JP2007212052A - Heat treatment device - Google Patents

Heat treatment device Download PDF

Info

Publication number
JP2007212052A
JP2007212052A JP2006032884A JP2006032884A JP2007212052A JP 2007212052 A JP2007212052 A JP 2007212052A JP 2006032884 A JP2006032884 A JP 2006032884A JP 2006032884 A JP2006032884 A JP 2006032884A JP 2007212052 A JP2007212052 A JP 2007212052A
Authority
JP
Japan
Prior art keywords
vibration
heat treatment
workpiece
transport
treatment apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006032884A
Other languages
Japanese (ja)
Other versions
JP5044125B2 (en
Inventor
Fumio Takada
文男 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Thermo Systems Corp
Original Assignee
Koyo Thermo Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Thermo Systems Co Ltd filed Critical Koyo Thermo Systems Co Ltd
Priority to JP2006032884A priority Critical patent/JP5044125B2/en
Priority to TW095113361A priority patent/TWI387717B/en
Priority to KR1020060062650A priority patent/KR101394635B1/en
Priority to CN2006101106598A priority patent/CN101016191B/en
Publication of JP2007212052A publication Critical patent/JP2007212052A/en
Application granted granted Critical
Publication of JP5044125B2 publication Critical patent/JP5044125B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/40Arrangements of controlling or monitoring devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Tunnel Furnaces (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Control Of Conveyors (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform heat treatment in a setter-less system while actualizing inexpensive, early and accurate detection of the occurrence of cracking in a treated object in a furnace. <P>SOLUTION: Part of each of a plurality of heat resistant glasses 32 arranged under a carrying roller 2 along a carrying passage is exposed as an exposed part 5 to the outside of the furnace, and a vibration sensor 4 is arranged on the exposed part 5. In accordance with a detection signal from the vibration sensor 4, the fall of part of a carried object on the heat resistant glass 32 due to the occurrence of cracking is detected. At this time, the rotation of the carrying roller 2 is stopped. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、プラズマディスプレイ用ガラス基板等の平板状かつ脆性の被処理物に中空の搬送経路内で加熱処理、徐冷処理及び冷却処理等の熱処理を行う熱処理装置に関する。   The present invention relates to a heat treatment apparatus for performing heat treatment such as heat treatment, slow cooling treatment, and cooling treatment on a flat and brittle object such as a glass substrate for plasma display in a hollow conveyance path.

プラズマディスプレイ用ガラス基板等の平板状かつ脆性の被処理物に対する熱処理の方式として、セッター方式が知られている。セッター方式の熱処理では、被処理物をセッターガラスと呼ばれる強度のある耐熱用厚板の台板上に載置し、複数の搬送ローラの回転によって炉内の搬送経路内に搬送する(例えば、特許文献1参照。)。   A setter method is known as a heat treatment method for a flat and brittle object such as a glass substrate for plasma display. In setter-type heat treatment, an object to be processed is placed on a base plate of a strong heat-resistant thick plate called setter glass, and conveyed to a conveyance path in a furnace by rotation of a plurality of conveyance rollers (for example, patents) Reference 1).

例えば、被処理物が幅1460mm、長さ1030mm、厚さ2.8mmのガラス基板に対する熱処理に、幅1600mm、長さ1200mm、厚さ5mm程度のセッターガラスが用いられる。   For example, a setter glass having a width of about 1600 mm, a length of 1200 mm, and a thickness of about 5 mm is used for heat treatment of a glass substrate having an object to be processed having a width of 1460 mm, a length of 1030 mm, and a thickness of 2.8 mm.

セッター方式は、被処理物よりも熱容量の大きいセッターガラスをも加熱及び冷却する必要があるため、消費エネルギが大きく、また加熱及び冷却領域も長くなる。   In the setter method, since it is necessary to heat and cool even the setter glass having a larger heat capacity than the object to be processed, the energy consumption is large and the heating and cooling region is also long.

そこで、従来より、省エネルギ及び小型化の要請に応えるべく、セッターガラスを用いないセッターレス方式の熱処理が提案されている。セッターレス方式の熱処理では、被処理物を搬送ローラに直接載せて搬送するため、熱容量の大きいセッターガラスを加熱及び冷却する必要がなく、消費エネルギが小さくなり、また加熱及び冷却領域を短縮できる。
特開2004−293877公報
Therefore, in order to meet demands for energy saving and downsizing, setterless heat treatment without using setter glass has been proposed. In the setterless heat treatment, the workpiece is directly placed on the transport roller and transported, so that it is not necessary to heat and cool the setter glass having a large heat capacity, energy consumption is reduced, and the heating and cooling regions can be shortened.
JP 2004-293877 A

ガラス基板等の脆性を有する平板状の被処理物は、熱処理中に炉内で割れを生じる場合がある。熱処理中に被処理物に割れを生じた場合、セッター方式の熱処理では被処理物はセッター上に留まるが、セッターレス方式の熱処理では被処理物の一部が複数の搬送ローラの間から下方に落下する。落下した被処理物の一部が、底面の内部部材から搬送面までの距離よりも大きい場合には、複数の搬送ローラの間から搬送面よりも上方に突出して後の被処理物の搬送を阻害する可能性がある。   A flat plate-like workpiece such as a glass substrate may be cracked in a furnace during heat treatment. If cracks occur in the workpiece during heat treatment, the workpiece stays on the setter in the setter type heat treatment, but in the setterless type heat treatment, a part of the workpiece is moved downward between the plurality of transport rollers. Fall. When a part of the dropped processing object is larger than the distance from the inner member on the bottom surface to the conveying surface, the processing object is conveyed by protruding upward from the conveying surface between a plurality of conveying rollers. May interfere.

