JP2007212366A - Method and device for inspecting thickness of inspected part - Google Patents

Method and device for inspecting thickness of inspected part Download PDF

Info

Publication number
JP2007212366A
JP2007212366A JP2006034555A JP2006034555A JP2007212366A JP 2007212366 A JP2007212366 A JP 2007212366A JP 2006034555 A JP2006034555 A JP 2006034555A JP 2006034555 A JP2006034555 A JP 2006034555A JP 2007212366 A JP2007212366 A JP 2007212366A
Authority
JP
Japan
Prior art keywords
thickness
ray
rays
test
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006034555A
Other languages
Japanese (ja)
Inventor
Hidehiko Nakano
英彦 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Jidosha Kogyo KK
Toyota Motor East Japan Inc
Original Assignee
Kanto Jidosha Kogyo KK
Kanto Auto Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Jidosha Kogyo KK, Kanto Auto Works Ltd filed Critical Kanto Jidosha Kogyo KK
Priority to JP2006034555A priority Critical patent/JP2007212366A/en
Publication of JP2007212366A publication Critical patent/JP2007212366A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspecting device for the thickness of an inspected part capable of obtaining an accurate residual thickness measurement result even when the inspected part hardly transmits visible light by utilizing the transmitting characteristic of X-rays. <P>SOLUTION: The inspecting device comprises an X-ray source 2 for radiating the X-rays 3 to be radiated to a specimen 6, an X-ray brightness measuring instrument 5 for measuring the brightness of the X-rays that is arranged on the opposite side of the X-ray source while an inspection space 8 for radiating the X-rays to the specimen is disposed, a transferring means 7 for passing the specimen in the inspection space at a predetermined speed, and a controller 12 that controls the transferring means, X-ray brightness measuring instrument, and X-ray source, calculates the thickness of the inspected part based on the measured brightness of the X-rays, and determines whether the thickness of the inspected part is within a desired range. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、被検部の厚さを検査する方法及び装置に関し、特に、X線を用いて、所謂インストルメントパネルと呼ばれる自動車の合成樹脂製内装品のインビジブル加工部の厚みを検査する方法及び装置に関する。   The present invention relates to a method and apparatus for inspecting the thickness of a portion to be inspected, and in particular, using X-rays, a method for inspecting the thickness of an invisible processing portion of an automobile synthetic resin interior product called a so-called instrument panel, and Relates to the device.

自動車内装部品の1つであるインストルメントパネルの品質検査には、該パネルに溝状に形成された、所謂インビジブル加工部、即ち溝状部の残厚測定という項目が含まれる。現状実施されている残厚測定の方法は、図8に示すように、被検部23に光源24からの可視光線25を照射し、被検部23である溝状部22を透過した光を受光装置26で捉え、その光量に応じて溝状部22の残厚或いは品質を判定するようにしている。   The quality inspection of an instrument panel, which is one of automotive interior parts, includes an item of so-called invisible processed part formed in a groove shape on the panel, that is, a measurement of the remaining thickness of the groove part. As shown in FIG. 8, the method of measuring the remaining thickness that is currently being carried out irradiates the test portion 23 with visible light 25 from the light source 24, and transmits the light transmitted through the groove-like portion 22 that is the test portion 23. The light receiving device 26 captures the remaining thickness or quality of the groove-like portion 22 in accordance with the amount of light.

図9に示す被検体27の溝状部22の断面を、X線CTで実際に撮影すると、溝状部22としては、図10(A)〜(C)に示すように適正な深さに溝が形成され且つ断面形状も崩れていないものがある他に、図10(D)〜(F)に示すように適正な深さに溝が形成されていても断面形状が崩れているものが存在することがわかる。   When the cross section of the groove-like portion 22 of the subject 27 shown in FIG. 9 is actually imaged by X-ray CT, the groove-like portion 22 has an appropriate depth as shown in FIGS. In addition to those in which grooves are formed and the cross-sectional shape is not collapsed, as shown in FIGS. 10D to 10F, there are those in which the cross-sectional shape is broken even if the grooves are formed at an appropriate depth. You can see that it exists.

このため、可視光線を使用する現行方法においては、被検部23の溝状部残厚が適正であっても断面崩れ等によって可視光線25が上手く透過し得ない状態の場合、図11(B)に示すように、透過光量が不十分となって不良品と判定されてしまうという問題、或いは、検査結果の信頼性が低下するという問題がある。一方、図11(A)は、断面が崩れていない部位の輝度グラフである。なお、図11は横軸に位置、縦軸にその部位の透過光量をとったものである。また、可視光線25は物質透過性が低いので、被検部23が肉厚の場合や、可視光線25を透過し難い素材から成る場合や不透明色の場合には、高精度の検査を行なうことができないという問題がある。   Therefore, in the current method using visible light, even if the remaining thickness of the groove-like portion of the test portion 23 is appropriate, the visible light 25 cannot be transmitted well due to the collapse of the cross section or the like. ), There is a problem that the amount of transmitted light is insufficient and the product is determined as a defective product, or the reliability of the inspection result is lowered. On the other hand, FIG. 11A is a luminance graph of a portion where the cross section is not broken. In FIG. 11, the horizontal axis indicates the position, and the vertical axis indicates the amount of transmitted light at that portion. In addition, since visible light 25 has low substance permeability, high-precision inspection should be performed when the portion 23 to be examined is thick, made of a material that does not easily transmit visible light 25, or an opaque color. There is a problem that can not be.

他方、被検部に照射するエネルギー線として、X線を用いる異物検出装置が、特許文献1に開示されている。この特許文献1に記載の異物検出装置は、被検部がX線の経路上を通過し得るように配置され、該被検部の通過時に該被検部に向けてX線をパルス状に放射し、その透過X線をX線面センサによって検出し、被検体の形状や大きさを視覚的に捉えて異物を検出するように構成されている。   On the other hand, Patent Document 1 discloses a foreign object detection device that uses X-rays as energy rays applied to a portion to be examined. The foreign object detection device described in Patent Document 1 is arranged so that a test part can pass on an X-ray path, and pulses X-rays toward the test part when passing through the test part. The X-ray sensor detects the transmitted X-rays, detects the foreign matter by visually capturing the shape and size of the subject.

