合
目的とする鋳型廻り部材の反転形状をもつグラファイト製マスタ型内に、金属間化合物を構成する元素の混合粉末を充填する。例えば、TiAl金属間化合物鋳型廻り部材を製造する場合では、TiとAlの混合粉末を充填する。またNiAlでは、NiとAlの粉末を、FeAlでは、FeとAlの混合粉末を充填する。元素粉末の混合比率は、目的とする金属間化合物の化学量論組成となるよう配合する。例えばTiAlでは原子比でTi:Al=1:1、NiAlでは原子比でNi:Al=3:1、FeAlでは原子比で、Fe:Al=1:1とする。
Using the intermetallic compound which is the porous sintered body described above, in the present invention, the mold-around member is manufactured as follows.
1. Mixing of starting material and powder A graphite master mold having the inverted shape of the target mold member is filled with a mixed powder of elements constituting an intermetallic compound. For example, in the case of manufacturing a TiAl intermetallic compound mold member, a mixed powder of Ti and Al is filled. Ni 3 Al is filled with Ni and Al powder, and FeAl is filled with mixed powder of Fe and Al. The mixing ratio of the element powder is blended so as to be the stoichiometric composition of the target intermetallic compound. For example, in TiAl, the atomic ratio is Ti: Al = 1: 1, in Ni 3 Al, the atomic ratio is Ni: Al = 3: 1, and in FeAl, the atomic ratio is Fe: Al = 1: 1.

鋳型廻り部材の強度や材料組織の調整の目的で、金属化合物の組成を制御したい場合は、粉末の混合比率を、Ti:Al=1:1からTiリッチ(Ti過剰)もしくはAlリッチ(Al過剰)としても良い。こうすることで、TiAl相の他、TiAl相、TiAl相も合成され、これら化合物の複合材が得られる。
合成される金属間化合物粒子の結合度を調整する場合は、原料となるTiとAlの混合粉末に加え、CoとAlの混合粉末、NiとAlの混合粉末などを助剤として微量に添加する。
添加量は微量で良く、0.5%〜10%程度である。助剤は、金属間化合物生成の反応熱を補うとともに、反応時に微量な融液を生成し、粒子同士の接合を促進する働きをする。上記のようにして調合した、混合粉末をグラファイト製マスタ型内で反応させ、金属間化合物鋳型廻り部材を製造する。
この工程においてHIP,HP(ホットプレス)を用いる場合では,温度,圧力を制御することでも粒子の結合度を制御,調節できる。
If you want to control the composition of the metal compound for the purpose of adjusting the strength of the parts around the mold and the material structure, change the powder mixing ratio from Ti: Al = 1: 1 to Ti rich (Ti excess) or Al rich (Al excess). ). By doing so, in addition to the TiAl phase, a Ti 3 Al phase and a TiAl 3 phase are also synthesized, and a composite material of these compounds is obtained.
When adjusting the degree of bonding of the intermetallic compound particles to be synthesized, in addition to the mixed powder of Ti and Al as a raw material, a small amount is added with a mixed powder of Co and Al, a mixed powder of Ni and Al, etc. as an auxiliary agent .
The addition amount may be very small and is about 0.5% to 10%. The auxiliary agent supplements the heat of reaction for generating the intermetallic compound, and also generates a small amount of melt during the reaction, thereby promoting the bonding between the particles. The mixed powder prepared as described above is reacted in a graphite master mold to produce a member around the intermetallic compound mold.
In the case where HIP or HP (hot press) is used in this step, the degree of particle bonding can be controlled and adjusted by controlling the temperature and pressure.

2.粉末の熱爆発反応による金属間化合物の合成
(a)粉末の熱爆発反応の原理
Ti粉末+Al粉末=TiAl+反応熱 ・・・・(1)
3Ni粉末+Al粉末=NiAl+反応熱 ・・・・(2)
Fe粉末+Al粉末=FeAl+反応熱 ・・・・(3)
(b)上記のような金属間化合物の生成熱爆発反応を用いて、鋳型廻り部材の迅速製造が可能となる。
2. Synthesis of intermetallic compounds by thermal explosion reaction of powder (a) Principle of thermal explosion reaction of powder Ti powder + Al powder = TiAl + heat of reaction (1)
3Ni powder + Al powder = Ni 3 Al + reaction heat (2)
Fe powder + Al powder = FeAl + heat of reaction (3)
(B) By using the thermal explosion reaction of the intermetallic compound as described above, it becomes possible to rapidly manufacture the mold-around member.

混合粉末を詰めたグラファイト製のマスタ型を電気炉で加熱し、上記(1)〜(3)の反応を生じさせる。加熱温度は、上記金属間化合物の場合では、Alの融点660℃以上が必要である。炉内温度の不均一も見込み、余裕を考え700℃以上とするのが望ましい。加熱雰囲気は、粉末の酸化を防ぐため、Ar、He、Neなど不活性ガス雰囲気、もしくは真空雰囲気とする。粉末の熱爆発反応は、加熱により、まず混合粉末のAl粉末が融解し、Ti、Ni、Fe粒子の周囲へと浸透する。この溶融浸透したAlが、Ti粒子や、Ni粒子、Fe粒子に吸収され、(1)〜(3)の反応を開始する。その反応熱により、粉末の温度が上昇し、温度が上昇したことで反応がさらに促進される。これが連鎖的に繰り返され、反応が加速度的、爆発的に進み、最終的には金属間化合物が得られる。合成される金属間化合物の相対密度は、条件にもよるが50〜97%程度ものが得られる。この相対密度は、粉末の混合比率、粒径、加熱条件、助剤の有無、添加量に依存する。鋳型廻り部材としては金属間化合物の相対密度は、高い方が好ましいが、密度を高めると、反応による粉末の膨張よりも、粉末の焼結収縮の方が勝り、グラファイト製マスタ型を満たすのに不十分となる。従って、マスタ型内部が充填されるよう、金属間化合物内の相対密度を調節する。鋳型廻り部材の形状、粉末量によっては、グラファイトに熱を奪われ、熱量不足となったり、反応不良、角隅での充填不足も考え得る。こうした場合は、誘導加熱、パルス印加通電など補助熱源を用い、ホットプレスなど加圧も併用し、反応不良やグラファイトマスタ型内での充填不良を防ぐ。   The graphite master mold filled with the mixed powder is heated in an electric furnace to cause the reactions (1) to (3) above. In the case of the above intermetallic compound, the heating temperature is required to be a melting point of Al of 660 ° C. or higher. It is desirable that the temperature in the furnace be 700 ° C. or more in consideration of unevenness in the furnace temperature. The heating atmosphere is an inert gas atmosphere such as Ar, He, Ne, or a vacuum atmosphere in order to prevent oxidation of the powder. In the thermal explosion reaction of the powder, the Al powder of the mixed powder is first melted by heating and penetrates around the Ti, Ni, and Fe particles. This molten and permeated Al is absorbed by Ti particles, Ni particles, and Fe particles, and the reactions (1) to (3) are started. Due to the heat of reaction, the temperature of the powder rises, and the reaction is further promoted by the temperature rise. This is repeated in a chain, and the reaction proceeds rapidly and explosively, and finally an intermetallic compound is obtained. The relative density of the intermetallic compound to be synthesized is about 50 to 97% although it depends on the conditions. This relative density depends on the mixing ratio of the powder, the particle size, the heating conditions, the presence or absence of an auxiliary agent, and the amount added. The higher the relative density of the intermetallic compound is preferable as the mold surrounding member, but if the density is increased, the sintering shrinkage of the powder is superior to the expansion of the powder due to the reaction, and the graphite master mold is satisfied. It becomes insufficient. Therefore, the relative density in the intermetallic compound is adjusted so that the inside of the master mold is filled. Depending on the shape of the mold-around member and the amount of powder, the heat is lost to the graphite, resulting in insufficient heat, poor reaction, and insufficient corner corner filling. In such a case, an auxiliary heat source such as induction heating or pulse application energization is used, and pressurization such as hot pressing is also used to prevent reaction failure and filling failure in the graphite master mold.

3.耐食性の向上、鋳型廻り部材ボディーの構築
多孔質焼結体、特には金属間化合物がAl溶湯と直接接触した場合、反応や欠損を起こす恐れも考えられる。対策として、
(i)湯との接触面を空気中で加熱し、酸化させ、酸化皮膜を形成させる。例えばTiAlの高温酸化によって生じるAlやTiOを、耐食バリアとする。
(ii)耐食性の高いAlなどを、耐食層、離型層として表面に溶射する。
裏面側には、ロウ材等で気孔を封し、水路を設け、冷却する。もしくは、水冷パイプを接合する。あるいは水冷構造を有する部材を溶接もしくはロウ付で接合する。あるいは水冷部材そのものを溶接肉盛で直に構築することも可能である。
3. Improvement of corrosion resistance, construction of member body around mold When porous sintered body, especially intermetallic compound, comes into direct contact with molten Al, there is a possibility of causing reaction or defect. As a countermeasure,
(I) The contact surface with hot water is heated in the air and oxidized to form an oxide film. For example, Al 2 O 3 or TiO 2 generated by high-temperature oxidation of TiAl is used as the corrosion resistant barrier.
(Ii) Thermally spraying Al 2 O 3 or the like having high corrosion resistance on the surface as a corrosion-resistant layer or a release layer.
On the back side, pores are sealed with a brazing material or the like, a water channel is provided, and cooling is performed. Alternatively, a water-cooled pipe is joined. Or the member which has a water cooling structure is joined by welding or brazing. Alternatively, the water-cooled member itself can be constructed directly by welding overlay.