このため、炉内での被処理物の割れの発生を早期に検出し、被処理物の搬送を停止して落下した被処理物の一部を除去する必要がある。しかし、割れを生じた被処理物の一部の落下を光学的に検出しようとすると、割れた被処理物の一部の落下位置やサイズが一定でないため、被処理物の搬送経路に沿って多数のセンサを配置する必要があり、コストの上昇を招く。また、光学センサでは、ガラス基板のように透光性を有する被処理物の落下を確実に検出できない場合がある。   For this reason, it is necessary to detect the occurrence of cracks in the furnace in the furnace at an early stage, stop the conveyance of the workpiece, and remove a part of the dropped workpiece. However, when optically detecting the fall of a part of the processed object that has cracked, the position and size of the part of the broken processed object are not constant. It is necessary to arrange a large number of sensors, resulting in an increase in cost. In some cases, the optical sensor cannot reliably detect the fall of a light-transmitting object to be processed such as a glass substrate.

この発明の目的は、炉内での被処理物の割れの発生を安価なコストで早期かつ確実に検出することができるセッターレス方式の熱処理装置を提供することにある。   An object of the present invention is to provide a setterless type heat treatment apparatus capable of early and surely detecting occurrence of a crack of an object to be processed in a furnace at a low cost.

この発明の熱処理装置は、外壁部材、複数の搬送ローラ、複数の内側部材、露出部、振動検出手段及び制御手段を備えている。外壁部材は、被処理物が搬送される搬送経路の周囲を被覆する。複数の搬送ローラは、搬送経路に沿う複数の位置で回転自在に支持されている。複数の内側部材は、搬送経路に沿って複数の搬送ローラの下方に配置されている。露出部は、複数の内側部材の少なくとも1つから外壁部材を貫通して外部に露出する。振動検出手段は、露出部に配置されており、搬送経路を搬送中の被処理物の一部が内側部材に落下したことによる振動の発生を露出部で検出して検出信号を出力する。制御手段は、落下した被処理物の一部とその後に搬送される被処理物との接触を防止するように検出信号に基づいて搬送ローラの駆動を制御する。   The heat treatment apparatus of the present invention includes an outer wall member, a plurality of transport rollers, a plurality of inner members, an exposed portion, vibration detection means, and control means. The outer wall member covers the periphery of the conveyance path through which the workpiece is conveyed. The plurality of transport rollers are rotatably supported at a plurality of positions along the transport path. The plurality of inner members are disposed below the plurality of transport rollers along the transport path. The exposed portion penetrates the outer wall member from at least one of the plurality of inner members and is exposed to the outside. The vibration detecting means is disposed in the exposed portion, and detects the occurrence of vibration caused by a part of the workpiece being transported along the transport path falling on the inner member, and outputs a detection signal. The control means controls the driving of the transport roller based on the detection signal so as to prevent contact between a part of the processed object that has fallen and the processed object that is subsequently transported.

この構成では、搬送経路に沿って配置された複数の搬送ローラの下方に位置する内側部材の一部が外壁部材を貫通して外部に露出しており、この露出部に振動検出手段が配置されている。したがって、炉内で被処理物に割れを生じて搬送ローラの下方に被処理物の一部が落下すると、被処理物の一部との当接によって内側部材に生じた振動が炉外の露出部に伝播して振動検出手段によって検出される。振動を検出した振動検出手段の検出信号に基づいて搬送ローラの駆動が制御され、落下した被処理物の一部とその後に搬送される被処理物との接触が防止される。   In this configuration, a part of the inner member positioned below the plurality of transport rollers disposed along the transport path is exposed to the outside through the outer wall member, and the vibration detecting means is disposed in the exposed portion. ing. Therefore, when a crack occurs in the workpiece in the furnace and a part of the workpiece falls below the transport roller, vibration generated in the inner member due to contact with the part of the workpiece is exposed outside the furnace. It propagates to the part and is detected by the vibration detecting means. The driving of the conveying roller is controlled based on the detection signal of the vibration detecting means that detects the vibration, and contact between a part of the processing object that has dropped and the processing object that is subsequently transported is prevented.

また、搬送経路に沿って少なくとも加熱領域、徐冷領域及び冷却領域を備え、露出部は複数の内側部材のうちで少なくとも徐冷領域に配置された内側部材に備えるものとすることがてきる。   Further, at least a heating region, a slow cooling region, and a cooling region are provided along the conveyance path, and the exposed portion is provided in an inner member disposed in at least the slow cooling region among the plurality of inner members.

この構成では、少なくとも徐冷領域に配置された内側部材に生じた振動が炉外の露出部で振動検出手段によって検出される。したがって、被処理物に割れを生じ易い徐冷領域で内側部材の振動が検出される。   In this configuration, the vibration generated in the inner member arranged at least in the slow cooling region is detected by the vibration detecting means at the exposed portion outside the furnace. Therefore, the vibration of the inner member is detected in the slow cooling region where the workpiece is likely to crack.