また、エネルギー線としてX線を用いる別の例としては、特許文献2に記載の選果装置を挙げることができる。この特許文献2に記載の選果装置は、移送手段によってX線の経路上を通過する果実を挟むように対向配置されたX線源とX線検出器を備え、該果実を透過したX線の検出レベルに応じて被検体である該果実の良否を判定するように構成されている。
特開平9−269380号公報 特開昭62−273087号公報
Another example of using X-rays as energy rays is the fruit selection device described in Patent Document 2. The fruit selection apparatus described in Patent Document 2 includes an X-ray source and an X-ray detector arranged to face each other so as to sandwich a fruit passing on an X-ray path by a transfer unit, and the X-ray transmitted through the fruit. The quality of the fruit as the subject is determined according to the detection level.
JP-A-9-269380 JP-A-62-273087

しかし、特許文献1に記載の装置には、以下の如くの問題点がある。第1に、特許文献1に記載の装置は、被検部の厚さを計測することができるように構成されていないため、被検部の厚さを知り得ないこと。第2に、特許文献1に記載の装置では、パルス状X線が使用されるため、被検部が連続的な場合やこれに準ずるものである場合、若しくは、連続的に被検部を検査する必要がある場合などには不向きであること。第3に、X線の経路上を被検体が通過することを確認する手段と、その検知信号によってパルス状X線の放射制御を行なう制御手段の両手段を必要とし、構造が複雑化すること。第4に、X線を遮蔽する構成がなく、線Xが周囲に散乱する危険性があるという問題などが挙げられる。特許文献1に記載の装置同様に、特許文献2に記載の装置の構成では、X線を遮蔽する構成がなく、X線が周囲に散乱するおそれも考えられる。   However, the apparatus described in Patent Document 1 has the following problems. 1stly, since the apparatus of patent document 1 is not comprised so that the thickness of a test part can be measured, the thickness of a test part cannot be known. Secondly, in the apparatus described in Patent Document 1, since pulsed X-rays are used, when the test part is continuous or equivalent, or the test part is continuously inspected. It is unsuitable when it is necessary to do so. Thirdly, both the means for confirming that the subject passes through the X-ray path and the control means for controlling the radiation of the pulsed X-ray by the detection signal are required, and the structure becomes complicated. . Fourthly, there is a problem that there is no configuration for shielding X-rays, and there is a risk that the line X is scattered around. Similar to the device described in Patent Document 1, the device configuration described in Patent Document 2 does not have a structure for shielding X-rays, and there is a possibility that X-rays may be scattered around.

本発明は、以上の点に鑑みて創作されたものであり、X線の透過特性を利用することによって、被検部が可視光線を透過させ難い場合にも高精度な残厚計測結果を得ることができる被検部厚の検査方法及びそれを用いた装置を提供することを目的とする。     The present invention was created in view of the above points, and by using the transmission characteristics of X-rays, a highly accurate residual thickness measurement result is obtained even when it is difficult for the test portion to transmit visible light. It is an object of the present invention to provide a method for inspecting a thickness of a portion to be inspected and an apparatus using the same.

上記目的を達成するために、本発明の被検部厚の検査方法は、被検体の被検部にX線を照射し、該被検体を透過した透過X線量を検出し、各被検部に対応した透過X線量の測定値によって被検部の厚さを算出し、被検部の厚さが所望の範囲内にあるか否かを判定することを特徴としている。   In order to achieve the above object, the method for inspecting a thickness of a subject of the present invention irradiates a subject portion of a subject with X-rays, detects a transmitted X-ray dose that has passed through the subject, The thickness of the test part is calculated from the measured value of the transmitted X-ray dose corresponding to the above, and it is determined whether or not the thickness of the test part is within a desired range.

本発明の被検部厚の検査方法は、好ましくは、前記透過X線量の測定値として、被検部を透過したX線の輝度を利用する。
本発明の被検部厚の検査方法は、前記透過X線の輝度の測定値をxとして、被検部の残厚zを、1次関数z=ax+b(但し、aはX線を照射する物質に固有の係数であり、bは物質固有の定数である)から算出することが望ましい。
In the method for inspecting the thickness of the test part of the present invention, preferably, the brightness of the X-ray transmitted through the test part is used as the measurement value of the transmitted X-ray dose.
In the method for inspecting the thickness of the test part according to the present invention, the measurement value of the transmitted X-ray brightness is x, and the remaining thickness z of the test part is a linear function z = ax + b (where a is irradiated with X-rays). It is desirable to calculate from a coefficient specific to the substance, and b is a constant specific to the substance.

上記目的を達成するために、本発明の被検部厚の検査方法は、被検体を移送しつつ該被検体の被検部に対してX線を照射する第1工程と、被検部を透過したX線をX線ラインセンサによって検出する第2工程と、この検出結果から被検部を透過したX線量の輝度を求める第3工程と、X線量の輝度に基づいて被検部の厚さを算出して該被検部の厚さが所望の範囲内にあるか否かを判定する第4工程と、を含むことを特徴としている。   In order to achieve the above object, a method for inspecting a thickness of a test part according to the present invention includes a first step of irradiating a test part of the subject with X-rays while transferring the test object, A second step of detecting the transmitted X-rays by the X-ray line sensor, a third step of obtaining the luminance of the X-ray dose transmitted through the test portion from the detection result, and the thickness of the test portion based on the luminance of the X-ray dose And a fourth step of determining whether or not the thickness of the test portion is within a desired range.