図11は本発明の鋳型廻り部材の概念図である。
図に示されるように鋳型廻り部材1の溶湯との接触表面形状に対する反転形状をもつマスタ2上に多孔質焼結体、特には金属間化合物からなる形状オフセット部3を介して多孔質焼結体、特には金属間化合物からなり本体部5と楔機能を有する表層部4が造型される。形状オフセット部3はマスタ2からの離型時に消失し、表層部4が鋳型廻り部材1の表層部として露出され、多孔質焼結体、特には金属間化合物を基材とすることから耐熱性、通気性が良好である。さらに金属間化合物からなる表層部4の強度を補充するという機能を有し本体部6と楔機能を有する第一の本体部5が金属材料によって造型される。さらに第一の本体部5に対し熱変形を吸収するための型温度バランスの均一化層6を介して第2の本体部7が金属材料によって造型される。均一化層6は第2の本体部7と楔機能を有する。この第2の本体部7は冷却用の水冷ジャケットを内蔵すると共にたとえばダイカストマシン等の鋳造機械との取り付け機能部を構成する。
以上のように、表層部4の裏面側には、溶接肉盛によって造型した本体部分を配置し、その本体部分の作成時に温度バランスの均一化機能としての良熱伝達材の選定や熱量の外部放出のための水路を与えて熱交換機能を与えることもできる。
FIG. 11 is a conceptual diagram of the mold-around member of the present invention.
As shown in the figure, a porous sintered body, in particular, a porous sintered body via a shape offset portion 3 made of an intermetallic compound is formed on a master 2 having a reversal shape with respect to the contact surface shape of the mold surrounding member 1 with the molten metal. A body, in particular, a main body portion 5 and a surface layer portion 4 having a wedge function made of an intermetallic compound are formed. The shape offset portion 3 disappears when released from the master 2, and the surface layer portion 4 is exposed as the surface layer portion of the mold surrounding member 1, and since it is made of a porous sintered body, particularly an intermetallic compound, it is heat resistant. Good breathability. Furthermore, the main body 6 and the first main body 5 having a function of replenishing the strength of the surface layer portion 4 made of an intermetallic compound and having a wedge function are formed of a metal material. Further, the second main body portion 7 is made of a metal material through a uniform mold temperature balance layer 6 for absorbing thermal deformation of the first main body portion 5. The homogenizing layer 6 has a second body portion 7 and a wedge function. The second main body portion 7 incorporates a water cooling jacket for cooling and constitutes an attachment function portion with a casting machine such as a die casting machine.
As described above, on the back side of the surface layer portion 4, a main body portion formed by welding overlay is arranged, and when the main body portion is created, the selection of a good heat transfer material as a function for equalizing the temperature balance and the external amount of heat A water channel for discharge can also be provided to provide a heat exchange function.

以上において第一の本体部5及び型温度バランスの均一化層6、第2の本体部7はマスタ2上に造型された金属間化合物からなる表層部4に対し肉盛溶接を行うことによって高効率で造型することができる。その際、第一の本体部5及び型温度バランスの均一化層6、第2の本体部7それぞれは異なる溶接材料、溶接方法によってそれぞれその機能に応じた造型を行うことが可能である。
例えば第一の本体部5は金属間化合物からなる表層部4との間での拡散の進行による材質的な連続性が確保され、かつ熱膨張・収縮の不均一によって反り、ひずみ等が発生する程度が抑制されるようにその溶接材料・方法が決定される。
In the above, the first main body 5, the mold temperature balance uniformizing layer 6, and the second main body 7 are made high by performing overlay welding on the surface layer portion 4 made of an intermetallic compound formed on the master 2. Can be molded efficiently. At that time, the first main body 5, the mold temperature balancing uniform layer 6, and the second main body 7 can be molded according to their functions by different welding materials and welding methods.
For example, the first main body 5 is ensured in material continuity due to the progress of diffusion with the surface layer portion 4 made of an intermetallic compound, and warps, strains, and the like are generated due to uneven thermal expansion and contraction. The welding material and method are determined so that the degree is suppressed.

また以上において、対象となる鋳型廻り部材の構造によっては金属間化合物層のみによって鋳型廻り部材を構成することが可能であり、例えば比較的に単純形状の中子等はその全体を金属間化合物を基材として造型することが可能である。   In addition, in the above, depending on the structure of the target mold surrounding member, it is possible to configure the mold surrounding member only by the intermetallic compound layer. For example, a relatively simple core or the like is composed of the intermetallic compound as a whole. It is possible to mold as a base material.

以上の本発明の鋳型廻り部材1においては表層部4が溶湯接触面を形成し、必要に応じて溶湯接触面の研磨が行われ、その反対の面の機能部(機能部品と連動するための部分)が第2の本体部7によって形成される。   In the mold surrounding member 1 of the present invention described above, the surface layer portion 4 forms a molten metal contact surface, and the molten metal contact surface is polished as necessary, and the functional portion on the opposite surface (for interlocking with functional parts) Part) is formed by the second body 7.

以下に本発明の実施例につき説明する。
実施例1
NiAl、TiAl、FeAl各化合物の化学両論組成となるよう原料粉末を混合し、燃焼合成時の粉末の温度変化を混合粉末圧粉体に熱電対を挿入し計測した。
Examples of the present invention will be described below.
Example 1
Raw material powders were mixed so as to have a stoichiometric composition of Ni 3 Al, TiAl, and FeAl compounds, and the temperature change of the powder during combustion synthesis was measured by inserting a thermocouple into the mixed powder compact.

図12は燃焼合成時のTi粉末+Al粉末=TiAl+反応熱という前記(1)に示す反応時の温度測定例である。Ti粉末とAl粉末との混合比率は原子比でTi:Al=1:1とした。図に示されるようにTi粉末の各粒径において温度はほぼ断熱燃焼温度まで上昇する。なおその際、一部は伝熱が生じて断熱温度よりはやや低くなる。また、Ti粉末の粒径が15μm、45μm、150μmと大きくなるに従い粒子表面積の減少に伴う単位時間あたりの反応エネルギーの低下に応じて温度上昇時間は長くなっている。   FIG. 12 is an example of temperature measurement at the time of reaction shown in the above (1), that is, Ti powder + Al powder = TiAl + reaction heat during combustion synthesis. The mixing ratio of Ti powder and Al powder was atomic ratio Ti: Al = 1: 1. As shown in the figure, the temperature rises to almost the adiabatic combustion temperature at each particle size of the Ti powder. In this case, a part of the heat is generated and becomes slightly lower than the adiabatic temperature. Further, as the particle size of the Ti powder increases to 15 μm, 45 μm, and 150 μm, the temperature rise time becomes longer as the reaction energy decreases per unit time due to the decrease in the particle surface area.

図13は燃焼合成時の3Ni粉末+Al粉末=NiAl+反応熱という前記(2)に示す反応時の温度測定例である。Ni粉末とAl粉末との混合比率は原子比でNi:Al=3:1とした。図に示されるようにNi粉末の各粒径において温度はほぼ断熱燃焼温度まで上昇する。なおその際、一部は伝熱が生じて断熱温度よりはやや低くなる。また、Ni粉末の粒径が42μm、56μm、72μmと多少変化しても温度上昇時間に大きな変化はない。なお、着火温度は910Kであった。 FIG. 13 is an example of temperature measurement at the time of reaction shown in (2), 3Ni powder + Al powder = Ni 3 Al + reaction heat during combustion synthesis. The mixing ratio of Ni powder and Al powder was atomic ratio Ni: Al = 3: 1. As shown in the figure, the temperature rises to approximately the adiabatic combustion temperature at each particle size of the Ni powder. In this case, a part of the heat is generated and becomes slightly lower than the adiabatic temperature. Further, even if the particle size of the Ni powder is changed slightly to 42 μm, 56 μm, and 72 μm, the temperature rise time does not change greatly. The ignition temperature was 910K.

図14は燃焼合成時のFe粉末+Al粉末=FeAl+反応熱という前記(3)に示す反応時の温度測定例である。Fe粉末とAl粉末との混合比率は原子比でTi:Al=1:1とした。図に示されるようにFe粉末の各粒径において温度はほぼ断熱燃焼温度まで上昇する。なおその際、一部は伝熱が生じて断熱温度よりはやや低くなる。また、Fe粉末の粒径が30μm、70μm、110μmと多少変化しても温度上昇時間に大きな変化はない。なお、着火温度は926Kであった。
以上の各場合に完全な断熱状態を作り出すことは不可能なため、実施データ自体はやや低い値を示すが、いずれも理論断熱燃焼温度付近まで加熱されることがわかる。
また、その温度上昇も、10数秒ときわめて短時間であることがわかる。この高温状態と高速の温度上昇を用いて多孔質焼結体鋳型廻り部材、金属間化合物鋳型廻り部材を迅速に製造することができる。
FIG. 14 is an example of temperature measurement during the reaction shown in the above (3), that is, Fe powder + Al powder = FeAl + reaction heat during combustion synthesis. The mixing ratio of Fe powder and Al powder was Ti: Al = 1: 1 in atomic ratio. As shown in the figure, the temperature rises to almost the adiabatic combustion temperature at each particle size of the Fe powder. In this case, a part of the heat is generated and becomes slightly lower than the adiabatic temperature. Further, even if the particle size of the Fe powder is changed to 30 μm, 70 μm, or 110 μm, there is no significant change in the temperature rise time. The ignition temperature was 926K.
Since it is impossible to create a complete adiabatic state in each of the above cases, the implementation data itself shows a slightly low value, but it can be seen that both are heated to near the theoretical adiabatic combustion temperature.
It can also be seen that the temperature rise is as short as 10 seconds. By using this high temperature state and a high temperature rise, the porous sintered body mold member and the intermetallic compound mold member can be rapidly manufactured.