さらに、制御手段は、振動検出手段が振動の発生を検出した時に、複数の搬送ローラのうちで振動を発生した内側部材よりも搬送経路の上流側の範囲に配置された搬送ローラの駆動を停止するものとすることができる。   Further, when the vibration detection unit detects the occurrence of vibration, the control unit stops driving the conveyance rollers arranged in the upstream side of the conveyance path with respect to the inner member that has generated vibration among the plurality of conveyance rollers. Can be.

この構成では、割れを生じた被処理物の一部の落下によって振動を発生した内側部材よりも上流側に位置する被処理物の搬送が停止され、落下した被処理物の一部とその後に搬送されてくる被処理物との当接が防止され、被処理物の破損が拡大することが防止される。   In this configuration, the conveyance of the object to be processed located upstream from the inner member that has generated vibration due to the drop of a part of the object to be processed that has been cracked is stopped, and a part of the object to be processed and the Contact with the workpiece to be conveyed is prevented, and damage to the workpiece is prevented from expanding.

また、制御手段は、振動検出手段が振動の発生を検出した時に、落下した被処理物が搬送ローラの上面側に露出する大きさであるか否かを検出信号に基づいて判別し、落下した被処理物が搬送面より上方に突出する大きさであると判別した時にのみ搬送ローラの駆動を停止するものとすることができる。   In addition, when the vibration detecting unit detects the occurrence of vibration, the control unit determines whether or not the dropped processing object is exposed to the upper surface side of the conveying roller based on the detection signal, and has dropped. The drive of the transport roller can be stopped only when it is determined that the workpiece has a size protruding above the transport surface.

この構成では、落下した被処理物の一部が搬送ローラの上面側に露出する大きさであると判別した時にのみ搬送ローラの駆動が停止される。したがって、落下した被処理物の一部が小さく、その後に搬送される被処理物に影響を与えない場合には、被処理物の搬送が継続される。   In this configuration, the driving of the transport roller is stopped only when it is determined that a part of the fallen object is exposed to the upper surface side of the transport roller. Accordingly, when a part of the processing object that has fallen is small and does not affect the processing object that is subsequently transported, the transport of the processing object is continued.

この発明の熱処理装置によれば、炉内で被処理物に割れを生じて搬送ローラの下方に被処理物の一部が落下したことを、被処理物の一部との当接によって内側部材に生じた後に炉外の露出部に伝播した振動により、安価なコストで早期かつ確実に検出することができる。また、振動を検出した振動検出手段の検出信号に基づいて搬送ローラの駆動を制御するとこにより、落下した被処理物の一部とその後に搬送される被処理物との当接を防止することができる。   According to the heat treatment apparatus of the present invention, the inner member is in contact with a part of the object to be processed by causing the object to be processed to crack in the furnace and a part of the object to be dropped below the conveying roller. Can be detected early and reliably at a low cost by the vibration propagated to the exposed portion outside the furnace. Further, by controlling the driving of the conveying roller based on the detection signal of the vibration detecting means that detects the vibration, it is possible to prevent a part of the processing object that has dropped from coming into contact with the processing object that is subsequently transported. Can do.

図1(A)及び(B)は、この発明の実施形態に係る熱処理装置10の構成を示す要部の側面断面図及び正面断面図である。熱処理装置10は、一例として、被処理物20であるプラズマディスプレイ用のガラス基板に対して、セッターレス方式の熱処理を行う。熱処理装置10は、外壁部材11〜14、搬送ローラ2、耐熱ガラス31〜34、振動センサ4、搬送モータ24を備えている。   1A and 1B are a side cross-sectional view and a front cross-sectional view of a main part showing a configuration of a heat treatment apparatus 10 according to an embodiment of the present invention. For example, the heat treatment apparatus 10 performs a setterless heat treatment on the glass substrate for plasma display, which is the workpiece 20. The heat treatment apparatus 10 includes outer wall members 11 to 14, a conveyance roller 2, heat resistant glasses 31 to 34, a vibration sensor 4, and a conveyance motor 24.

外壁部材11〜14は、断熱材料によって構成されており、それぞれ被処理物20が搬送される搬送経路の上面、下面及び左右側面を被覆する。少なくとも外壁部材11は、内側面に図示しないヒータを備えている。外壁部材11〜14のそれぞれは、矢印Xで示す搬送経路に沿って複数に分割されている。   The outer wall members 11 to 14 are made of a heat insulating material, and respectively cover the upper surface, the lower surface, and the left and right side surfaces of the conveyance path through which the workpiece 20 is conveyed. At least the outer wall member 11 includes a heater (not shown) on the inner surface. Each of the outer wall members 11 to 14 is divided into a plurality along the conveyance path indicated by the arrow X.

耐熱ガラス31〜34は、この発明の内側部材であり、それぞれ外壁部材11〜14の炉内面側を覆うように配置されている。耐熱ガラス31〜34は、外壁部材11〜14から離脱した塵埃が、被処理物20に付着することを防止する。耐熱ガラス31〜34のそれぞれは、搬送経路に沿って複数に分割されている。   The heat-resistant glasses 31 to 34 are inner members of the present invention, and are arranged so as to cover the furnace inner surfaces of the outer wall members 11 to 14, respectively. The heat resistant glasses 31 to 34 prevent the dust that has detached from the outer wall members 11 to 14 from adhering to the workpiece 20. Each of the heat-resistant glasses 31 to 34 is divided into a plurality along the conveyance path.