上記目的を達成するために、本発明の被検部厚の検査装置は、被検体に対して照射するX線を放射するためのX線源と、被検体にX線を照射するための検査空間を存してX線源に相対して配設されるX線の輝度を計測するためのX線輝度計測装置と、被検体を検査空間内で所定の速度で通過させるための移送手段と、移送手段,X線輝度計測装置及びX線源を制御すると共に、計測されたX線の輝度から被検部の厚さを算出して該被検部の厚さが所望の範囲内にあるか否かを判定する制御装置と、を備えたことを特徴としている。
本発明の被検部厚の検査装置は、好ましくは、X線の輝度をxとして、被検部の残厚zを、1次関数z=ax+b(但し、aはX線を照射する物質に固有の係数であり、bは物質固有の定数である)から算出する。
In order to achieve the above object, an inspection apparatus for a thickness of an inspection part according to the present invention includes an X-ray source for emitting X-rays to be irradiated on a subject, and an inspection for irradiating the subject with X-rays. An X-ray luminance measuring device for measuring the luminance of X-rays disposed relative to the X-ray source in a space, and a transfer means for passing the subject at a predetermined speed in the examination space; The transfer means, the X-ray luminance measuring device and the X-ray source are controlled, and the thickness of the test part is calculated from the measured X-ray brightness and the thickness of the test part is within a desired range. And a control device for determining whether or not.
In the inspection apparatus for the thickness of the test part according to the present invention, preferably, the X-ray luminance is x, and the remaining thickness z of the test part is a linear function z = ax + b (where a is a substance that irradiates X-rays). It is a specific coefficient, and b is a constant specific to the substance).

本発明によれば、第1に、X線の透過特性を利用することによって、被検部が可視光線を透過させ難い場合にも高精度な残厚計測結果を得ることができるという効果がある。   According to the present invention, first, by utilizing the X-ray transmission characteristic, there is an effect that a highly accurate remaining thickness measurement result can be obtained even when the test portion is difficult to transmit visible light. .

第2に、連続的にX線を放射しつつ被検体を移送手段を用いて、検査空間内を連続的に通過させるように構成したことによって、被検部を連続的或いは断続的に検査することができるという効果がある。これによって、合成樹脂製のインストルメントパネルに、断続的に形成された一連の溝状部全体に渡る連続的な残厚計測結果を得ることができるという効果がある。また更に、連続的に計測できることによって、被検部に対して断続的に形成された溝状部の形成ピッチを確認することもできるという効果がある。   Secondly, the test part is continuously or intermittently inspected by continuously passing X-rays through the examination space using the transfer means. There is an effect that can be. As a result, there is an effect that a continuous residual thickness measurement result can be obtained over the entire series of grooves formed intermittently on the instrument panel made of synthetic resin. Furthermore, since the measurement can be performed continuously, there is an effect that the formation pitch of the groove-like portion formed intermittently with respect to the test portion can be confirmed.

第3に、検査空間をX線遮蔽性を有するX線遮蔽手段で覆うことによって、単純な構成でありながら、安全性高く残厚計測或いは溝状部のピッチ計測を行なうことができるという効果がある。   Thirdly, by covering the inspection space with X-ray shielding means having X-ray shielding properties, there is an effect that the remaining thickness measurement or the groove-shaped pitch measurement can be performed with high safety while having a simple configuration. is there.

以下、本発明の好ましい実施の形態を図面を参照しながら詳細に説明する。
図1は本発明の実施形態に係る被検部厚の検査装置1の構成を示す図である。図2は本発明の実施形態に係る検査装置1によって検品される被検体6の断面図である。図3は図1に示した検査装置1の制御及び動作に関するフローチャートの一実施形態を示したものである。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a configuration of a test portion thickness inspection apparatus 1 according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of the subject 6 to be inspected by the inspection apparatus 1 according to the embodiment of the present invention. FIG. 3 shows an embodiment of a flowchart relating to control and operation of the inspection apparatus 1 shown in FIG.

図1に示すように、被検部厚の検査装置1は、X線源2と、このX線源2から放射されるX線3を適当に絞るためのスリット4と、このスリット4を通過して直進してきたX線3を検出するためのX線ラインセンサ5と、X線3の経路上に被検体6を通過させるためのコンベヤ7と、X線源2とX線ラインセンサ5の間に被検体6を通過させつつ被検体6に対してX線3を照射するための検査空間8と、この検査空間8を囲繞するX線遮蔽箱9と、X線源2,X線ラインセンサ5及びコンベヤ7を制御し且つX線ラインセンサ5によって検出された透過X線輝度に基づいて被検部10の残厚z’と溝状部11のピッチpの正否の判定を自在に行なうことができるコンピュータ12を備えている。   As shown in FIG. 1, an inspection apparatus 1 for a thickness of an object to be inspected passes through an X-ray source 2, a slit 4 for appropriately focusing the X-ray 3 emitted from the X-ray source 2, and the slit 4 The X-ray line sensor 5 for detecting the X-ray 3 that has traveled straight, the conveyor 7 for passing the subject 6 on the path of the X-ray 3, the X-ray source 2, and the X-ray line sensor 5 An examination space 8 for irradiating the subject 6 with X-rays 3 while passing the subject 6 therebetween, an X-ray shielding box 9 surrounding the examination space 8, an X-ray source 2 and an X-ray line The sensor 5 and the conveyor 7 are controlled, and whether the remaining thickness z ′ of the test portion 10 and the pitch p of the groove-shaped portion 11 are correct or not is freely determined based on the transmitted X-ray luminance detected by the X-ray line sensor 5. A computer 12 is provided.