図15は、NiAl燃焼合成の粉末混合試料を急冷し、その組織を調べた組織写真である。
(a)は反応開始前、(b)は、燃焼合成初期に急冷した試料、(c)燃焼合成中期に合成した試料、(d)は燃焼合成体である。図15(a)に示される白い粒子がNi粒子、灰色の粒子がAl粒子、黒い部分は粒子間の空孔である。この図から反応開始前ではNiとAlの粒子が混合された状態であることが確認できる。図15(b)に示されるように炉で粉末混合試料が加熱されると、933K付近(Alの融点)でまずAl粒子が融解し、Ni粒子の周囲へと浸透する。次に図15(c)に示されるように燃焼合成がさらに進行すると、溶けたAlとNi粒子の間で化合物の生成反応がが生じ、Ni粒子の周囲には金属間化合物相が形成され燃焼合成が進行する。すなわち、溶融AlがあたかもNi粒子に吸収されるようにして化合物層が形成されてゆく。さらに図15(d)に示されるように最終的には、AlとNi全てが反応し、全体が金属間化合物相となる。
FIG. 15 is a photograph of a structure obtained by rapidly cooling a powder mixed sample of Ni 3 Al combustion synthesis and examining its structure.
(A) is before the start of the reaction, (b) is a sample that is rapidly cooled in the early stage of combustion synthesis, (c) is a sample that is synthesized in the middle period of combustion synthesis, and (d) is a combustion synthesis body. In FIG. 15A, white particles are Ni particles, gray particles are Al particles, and black portions are pores between the particles. From this figure, it can be confirmed that Ni and Al particles are mixed before the reaction starts. When the powder mixed sample is heated in the furnace as shown in FIG. 15B, the Al particles first melt at around 933 K (the melting point of Al) and permeate around the Ni particles. Next, as shown in FIG. 15 (c), when the combustion synthesis further proceeds, a compound formation reaction occurs between the molten Al and Ni particles, and an intermetallic compound phase is formed around the Ni particles, and combustion occurs. Synthesis proceeds. That is, a compound layer is formed as if molten Al is absorbed by Ni particles. Further, as shown in FIG. 15D, finally, all of Al and Ni react to form an intermetallic compound phase as a whole.

図16は、この様子を模式的に示したものである。
図16(a)に示されるように反応開始前ではNiとAl粒子が混合された状態にあるが、反応を開始すると、図16(b)に示されるようにAl粒子が融解し、Ni粒子の周囲へと浸透する。その後、図16(c)に示されるように溶融Alは、あたかもNi粒子に吸収されるようにして、Ni粒子の間(Niの周囲)に金属間化合物層が生成し始める。そして図16(d)に示されるように最終的には、溶融AlとNi粒子、全てが反応して金属間化合物相が合成される。
以上がNiAlの燃焼合成を微視的に見たときの組織的変化である。この例以外のTiAlの燃焼合成、FeAlの燃焼合成でも類似の反応で化合物が合成される。
FIG. 16 schematically shows this state.
As shown in FIG. 16 (a), Ni and Al particles are in a mixed state before the start of the reaction. However, when the reaction is started, the Al particles are melted as shown in FIG. Penetrate to the surroundings. Thereafter, as shown in FIG. 16C, the molten Al is absorbed by the Ni particles, and an intermetallic compound layer starts to be formed between the Ni particles (around Ni). Finally, as shown in FIG. 16D, the molten Al and Ni particles all react to synthesize an intermetallic compound phase.
The above is a systematic change when the combustion synthesis of Ni 3 Al is viewed microscopically. Other than this example, TiAl combustion synthesis and FeAl combustion synthesis also synthesize compounds by similar reactions.

このようにして合成された、合成体についてX線回折分析を行った結果を図17に示す。図17(a)はNi+Al混合粉末試料の分析結果、図17(b)は合成体のX線回折分析結果である。図17(b)に示される合成体では、図17(a)で見られるNiとAlのピークは消え、代わってNiAlのピークが現れている。すなわち、燃焼合成により、NiとAlの原料粉末から化合物が合成されたことがわかる。
Ti+Al混合粉末についても、燃焼合成体のX線解析を行うと、TiAl、TiAl相が検出される。すなわち燃焼合成により、金属間化合物相が合成されたことがわかる。なお、Fe+Al混合粉末についても、燃焼合成体のX線解析を行うと、FeAl相が同様に検出される。
FIG. 17 shows the result of X-ray diffraction analysis of the synthesized product thus synthesized. FIG. 17A shows the analysis result of the Ni + Al mixed powder sample, and FIG. 17B shows the X-ray diffraction analysis result of the composite. In the composite shown in FIG. 17B, the Ni and Al peaks seen in FIG. 17A disappear, and the Ni 3 Al peak appears instead. That is, it can be seen that the compound was synthesized from Ni and Al raw material powders by combustion synthesis.
When the X-ray analysis of the combustion composite is performed on the Ti + Al mixed powder, TiAl and Ti 3 Al phases are detected. That is, it can be seen that an intermetallic compound phase was synthesized by combustion synthesis. For the Fe + Al mixed powder, the FeAl phase is similarly detected when X-ray analysis of the combustion composite is performed.

図18、図19は、合成体の組織写真である。図18は、NiAlの燃焼合成体の組織であり、図19はTiAl燃焼合成体の組織写真である。
図の白い部分が金属間化合物であり、黒い部分は、空孔である。燃焼合成体の組織は、いずれも多孔質体となっている。
金属間化合物を構造材料として利用するうえでは、強度の面から合成体は緻密である必要がある。しかし、鋳造装置の鋳型廻り部材として金属間化合物を用いる場合は、鋳造時のガスを速やかに鋳物から放出させるため、鋳型廻り部材材料としては多孔質材料の方が望ましい。
18 and 19 are structural photographs of the composite. FIG. 18 shows the structure of the Ni 3 Al combustion composite, and FIG. 19 is a structural photograph of the TiAl combustion composite.
The white part of the figure is an intermetallic compound, and the black part is a void. The structure of the combustion composite is a porous body.
In using an intermetallic compound as a structural material, the composite needs to be dense in terms of strength. However, when an intermetallic compound is used as a member around the mold of a casting apparatus, a porous material is more preferable as a member around the mold in order to quickly release the gas during casting from the casting.

すなわち鋳物製造の金属溶解時には、溶融金属には多量のガスが溶け込み、凝固時に金属から放出される。また、注湯時には、鋳型内部にガスが巻き込まれ、これらは湯とともに鋳型内部へと持ち込まれる。こうしたガスは、鋳型の内部に閉じ込められ、製品の仕上がりを劣化させるばかりでなく、鋳造欠陥の原因ともなる。こうしたことから,鋳造では鋳型に通気性のあるものが用いられる場合があり,その代表例としては砂型がある。
この点から、鋳型廻り部材についても多孔質の金属間化合物を構造材料として用いれば溶湯凝固時のガス抜きをより効率よく行うことができ、鋳造装置全体としてのガス抜きの効率を向上することができる。
That is, a large amount of gas dissolves in the molten metal when the metal is melted during casting production, and is released from the metal during solidification. Further, during pouring, gas is caught in the mold, and these are brought into the mold together with hot water. These gases are confined inside the mold, which not only degrades the finished product but also causes casting defects. For this reason, in casting, a mold with air permeability is sometimes used, and a typical example is a sand mold.
From this point, if a porous intermetallic compound is used as a structural material for the mold surrounding member as well, it is possible to more efficiently degas the molten metal during solidification, thereby improving the degassing efficiency of the entire casting apparatus. it can.

以上の様に、本燃焼合成により製造する金属間化合物を用いた鋳型廻り部材は通気性を有する多孔質構造であり、鋳造欠陥を防止する上で効果がある。また、焼結体,特には金属間化合物を多孔質(例えば相対密度50〜97%程度)とすることで、注湯時の熱衝撃も緩和し、鋳型廻り部材の長寿命化を図る上でも効果がある。工業用レンガなどの耐熱衝撃性は、多孔質によることころが大きい。さらに鋳物では、凝固金属が熱収縮のため、離型がしばしば問題となるが、金属間化合物を多孔質(例えば相対密度50〜97%程度)とすることで、例えば凝固時の溶湯に部分的に接する低圧鋳造の湯口スリーブでは鋳型廻り部材のヤング率を下げ、熱収縮による食い込みを防止して離型性を向上することもできる。   As described above, the mold periphery member using the intermetallic compound produced by the present combustion synthesis has a porous structure having air permeability, and is effective in preventing casting defects. Also, by making the sintered body, especially intermetallic compounds porous (for example, relative density of about 50 to 97%), the thermal shock during pouring can be mitigated, and the life of the mold surrounding member can be extended. effective. The thermal shock resistance of industrial bricks is largely due to the porous nature. Furthermore, in castings, mold release often becomes a problem due to heat shrinkage of the solidified metal. However, by making the intermetallic compound porous (for example, a relative density of about 50 to 97%), for example, a part of the molten metal during solidification is used. In the low pressure casting spout sleeve in contact with the mold, the Young's modulus of the mold surrounding member can be lowered to prevent biting due to thermal contraction and to improve the releasability.

以上のように、金属間化合物層を備える鋳型廻り部材を製造するうえでは、材料を多孔質とし、通気性を確保することが重要であるが、これらは、原料粉末の粒径、焼結助剤量、あるいは型へ粉末を充填する際のプレス圧、CIP圧により制御する。さらにHIP、ホットプレスを併用する場合では、HIP圧、ホットプレス圧、温度なども制御する。
図20は、NiAl燃焼合成の際の原料粉末の粒径を変え、合成される金属間化合物の密度を調べた図である。
Ni粉末粒径、Al粉末粒径を変えることにより、金属間化合物の合成体密度が制御出来ることがわかる。鋳型廻り部材の強度を考えれば、密度は高い方が好ましいが、通気性、耐熱衝撃性を考慮し、合成体密度は、50%から97%程度となる条件を選ぶのが望ましい。
As described above, it is important to make the material porous and ensure air permeability in manufacturing a mold-around member having an intermetallic compound layer. It is controlled by the amount of the agent or the press pressure and CIP pressure when filling the mold with the powder. Further, in the case of using HIP and hot press together, the HIP pressure, hot press pressure, temperature and the like are also controlled.
FIG. 20 shows the density of the intermetallic compound synthesized by changing the particle size of the raw material powder during the Ni 3 Al combustion synthesis.
It can be seen that the composite density of the intermetallic compound can be controlled by changing the Ni powder particle size and the Al powder particle size. Considering the strength of the members around the mold, it is preferable that the density is high. However, it is desirable to select conditions under which the composite density is about 50% to 97% in consideration of air permeability and thermal shock resistance.