搬送ローラ2は、搬送経路に沿う複数の位置のそれぞれに備えられている。搬送ローラ2は、両端部が外壁部材13及び外壁部材14並びに耐熱ガラス33及び耐熱ガラス34を貫通しており、左側面側及び右側面側の炉外で軸受21,22によって回転自在に支持されている。搬送ローラ2には、右側面側の炉外に露出した端部にスプロケット23が固定されている。スプロケット23には、チェーン25を介して搬送モータ24の回転が伝達される。   The transport roller 2 is provided at each of a plurality of positions along the transport path. Both ends of the transport roller 2 pass through the outer wall member 13 and the outer wall member 14 and the heat-resistant glass 33 and the heat-resistant glass 34, and are rotatably supported by bearings 21 and 22 outside the left side and right side furnaces. ing. A sprocket 23 is fixed to the transport roller 2 at the end exposed to the outside of the furnace on the right side. The rotation of the transport motor 24 is transmitted to the sprocket 23 via the chain 25.

複数の耐熱ガラス32のそれぞれは、外壁部材12に密着支持されているのではなく、外壁部材13,14の下部及び中間位置を除いては非接触で支持されており、他部材への振動の伝播による耐熱ガラス32(内側部材)内の振動減衰を最小限に抑えている。しかし、振動の減衰が問題とならない場合は、密着支持してもよい。   Each of the plurality of heat-resistant glasses 32 is not closely supported by the outer wall member 12, but is supported in a non-contact manner except for the lower part and the intermediate position of the outer wall members 13 and 14, so that vibration to other members is prevented. Vibration attenuation in the heat-resistant glass 32 (inner member) due to propagation is minimized. However, when vibration attenuation is not a problem, close support may be provided.

複数の耐熱ガラス32のそれぞれの左側面側の端部には、左側外壁部材13から炉外に露出する露出部5が延出して形成されている。露出部5のそれぞれには、振動検出手段である振動センサ4が取り付けられている。振動センサ4は、耐熱ガラス32に発生した後に露出部5に伝播した振動を検出して検出信号を出力する。   An exposed portion 5 exposed from the left outer wall member 13 to the outside of the furnace is formed at the end on the left side of each of the plurality of heat resistant glasses 32. A vibration sensor 4 that is a vibration detecting means is attached to each of the exposed portions 5. The vibration sensor 4 detects vibration that has occurred in the heat-resistant glass 32 and then propagated to the exposed portion 5 and outputs a detection signal.

図2は、熱処理装置10における熱処理の内容の一例を示す図である。熱処理装置10は、炉内の搬送経路の一端から他端まで被処理物20を搬送し、この間に被処理物20に第1均熱処理、第2均熱処理、徐冷処理及び冷却処理を施す。   FIG. 2 is a diagram illustrating an example of the contents of the heat treatment in the heat treatment apparatus 10. The heat treatment apparatus 10 conveys the workpiece 20 from one end to the other end of the conveyance path in the furnace, and performs a first soaking process, a second soaking process, a slow cooling process, and a cooling process on the workpiece 20 during this period.

第1均熱処理は、被処理物20を一例として350℃に加熱した状態を20分間維持する。第2均熱処理は、被処理物20を一例として600℃に加熱した状態を30分間維持する。徐冷処理は、被処理物20を1時間かけて400℃まで冷却する。冷却処理は、被加熱物20を約50分かけて常温まで冷却する。   In the first soaking process, the state of heating the object 20 as an example to 350 ° C. is maintained for 20 minutes. In the second soaking process, the workpiece 20 is heated to 600 ° C. as an example and maintained for 30 minutes. In the slow cooling treatment, the workpiece 20 is cooled to 400 ° C. over 1 hour. In the cooling process, the object to be heated 20 is cooled to room temperature over about 50 minutes.

図3は、熱処理装置10の制御部6の構成の一例を示すブロック図である。この発明の制御手段である制御部6は、ROM62及びRAM63を備えたCPU61に、A/D変換器64、モータドライバ65等を接続して構成されている。   FIG. 3 is a block diagram illustrating an example of the configuration of the control unit 6 of the heat treatment apparatus 10. The control unit 6 as control means of the present invention is configured by connecting an A / D converter 64, a motor driver 65, and the like to a CPU 61 having a ROM 62 and a RAM 63.

A/D変換器64は振動センサ4と同数備えられており、複数のA/D変換器64のそれぞれに振動センサ4が接続されている。各A/D変換器64は、振動センサ4の検出信号をディジタルデータに変換してCPU61に入力する。   The same number of A / D converters 64 as the vibration sensors 4 are provided, and the vibration sensors 4 are connected to each of the plurality of A / D converters 64. Each A / D converter 64 converts the detection signal of the vibration sensor 4 into digital data and inputs it to the CPU 61.

CPU61は、A/D変換器64から入力された検出データを参照しつつ、ROM62が記憶しているプログラムにしたがってモータドライバ65に駆動データを出力する。   The CPU 61 outputs drive data to the motor driver 65 in accordance with a program stored in the ROM 62 while referring to the detection data input from the A / D converter 64.