X線源2は、コンピュータ12によってオン/オフのタイミングが制御される。オンの状態においては、所定の方向に向けて、X線3が連続的に放射される。放射されるX線3は、被検体6の最大厚部分を透過させた場合に、その透過X線3の輝度が適当な値となる程度まで低減したエネルギーレベルのものを用いることができる。
スリット4は、X線源2から放射されるX線3を適当に絞るためのものである。勿論、このスリット4は、予めX線源2に内蔵してもよい。
The on / off timing of the X-ray source 2 is controlled by the computer 12. In the on state, X-rays 3 are continuously emitted in a predetermined direction. The radiated X-ray 3 can be of an energy level that is reduced to such an extent that the luminance of the transmitted X-ray 3 becomes an appropriate value when the maximum thickness portion of the subject 6 is transmitted.
The slit 4 is for appropriately narrowing down the X-ray 3 emitted from the X-ray source 2. Of course, the slit 4 may be built in the X-ray source 2 in advance.

X線ラインセンサ5は、スリット4によって絞り込まれたX線3の進行方向前方に、X線源2に相対して配設される。この配設位置は、コンベヤ7の無端帯における被検体6を載置する側の帯部13aとその逆側の帯部13bとの間の位置である。このような配置にすることによって、被検体6に向けて放射されるX線3が、X線ラインセンサ5に届くまでに、なるべく被検体6以外の物質を透過しないように構成し、エネルギーロスや被爆部の減少をはかることができる。X線ラインセンサ5には、従来公知のものを用いることができる。   The X-ray line sensor 5 is disposed in front of the X-ray source 2 in the traveling direction of the X-ray 3 narrowed down by the slit 4. This arrangement position is a position between the band 13a on the side where the subject 6 is placed in the endless band of the conveyor 7 and the band 13b on the opposite side. With this arrangement, the X-ray 3 radiated toward the subject 6 is configured so as not to transmit a substance other than the subject 6 as much as possible before reaching the X-ray line sensor 5, and energy loss. And the number of exposed parts can be reduced. A conventionally known X-ray line sensor 5 can be used.

コンベヤ7は、X線3を透過させ得るほぼ均質な材質から成る所定の幅の帯の両端を結合した円環状の無端帯14を有する。さらに、コンベヤ7は、無端帯14の内周面に密着して無端帯14を回転させる一対のローラ15を有する。ローラ15の動作(その回動のタイミングや回動速度)の制御は、前記コンピュータ12によってなされるようになっている。   The conveyor 7 has an annular endless band 14 in which both ends of a band having a predetermined width made of a substantially homogeneous material capable of transmitting X-rays 3 are joined. Further, the conveyor 7 has a pair of rollers 15 that are in close contact with the inner peripheral surface of the endless belt 14 and rotate the endless belt 14. The operation of the roller 15 (the timing and speed of its rotation) is controlled by the computer 12.

検査空間8は、スリット4と、コンベヤ7の無端帯14における上側の帯部13aとの間に、該帯部13aに載置された被検体6を通過させ得る適当な大きさの空間として画成されている。被検体6は、この検査空間8内を通過する際にX線3が照射されるように構成される。   The examination space 8 is defined as a space of an appropriate size that allows the subject 6 placed on the band 13a to pass between the slit 4 and the upper band 13a of the endless band 14 of the conveyor 7. It is made. The subject 6 is configured to be irradiated with X-rays 3 when passing through the examination space 8.

X線遮蔽箱9は、X線遮蔽性を有する鉛などの素材から成っていて、検査空間8全体及びこの直下に位置するコンベヤ7及びスリット4、X線源2、X線ラインセンサ5全体を囲繞するように箱状に形成されている。   The X-ray shielding box 9 is made of a material such as lead having X-ray shielding properties, and includes the entire inspection space 8 and the conveyor 7 and slit 4, the X-ray source 2, and the entire X-ray line sensor 5 positioned immediately below the inspection space 8. It is formed in a box shape to surround.

コンピュータ12は、X線源2及びX線ラインセンサ5及びコンベヤ7を制御するように構成される。また、このコンピュータ12は、X線ラインセンサ5によって検出された透過X線輝度に基づいて、被検部10の残厚z’と溝状部11のピッチpの正否の判定を所定の判定基準に基づいて自在に行なうことができるように構成される。   The computer 12 is configured to control the X-ray source 2, the X-ray line sensor 5 and the conveyor 7. Further, the computer 12 determines whether the remaining thickness z ′ of the test portion 10 and the pitch p of the groove-shaped portion 11 are correct based on the transmitted X-ray luminance detected by the X-ray line sensor 5. It can be performed freely based on the above.

被検体6は、合成樹脂製で図2に示すように、所定のピッチpで断続的に形成されたほぼ一定の長さLを有する複数の溝状部11を有している。被検部10は、前記被検体6に形成された一連の溝状部11全体に渡るものである。   The subject 6 is made of synthetic resin and has a plurality of groove-like portions 11 having a substantially constant length L formed intermittently at a predetermined pitch p, as shown in FIG. The test part 10 extends over the entire series of groove-like parts 11 formed in the subject 6.