図21には、Ti粒径、Al粒径を変えた場合の、TiAl燃焼合成体密度を示す。しかし、TiAlのように原料粉末の粒径を制御しただけでは、合成体の密度がいずれも40%付近となり、適切な密度50%から97%とならない場合もある。こうした場合には、Ti+Al粉末に加え、Ni+Al粉末(Ni:Al=1:1)あるいはCo+Al粉末(Co:Al=1:1)の助剤(助燃剤)を添加する。
図22に、Ti+Al原料粉末にNi+Al助剤を加え、合成体密度を計測した結果を示す。また、図23には、Ti+Al原料粉末に、Co+Al助剤を加えた合成体密度を示す。
図22、図23から明らかなように、Ti+Al原料粉末にNi+Al助剤、Co+Al助剤を添加することで、合成体密度が制御でき、適切な密度50%から97%とすることが出来る。
図24、図25に、Ti+Al原料粉末にNi+Al助剤(Ni:Al=1:1)、Co+Al粉末(Co:Al=1:1)の助剤を添加した場合の組織変化を示す。
Ni+Al助剤、Co+Al助剤を添加することで、微視組織から見ても、合成体密度が制御できることがわかる。両図の組織のように、助剤量が多いと、確かに密度は増加し、残留気孔は減少する。しかし、気孔は完全閉気孔となり、鋳型廻り部材の通気性が失われ、かつ耐熱衝撃性も低下することから、TiAlの場合では、Ni+Al助剤量、Co+Al助剤量は、残留気孔が存在し得る1〜6%前後が適切である。なお、燃焼合成時にHIP、ホットプレスなど加圧焼結を併用した場合では、必ずしもNi+Al助剤、Co+Al助剤に頼らなくとも良い。HIP圧力や温度等を制御することでも合成体密度の制御が可能である。
FIG. 21 shows the TiAl combustion composition density when the Ti particle size and the Al particle size are changed. However, if the particle size of the raw material powder is controlled just like TiAl, the density of the composite is nearly 40%, and the appropriate density may not be 50% to 97%. In such a case, in addition to Ti + Al powder, Ni + Al powder (Ni: Al = 1: 1) or Co + Al powder (Co: Al = 1: 1) auxiliary agent (combustion agent) is added.
FIG. 22 shows the result of measuring the composite density by adding Ni + Al auxiliary to the Ti + Al raw material powder. FIG. 23 shows the density of a composite obtained by adding a Co + Al auxiliary agent to Ti + Al raw material powder.
As apparent from FIGS. 22 and 23, by adding Ni + Al auxiliary agent and Co + Al auxiliary agent to the Ti + Al raw material powder, the density of the composite can be controlled, and an appropriate density of 50% to 97% can be obtained.
FIG. 24 and FIG. 25 show structural changes when Ni + Al auxiliary (Ni: Al = 1: 1) and Co + Al powder (Co: Al = 1: 1) auxiliary are added to Ti + Al raw material powder.
It can be seen that by adding the Ni + Al auxiliary agent and the Co + Al auxiliary agent, the composite density can be controlled even when viewed from the microscopic structure. As shown in both figures, when the amount of auxiliary agent is large, the density certainly increases and the residual pores decrease. However, since the pores are completely closed pores, the air permeability of the members around the mold is lost, and the thermal shock resistance is also lowered. In the case of TiAl, there are residual pores in the amounts of Ni + Al auxiliary agent and Co + Al auxiliary agent. About 1 to 6% obtained is appropriate. When pressure sintering such as HIP or hot press is used in combination during combustion synthesis, it is not always necessary to rely on Ni + Al auxiliary agent or Co + Al auxiliary agent. The composite density can also be controlled by controlling the HIP pressure and temperature.

実施例2
l 原料粉末として平均粒径17、24、42、128μmのTi粉末、平均粒径5、4、12、30、60μmのAl粉末を使用した。これら原料粉末を乳鉢で混合し、金型で加圧し圧粉体を作製した。
その際、Ti:Al比は10:0〜0:10とし、成形圧力は50〜150MPaで制御した。実施手順は圧粉体を石英管に入れ真空ポンプで排気した。その後、電気炉で加熱し、TiとAlの粉末を反応させ燃焼合成反応を起こさせた。その際の加熱パターンは、室温から700℃まで10℃/minの速度で加熱し、700℃で10分保持後、その後室温まで10℃/minで徐冷した。得られた多孔質体の膨張率を調べ、またX線回折、断面組織観察、ピッカース硬度測定、強度試験を行った。
Example 2
l Ti powder having an average particle size of 17, 24, 42, and 128 μm and Al powder having an average particle size of 5, 4, 12, 30, and 60 μm were used as the raw material powder. These raw material powders were mixed in a mortar and pressed with a mold to produce a green compact.
At that time, the Ti: Al ratio was 10: 0 to 0:10, and the molding pressure was controlled at 50 to 150 MPa. The procedure was as follows: the green compact was placed in a quartz tube and evacuated with a vacuum pump. Then, it heated with the electric furnace and made the combustion synthesis reaction react with the powder of Ti and Al. The heating pattern at that time was heated from room temperature to 700 ° C. at a rate of 10 ° C./min, held at 700 ° C. for 10 minutes, and then gradually cooled to room temperature at 10 ° C./min. The obtained porous body was examined for expansion coefficient, and X-ray diffraction, cross-sectional structure observation, picker hardness measurement, and strength test were performed.

2 多孔質体の作製条件
種々の粉末の組み合わせにより圧粉体を作製し、燃焼合成を行い直径膨張率、体積膨張率を調査した。図26にφ8、成形圧力100MPa、混合比率を5:5の条件下で粉末粒径を変化させた結果を示す。図26(a)はAl粒径を固定してTi粒径を変化させた場合、(b)はTi粒径を固定してAl粒径を変化させたものである。TiとAlの粒径を大きくするにつれ膨張率が上昇することがわかる。最も膨張率が大きい場合で、(a)では直径膨張率は約20%の増加、体積膨張率は約70%の増加、(b)では、直径膨張率は約20%の増加、体積膨張率は約70%の増加となった。
2. Preparation conditions of porous body Green compacts were prepared by combining various powders, combustion synthesis was performed, and the diameter expansion coefficient and volume expansion coefficient were investigated. FIG. 26 shows the result of changing the powder particle diameter under the conditions of φ8, molding pressure 100 MPa, and mixing ratio 5: 5. FIG. 26A shows a case where the Al particle size is fixed and the Ti particle size is changed, and FIG. 26B shows a case where the Ti particle size is fixed and the Al particle size is changed. It can be seen that the expansion coefficient increases as the grain sizes of Ti and Al are increased. In the case where the expansion coefficient is the largest, in (a), the diameter expansion coefficient increases by about 20%, the volume expansion coefficient increases by about 70%, and in (b), the diameter expansion coefficient increases by about 20%, the volume expansion coefficient Increased by about 70%.

図27に成形圧力を変化させた結果を示す。成形圧力を高めるにつれ、膨張率も上昇することがわかる。成形圧力が150MPaで最高のときに、直径膨張率は約20%の増加、体積膨張率は約60%の増加となり、ともに最大となった。
図28に圧粉体の直径を変化させた結果を示す。圧粉体の直径が大きくなるにつれ膨張率も増加することがわかる。最大で直径膨張率は約20%の増加、体積膨張率は約70%の増加になった。しかし、圧粉体の直径による膨張率変化は小さく、それほど大きな変化は見られなかった。
FIG. 27 shows the result of changing the molding pressure. It can be seen that the expansion coefficient increases as the molding pressure is increased. When the molding pressure was the highest at 150 MPa, the diameter expansion coefficient increased by about 20% and the volume expansion coefficient increased by about 60%, both of which were maximum.
FIG. 28 shows the result of changing the diameter of the green compact. It can be seen that the expansion coefficient increases as the diameter of the green compact increases. The maximum diameter expansion coefficient increased by about 20%, and the volume expansion coefficient increased by about 70%. However, the change in the expansion coefficient due to the diameter of the green compact was small, and no significant change was observed.

図29にTi:Alの混合比率を変化させた結果を示す。膨張率はTi:Al=5:5比率としたときに膨張率が最大となり、そのときの直径膨張率が約20%の増加、体積膨張率が約60%の増加であった。しかし、これよりTiリッチ、Alリッチとなると膨張率は減少する。さらにAlリッチでは合成体の溶解も生じ、多孔貿体を作製できなかった。従って、この結果から本法で多孔質体が作製できる範囲はAl比率が10〜70%の範囲である。   FIG. 29 shows the result of changing the mixing ratio of Ti: Al. When the expansion coefficient was Ti: Al = 5: 5, the expansion coefficient was maximum, and the expansion coefficient at that time was about 20% increase and the volume expansion coefficient was about 60%. However, the expansion rate decreases when Ti rich or Al rich. Further, when Al was rich, the composite was dissolved and a porous trade body could not be produced. Therefore, from this result, the range in which the porous body can be produced by this method is the range where the Al ratio is 10 to 70%.

3 多孔質体の特性
図30にX線回折の結果を示す。合成体では、原料粉末のピークが消え、代わって TiAl、TiAlが合成されていることがわかる。またTi:Al比を変えた場合では、TiリッチではTiAl相、αTi相が、AlリッチではTiAl相、Al相から構成されていた。
3 Characteristics of Porous Material FIG. 30 shows the results of X-ray diffraction. In the composite, the peak of the raw material powder disappears, and it can be seen that Ti 3 Al and TiAl 3 are synthesized instead. Further, when the Ti: Al ratio was changed, the TiAl phase was composed of a TiAl phase and an αTi phase, and the Al rich layer was composed of a TiAl 3 phase and an Al phase.

図31に多孔質体の断面組織を示す。圧粉体が燃焼合成されると、Alが溶けTiに吸収され、空孔が生成することがわかる。また、Ti:Alの比率を変化させていくと、Alの比率が大きくなるにつれ空孔が大きくなる傾向が見られた。しかしTi:Al=2:8以降になると空孔の減少が見られた。これはAlの溶解量が多くなるためにTiが吸収しきれなくなり、合成体が溶けたためだと考えられる。
図32に合成体の硬度を示す。硬度は100〜350であった。混合比率を変化させると、Ti:Al=5:5で最大となり、これよりTiリッチ、Alリッチになると減少となった。これは反応熱がTi:Al=5:5で最も高いためだと思われる。またTiリッチ、Alリッチになると反応熱が減少し、粒子のまわりが反応し、中心部が未反応というTi、Alが増えるためと考えられる。
FIG. 31 shows a cross-sectional structure of the porous body. It can be seen that when the green compact is burned and synthesized, Al melts and is absorbed by Ti and voids are generated. Further, when the Ti: Al ratio was changed, the vacancies tended to increase as the Al ratio increased. However, when Ti: Al = 2: 8 or later, vacancies were reduced. This is considered to be because Ti could not be absorbed because the amount of Al dissolved increased, and the composite was dissolved.
FIG. 32 shows the hardness of the composite. Hardness was 100-350. When the mixing ratio was changed, the maximum was obtained at Ti: Al = 5: 5, and when the mixture ratio was Ti-rich and Al-rich, it decreased. This is probably because the heat of reaction is highest at Ti: Al = 5: 5. Further, when Ti rich and Al rich, the reaction heat is decreased, the surroundings of the particles react, and the Ti and Al are unreacted in the central portion.

図33に混合比率と強度の関係を示す。混合比率を変化させると、Al比率の増加につれ強度は減少した。強度はTi:Al=4:6〜5:5を極小とし、放物線状になる傾向が見られた。これは4:6〜5:5付近で膨張率が大きく、密度が低下するためである。また3:7での強度が低かったが、化合物相がTiAlであること、また内部の組織で粒子同士の連結が乏しいためと思われる。 FIG. 33 shows the relationship between the mixing ratio and the strength. When the mixing ratio was changed, the strength decreased as the Al ratio increased. The strength of Ti: Al = 4: 6 to 5: 5 was minimized, and a tendency to be parabolic was observed. This is because the expansion coefficient is large in the vicinity of 4: 6 to 5: 5, and the density decreases. The 3: strength at 7, but was low, compound phase to be TiAl 3, also it is because poor is connected between particles within the tissue.

図34に粒径と強度の関係を示す。Ti粒径を大きくするにつれ、またAl粒径を大きくするにつれ、強度が減少する傾向が見られた。
図35及び図36は、混合比率を変化させた圧粉体を用いて、グラファイト製マスタ型8内への充填を試み、その結果得られた多孔質焼結体9及びグラファイト製マスタ型8を示す。図35が充填後燃焼合成によって成型された状態を示し、図36が多孔質焼結体9をグラファイト製マスタ型8から離型した状態を示す。
図に示されるようにグラファイト製マスタ型8は十分に燃焼合成の熱に耐えることができ、グラファイト製マスタ型8の形状を転写した多孔質焼結体9が得られた。
FIG. 34 shows the relationship between particle size and strength. There was a tendency for the strength to decrease as the Ti grain size was increased and as the Al grain size was increased.
FIG. 35 and FIG. 36 attempt to fill the graphite master mold 8 using green compacts with different mixing ratios. The porous sintered body 9 and the graphite master mold 8 obtained as a result are shown in FIGS. Show. FIG. 35 shows a state molded by combustion synthesis after filling, and FIG. 36 shows a state where the porous sintered body 9 is released from the graphite master die 8.
As shown in the figure, the graphite master mold 8 can sufficiently withstand the heat of combustion synthesis, and a porous sintered body 9 in which the shape of the graphite master mold 8 is transferred is obtained.

本実施例では、燃焼合成法によりグラファイト製マスタ型上での多孔質材の製造を試み、その作製条件を検討した。
・圧粉体の成形圧力を高めた方が膨張率は高い。そして組成比では、混合比率Ti:Al=5:5の時に膨張率は高い。そして多孔質体が作製できる範囲は、Al比率が10〜70%の範囲である。
・原料粉末の粒径は大きい方が膨張率は高いが、強度は低下する。Ti粒径が17〜50μm、Al粒径は5〜30μmのものは、膨張率はそれほど高くないが強度は高い。強度と膨張率の兼ね合いから原料粉末の粒径としては、Ti粒径が24〜50μm、Al拉径は12〜30μmが適する。
In this example, production of a porous material on a graphite master mold was attempted by a combustion synthesis method, and the production conditions were examined.
・ Expansion coefficient is higher when the compacting pressure of the green compact is increased. The composition ratio is high when the mixing ratio is Ti: Al = 5: 5. And the range which can produce a porous body is a range whose Al ratio is 10 to 70%.
・ The larger the particle size of the raw material powder, the higher the expansion rate, but the lower the strength. When the Ti particle size is 17 to 50 μm and the Al particle size is 5 to 30 μm, the expansion rate is not so high, but the strength is high. In view of the balance between strength and expansion rate, the raw material powder preferably has a Ti particle diameter of 24 to 50 μm and an Al ablation of 12 to 30 μm.

実施例3
図37にMg−Al多孔質焼結体についての膨張率を調べた結果を示す。図中のプロットが体積膨張率を示す。一部融解した試料については黒印で示した。本系では、Alの組成0〜0.4では体積変化が無く、膨張は認められなかったが、0.5〜0.9では膨張が観察された。Alの比率は膨張に関係するといえる。加熱温度では、700Kでは膨張はあまり認められない。800Kでは膨張が観察されたが、0.5〜0.7の組成では融解が生じた。750Kで最大約140%の膨張が観察された。この結果から、加熱温度は約750Kが適切である。
Example 3
FIG. 37 shows the results of examining the expansion coefficient of the Mg—Al porous sintered body. The plot in the figure shows the volume expansion coefficient. Partially melted samples are indicated by black marks. In this system, there was no volume change and no expansion was observed at Al compositions of 0 to 0.4, but expansion was observed at 0.5 to 0.9. It can be said that the ratio of Al is related to expansion. At the heating temperature, little expansion is observed at 700K. Although expansion was observed at 800K, melting occurred at a composition of 0.5 to 0.7. Up to about 140% expansion was observed at 750K. From this result, a heating temperature of about 750K is appropriate.

図38、図39、図40にFe−Al焼結体について体積膨張率を調べた結果を示す。図38はFeとAlの混合比を制御した場合、図39はAl粒径を変化させた場合、図40はFe粒径を変化させた場合の結果である。混合比率では本系ではFe:Al比が0.2:0.8を除き、いずれの試料とも150%以上の大きな体積膨張を示した。0.2:0.8では体積膨張率が低いがこれはAlリッチの組成のため試料が融解したためである。粒径の効果については、Al粒径を変化させたときでは、どの比率の場合でも粒径の影響があまりみられなかった。Feの粒径を変化させたときでは、Fe:Al比が0.5:0.5、0.8:0.2では粒径の影響がみられないが、Fe:Al比が0.2:0.8では粒径が大きい方が膨張が大きくなることがわかった。   38, 39, and 40 show the results of examining the volume expansion coefficient of the Fe—Al sintered body. FIG. 38 shows the results when the mixing ratio of Fe and Al is controlled, FIG. 39 shows the results when the Al particle size is changed, and FIG. 40 shows the results when the Fe particle size is changed. With regard to the mixing ratio, in this system, except for the Fe: Al ratio of 0.2: 0.8, all the samples showed a large volume expansion of 150% or more. At 0.2: 0.8, the volume expansion coefficient is low, but this is because the sample melted due to the Al-rich composition. Regarding the effect of the particle size, when the Al particle size was changed, the influence of the particle size was not so much observed at any ratio. When the particle size of Fe is changed, the effect of particle size is not observed when the Fe: Al ratio is 0.5: 0.5 and 0.8: 0.2, but the Fe: Al ratio is 0.2. : When 0.8, the larger the particle size, the greater the expansion.

図41にMg−Al焼結体の組織を示す。本系において、Mg:Al比が0.8:0.2では焼結が認められない。これは、Mgが酸化しやすいため、Alとの反応が起こりにくいためと考えられる。加熱温度による違いでは、700Kでの焼結体の組織を見ると、原料粉末のMgとAlの粉末が観察され、試料はほとんど焼結していない。800KではMgとAlの粉末は消失し、焼結が開始している。しかし、焼結収縮も生じているために膨張率は低い。750Kでは800Kのような焼結収縮はおさえられ、多孔質体を得るのに最適なことがわかった。 図42、図43、図44にFe−Al焼結体の組織を示す。図42はFe:Al比を変化させた場合、図43はAl粒径を変化させた場合、図44はFe粒径を変化させた場合である。各試料ともFe、Alの粒子は消失し、代わってFeAlの化合物粒子が生成しているのが確認された。Fe:Al比の効果について調べると、Feが多いと微細な粒子が生成し、Alが多いと結合部分の大きな粒子が生成するという傾向がみられた。これは、Alが多いと融点が下がり、液相の生成により反応や焼結が進行しやすくなるためと考えられる。Fe:Al比が0.8:0.2のときでも膨張は起こるが、得られた試料は粒子が細かく、焼結体がもろいため不適切である。粒径についてはAlの粒径を変化させた場合、12μmAlと30μmAlの場合では、微細な化合物となった。一方、60μmでは、結合部分が大きな試料が得られた。12μmAl、30μmAlといった微細な化合物では、焼結体がもろく、不適切である。60μmAlでは結合部分が大きく、しっかりとした焼結体が得られた。
Feの粒径を変化させた場合、膨張率では、粒径による影響があり、粒径を大きくすると、膨張率が大きくなることが認められる。しかし、組織を見ると、粒径を大きくすると結合部分が小さくなり、焼結体がもろくなることがわかった。
FIG. 41 shows the structure of the Mg—Al sintered body. In this system, sintering is not observed when the Mg: Al ratio is 0.8: 0.2. This is thought to be because Mg is easily oxidized, and reaction with Al hardly occurs. Regarding the difference depending on the heating temperature, when the structure of the sintered body at 700 K is seen, the powders of the raw material Mg and Al are observed, and the sample is hardly sintered. At 800K, the Mg and Al powders disappeared and sintering started. However, the expansion rate is low due to sintering shrinkage. Sintering shrinkage as high as 800K was suppressed at 750K, which was found to be optimal for obtaining a porous body. 42, 43, and 44 show the structure of the Fe-Al sintered body. 42 shows a case where the Fe: Al ratio is changed, FIG. 43 shows a case where the Al particle size is changed, and FIG. 44 shows a case where the Fe particle size is changed. In each sample, Fe and Al particles disappeared, and it was confirmed that FeAl compound particles were generated instead. When the effect of the Fe: Al ratio was examined, there was a tendency that fine particles were generated when the amount of Fe was large, and particles having a large bonding portion were formed when the amount of Al was large. This is presumably because if the amount of Al is large, the melting point decreases, and the reaction and the sintering easily proceed due to the generation of the liquid phase. Expansion occurs even when the Fe: Al ratio is 0.8: 0.2, but the obtained sample is inappropriate because the particles are fine and the sintered body is brittle. As for the particle size, when the particle size of Al was changed, in the case of 12 μm Al and 30 μm Al, a fine compound was obtained. On the other hand, at 60 μm, a sample with a large binding portion was obtained. In a fine compound such as 12 μm Al and 30 μm Al, the sintered body is fragile and inappropriate. With 60 μm Al, the bonded portion was large and a firm sintered body was obtained.
When the particle size of Fe is changed, the expansion coefficient is affected by the particle diameter, and it is recognized that the expansion coefficient increases when the particle diameter is increased. However, when the structure was examined, it was found that when the particle size was increased, the bonded portion was reduced and the sintered body became brittle.

以上の実験結果から、膨張する条件、内部組織が確認され、これに基づきグラファイト製マスタ型内で多孔質金属を作製した。
焼結時の膨張によりグラファイト製マスタ型内を充填する多孔質焼結体を得ることができMg−Al系でも圧粉体の寸法を工夫することで充填材を得ることができる。
From the above experimental results, conditions for expansion and internal structure were confirmed, and based on this, a porous metal was produced in a graphite master mold.
A porous sintered body filling the graphite master mold can be obtained by expansion during sintering, and a filler can be obtained by devising the size of the green compact even in the case of Mg-Al.

本発明は重力鋳造、低圧鋳造、ダイカスト鋳造に用いられる鋳造装置及び鋳型廻り部材の製造方法並びに鋳型廻り部材として適用され、例えば、アルミニウムその他の金属からなる機械部品の製造に利用する低圧鋳造装置に利用することができる。さらには、自動車の変速機を収容するギヤボックスの製造のための鋳造装置など広く鋳造技術に実施することができる。   INDUSTRIAL APPLICABILITY The present invention is applied to a casting apparatus used for gravity casting, low pressure casting, die casting, a method for producing a mold surrounding member, and a mold surrounding member. Can be used. Furthermore, the present invention can be widely applied to casting technology such as a casting apparatus for manufacturing a gear box that accommodates a transmission of an automobile.

図1は本発明に係る鋳造装置の鋳型用注湯スリーブの使用状態の断面図である。FIG. 1 is a sectional view of a casting pouring sleeve for a casting apparatus according to the present invention in use. 図2は本発明に係る鋳造装置の鋳型用注湯スリーブの断面図である。FIG. 2 is a cross-sectional view of the mold pouring sleeve of the casting apparatus according to the present invention. 図3は本発明に係る重力鋳造装置の模式断面図である。FIG. 3 is a schematic cross-sectional view of the gravity casting apparatus according to the present invention. 本発明の実施の形態の鋳造装置の構成を示す断面図。Sectional drawing which shows the structure of the casting apparatus of embodiment of this invention. 本発明の実施の形態の鋳造装置の湯口部の拡大断面図。The expanded sectional view of the gate part of the casting apparatus of embodiment of this invention. 本発明の実施の形態の鋳造装置のプランジャスリーブの断面図である。It is sectional drawing of the plunger sleeve of the casting apparatus of embodiment of this invention. (a)本発明の他の実施の形態の鋳造装置のプランジャスリーブの断面図である。(b)図7(a)A−A断面図である。(A) It is sectional drawing of the plunger sleeve of the casting apparatus of other embodiment of this invention. (B) FIG. 7 (a) is a cross-sectional view taken along the line AA. Ni粉末とAl粉末の燃焼合成における理論燃焼温度を計算するための温度エンタルピー線図Temperature enthalpy diagram for calculating theoretical combustion temperature in combustion synthesis of Ni powder and Al powder Ti粉末とAl粉末の燃焼合成における理論燃焼温度を計算するための温度エンタルピー線図Temperature enthalpy diagram for calculating theoretical combustion temperature in combustion synthesis of Ti powder and Al powder Fe粉末とAl粉末の燃焼合成における理論燃焼温度を計算するための温度エンタルピー線図Temperature enthalpy diagram for calculating theoretical combustion temperature in combustion synthesis of Fe powder and Al powder 本発明の鋳型廻り部材の概念図Conceptual diagram of the mold surrounding member of the present invention Ti粉末+Al粉末=TiAl+反応熱という燃焼合成反応時の温度測定例を示す図The figure which shows the example of temperature measurement at the time of the combustion synthesis reaction of Ti powder + Al powder = TiAl + reaction heat 3Ni粉末+Al粉末=NiAl+反応熱という燃焼合成反応時の温度測定例を示す図Shows the temperature measurement example during combustion synthesis reaction that 3Ni powder + Al powder = Ni 3 Al + reaction heat Fe粉末+Al粉末=FeAl+反応熱という燃焼合成反応時の温度測定例を示す図The figure which shows the example of temperature measurement at the time of the combustion synthesis reaction of Fe powder + Al powder = FeAl + reaction heat 本発明の実施例1におけるNiAl金属間化合物燃焼合成の粉末混合試料を急冷し、その組織を調べた組織写真であって、図15(a)は反応開始前の組織を示す。図15(b)は燃焼合成初期に急冷した試料の組織を示す。図15(c)は燃焼合成中期に合成した試料の組織を示す。図15(d)は燃焼合成体の組織を示す。FIG. 15 (a) shows a structure before starting the reaction, in which a powder mixed sample of Ni 3 Al intermetallic compound combustion synthesis in Example 1 of the present invention was rapidly cooled and its structure was examined. FIG. 15 (b) shows the structure of the sample rapidly cooled in the early stage of combustion synthesis. FIG. 15C shows the structure of a sample synthesized in the middle of combustion synthesis. FIG. 15 (d) shows the structure of the combustion composite. 図15(a)〜図15(d)に示す組織変化の様子を模式的に示した図であり、図16(a)反応開始前の組織を示す。 図16(b)燃焼合成初期に急冷した試料の組織を示す。 図16(c)燃焼合成中期に合成した試料の組織を示す。 図16(d)金属間化合物相の組織を示す。It is the figure which showed typically the mode of the structure | tissue change shown to Fig.15 (a)-FIG.15 (d), and shows the structure | tissue before reaction of Fig.16 (a). FIG. 16 (b) shows the structure of a sample that was rapidly cooled in the early stage of combustion synthesis. FIG. 16C shows the structure of the sample synthesized in the middle of combustion synthesis. FIG. 16 (d) shows the structure of the intermetallic compound phase. 本発明の実施例1においてX線回折分析を行った結果を示す図であり、図17(a)はNi+Al混合粉末のX線回折分析を行った結果を示し、図17(b)は燃焼合成体のX線回折分析結果を示す図である。It is a figure which shows the result of having performed X-ray diffraction analysis in Example 1 of this invention, FIG.17 (a) shows the result of having performed X-ray diffraction analysis of Ni + Al mixed powder, FIG.17 (b) is a combustion synthesis | combination. It is a figure which shows the X-ray-diffraction analysis result of a body. 本発明の実施例1においてNiAl燃焼合成体の組織写真である。In Example 1 of the present invention is a structural photograph of Ni 3 Al combustion composite. 本発明の実施例1においてTiAl燃焼合成体の組織写真である。It is a structure | tissue photograph of the TiAl combustion synthetic | combination body in Example 1 of this invention. 本発明の実施例1においてNiAl金属間化合物燃焼合成の際の原料粉末の粒径を変え、合成される金属間化合物の密度を調べた図である。In Example 1 of the present invention alter the particle size of the raw material powder during the Ni 3 Al intermetallic compound combustion synthesis diagrams of examining the density of the intermetallic compound to be synthesized. 本発明の実施例1においてTi粒径、Al粒径を変えて得られる各TiAl燃焼合成体の密度を示す図。The figure which shows the density of each TiAl combustion synthetic | combination body obtained by changing Ti particle size and Al particle size in Example 1 of this invention. 本発明の実施例1においてTi+Al原料粉末にNi+Al助剤を加えて得られた燃焼合成体の密度を計測した結果を示す図。The figure which shows the result of having measured the density of the combustion synthetic | combination body obtained by adding Ni + Al adjuvant to Ti + Al raw material powder in Example 1 of this invention. 本発明の実施例1においてTi+Al原料粉末に、Co+Al助剤を加えて得られた燃焼合成体の密度を計測した結果を示す図。The figure which shows the result of having measured the density of the combustion synthetic | combination body obtained by adding Co + Al adjuvant to Ti + Al raw material powder in Example 1 of this invention. 本発明の実施例1においてTi+Al原料粉末にNi+Al助剤(Ni:Al=1:1)を添加した場合の燃焼合成体の組織変化を示す図。The figure which shows the structure | tissue change of the combustion synthetic | combination body at the time of adding Ni + Al adjuvant (Ni: Al = 1: 1) to Ti + Al raw material powder in Example 1 of this invention. 本発明の実施例1においてTi+Al原料粉末にCo+Al粉末(Co:Al=1:1)の助剤を添加した場合の燃焼合成体の組織変化を示す図。The figure which shows the structure | tissue change of a combustion synthetic | combination body when the adjuvant of Co + Al powder (Co: Al = 1: 1) is added to Ti + Al raw material powder in Example 1 of this invention. 本発明の実施例2において多孔質体の燃焼合成を行い直径膨張率、体積膨張率を調査したときの作製条件とその結果を示す図であり、図26(a)はAl粒径を固定してTi粒径を変化させた場合、図26(b)はTi粒径を固定してAl粒径を変化させた場合を示す。It is a figure which shows the preparation conditions when the combustion synthesis | combination of the porous body is carried out in Example 2 of this invention and the diameter expansion coefficient and the volume expansion coefficient were investigated, and its result, Fig.26 (a) fixes Al particle size. When the Ti particle size is changed, FIG. 26B shows the case where the Ti particle size is fixed and the Al particle size is changed. 本発明の実施例2において混合粉末の成形の際の成形圧力を変化させた結果を示す図。The figure which shows the result of having changed the shaping | molding pressure at the time of shaping | molding of mixed powder in Example 2 of this invention. 本発明の実施例2において圧粉体の直径を変化させた結果を示す図。The figure which shows the result of having changed the diameter of the green compact in Example 2 of this invention. 本発明の実施例2においてTi:Alの混合比率を変化させた結果を示す図。The figure which shows the result of having changed the mixing ratio of Ti: Al in Example 2 of this invention. 本発明の実施例2においてX線回折試験を行った結果を示す図。The figure which shows the result of having performed the X-ray-diffraction test in Example 2 of this invention. 本発明の実施例2において得られた多孔質体の断面組織を示す図。The figure which shows the cross-sectional structure | tissue of the porous body obtained in Example 2 of this invention. 本発明の実施例2において得られた燃焼合成体の硬度を示す図。The figure which shows the hardness of the combustion synthetic | combination body obtained in Example 2 of this invention. 本発明の実施例2において原料粉末の混合比率と得られる燃焼合成体の強度との関係を示す図。The figure which shows the relationship between the mixing ratio of a raw material powder and the intensity | strength of the combustion synthetic | combination body obtained in Example 2 of this invention. 本発明の実施例2において原料粉末の粒径と得られる燃焼合成体の強度との関係を示す図。The figure which shows the relationship between the particle size of raw material powder and the intensity | strength of the combustion synthetic | combination body obtained in Example 2 of this invention. 本発明の実施例2において得られた多孔質焼結体及びグラファイト製マスタ型の写真Photograph of porous sintered body and graphite master mold obtained in Example 2 of the present invention 本発明の実施例2において得られた多孔質焼結体及びグラファイト製マスタ型の写真Photograph of porous sintered body and graphite master mold obtained in Example 2 of the present invention 本発明の実施例3においてMg−Al焼結体についての膨張率を調べた結果を示す図。The figure which shows the result of having investigated the expansion coefficient about the Mg-Al sintered compact in Example 3 of this invention. 本発明の実施例3においてFeとAlの混合比を制御した場合にFe−Al焼結体について膨張率を調べた結果を示す図。The figure which shows the result of having investigated the expansion coefficient about the Fe-Al sintered compact, when the mixing ratio of Fe and Al was controlled in Example 3 of this invention. 本発明の実施例3においてAl粒径を変化させた場合にFe−Al焼結体について膨張率を調べた結果を示す図。The figure which shows the result of having investigated the expansion coefficient about the Fe-Al sintered compact when changing Al particle diameter in Example 3 of this invention. 本発明の実施例3においてFe粒径を変化させた場合にFe−Al焼結体について膨張率を調べた結果を示す図。The figure which shows the result of having investigated the expansion coefficient about the Fe-Al sintered compact when changing the Fe particle size in Example 3 of this invention. 本発明の実施例3において得られたMg−Al焼結体の組織を示す図。The figure which shows the structure | tissue of the Mg-Al sintered compact obtained in Example 3 of this invention. 本発明の実施例3において得られたFe:Al比を変化させた場合のFe−Al焼結体の組織を示す図。The figure which shows the structure | tissue of the Fe-Al sintered compact at the time of changing Fe: Al ratio obtained in Example 3 of this invention. 本発明の実施例3において得られたAl粒径を変化させた場合のFe−Al焼結体の組織を示す図。The figure which shows the structure | tissue of the Fe-Al sintered compact at the time of changing the Al particle diameter obtained in Example 3 of this invention. 本発明の実施例3において得られたFe粒径を変化させた場合のFe−Al焼結体の組織を示す図。The figure which shows the structure | tissue of the Fe-Al sintered compact at the time of changing the Fe particle size obtained in Example 3 of this invention. ダイカスト鋳造装置を示す概略断面図である。It is a schematic sectional drawing which shows a die-casting apparatus.

符号の説明Explanation of symbols

1・・・鋳型廻り部材、2・・・マスタ、3・・・形状オフセット部、4・・・表層部、5・・・第一の本体部、6・・・均一化層、7・・・第2の本体部、8・・・グラファイト製マスタ型、9・・・燃焼合成金属間化合物、11・・・鋳造装置、11A・・・鋳造空間、11B・・・重力鋳造鋳型用注湯スリーブ、19・・・湯口、21・・・筒体、22・・・本体部、23・・・耐食バリア層、31・・・上金型、32・・・下金型、33・・・湯口スリーブ、34・・・ストーク、35・・・溶湯、36・・・加熱保持炉 、37・・・固定プレート、39・・・空気圧供給口、38・・・金型加圧用シリンダ。 DESCRIPTION OF SYMBOLS 1 ... Mold surrounding member, 2 ... Master, 3 ... Shape offset part, 4 ... Surface layer part, 5 ... 1st main-body part, 6 ... Uniformation layer, 7 ... -2nd main-body part, 8 ... graphite master type | mold, 9 ... combustion synthetic intermetallic compound, 11 ... casting apparatus, 11A ... casting space, 11B ... pouring for gravity casting molds Sleeve ... 19 ... Spout, 21 ... Cylinder, 22 ... Body, 23 ... Corrosion-resistant barrier layer, 31 ... Upper mold, 32 ... Lower mold, 33 ... Spout sleeve, 34 ... Stoke, 35 ... Molten metal, 36 ... Heating and holding furnace, 37 ... Fixed plate, 39 ... Air pressure supply port, 38 ... Cylinder for pressurizing mold.

Claims (30)

多孔質焼結体層を備える鋳型廻り部材を有することを特徴とする鋳造装置。 A casting apparatus comprising a mold periphery member provided with a porous sintered body layer. 多孔質焼結体層が耐食バリア層を有する請求項1記載の鋳造装置。 The casting apparatus according to claim 1, wherein the porous sintered body layer has a corrosion-resistant barrier layer. 鋳型廻り部材が鋳型に対し溶湯を供給する経路の少なくとも一部を構成する注湯部構成部材である請求項1記載の鋳造装置。 The casting apparatus according to claim 1, wherein the mold surrounding member is a pouring part constituting member constituting at least a part of a path for supplying the molten metal to the mold. 鋳型廻り部材が金属材料を基材とする本体部に取り付けられる請求項1記載の鋳造装置。 The casting apparatus according to claim 1, wherein the mold-around member is attached to a main body having a metal material as a base material. 金属材料を基材とする本体部が溶接金属により形成される請求項4に記載の鋳造装置。 The casting apparatus according to claim 4, wherein the main body portion made of a metal material is formed of a weld metal. 本体部が、金属材料によって造型されて多孔質焼結体層の強度を補充する第一の本体部と、金属材料によって造型されて鋳造機構との取り付け機能部を構成する第2の本体部とよりなる請求項4記載の鋳造装置。 A first main body portion made of a metal material to replenish the strength of the porous sintered body layer; a second main body portion made of a metal material and constituting an attachment function portion with a casting mechanism; The casting apparatus according to claim 4 comprising: 第一の本体部と第2の本体部との間に温度均一化層が設けられる請求項6に記載の鋳造装置。 The casting apparatus according to claim 6, wherein a temperature uniformizing layer is provided between the first main body portion and the second main body portion. 多孔質焼結体が金属間化合物である請求項1に記載の鋳造装置。 The casting apparatus according to claim 1, wherein the porous sintered body is an intermetallic compound. 鋳型の湯口に設置され鋳型に溶湯を供給する注湯部構成部材である鋳型用注湯スリーブが多孔質焼結体層を備えることを特徴とする鋳造装置。 A casting apparatus, wherein a pouring sleeve for a mold, which is a pouring part constituting member that is installed at a pouring gate of a mold and supplies molten metal to the mold, includes a porous sintered body layer. 上金型と、下金型とからなる鋳型を備え、その両金型の間に形成された空間に下方から溶湯を供給するようにその下金型に湯口が設けられ、その湯口に連通する注湯部構成部材である湯口スリーブおよび/またはストークが多孔質焼結体層を備えることを特徴とする鋳造装置。 A mold comprising an upper mold and a lower mold is provided, and a pouring gate is provided in the lower mold so as to supply molten metal from below into a space formed between the two molds, and communicates with the pouring gate. A casting apparatus, wherein a pouring sleeve and / or stalk, which is a pouring part constituting member, includes a porous sintered body layer. 注湯用の給湯口を開口した注湯部構成部材であるプランジャスリーブが少なくともその一部に多孔質焼結体層を備えることを特徴とする鋳造装置。 A casting apparatus characterized in that a plunger sleeve, which is a pouring part constituting member having a hot water supply opening for pouring, is provided with a porous sintered body layer at least in part. プランジャスリーブの一部に設けた嵌合部に多孔質焼結体で形成した浸蝕防止部材を嵌入して配置してなる請求項11に記載の鋳造装置。 The casting apparatus according to claim 11, wherein an erosion preventing member formed of a porous sintered body is fitted and disposed in a fitting portion provided in a part of the plunger sleeve. 鋳型廻り部材の溶湯との接触表面形状に対する反転形状をもつマスタ型内に多孔質焼結体の原料元素の混合粉末を充填する工程と、充填した混合粉末をマスタ型内で反応させ、多孔質焼結体層を製造する工程とよりなる鋳型廻り部材の製造方法。 The process of filling the mixed powder of the raw material elements of the porous sintered body into the master mold having a reversal shape with respect to the contact surface shape with the molten metal of the mold surrounding member, and reacting the filled mixed powder in the master mold to make the porous A method for producing a mold surrounding member comprising a step of producing a sintered body layer. 多孔質焼結体が金属間化合物である請求項13に記載の鋳型廻り部材の製造方法。 The method according to claim 13, wherein the porous sintered body is an intermetallic compound. 多孔質焼結体の原料元素の混合粉末の混合比率は、目的とする多孔質焼結体の化学量論組成に基づき調整される請求項13記載の鋳型廻り部材の製造方法。 The method for producing a mold-around member according to claim 13, wherein the mixing ratio of the raw material element mixed powder of the porous sintered body is adjusted based on the stoichiometric composition of the target porous sintered body. 多孔質焼結体の原料元素の混合粉末の混合比率が化学量論組成に対し、所要の原料元素が過剰となるよう調整される請求項13記載の鋳型廻り部材の製造方法。 14. The method for producing a mold-surrounding member according to claim 13, wherein the mixing ratio of the raw material element mixed powder of the porous sintered body is adjusted so that the required raw material element is excessive with respect to the stoichiometric composition. 目的とする多孔質焼結体の原料元素の混合粉末に加え、助剤となる元素粉末を添加する請求項13〜16のいずれか一に記載の鋳型廻り部材の製造方法。 The manufacturing method of the mold periphery member as described in any one of Claims 13-16 which adds the element powder used as an adjuvant to the mixed powder of the raw material element of the target porous sintered compact. 助剤となる元素粉末添加量が0.5%〜10%である請求項13に記載の鋳型廻り部材の製造方法。 The method for producing a mold-turning member according to claim 13, wherein the additive amount of the element powder as an auxiliary agent is 0.5% to 10%. 混合粉末を充填したマスタ型を加熱し、混合粉末の熱爆発反応によってマスタ型上に多孔質焼結体の合成を行う請求項13〜18のいずれか一に記載の鋳型廻り部材の製造方法。 The manufacturing method of the mold periphery member as described in any one of Claims 13-18 which heats the master type | mold filled with mixed powder, and synthesize | combines a porous sintered compact on a master type | mold by thermal explosion reaction of mixed powder. 加熱温度は、多孔質焼結体原料元素及び助剤金属元素の中でもっとも低い融点を示す材料の融点に対して10℃〜50℃以上高い温度とする請求項19に記載の鋳型廻り部材の製造方法。 The heating temperature of the mold periphery member according to claim 19, wherein the heating temperature is higher by 10 ° C to 50 ° C or more than the melting point of the material having the lowest melting point among the porous sintered body raw material element and the auxiliary metal element. Production method. 粉末間に微量な液相を生成させて粉末を焼結させる請求項20に記載の鋳型廻り部材の製造方法。 21. The method for producing a mold periphery member according to claim 20, wherein a small amount of liquid phase is generated between the powders to sinter the powders. 加熱雰囲気を不活性ガスもしくは真空雰囲気とする請求項13〜21のいずれか一に記載の鋳型廻り部材の製造方法。 The manufacturing method of the mold periphery member according to any one of claims 13 to 21, wherein the heating atmosphere is an inert gas or a vacuum atmosphere. 誘導加熱またはパルス印加通電など補助熱源を用いる請求項13〜22のいずれか一に記載の鋳型廻り部材の製造方法。 The method for producing a mold-around member according to any one of claims 13 to 22, wherein an auxiliary heat source such as induction heating or pulse application energization is used. 混合粉末を充填したマスタ型の加熱を加圧下で行う請求項13〜22のいずれか一に記載の鋳型廻り部材の製造方法。 The manufacturing method of the mold periphery member as described in any one of Claims 13-22 which heats the master type | mold filled with mixed powder under pressure. マスタ型裏面側の気孔を封し、かつ冷却される請求項13〜24のいずれか一に記載の鋳型廻り部材の製造方法。 The method for producing a mold-turning member according to any one of claims 13 to 24, wherein pores on the back side of the master mold are sealed and cooled. マスタ型上に合成された多孔質焼結体層上に肉盛溶接層を形成する請求項13〜24のいずれか一に記載の鋳型廻り部材の製造方法。 The manufacturing method of the mold periphery member as described in any one of Claims 13-24 which forms a build-up welding layer on the porous sintered compact layer synthesize | combined on the master type | mold. 合成される多孔質焼結体の相対密度が50〜97%程度である請求項13〜26のいずれか一に記載の製造方法によって得られる鋳型廻り部材。 The mold periphery member obtained by the manufacturing method according to any one of claims 13 to 26, wherein the relative density of the synthesized porous sintered body is about 50 to 97%. 耐食バリア層を有する請求項27に記載の鋳型廻り部材。 The mold turning member according to claim 27, further comprising a corrosion-resistant barrier layer. 耐食バリア層が多孔質焼結体層表面に形成した酸化皮膜である請求項28に記載の鋳型廻り部材。 The mold-turning member according to claim 28, wherein the corrosion-resistant barrier layer is an oxide film formed on the surface of the porous sintered body layer. 耐食バリア層が多孔質焼結体層表面に溶射によって形成された耐食層及び/又は離型層である請求項29に記載の鋳型廻り部材。

30. The mold periphery member according to claim 29, wherein the corrosion-resistant barrier layer is a corrosion-resistant layer and / or a release layer formed on the surface of the porous sintered body layer by thermal spraying.

JP2006036490A 2006-01-18 2006-02-14 Casting apparatus, method for producing mold periphery member, and mold periphery member Active JP3864176B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006036490A JP3864176B1 (en) 2006-01-18 2006-02-14 Casting apparatus, method for producing mold periphery member, and mold periphery member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006010418 2006-01-18
JP2006036490A JP3864176B1 (en) 2006-01-18 2006-02-14 Casting apparatus, method for producing mold periphery member, and mold periphery member

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006220537A Division JP2007216294A (en) 2006-01-18 2006-08-11 Method for manufacturing casting apparatus and mold-surrounding member, and mold-surrounding member

Publications (2)

Publication Number Publication Date
JP3864176B1 JP3864176B1 (en) 2006-12-27
JP2007216237A true JP2007216237A (en) 2007-08-30

Family

ID=37648365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006036490A Active JP3864176B1 (en) 2006-01-18 2006-02-14 Casting apparatus, method for producing mold periphery member, and mold periphery member

Country Status (1)

Country Link
JP (1) JP3864176B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103769559B (en) * 2014-02-19 2016-01-13 重庆擎一模具制造有限公司 Multiple spot isolates thermal center large gear casing low pressure casting die
CN106238714A (en) * 2016-08-31 2016-12-21 天津立中车轮有限公司 A kind of aluminium alloy pipette
CN109175306B (en) * 2018-10-18 2020-06-05 四川省犍为恒益铝业有限公司 Casting mold and casting process of gearbox body

Also Published As

Publication number Publication date
JP3864176B1 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
US20110089030A1 (en) CIG sputtering target and methods of making and using thereof
CN100526506C (en) Composite material of metal / ceramic metal, manufacturing method and application
JPH09509101A (en) Permanent mold casting of reactive melt
CN103691909A (en) Aluminum/magnesium solid-liquid compound casting molding method
US20190299278A1 (en) Die casting system and method utilizing high melting temperature materials
JPH036858B2 (en)
JP3864176B1 (en) Casting apparatus, method for producing mold periphery member, and mold periphery member
JPS6029431A (en) Production of alloy
EP2556907A2 (en) Manufacturing process of composite plates made of magnesium alloys and ceramic foam and composite plates
US20080011442A1 (en) Method for precision-casting metallic molded parts and device therefor
JP2007216294A (en) Method for manufacturing casting apparatus and mold-surrounding member, and mold-surrounding member
JP4608622B2 (en) Mold and manufacturing method thereof
CN101422814A (en) Preparation method of local composite abrasion resistance material
EP2949413B1 (en) A method of making a casting of a heat exchanger
US10105755B2 (en) Composite casting part
JP3260210B2 (en) Die casting injection sleeve and method of casting aluminum or aluminum alloy member
JP2005163145A (en) Composite casting, iron based porous body for casting, and their production method
JP2742603B2 (en) Multi-screw cylinder with water cooling jacket for kneading / extrusion molding apparatus and method for producing the same
JP2000042718A (en) Casting method of cast product poured with material for composite
JP2008246550A (en) Method for manufacturing preform, preform, and cast-in product using preform
JP3167854B2 (en) Pressure casting method and pressure casting apparatus for aluminum alloy
JP2008246551A (en) Sleeve for die casting machine, and its manufacturing method
JP3107723B2 (en) Plunger sleeve for die casting machine
JP3326140B2 (en) Magnesium alloy die casting and die casting products
JP2006130539A (en) Method for making casting mold

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350