モータドライバ65には、搬送モータ24が接続されている。モータドライバ65は、CPU61から出力された駆動データに基づいて搬送モータ24を駆動する。   A conveyance motor 24 is connected to the motor driver 65. The motor driver 65 drives the carry motor 24 based on the drive data output from the CPU 61.

図4は、CPU61の処理手順を示すフローチャートである。被処理物20の熱処理時に、CPU61は、モータドライバ65を介して搬送モータ24を駆動する(S1)。これによって、被処理物20は、炉内を搬送経路に沿って搬送されていく。   FIG. 4 is a flowchart showing the processing procedure of the CPU 61. During the heat treatment of the workpiece 20, the CPU 61 drives the transport motor 24 via the motor driver 65 (S1). Thereby, the workpiece 20 is transported along the transport path in the furnace.

熱処理の実行中に、CPU61は、複数の振動センサ4の何れかが振動を検出したか否かの判別を行う(S2)。振動センサ4の何れかが振動を検出すると、CPU61は、搬送モータ24の駆動を停止する(S3)。   During the execution of the heat treatment, the CPU 61 determines whether any of the plurality of vibration sensors 4 has detected vibration (S2). When any of the vibration sensors 4 detects vibration, the CPU 61 stops driving the transport motor 24 (S3).

落下物が除去されて処理の再開が指示された場合、及び、複数の振動センサ4の何れもが振動を検出しない場合には、処理の終了が指示されるまで搬送モータ24を駆動して被処理物20の搬送を継続する(S4,S5)。   When falling objects are removed and processing is instructed to restart, and when none of the plurality of vibration sensors 4 detects vibration, the conveyance motor 24 is driven until the end of processing is instructed. Conveyance of the processed product 20 is continued (S4, S5).

熱処理装置10は、セッターを用いることなく搬送ローラ2に被処理物20を直接載置して炉内を搬送する。炉内を搬送中の被処理物20が割れを生じてその一部が搬送ローラ2から下方に落下すると、被処理物20の一部が当接することによって耐熱ガラス32に振動を生じ、この振動が露出部5に伝播する。したがって、振動を検出した振動センサ4を露出部5に備えた耐熱ガラス32が位置している領域で被処理物20の割れを生じ、その一部が搬送ローラ2から落下したと判断できる。   The heat treatment apparatus 10 conveys the inside of the furnace by placing the workpiece 20 directly on the conveyance roller 2 without using a setter. When the workpiece 20 being transported in the furnace is cracked and a part thereof falls downward from the transport roller 2, a part of the workpiece 20 comes into contact with each other to generate vibration in the heat-resistant glass 32. Propagates to the exposed portion 5. Therefore, it can be determined that the workpiece 20 is cracked in a region where the heat-resistant glass 32 provided with the vibration sensor 4 that has detected the vibration is located in the exposed portion 5, and a part thereof has dropped from the transport roller 2.

搬送ローラ2からの落下物が比較的大きい場合には、落下物の一部が搬送面よりも上方に突出し続け、これを放置すると後に搬送される被処理物20と衝突する。振動センサ4の何れかが振動を検出した際に、搬送モータ24の駆動を停止することで、搬送経路中での被処理物20の移動を停止させ、後に搬送される被処理物20が落下物と衝突して破損することを防止できる。   When the fallen object from the transport roller 2 is relatively large, a part of the fallen object continues to protrude upward from the transport surface, and if this is left unattended, it collides with the object 20 to be transported later. When any of the vibration sensors 4 detects vibration, the driving of the transport motor 24 is stopped to stop the movement of the workpiece 20 in the transport path, and the workpiece 20 to be transported later falls. It can be prevented from colliding with an object and being damaged.

なお、CPU61に表示手段を備え、振動を検出した振動センサ4が配置されている場所をCPU61が表示手段に表示するようにしてもよい。落下物の位置を正確に特定して除去作業を容易にすることができる。振動センサ4のそれぞれに近接して表示灯等の表示手段を設け、振動を検出した振動センサ4に最も近接した表示手段によって表示を行うようにしてもよい。   Note that the CPU 61 may be provided with display means, and the CPU 61 may display on the display means the location where the vibration sensor 4 that detects vibration is disposed. The position of the fallen object can be accurately identified to facilitate the removal work. Display means such as an indicator lamp may be provided in proximity to each of the vibration sensors 4, and display may be performed by display means closest to the vibration sensor 4 that has detected vibration.

図5は、振動センサ4による振動の検出状態の実験結果の一例を示す図である。図に明らかなように、耐熱ガラス32の露出部5に配置された振動センサ4の検出信号である出力電圧は、その耐熱ガラス32に落下した破片が大きくなるにしたがって増加する。また、この出力電圧は、熱処理装置10の全体に外力が作用した場合、熱処理装置10自体から振動が作用する場合、隣接する耐熱ガラスに破片が落下した場合の振動センサ4の出力電圧とも大きく異なる。   FIG. 5 is a diagram illustrating an example of an experimental result of a vibration detection state by the vibration sensor 4. As is apparent from the figure, the output voltage, which is the detection signal of the vibration sensor 4 disposed on the exposed portion 5 of the heat-resistant glass 32, increases as the pieces falling on the heat-resistant glass 32 increase. This output voltage is also greatly different from the output voltage of the vibration sensor 4 when an external force is applied to the entire heat treatment apparatus 10, when vibration is applied from the heat treatment apparatus 10 itself, or when fragments are dropped on the adjacent heat-resistant glass. .