以上のように構成された被検部厚の検査装置1の動作手順の一例を図3に示すフローチャートを用いて説明する。
図3に示すように、先ず、ステップS1において被検部厚の検査装置1全体が起動し、コンベヤ7の始端部16に被検体6が存在するか否かが判断される(ステップS2)。始端部16に被検体6が存在する場合、ステップS3にてコンベヤ7がコンピュータ12によって起動され、コンベヤ7が回動して始端部16上の被検体6をX線遮蔽箱9内の検査空間8へ向けて移送する。ステップS4にて、移送された被検体6が、検査空間8の検査位置に存在することが確認される。その存在が確認された場合、ステップS5においてコンピュータ12によってX線源2が始動してX線3が被検体6に向けて照射される。このX線3照射の開始とほぼ同時に、コンピュータ12によってX線ラインセンサ5が起動され(ステップS6)、被検体6を透過したX線3の検出が開始される。なお、X線3の照射中も被検体6は、コンベヤ7の始端部16から始端部17に向かって所定の速度で移送され続ける。
An example of the operation procedure of the inspection portion thickness inspection apparatus 1 configured as described above will be described with reference to the flowchart shown in FIG.
As shown in FIG. 3, first, in step S1, the entire inspection device thickness inspection apparatus 1 is activated, and it is determined whether or not the subject 6 is present at the starting end 16 of the conveyor 7 (step S2). If the subject 6 is present at the start end 16, the conveyor 7 is activated by the computer 12 in step S 3, and the conveyor 7 rotates to place the subject 6 on the start end 16 in the examination space inside the X-ray shielding box 9. Transfer to 8 In step S <b> 4, it is confirmed that the transferred subject 6 exists at the examination position in the examination space 8. When the presence is confirmed, the X-ray source 2 is started by the computer 12 in step S5, and the subject 6 is irradiated with the X-ray 3. Almost simultaneously with the start of the X-ray 3 irradiation, the X-ray line sensor 5 is activated by the computer 12 (step S6), and detection of the X-ray 3 transmitted through the subject 6 is started. Note that the subject 6 continues to be transferred from the start end 16 of the conveyor 7 toward the start end 17 at a predetermined speed even during irradiation with the X-ray 3.

このようにして、被検体6の被検部10全体に渡ってその各部位を透過した一連の透過X線の輝度値のデータを得て、被検部10の位置データxとそれに対応した輝度値データyからなるデータ(x,y)をコンピュータ12に随時集積する。このデータ(x,y)と同時に、X線ラインセンサ5による透過X線の撮像画像18を得る(ステップS7)。このようにして得た撮像画像18の一例を示したのが図4(A)である。   In this way, a series of transmitted X-ray brightness value data transmitted through each part of the subject 6 over the entire test part 10 is obtained, and the position data x of the test part 10 and the corresponding brightness are obtained. Data (x, y) consisting of value data y is accumulated in the computer 12 as needed. Simultaneously with this data (x, y), an image 18 of transmitted X-rays obtained by the X-ray line sensor 5 is obtained (step S7). An example of the captured image 18 obtained in this way is shown in FIG.

次いで、ステップS8においてX線遮蔽箱9内からコンベヤ7の始端部17に向かって被検体6が搬出され、該X線遮蔽箱9内に被検体6が存在しないことが確認される。X線遮蔽箱9内に被検体6が存在しないことが確認された場合、撮像画像18の取得及びデータ(x、y)の取得が終了され(ステップS9)、同時にX線3の照射及びX線ラインセンサ5によるX線3の検出も終了される(ステップS10,S11)。   Next, in step S <b> 8, the subject 6 is carried out from the X-ray shielding box 9 toward the start end portion 17 of the conveyor 7, and it is confirmed that the subject 6 does not exist in the X-ray shielding box 9. When it is confirmed that the subject 6 does not exist in the X-ray shielding box 9, the acquisition of the captured image 18 and the acquisition of the data (x, y) are finished (Step S9), and the irradiation of the X-ray 3 and the X are simultaneously performed. The detection of the X-ray 3 by the line line sensor 5 is also ended (steps S10 and S11).

その後、ステップS12では、取得された撮像画像18の処理が行なわれる。この処理の際に、データ(x,y)を関数y(x)に対応させ、横に位置データxの軸を、縦に輝度値データyの軸をとった直交x−y座標に各データをプロットし、前記撮像画像18に対応させたグラフAを作成する。このグラフAの一例を示したのが図4(B)である。   Thereafter, in step S12, the acquired captured image 18 is processed. In this processing, the data (x, y) is made to correspond to the function y (x), each data is set to orthogonal xy coordinates with the axis of the position data x being horizontally and the axis of the luminance value data y being vertically. Is plotted, and a graph A corresponding to the captured image 18 is created. An example of this graph A is shown in FIG.

この結果に基づいて、被検部厚を視覚化して画像出力する。ただし、この被検部厚zの可視化の処理の際に、関数データy(x)に所定の演算処理を施して、被検部10の位置xと被検部厚zとを対応させてもよい。これは、後述の実施例1に示す輝度値yと被検部厚zとの相関性に基づいて対応させるものである。つまり、被検部厚zと輝度値yとの間に、解析的関数z(y)が成り立つことを前提としている。関数z(y)=z(y(x))であるから、被検部10の位置xと被検部厚zとの対応関係が成り立ち、前記図4(B)のグラフAの縦軸を被検部厚zに変換することができる。   Based on this result, the thickness of the test part is visualized and output as an image. However, in the process of visualizing the test portion thickness z, the function data y (x) may be subjected to a predetermined calculation process to associate the position x of the test portion 10 with the test portion thickness z. Good. This is made to correspond on the basis of the correlation between the luminance value y and the thickness to be detected z shown in Example 1 described later. That is, it is assumed that an analytical function z (y) is established between the thickness z to be examined and the luminance value y. Since the function z (y) = z (y (x)), the correspondence relationship between the position x of the test portion 10 and the test portion thickness z is established, and the vertical axis of the graph A in FIG. It is possible to convert the thickness to the test part thickness z.

ステップS13及びS14では、x−z座標上において、適当な数値処理或いは画像処理を施し、被検部10の残厚z’と各溝状部11の長さLや各溝状部11間のピッチpが適正な範囲内にあるかを判断する。このような処理判断は、勿論、z(y)によってx−y座標上においても行なうことができる。   In steps S13 and S14, appropriate numerical processing or image processing is performed on the xz coordinate so that the remaining thickness z ′ of the test portion 10 and the length L of each groove 11 or between each groove 11 It is determined whether the pitch p is within an appropriate range. Such processing determination can of course be performed on the xy coordinates by z (y).

被検部10の残厚z’の判定は、例えば実施例1に示すように、透過X線3の輝度値yと被検部厚zとの間に一次関数z=z(y)=ay+bという関係が成り立つ場合、次のように行なう。被検体6の材質によって固有の値a及びbを予め決定しておく。各被検部10の輝度値yを順次ay+bに代入して演算を行なって各被検部厚zを算出する。被検部の厚さが薄い程、透過X線量が大きく、逆に透過X線量が大きい程、被検部10の厚さが薄いことになる。これは、透過X線量に対する被検部10の断面形状による影響が、被検部10の厚さ若しくは残厚z’の違いによる影響に比べて十分に小さいという実験事実に基づくものである。算出された被検部厚zの値が最大となる箇所は、被検部10における隣接する溝状部11間の部位に相当し、それに比べて被検部厚が適当に小さな値となる箇所が溝状部11の残厚を示している。この残厚z’が十分に小さくない場合、或いは小さ過ぎる場合などのように、被検部厚zが適正な範囲外にある場合には、不良と判断し、被検部残厚の検査結果としてNGを出力する(ステップS15)。   For example, as shown in the first embodiment, the remaining thickness z ′ of the test portion 10 is determined by a linear function z = z (y) = ay + b between the luminance value y of the transmitted X-ray 3 and the test portion thickness z. If the above relationship holds, the following is performed. Specific values a and b are determined in advance depending on the material of the subject 6. The luminance value y of each test part 10 is sequentially substituted into ay + b and calculation is performed to calculate each test part thickness z. The thinner the thickness of the test portion, the larger the transmitted X-ray dose. Conversely, the greater the transmitted X-ray dose, the thinner the test portion 10 is. This is based on the experimental fact that the influence of the cross-sectional shape of the test part 10 on the transmitted X-ray dose is sufficiently smaller than the effect of the difference in the thickness of the test part 10 or the remaining thickness z ′. The location where the calculated value of the test portion thickness z is the maximum corresponds to the portion between the adjacent groove-like portions 11 in the test portion 10, and the location where the test portion thickness is appropriately small compared to it. Indicates the remaining thickness of the groove 11. When the remaining thickness z ′ is not sufficiently small or too small, for example, when the thickness z to be detected is out of the proper range, it is determined as defective and the inspection result of the remaining thickness to be tested Is output as NG (step S15).

各溝状部11の長さLの判定は、x−z座標におけるグラフB(図示せず)の各凹状に落した部分(凹落部という)の幅を算出することによってなされる。勿論この長さが短いことは、被検部10における溝状部11の長さLが短いことに対応するのであり、この長さLが短過ぎたり、長過ぎた場合には被検部10の溝状部11の長さLの検査結果としてNGを出力する(ステップS15)。   The determination of the length L of each groove-like part 11 is made by calculating the width of a concave part (referred to as a concave part) of the graph B (not shown) in the xz coordinate. Of course, this short length corresponds to the short length L of the groove-like portion 11 in the test portion 10, and if this length L is too short or too long, the test portion 10 NG is output as the inspection result of the length L of the groove-shaped portion 11 (step S15).

各溝状部11間のピッチpの判定は、x−z座標におけるグラフBの隣接した凹落部間の幅を算出することによってなされる。この間隔が短いことは、被検部10における隣接した溝状部11間の間隔が小さいことに対応し、この間隔が小さ過ぎたり、大き過ぎた場合には被検部10の溝状部11のピッチpの検査結果としてNGを出力する。   Determination of the pitch p between each groove-shaped part 11 is made by calculating the width | variety between the adjacent recessed parts of the graph B in xz coordinate. The short interval corresponds to a small interval between adjacent groove portions 11 in the test portion 10, and when this interval is too small or too large, the groove portion 11 of the test portion 10. NG is output as the inspection result of the pitch p.

被検部の輝度値yとその部位の被検部厚zとの相関性を調べるため、以下のような実験を行なった。図5に示すように、ほぼ均質の合成樹脂製のシートの面上に、平面形状が長円形の凹落部19を4つ併設し、それらの底部20の厚さを0.3mm、0.4mm、0.5mm、0.6mmと順次厚く残して構成したもの(図6参照)を被検体試料21とした。この被検体試料21を上記実施の形態において説明した被検部厚の検査装置1を用いて、この被検体試料21各部の輝度値を測定した。図5に示すような試料のX線3による透過画像を取得し、測定の結果取得したデータから前記底部20の基準厚さの部分の輝度値yの平均値を取得する。ただし、底部20の平均輝度値y’は、図5における斜線枠Wに示した範囲内のものである。その取得した平均輝度値y’とその部位の被検部厚zのデータを、y−z座標にプロットしてそのグラフCの近似式を導出する。   In order to examine the correlation between the luminance value y of the test part and the test part thickness z of the part, the following experiment was performed. As shown in FIG. 5, four concave portions 19 having an oval planar shape are provided on the surface of a substantially homogeneous synthetic resin sheet, and the thickness of the bottom portion 20 is 0.3 mm, 0. The specimen 21 was formed by sequentially leaving a thickness of 4 mm, 0.5 mm, and 0.6 mm (see FIG. 6). The luminance value of each part of the specimen 21 was measured using the specimen thickness inspection apparatus 1 described in the above embodiment. A transmission image of the sample by X-ray 3 as shown in FIG. 5 is acquired, and an average value of luminance values y of the reference thickness portion of the bottom 20 is acquired from the data acquired as a result of the measurement. However, the average luminance value y ′ of the bottom portion 20 is within the range indicated by the hatched frame W in FIG. The obtained average luminance value y ′ and data of the thickness to be examined z of the part are plotted on the yz coordinates, and an approximate expression of the graph C is derived.

このようにして得た実験結果を基にして作成したグラフCを図7に示す。ただし、本実施例に示す実験は、被検体試料21の合成樹脂材料として顔料濃度が2%のポリプロピレンを用いたものである。図7に示すグラフCに基づいて求めた近似式は、被検部10の平均輝度値をy’、その部位の被検部厚をzとして、z=−0.0023y’+7.045である。つまりこの近似式を用いて、実際の被検体6を上記被検部厚の検査装置1によって検査して得た平均輝度値y’を近似式に代入すれば、平均の残厚z’を計測できる。   FIG. 7 shows a graph C created based on the experimental results thus obtained. However, the experiment shown in the present example uses polypropylene having a pigment concentration of 2% as the synthetic resin material of the specimen 21. The approximate expression calculated based on the graph C shown in FIG. 7 is z = −0.0023y ′ + 7.045, where y ′ is the average luminance value of the test part 10 and z is the thickness of the test part at that part. . That is, using this approximate expression, if the average luminance value y ′ obtained by inspecting the actual subject 6 by the inspection apparatus 1 for the thickness of the test part is substituted into the approximate expression, the average remaining thickness z ′ is measured. it can.

本発明の実施形態に係る被検部厚の検査装置の構成を示す図である。It is a figure which shows the structure of the test | inspection apparatus of the to-be-tested part thickness which concerns on embodiment of this invention. 図1の検査装置によって検品される被検体の断面図である。FIG. 2 is a cross-sectional view of a subject to be inspected by the inspection apparatus of FIG. 1. 図1の検査装置の制御及び動作の一例を示すフローチャートである。It is a flowchart which shows an example of control and operation | movement of the inspection apparatus of FIG. (A)は図1の検査装置による被検体の透過画像を示す図であり、(B)は透過画像に対応させてx−y座標に測定データをプロットしてなるグラフである。(A) is a figure which shows the permeation | transmission image of the subject by the test | inspection apparatus of FIG. 1, (B) is a graph formed by plotting measurement data on an xy coordinate corresponding to a permeation | transmission image. 図1の検査装置による被検体試料を示す図である。It is a figure which shows the subject sample by the test | inspection apparatus of FIG. 図5に示す被検体試料のA−A断面図である。FIG. 6 is a cross-sectional view taken along the line AA of the subject sample shown in FIG. 5. 図5の被検体試料の実測した平均輝度値y’とその部位の被検部厚zのデータを、y−z座標にプロットして得たグラフである。FIG. 6 is a graph obtained by plotting the measured average luminance value y ′ of the subject sample of FIG. 5 and the data of the thickness of the portion to be examined z on the yz coordinates. 従来の被検部厚の検査装置の模式図である。It is a schematic diagram of a conventional inspection apparatus for the thickness of a test part. 被検体の斜視図である。It is a perspective view of a subject. (A)〜(F)は、被検体のインビジブル加工部の断面を示す図である。(A)-(F) are figures which show the cross section of the invisible process part of a test object. (A)及び(B)は従来の検査装置に関する透過光量と被検部の位置との関係のグラフである。(A) And (B) is a graph of the relationship between the transmitted light amount regarding the conventional inspection apparatus, and the position of a to-be-tested part.

符号の説明Explanation of symbols

1 被検部厚の検査装置
2 X線源
3 X線
4 スリット
5 X線ラインセンサ
6 被検体
7 コンベヤ
8 検査空間
9 X線遮蔽箱
10 被検部
11 溝状部
12 コンピュータ
13a 帯
13b 帯
14 無端帯
15 ローラ
16 始端部
17 終端部
18 撮像画像
19 凹落部
20 底部
21 被検体試料
z’ 残厚
L 溝状部の長さ
p ピッチ
W 斜線枠
DESCRIPTION OF SYMBOLS 1 Inspection part thickness inspection apparatus 2 X-ray source 3 X-ray 4 Slit 5 X-ray line sensor 6 Subject 7 Conveyor 8 Inspection space 9 X-ray shielding box 10 Test part 11 Groove part 12 Computer 13a Band 13b Band 14 Endless belt 15 Roller 16 Start portion 17 End portion 18 Captured image 19 Recessed portion 20 Bottom portion 21 Sample to be measured z 'Remaining thickness L Length of groove portion p Pitch W Diagonal frame

Claims (7)

被検体の被検部にX線を照射し、該被検体を透過した透過X線量を検出し、各被検部に対応した透過X線量の測定値によって被検部の厚さを算出し、該被検部の厚さが所望の範囲内にあるか否かを判定することを特徴とする、被検部厚の検査方法。   Irradiating the test part of the subject with X-rays, detecting the transmitted X-ray dose transmitted through the subject, and calculating the thickness of the test part from the measured value of the transmitted X-ray dose corresponding to each test part; A method for inspecting a thickness of a test part, comprising determining whether or not the thickness of the test part is within a desired range. 前記透過X線量の測定値として、前記被検部を透過したX線の輝度を利用することを特徴とする、請求項1に記載の被検部厚の検査方法。   The inspection part thickness inspection method according to claim 1, wherein the measurement value of the transmitted X-ray dose uses the luminance of X-rays transmitted through the inspection part. 前記透過X線の輝度の測定値をxとして、被検部の残厚zを、1次関数z=ax+b(但し、aはX線を照射する物質に固有の係数であり、bは物質固有の定数である)から算出することを特徴とする、請求項2に記載の被検部厚の検査方法。   The measured value of the transmitted X-ray luminance is x, and the remaining thickness z of the test part is a linear function z = ax + b (where a is a coefficient specific to the substance that irradiates X-rays, and b is specific to the substance. The method for inspecting the thickness of the test part according to claim 2, wherein 被検体を移送しつつ該被検体の被検部に対してX線を照射する第1工程と、上記被検部を透過したX線をX線ラインセンサによって検出する第2工程と、この検出結果から上記被検部を透過したX線量の輝度を求める第3工程と、上記X線量の輝度に基づいて上記被検部の厚さを算出して該被検部の厚さが所望の範囲内にあるか否かを判定する第4工程とを含むことを特徴とする、被検部厚の検査方法。   A first step of irradiating the test portion of the subject with X-rays while transporting the subject, a second step of detecting X-rays transmitted through the test portion by an X-ray line sensor, and this detection A third step for obtaining the luminance of the X-ray dose transmitted through the test portion from the result, and calculating the thickness of the test portion based on the luminance of the X-ray dose, so that the thickness of the test portion is in a desired range And a fourth step of determining whether or not it is within the inspection portion thickness inspection method. 前記被検部がミシン目状の溝状部であることを特徴とする、請求項1乃至4の何れかに記載の被検部厚の検査方法。   5. The method for inspecting a thickness of a test part according to claim 1, wherein the test part is a perforated groove-like part. 被検体に対して照射するX線を放射するためのX線源と、上記被検体にX線を照射するための検査空間を存して上記X線源に相対して配設されるX線の輝度を計測するためのX線輝度計測装置と、上記被検体を上記検査空間内で所定の速度で通過させるための移送手段と、上記移送手段,上記X線輝度計測装置及び上記X線源を制御すると共に、計測されたX線の輝度から被検部の厚さを算出して該被検部の厚さが所望の範囲内にあるか否かを判定する制御装置とを備えたことを特徴とする、被検部厚の検査装置。   An X-ray source for irradiating the subject with X-rays and an X-ray disposed relative to the X-ray source with an examination space for irradiating the subject with X-rays X-ray luminance measuring apparatus for measuring the luminance of the apparatus, transport means for passing the subject through the examination space at a predetermined speed, the transport means, the X-ray brightness measuring apparatus, and the X-ray source And a control device that calculates the thickness of the test portion from the measured X-ray luminance and determines whether the thickness of the test portion is within a desired range. A device for inspecting the thickness of a portion to be examined. 前記X線の輝度をxとして、被検部の残厚zを、1次関数z=ax+b(但し、aはX線を照射する物質に固有の係数であり、bは物質固有の定数である)から算出することを特徴とする、請求項6に記載の被検部厚の検査装置。
X is the luminance of the X-ray, and the remaining thickness z of the test part is a linear function z = ax + b (where a is a coefficient specific to the substance that irradiates X-rays, and b is a constant specific to the substance. 7. The inspection apparatus for the thickness of the test part according to claim 6, wherein
JP2006034555A 2006-02-10 2006-02-10 Method and device for inspecting thickness of inspected part Pending JP2007212366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006034555A JP2007212366A (en) 2006-02-10 2006-02-10 Method and device for inspecting thickness of inspected part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006034555A JP2007212366A (en) 2006-02-10 2006-02-10 Method and device for inspecting thickness of inspected part

Publications (1)

Publication Number Publication Date
JP2007212366A true JP2007212366A (en) 2007-08-23

Family

ID=38490941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006034555A Pending JP2007212366A (en) 2006-02-10 2006-02-10 Method and device for inspecting thickness of inspected part

Country Status (1)

Country Link
JP (1) JP2007212366A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156620A (en) * 2007-12-25 2009-07-16 Kanto Auto Works Ltd Nondestructive measurement apparatus
JP2009281764A (en) * 2008-05-20 2009-12-03 Aloka Co Ltd Sample holder for x-ray photographing
WO2016026251A1 (en) * 2014-08-22 2016-02-25 清华大学 Vehicle detection system
JP2019158897A (en) * 2019-06-27 2019-09-19 横浜ゴム株式会社 Inspection device of conveyer belt

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156620A (en) * 2007-12-25 2009-07-16 Kanto Auto Works Ltd Nondestructive measurement apparatus
JP2009281764A (en) * 2008-05-20 2009-12-03 Aloka Co Ltd Sample holder for x-ray photographing
WO2016026251A1 (en) * 2014-08-22 2016-02-25 清华大学 Vehicle detection system
US10082596B2 (en) 2014-08-22 2018-09-25 Tsinghua University Vehicle inspection system
JP2019158897A (en) * 2019-06-27 2019-09-19 横浜ゴム株式会社 Inspection device of conveyer belt

Similar Documents

Publication Publication Date Title
TWI261113B (en) X-ray inspection apparatus and method for creating an image processing procedure for the X-ray inspection apparatus
KR20080022089A (en) X-ray laminography and/or tomosynthesis apparatus
EP2365320A2 (en) X-ray inspection apparatus, x-ray inspection method, x-ray inspection program, and x-ray inspection system
JP5137407B2 (en) Tomosynthesis image quality control method and apparatus
CN102680505B (en) X-Ray Analyzer
JP2007212366A (en) Method and device for inspecting thickness of inspected part
JP5644580B2 (en) Anomaly judgment device and anomaly judgment method
JP3715524B2 (en) X-ray foreign object detection device
EP3258251A1 (en) Image reconstruction method for x-ray measurement device, method for manufacturing structure, image reconstruction program for x-ray measurement device, and x-ray measurement device
US20170191941A1 (en) Testing unit, sample analyzer, and testing method
US8705698B2 (en) X-ray analyzer and mapping method for an X-ray analysis
JP7060446B2 (en) X-ray line sensor and X-ray foreign matter detection device using it
KR20020081073A (en) Radiation inspection apparatus and radiation inspection method
JPWO2017014194A1 (en) Optical inspection system and image processing algorithm setting method
JP5260253B2 (en) X-ray inspection equipment
JP2006189349A (en) Nondestructive defect inspection system
CN108548831A (en) The method and apparatus for detecting fat content in meat
JP2011085424A (en) X-ray inspection method and x-ray inspection device using the same
JP2009080030A (en) X-ray inspection device
CN115802907A (en) Oriented tobacco product
JP2006090743A (en) Device and method for inspecting inside of foam body
JP7079966B2 (en) X-ray detector
KR20110027596A (en) Method and device for determining the mass and/or a mass proportion of a wall section of a plastic bottle
JP2003232752A (en) Calibration method for sensitivity of x-ray foreign matter inspection apparatus and foreign matter sample body for sensitivity calibration
JP2016090494A (en) X-ray inspection device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090113