したがって、振動センサ4の出力電圧から、その振動センサ4が取り付けられている露出部5を有する耐熱ガラス32に落下した破片の大きさを判別することができる。   Therefore, it is possible to determine the size of the pieces dropped on the heat-resistant glass 32 having the exposed portion 5 to which the vibration sensor 4 is attached from the output voltage of the vibration sensor 4.

但し、処理温度の違いによる出力電圧の違いは小さいが、被処理物20の形状や厚さ、底面の耐熱ガラス32の大きさと支持状態、落下高さ等の違い等の諸条件により出力電圧は変化するので、適宜最適な閾値を設定することとする。   However, although the difference in output voltage due to the difference in processing temperature is small, the output voltage depends on various conditions such as the shape and thickness of the workpiece 20, the size and supporting state of the heat-resistant glass 32 on the bottom surface, and the drop height. Since it changes, an optimal threshold value is set as appropriate.

被処理物20から落下した破片が十分に小さい場合には、耐熱ガラス32上に完全に落下し、後に搬送される被処理物20と衝突することはない。被処理物20から落下した破片が比較的大きい場合に、搬送ローラ2の上側に一部が突出し、後に搬送される被処理物20と衝突する。   When the fragments dropped from the object to be processed 20 are sufficiently small, they completely fall on the heat-resistant glass 32 and do not collide with the object to be processed 20 conveyed later. When the debris dropped from the object to be processed 20 is relatively large, a part protrudes above the conveying roller 2 and collides with the object 20 to be conveyed later.

そこで、振動センサ4の出力電圧から破片が比較的大きいと判断した場合にのみ、S5で搬送モータ24の駆動を停止するようにしてもよい。被処理物20に発生した割れが、後の被処理物20の熱処理に支障を来たす場合にのみ熱処理作業を中断することができ、後の被処理物20の熱処理に影響を与えない場合には、熱処理作業を継続して行うことができる。   Therefore, only when it is determined from the output voltage of the vibration sensor 4 that the fragments are relatively large, the driving of the transport motor 24 may be stopped in S5. In the case where the crack generated in the workpiece 20 can interrupt the heat treatment only when the subsequent heat treatment of the workpiece 20 is hindered and does not affect the heat treatment of the subsequent workpiece 20. The heat treatment operation can be continued.

さらに、振動センサ4の出力電圧から、その振動センサ4が取り付けられている露出部5を有する耐熱ガラス32に破片が落下したことを正確に検出できる。   Further, it can be accurately detected from the output voltage of the vibration sensor 4 that a broken piece has fallen on the heat-resistant glass 32 having the exposed portion 5 to which the vibration sensor 4 is attached.

そこで、搬送経路を複数に分割した各領域に含まれる搬送ローラ2毎に纏めて搬送モータ24の回転を供給するようにし、S5の処理では振動を検出した振動センサ4が配置されている領域よりも上流側の領域に配置された搬送ローラ2のみの回転を停止するようにしてもよい。落下物が存在する領域よりも下流側での被処理物20の搬送を継続することで、炉内を搬送中の被処理物20のうちで落下物に衝突する可能性のない被処理物20に対する熱処理を適正に遂行することができる。   Therefore, the rotation of the transport motor 24 is supplied for each transport roller 2 included in each region obtained by dividing the transport path into a plurality of regions, and in the process of S5, the region where the vibration sensor 4 that detects the vibration is disposed. Alternatively, the rotation of only the transport roller 2 arranged in the upstream area may be stopped. By continuing the conveyance of the workpiece 20 on the downstream side of the region where the falling object exists, the workpiece 20 that does not collide with the falling object among the workpieces 20 being conveyed in the furnace. The heat treatment can be properly performed.

なお、上記の実施形態において、同一の状態で駆動される複数の搬送ローラ2が含まれる1つの領域と、各振動センサ4が配置されている領域と、が一致していることは、必ずしも要求されない。搬送ローラ2の配置位置と振動センサ4の配置位置とは、互いに異なる基準で設定することができる。この場合に、搬送ローラ2の配置位置と振動センサ4の配置位置との対応関係を予め定めておき、この対応関係に従って何れかの振動センサ4が振動を検出した際に駆動を制御されるべき上流側の搬送ローラ2を決めることができる。   In the above-described embodiment, it is not always required that one area including the plurality of transport rollers 2 driven in the same state matches the area where each vibration sensor 4 is disposed. Not. The arrangement position of the conveyance roller 2 and the arrangement position of the vibration sensor 4 can be set based on different references. In this case, a correspondence relationship between the arrangement position of the transport roller 2 and the arrangement position of the vibration sensor 4 is determined in advance, and driving should be controlled when any one of the vibration sensors 4 detects vibration according to this correspondence relationship. The upstream conveying roller 2 can be determined.

ここで、上流側の搬送ローラ2とは、被処理物20の一部の落下による影響を受ける可能性のある別の被処理物20を搬送中の搬送ローラ2を意味し、必ずしも振動センサ4に対する搬送ローラ2の物理的な上流側の位置を意味するものではない。したがって、被処理物20の一部が落下した際に、振動を検出した振動センサ4の配置位置に対して物理的に下流側に配置されている搬送ローラ2の回転を停止することもできる。   Here, the upstream conveyance roller 2 means the conveyance roller 2 that is conveying another workpiece 20 that may be affected by a drop of a part of the workpiece 20, and is not necessarily the vibration sensor 4. It does not mean the position of the physical upstream side of the conveying roller 2 with respect to. Therefore, when a part of the workpiece 20 falls, the rotation of the transport roller 2 that is physically disposed on the downstream side with respect to the position where the vibration sensor 4 that has detected the vibration can be stopped.

この発明の実施形態に係る熱処理装置10の構成を示す要部の側面断面図及び正面断面図である。It is side sectional drawing and front sectional drawing of the principal part which shows the structure of the heat processing apparatus 10 which concerns on embodiment of this invention. 熱処理装置10における熱処理の内容の一例を示す図である。3 is a diagram illustrating an example of the content of heat treatment in the heat treatment apparatus 10. FIG. 熱処理装置10の制御部6の構成の一例を示すブロック図である。3 is a block diagram illustrating an example of a configuration of a control unit 6 of the heat treatment apparatus 10. FIG. CPU61の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence of CPU61. 振動センサ4による振動の検出状態の実験結果の一例を示す図である。It is a figure which shows an example of the experimental result of the detection state of the vibration by the vibration sensor.

符号の説明Explanation of symbols

2 搬送ローラ
4 振動センサ(振動検出手段)
5 露出部
6 制御部(制御手段)
10 熱処理装置
11〜14 外壁部材
20 被処理物
31〜34 耐熱ガラス(内側部材)
2 Transport roller 4 Vibration sensor (vibration detection means)
5 Exposed part 6 Control part (control means)
DESCRIPTION OF SYMBOLS 10 Heat processing apparatus 11-14 Outer wall member 20 To-be-processed objects 31-34 Heat-resistant glass (inner member)

Claims (4)

被処理物が搬送される搬送経路の周囲を被覆する外壁部材と、前記搬送経路に沿う複数の位置のそれぞれで回転自在に支持された複数の搬送ローラと、前記搬送経路に沿って前記複数の搬送ローラの下方に配置された複数の内側部材と、前記複数の内側部材のうちの少なくとも1つの内側部材から前記外壁部材を貫通して外部に露出する露出部と、前記露出部に配置された振動検出手段であって前記搬送経路を搬送中の被処理物の一部が前記内側部材に落下したことによる振動の発生を検出して検出信号を出力する振動検出手段と、落下した被処理物の一部とその後に搬送される被処理物との接触を防止するように前記検出信号に基づいて前記搬送ローラの駆動を制御する制御手段と、を備えたことを特徴とする熱処理装置。   An outer wall member that covers the periphery of the conveyance path through which the workpiece is conveyed, a plurality of conveyance rollers that are rotatably supported at each of a plurality of positions along the conveyance path, and the plurality of lines along the conveyance path A plurality of inner members disposed below the conveying roller, an exposed portion that penetrates the outer wall member from at least one inner member of the plurality of inner members and is exposed to the outside, and is disposed on the exposed portion A vibration detecting means for detecting the occurrence of vibration due to a part of the object to be processed being transported along the transport path being dropped on the inner member and outputting a detection signal; And a control means for controlling the driving of the conveying roller based on the detection signal so as to prevent contact between a part of the object and a workpiece to be conveyed thereafter. 前記搬送経路に沿って少なくとも加熱領域、徐冷領域及び冷却領域を備え、前記露出部は前記複数の内側部材のうちで少なくとも前記徐冷領域に配置された内側部材に備えられていることを特徴とする請求項1に記載の熱処理装置。   It comprises at least a heating region, a slow cooling region, and a cooling region along the transport path, and the exposed portion is provided in at least an inner member arranged in the slow cooling region among the plurality of inner members. The heat treatment apparatus according to claim 1. 前記制御手段は、前記振動検出手段が振動の発生を検出した時に、前記複数の搬送ローラのうちで前記振動を発生した前記内側部材よりも前記搬送経路の上流側の範囲に配置された搬送ローラの駆動を停止する停止処理を行う構成を備えたことを特徴とする請求項1又は2に記載の熱処理装置。   The control means includes a transport roller arranged in a range upstream of the transport path from the inner member that has generated the vibration among the plurality of transport rollers when the vibration detection means detects the occurrence of vibration. The heat treatment apparatus according to claim 1, further comprising a stop process for stopping the driving of the heat treatment apparatus. 前記制御手段は、前記振動検出手段が振動の発生を検出した時に、前記検出信号に基づいて前記複数の内側部材のいずれかに落下した被処理物の一部が前記複数の搬送ローラの上面側に露出する大きさであるか否かを判別する判別処理を行い、前記判別処理で落下した被処理物の一部が前記複数の搬送ローラの上面側に露出する大きさであると判別した時にのみ前記停止処理を行う構成を備えたことを特徴とする請求項3に記載の熱処理装置。   The control means is configured such that when the vibration detection means detects the occurrence of vibration, a part of the workpiece that has fallen on any of the plurality of inner members based on the detection signal is on the upper surface side of the plurality of transport rollers. When determining whether or not a part of the processing object dropped by the determination process is exposed to the upper surface side of the plurality of conveying rollers. The heat treatment apparatus according to claim 3, further comprising a configuration for performing only the stop process.
JP2006032884A 2006-02-09 2006-02-09 Heat treatment equipment Expired - Fee Related JP5044125B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006032884A JP5044125B2 (en) 2006-02-09 2006-02-09 Heat treatment equipment
TW095113361A TWI387717B (en) 2006-02-09 2006-04-14 Heat treatment apparatus
KR1020060062650A KR101394635B1 (en) 2006-02-09 2006-07-04 Heat treatment apparatus
CN2006101106598A CN101016191B (en) 2006-02-09 2006-08-07 Heat treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006032884A JP5044125B2 (en) 2006-02-09 2006-02-09 Heat treatment equipment

Publications (2)

Publication Number Publication Date
JP2007212052A true JP2007212052A (en) 2007-08-23
JP5044125B2 JP5044125B2 (en) 2012-10-10

Family

ID=38490663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006032884A Expired - Fee Related JP5044125B2 (en) 2006-02-09 2006-02-09 Heat treatment equipment

Country Status (4)

Country Link
JP (1) JP5044125B2 (en)
KR (1) KR101394635B1 (en)
CN (1) CN101016191B (en)
TW (1) TWI387717B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101926520B1 (en) * 2011-12-29 2018-12-11 엘지디스플레이 주식회사 Apparatus for conveying substrate
CN105439431A (en) * 2015-12-16 2016-03-30 重庆嘉威特节能玻璃有限公司 Full-automatic glass annealing and cooling device
CN106007351B (en) * 2016-05-27 2018-09-11 昆山国显光电有限公司 The calibration method of glass loading attachment, fast heat treatment device and its supporting pin
KR102127518B1 (en) * 2018-03-02 2020-06-29 주식회사 엘지화학 Method for diagnosing the abnormality of the plate glass transferring apparatus
KR102551053B1 (en) * 2021-05-12 2023-07-05 주식회사 한국제이텍트써모시스템 Heater unit of heat treatment oven

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03284523A (en) * 1990-03-30 1991-12-16 Taiyo Yuden Co Ltd Furnace device with fall detecting mechanism of electronic circuit board and elimination method of fallen board
JPH06198424A (en) * 1992-12-02 1994-07-19 Matsushita Electric Ind Co Ltd Reflow soldering device
JP2000193371A (en) * 1998-12-25 2000-07-14 Nippon Electric Glass Co Ltd Heat treating furnace

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1490585A (en) * 2002-10-16 2004-04-21 光洋热系统株式会社 Continuous heating treating furnaces
JP3938554B2 (en) * 2003-03-26 2007-06-27 光洋サーモシステム株式会社 Heat treatment furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03284523A (en) * 1990-03-30 1991-12-16 Taiyo Yuden Co Ltd Furnace device with fall detecting mechanism of electronic circuit board and elimination method of fallen board
JPH06198424A (en) * 1992-12-02 1994-07-19 Matsushita Electric Ind Co Ltd Reflow soldering device
JP2000193371A (en) * 1998-12-25 2000-07-14 Nippon Electric Glass Co Ltd Heat treating furnace

Also Published As

Publication number Publication date
TWI387717B (en) 2013-03-01
JP5044125B2 (en) 2012-10-10
CN101016191B (en) 2011-06-08
CN101016191A (en) 2007-08-15
KR20070081071A (en) 2007-08-14
KR101394635B1 (en) 2014-05-14
TW200730421A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP5044125B2 (en) Heat treatment equipment
CN113195182B (en) Glass plate manufacturing method and glass plate manufacturing device
JP6706423B2 (en) Glass breakage detection method, sheet glass manufacturing method, and glass cutting device
JP2007225323A (en) Crack sensor of substrate and substrate treatment apparatus
JP6211955B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
JP2008070324A (en) Warpage detector of plate-like body, and its method
WO2019138886A1 (en) Heat treatment furnace
JP6712564B2 (en) Foreign object detector
JP4977361B2 (en) Continuous firing furnace
JP5125059B2 (en) Glass substrate transfer method
JP2007131904A (en) Quenching apparatus
JP4397546B2 (en) Continuous heat treatment furnace and workpiece heat treatment temperature control method in continuous heat treatment furnace
KR20190105829A (en) Method for predicting crack of the plate glass
JP5318332B2 (en) Heat treatment equipment
JP2008256290A (en) Heat treatment apparatus and delivery method of heat-treated object
WO2022172591A1 (en) Glass plate manufacturing method and manufacturing device
WO2022196235A1 (en) Method for producing glass plate and device for producing same
JP6571413B2 (en) GLASS PLATE MANUFACTURING METHOD AND GLASS PLATE MANUFACTURING DEVICE
JP2007225324A (en) Crack sensor of substrate and substrate treatment apparatus
JP2004179566A (en) Vertical heat treatment apparatus and method of detecting abnormal wafer in that apparatus
KR20110046686A (en) Apparatus and method for controlling temperature of heat treatment furnace
JP2017067545A (en) Manufacturing method of glass substrate, and manufacturing apparatus of glass substrate
KR101230670B1 (en) Continuous firing furnace
JP2005156311A (en) Automatic dimension measurement device
JP2003279258A (en) Continuous burning furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090206

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees