JP2007211887A - Corrugated flexible pipe - Google Patents

Corrugated flexible pipe Download PDF

Info

Publication number
JP2007211887A
JP2007211887A JP2006032435A JP2006032435A JP2007211887A JP 2007211887 A JP2007211887 A JP 2007211887A JP 2006032435 A JP2006032435 A JP 2006032435A JP 2006032435 A JP2006032435 A JP 2006032435A JP 2007211887 A JP2007211887 A JP 2007211887A
Authority
JP
Japan
Prior art keywords
pipe
tube
corrugated
corrugated flexible
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006032435A
Other languages
Japanese (ja)
Inventor
Yoshiaki Tatsuta
佳招 龍田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inaba Denki Sangyo Co Ltd
Original Assignee
Inaba Denki Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inaba Denki Sangyo Co Ltd filed Critical Inaba Denki Sangyo Co Ltd
Priority to JP2006032435A priority Critical patent/JP2007211887A/en
Publication of JP2007211887A publication Critical patent/JP2007211887A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To maintain the high workability of a piping arrangement and an excellent freeze prevention function of a corrugated flexible pipe and a fluid pipe by restraining the lowering of the bending performance of the corrugated flexible pipe itself even though a heater source is arranged as much as possible due to the reasonable arrangement remodeling in the corrugated flexible pipe: to make it possible to downsize in radial direction, lower the production cost and restrain also the occurrence of the collision sound effectively due to ruffling of the fluid pipe originated from the water hammer phenomenon. <P>SOLUTION: Beside a flexible synthetic resin demarcating wall part 4 for heat radiation which demarcates a passage to pass a heat generation source 3 against a passage 4 to insert the fluid pipe in a sealing condition is formed integrally along a pipe shaft center in a protruding condition to the side of pipe shaft center on the wall 1b in the pipe of the corrugated flexible synthetic resin pipe 1, the flexible support body 5 of synthetic resin which can touch with the fluid pipe 1 to be inserted into a passage S1 for the fluid pipe insertion is formed and protruded integrally on the side of a pipe shaft center to the part which is biased toward the circumference from the demarcating wall part 4 for heat radiation in a wall face 1b within the pipe. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、構造物の床面や壁面等の配管経路に沿って配設される給水管や給湯管等の可撓性のある流体管を保護する鞘管などのように、流体管を挿通する屈曲可能な合成樹脂製の波形可撓管に関する。   The present invention inserts a fluid pipe such as a sheath pipe that protects a flexible fluid pipe such as a water supply pipe or a hot water supply pipe disposed along a piping path such as a floor surface or a wall surface of a structure. The present invention relates to a corrugated flexible tube made of a bendable synthetic resin.

一般に、戸建て住宅や高層住宅等の構造物に給水給湯管や暖房管等の流体管を配設する場合、構造物の床面や壁面等に予め配設された保護管となる鞘管等の波形可撓管内に可撓性のある流体管を挿入する二重配管工法が採用されている。この二重配管工法による場合は、施工及び保守点検作業の容易化、能率化を図ることができるものの、冬季の寒冷地では、流体管内の流体の流動が長時間に亘って停止すると、流体の保有熱が徐々に奪われて凍結する問題がある。   In general, when a fluid pipe such as a hot water supply pipe or a heating pipe is provided in a structure such as a detached house or a high-rise house, a sheath pipe or the like serving as a protective pipe provided in advance on the floor or wall surface of the structure is used. A double piping method is employed in which a flexible fluid pipe is inserted into the corrugated flexible pipe. In the case of this double piping method, construction and maintenance inspection work can be facilitated and streamlined, but in cold regions in winter, if the fluid flow in the fluid pipe stops for a long time, There is a problem that the retained heat is gradually taken away and freezes.

そこで、波形可撓管内に挿通された流体管内での流体の凍結を防止する方法として、従来では、次の(イ)、(ロ)に示す波形可撓管の構造が提案されている。
(イ)波形可撓管の管内壁面とそれに挿通された流体管の外壁面との間に、流体管の外壁面に沿って筒状に巻き付け可能な可撓性を備えた複数の発熱体を介装するとともに、各発熱体の内周面側には、流体管の外壁面に貼り付けるための接着剤層が形成されている。
Therefore, as a method for preventing freezing of the fluid in the fluid pipe inserted into the corrugated flexible pipe, the following corrugated flexible pipe structures shown in the following (A) and (B) have been proposed.
(B) A plurality of heating elements having flexibility that can be wound in a cylindrical shape along the outer wall surface of the fluid pipe between the inner wall surface of the corrugated flexible pipe and the outer wall surface of the fluid pipe inserted therethrough. At the same time, an adhesive layer is formed on the inner peripheral surface side of each heating element to be attached to the outer wall surface of the fluid pipe.

また、各発熱体は、二枚の所定幅の短冊状に形成されたポリエチレン等の合成樹脂シートによって、2本のリード線とそれに接続された板状のステンレスエレメントとを挟着することにより薄肉板状に構成されているとともに、隣接する発熱体の端部同士を一体的に連結する一対の連結片内を通して、発熱体のリード線同士を接続するように構成されている。
そして、波形可撓管内に流体管を挿通する際、この流体管の外壁面に発熱体を巻き付けながら貼着するように構成されている(特許文献1参照)。
Each heating element is made thin by sandwiching two lead wires and a plate-like stainless steel element connected thereto with a synthetic resin sheet such as polyethylene formed in a strip shape having a predetermined width. It is comprised in plate shape, and it is comprised so that the lead wires of a heat generating body may be connected through the inside of a pair of connection piece which connects the edge parts of adjacent heat generating bodies integrally.
And when inserting a fluid pipe | tube in a corrugated flexible pipe | tube, it is comprised so that it may stick, winding a heat generating body around the outer wall surface of this fluid pipe | tube (refer patent document 1).

(ロ)流体管を挿通してある波形可撓管と、ヒーター線を挿通する可撓性の合成樹脂製の放熱管を、それらの外壁面の一部同士が管軸芯方向に沿って線状に接触する状態で並置する、或いは、流体管を挿通してある波形可撓管の外壁面と、ヒーター線を挿通する可撓性の合成樹脂製の放熱管の外壁面とを、波形可撓管内の流体管挿通用通路と放熱管内のヒーター線挿通用通路とが径方向で連通する状態で一体形成する。 (B) A corrugated flexible tube through which a fluid tube is inserted and a flexible synthetic resin heat radiating tube through which a heater wire is inserted. It is possible to corrugate the outer wall surface of a corrugated flexible tube that is juxtaposed in contact with each other or through a fluid tube and the outer wall surface of a flexible synthetic resin radiator tube that is inserted through a heater wire. The fluid pipe insertion passage in the flexible tube and the heater wire insertion passage in the heat radiating tube are integrally formed in a state of communicating in the radial direction.

また、並置された波形可撓管と放熱管とを発泡樹脂製の断熱管で被覆するか、或いは、連通状態で一体形成された波形可撓管と放熱管とを発泡樹脂製の断熱管で被覆する(特許文献2参照)。   Further, the corrugated flexible pipe and the heat radiating pipe arranged side by side are covered with a heat insulating pipe made of foamed resin, or the corrugated flexible pipe and the heat radiating pipe integrally formed in a communicating state are covered with a heat insulating pipe made of foamed resin. Cover (see Patent Document 2).

特開平11−67431号公報JP-A-11-67431 実用新案登録第3084455号公報Utility Model Registration No. 3084455

前者の従来構造では、波形可撓管内に流体管を挿通する際、この流体管の外周面に発熱体を巻き付けながら貼着する必要があるため、その巻き付けに多くの手間と時間を要し、流体管の配設作業能率の低下を招来していた。   In the former conventional structure, when inserting the fluid pipe into the corrugated flexible pipe, it is necessary to stick the heat generating body around the outer peripheral surface of the fluid pipe, so that much time and effort are required for the winding. The arrangement efficiency of the fluid pipe was lowered.

更に、流体管から流体の漏洩が発生した場合、波形可撓管内において発熱体が漏洩流体に浸漬されることになるため、発熱体自体に高い防水性能が要求されることになり、製造コストの高騰化を招来していた。   Furthermore, when a fluid leak occurs from the fluid pipe, the heating element is immersed in the leaking fluid in the corrugated flexible pipe, so that the heating element itself is required to have high waterproof performance, and the manufacturing cost is reduced. Invited soaring.

また、後者の従来構造としては、前述のように並置タイプと一体形タイプとが存在するが、そのうち、並置タイプでは、放熱管から放射される熱が外部に逃げないように、並置された波形可撓管と放熱管とを発泡樹脂製の断熱管で必ず被覆する必要があるため、配管全体の外形が大きくなるとともに、波形可撓管と放熱管とを断熱管で被覆するための作業に多くの手間を要するため、作業性が低下していた。   In addition, as the latter conventional structure, there are a juxtaposed type and an integral type as described above. Of these, the juxtaposed type has a waveform arranged side by side so that heat radiated from the heat radiating pipe does not escape to the outside. Since it is necessary to cover the flexible tube and the heat radiating tube with a heat insulating tube made of foamed resin, the outer shape of the entire pipe is increased, and the work for covering the corrugated flexible tube and the heat radiating tube with the heat insulating tube Since a lot of labor is required, workability has been reduced.

更に、他方の一体型タイプでは、波形可撓管の外周面から外方に突出する状態で放熱管が一体形成されているため、並置タイプのように波形可撓管と放熱管とを断熱管で必ず覆う必要がなく、波形可撓管と放熱管とを一つの管として取り扱うことができるため、その面で作業性を高めることができるものの、波形可撓管の外周面に張り出す放熱管によって波形可撓管自体の屈曲性が損なわれるため、波形可撓管及び流体管の配管作業性が大きく低下する問題がある。   Furthermore, in the other integrated type, since the heat radiating tube is integrally formed in a state of protruding outward from the outer peripheral surface of the corrugated flexible tube, the corrugated flexible tube and the heat radiating tube are insulated from each other as in the side-by-side type. The corrugated flexible tube and the heat radiating tube can be handled as a single tube, so that the workability can be improved on that surface, but the heat radiating tube that projects on the outer peripheral surface of the corrugated flexible tube As a result, the bendability of the corrugated flexible tube itself is impaired.

しかも、波形可撓管の流体管挿通用通路と放熱管のヒーター線挿通用通路とが管軸芯方向に沿って連通形成されているため、流体管から漏洩が発生した場合、放熱管内において発熱体が漏洩流体に浸漬されることになり、結果的に放熱管自体に高い防水性能が要求されることになり、製造コストの高騰化を招来していた。   In addition, the fluid pipe insertion passage of the corrugated flexible pipe and the heater wire insertion passage of the heat radiating pipe are formed in communication along the tube axis direction, so that heat is generated in the heat radiating pipe when leakage occurs from the fluid pipe. As a result, the body is immersed in the leaking fluid, and as a result, a high waterproof performance is required for the heat radiating tube itself, resulting in an increase in manufacturing cost.

本発明は、上述の実状に鑑みて為されたものであって、その主たる課題は、波形可撓管内での合理的な配置改造により、発熱源を設けながらも波形可撓管自体の屈曲性の低下を極力抑制して、波形可撓管及び流体管の高い配管作業性と優れた凍結防止機能を維持しつつ、管径方向での小型化と製造コストの低廉化を図ることができ、しかも、ウォータハンマー現象に起因する流体管の波打ちによる衝突音の発生も効果的に抑制することのできる波形可撓管を提供する点にある。   The present invention has been made in view of the above-described actual situation, and the main problem thereof is that the corrugated flexible tube itself bends while a heat source is provided by rational arrangement modification within the corrugated flexible tube. As much as possible, while maintaining high piping workability and excellent anti-freezing function of corrugated flexible pipes and fluid pipes, miniaturization in the pipe diameter direction and reduction in manufacturing costs can be achieved. In addition, the present invention is to provide a corrugated flexible tube that can effectively suppress the occurrence of collision noise caused by the undulation of the fluid tube due to the water hammer phenomenon.

本発明による第1の特徴構成は、可撓性の流体管を挿通する屈曲可能な合成樹脂製の波形可撓管であって、
管内壁面に、流体管挿通用通路に対して発熱源を通すための通路を密封状態で区画形成する可撓性の合成樹脂製の放熱用区画壁部が管軸芯側に突出する状態で管軸芯方向に沿って一体的に形成されているとともに、前記管内壁面における放熱用区画壁部から周方向に偏倚した部位には、流体管挿通用通路に挿通された流体管と当接可能な可撓性の合成樹脂製の支持体が管軸芯側に一体的に突出形成されている点にある。
A first characteristic configuration according to the present invention is a corrugated flexible tube made of a bendable synthetic resin that passes through a flexible fluid tube,
On the inner wall surface of the pipe, a passage for passing a heat generation source with respect to the passage for inserting the fluid pipe is formed in a sealed state. It is integrally formed along the axial direction, and can be brought into contact with a fluid pipe inserted through a fluid pipe insertion passage at a portion that is deviated in a circumferential direction from a heat radiating partition wall on the inner wall surface of the pipe. A flexible synthetic resin support body is formed so as to project integrally on the tube axis side.

上記特徴構成によれば、波形可撓管の管内壁面に一体的に形成された可撓性のある合成樹脂製の放熱用区画壁部により、波形可撓管の内部空間が、可撓性の流体管を挿通するための通路と発熱源を通すための通路とに区画形成されているため、発熱源からの放射熱で波形可撓管内に配設された流体管が凍結しない雰囲気温度に効率良く加熱することができる。
しかも、前記管内壁面における放熱用区画壁部から周方向に偏倚した部位には、流体管挿通用通路に挿通された流体管と当接可能な可撓性の合成樹脂製の支持体が管軸芯側に一体的に突出形成されているので、ウォータハンマー現象に起因して波形可撓管内に配設された流体管が波打ちしたとき、波形可撓管の管内壁面に一体形成されている前記支持体及び放熱用区画壁部が流体管との当接に連れて弾性変形することにより、流体管の波打ちによる衝撃力を緩和することができる。
更に、前記放熱用区画壁部及び支持体が波形可撓管の径方向外方に突出しないため、波形可撓管自体の屈曲性が低下することを抑制することができるとともに、従来のように波形可撓管の外壁面の一部に放熱管の外壁面の一部が連設されている場合に比して径方向での小型化を図り易い。
According to the above characteristic configuration, the internal space of the corrugated flexible pipe is made flexible by the flexible synthetic resin heat radiation partition wall formed integrally on the inner wall surface of the corrugated flexible pipe. Since the passage is formed by a passage for inserting the fluid pipe and a passage for passing the heat source, the fluid pipe disposed in the corrugated flexible tube is efficiently frozen by the radiant heat from the heat source. It can be heated well.
In addition, a flexible synthetic resin support that can come into contact with the fluid pipe inserted into the fluid pipe insertion passage is provided at a portion of the inner wall surface of the pipe that is biased in the circumferential direction from the heat radiating partition wall. Since the fluid pipe disposed in the corrugated flexible tube undulates due to the water hammer phenomenon, it is integrally formed on the inner wall surface of the corrugated flexible pipe. The support and the partition wall for heat dissipation are elastically deformed as they come into contact with the fluid pipe, whereby the impact force caused by the undulation of the fluid pipe can be reduced.
Further, since the partition wall portion for heat dissipation and the support do not protrude radially outward of the corrugated flexible tube, it is possible to prevent the bending property of the corrugated flexible tube itself from being lowered, as in the prior art. Compared to the case where a part of the outer wall surface of the heat radiating tube is connected to a part of the outer wall surface of the corrugated flexible tube, it is easy to reduce the size in the radial direction.

また、前記放熱用区画壁部によって熱源用通路が密封状態で区画形成されているため、流体管から流体の漏洩が発生しても、発熱源が漏洩流体に浸漬されることがなく、発熱源に要求される防水性能を低く設定することができる。   In addition, since the heat source passage is formed in a sealed state by the heat radiating partition wall portion, even if a fluid leaks from the fluid pipe, the heat source is not immersed in the leaked fluid. The waterproof performance required for the camera can be set low.

従って、発熱源を設けながらも波形可撓管自体の曲り特性の低下を極力抑制して、波形可撓管及び流体管の高い配管作業性と優れた凍結防止機能を維持しつつ、配管の径方向での小型化と製造コストの低廉化とを図ることができ、しかも、発熱源用通路を密封状態で区画形成するための放熱用区画壁部を緩衝材の一部に利用することにより、ウォータハンマー現象に起因する流体管の波打ちによる衝突音の発生を効果的に抑制することができるとともに、消音効果の高いものをコスト面で有利に製作することができる。   Therefore, while providing a heat source, the deterioration of the bending characteristics of the corrugated flexible pipe itself is suppressed as much as possible, while maintaining the high piping workability and excellent anti-freezing function of the corrugated flexible pipe and the fluid pipe, By reducing the size in the direction and reducing the manufacturing cost, and by using the partition wall portion for heat radiation for forming the heat source passage in a sealed state as a part of the cushioning material, It is possible to effectively suppress the generation of a collision sound due to the undulation of the fluid pipe caused by the water hammer phenomenon, and it is possible to advantageously manufacture a high sound deadening effect.

本発明による第2の特徴構成は、前記支持体が管内壁面の周方向複数箇所に形成されていて、前記放熱用区画壁部とで流体管挿通用通路に挿通された流体管を管内壁面から管軸芯側に離間した位置に保持するように構成されている点にある。   According to a second characteristic configuration of the present invention, the support body is formed at a plurality of locations in the circumferential direction of the inner wall surface of the pipe, and the fluid pipe inserted into the fluid pipe insertion passage with the heat radiating partition wall portion is separated from the inner wall surface of the pipe. It is in the point comprised so that it may hold | maintain in the position spaced apart to the pipe-axis core side.

上記特徴構成によれば、前記管内壁面に突設した複数の支持体と放熱用区画壁部との協働により、挿通された流体管を管内壁面から離間保持することができるので、流体管の外周面全体を発熱源からの放射熱で加熱された流体管挿通用通路内の雰囲気温度にさらすことができ、凍結防止機能を高めることができる。   According to the above characteristic configuration, the inserted fluid pipe can be held away from the pipe inner wall surface by the cooperation of the plurality of supports projecting from the pipe inner wall surface and the heat radiating partition wall portion. The entire outer peripheral surface can be exposed to the ambient temperature in the passage for inserting a fluid pipe heated by radiant heat from a heat source, and the freeze prevention function can be enhanced.

本発明による第3の特徴構成は、前記放熱用区画壁部が、山部と谷部を備えた波形放熱管から構成されている点にある。   The 3rd characteristic structure by this invention exists in the point from which the said partition wall part for heat radiation is comprised from the corrugated heat sink provided with the peak part and the trough part.

上記特徴構成によれば、前記放熱用区画壁部を構成する波形放熱管自体の屈曲性能が高くなり、それに連れて波形可撓管の屈曲性も向上するため、波形可撓管及び流体管の配管作業性をより高めることができるとともに、熱放射面となる波形放熱管の広い表面積の外周面を利用して、通路内に配設された流体管が凍結しない雰囲気温度に効率良く加熱することができる。   According to the above-described characteristic configuration, the bending performance of the corrugated heat radiating pipe itself constituting the heat radiating partition wall portion is increased, and accordingly, the flexibility of the corrugated flexible pipe is improved. Piping workability can be further improved, and the corrugated heat radiating pipe, which is the heat radiation surface, can be efficiently heated to an ambient temperature at which the fluid pipe placed in the passage does not freeze using the outer surface of the corrugated radiator pipe. Can do.

本発明による第4の特徴構成は、前記波形放熱管のピッチが波形可撓管と同じピッチに構成されている点にある。   The 4th characteristic structure by this invention exists in the point by which the pitch of the said waveform heat radiating tube is comprised by the same pitch as a waveform flexible tube.

上記特徴構成によれば、前記波形可撓管の管内壁面の一部に波形放熱管の外壁面の一部を管軸芯方向に沿って一体的に形成する際、波形可撓管の谷部と波形放熱管の山部とを接合することができるので、波形可撓管に対する波形放熱管の接合作業を能率良く容易に行うことができ、しかも、波形可撓管の屈曲性能と波形放熱管の屈曲性能が近くなるため、放熱管の接合に起因して波形可撓管自体の屈曲性が低下することを良好に抑制することができる。   According to the above characteristic configuration, when forming a part of the outer wall surface of the corrugated heat radiating pipe integrally with a part of the inner wall surface of the corrugated flexible pipe along the tube axis direction, the trough of the corrugated flexible pipe is formed. Can be joined to the corrugated flexible tube, so that the corrugated flexible tube can be efficiently and easily joined to the corrugated flexible tube. Therefore, it is possible to satisfactorily suppress the deterioration of the bendability of the corrugated flexible tube itself due to the joining of the heat radiating tubes.

〔第1実施形態〕
図1〜図4は、可撓性を備えた合成樹脂製の波形可撓管の一例である架橋ポリエチレン製の鞘管1内に、可撓性を備えた合成樹脂製の流体管の一例である架橋ポリエチレン製の給水給湯管2を挿通させて、鞘管1を給水給湯管2の保護管に構成してある二重配管構造を示し、鞘管1の管内壁面1bの谷部1B相当箇所で、かつ、周方向の一箇所には、給水給湯管2を挿通するための第1挿通路(流体管挿通用通路)S1に対して発熱源の一例である自己制御型のヒーター線3を挿通するための第2挿通路(発熱源挿通用通路)S2を密封状態で区画形成する可撓性のある合成樹脂製の放熱用区画壁部の一例で、第1挿通路S1に挿通された給水給湯管2との当接によって径方向に弾性変形可能な架橋ポリエチレン製の放熱管4が、管軸芯X側に突出する状態で管軸芯X方向に沿って一体的に形成されているとともに、前記鞘管1の管内壁面1bの谷部1B相当箇所で、かつ、放熱管4から周方向に所定間隔を置いた複数箇所(当該実施形態では放熱管4から周方向に120度ずつ偏倚した二箇所)には、第1挿通路S1に挿通された給水給湯管2と径方向から当接可能な可撓性のある合成樹脂製の支持体の一例で、給水給湯管2との当接によって径方向に弾性変形可能な架橋ポリエチレン製の緩衝管5が、管軸芯X側に突出する状態で管軸芯X方向に沿って一体的に形成されている。
[First Embodiment]
1 to 4 are examples of a synthetic resin fluid pipe having flexibility in a sheathed pipe 1 made of crosslinked polyethylene which is an example of a corrugated flexible pipe made of synthetic resin having flexibility. A double-pipe structure in which a cross-linked polyethylene water supply hot water supply pipe 2 is inserted and the sheath pipe 1 is configured as a protective pipe for the water supply hot water supply pipe 2 is shown, corresponding to the valley 1B of the pipe inner wall surface 1b of the sheath pipe 1 And in one place in the circumferential direction, a self-control type heater wire 3 which is an example of a heat generation source with respect to a first insertion path (fluid pipe insertion path) S1 for inserting the hot water supply hot water pipe 2 is provided. An example of a flexible synthetic resin heat radiating partition wall section that forms a second insertion path (heat source insertion path) S2 in a sealed state for insertion, and is inserted into the first insertion path S1. A heat radiating pipe 4 made of cross-linked polyethylene that can be elastically deformed in the radial direction by contact with the hot water supply hot water pipe 2 is provided on the tube axis X side. It is integrally formed along the tube axis X direction so as to protrude, and is located at a location corresponding to the valley 1B of the inner wall surface 1b of the sheath tube 1 and at a predetermined interval in the circumferential direction from the heat radiating tube 4. In addition, in a plurality of locations (in this embodiment, two locations deviated from the heat radiating tube 4 in the circumferential direction by 120 degrees each), the water supply hot water supply tube 2 inserted through the first insertion passage S1 can be contacted from the radial direction. An example of a support made of synthetic resin having a buffer shaft 5 made of a crosslinked polyethylene that can be elastically deformed in the radial direction by contact with the hot and cold water supply pipe 2 protrudes toward the tube axis X side. It is integrally formed along the X direction.

前記放熱管4は、円環状の山部4Aと円環状の谷部4Bとが交互に連続する波形放熱管から構成されていて、この波形放熱管4のピッチが鞘管1のピッチと同一又は略同一に構成されている。つまり、波形放熱管4の円環状山部4A及び円環状谷部4Bにおける軸芯方向Xでの長さが、鞘管1の円環状山部1A及び円環状谷部1Bにおける軸芯方向Xでの長さと同一に構成されているとともに、鞘管1の円環状谷部1Bにおける周方向の一部と波形放熱管4の円環状山部4Aにおける周方向の一部とが融着又は接着等の接合手段で一体的に接合されている。   The heat radiating tube 4 is composed of a corrugated heat radiating tube in which annular crests 4A and annular troughs 4B are alternately continued, and the pitch of the corrugated radiating tubes 4 is the same as the pitch of the sheath tube 1 or It is comprised substantially the same. That is, the length in the axial direction X of the annular ridge 4A and the annular valley 4B of the corrugated radiator pipe 4 is the axial direction X in the annular ridge 1A and the annular valley 1B of the sheath tube 1. And a part in the circumferential direction in the annular valley 1B of the sheath tube 1 and a part in the circumferential direction in the annular peak 4A of the corrugated heat radiating pipe 4 are fused or bonded together. Are integrally joined by the joining means.

前記波形放熱管4の厚みは、給水給湯管2との当接に伴う径方向での弾性変形によってヒーター線3に悪影響を及ぼさないように、前記緩衝管5よりも厚肉に構成されている。   The corrugated heat radiating pipe 4 is configured to be thicker than the buffer pipe 5 so that the heater wire 3 is not adversely affected by elastic deformation in the radial direction accompanying the contact with the hot water supply hot water pipe 2. .

前記緩衝管5は、上述の波形放熱管4と同様に、円環状の山部5Aと円環状の谷部5Bとが交互に連続する波形緩衝管から構成されていて、この波形緩衝管5のピッチが鞘管1のピッチと同一又は略同一に構成されている。つまり、波形緩衝管5の円環状山部5A及び円環状谷部5Bにおける管軸芯X方向での長さが、鞘管1の円環状山部1A及び円環状谷部1Bにおける軸芯方向Xでの長さと同一に構成されているとともに、鞘管1の円環状谷部1Bにおける周方向の一部と波形緩衝管5の円環状山部5Aにおける周方向の一部とが融着又は接着等の接合手段で一体的に接合されている。   Similarly to the corrugated heat radiating tube 4, the buffer tube 5 is composed of a corrugated buffer tube in which an annular crest 5 A and an annular trough 5 B are alternately arranged. The pitch is the same as or substantially the same as the pitch of the sheath tube 1. That is, the length in the tube axis X direction of the annular crest 5A and the annular valley 5B of the corrugated buffer tube 5 is the axial direction X in the annular crest 1A and the annular valley 1B of the sheath tube 1. And a part in the circumferential direction in the annular valley 1B of the sheath tube 1 and a part in the circumferential direction in the annular peak 5A of the corrugated buffer tube 5 are fused or bonded together. They are integrally joined by a joining means such as.

そして、前記鞘管1の管内壁面1bに一体的に形成された可撓性のある合成樹脂製の波形放熱管4により、鞘管1の内部空間が、可撓性のある給水給湯管2を挿通するための第1挿通路S1とヒーター線3を挿通するための第2挿通路S2とに区画形成されているため、波形放熱管4の第2挿通路S2内に挿通されたヒーター線3からの放射熱により、熱放射面となる波形放熱管4の広い表面積の外周面を利用して、第1挿通路S1内に配設された給水給湯管2が凍結しない雰囲気温度に効率良く加熱することができる。   And by the flexible synthetic resin corrugated heat radiating pipe 4 integrally formed on the pipe inner wall surface 1b of the sheath pipe 1, the inner space of the sheath pipe 1 becomes a flexible water supply hot water supply pipe 2. Since the first insertion passage S1 for insertion and the second insertion passage S2 for insertion of the heater wire 3 are partitioned, the heater wire 3 inserted into the second insertion passage S2 of the corrugated heat radiating tube 4 is formed. By using the radiant heat from the outer peripheral surface having a large surface area of the corrugated heat radiating pipe 4 serving as a heat radiating surface, the hot water supply pipe 2 disposed in the first insertion passage S1 is efficiently heated to an atmospheric temperature at which it does not freeze. can do.

しかも、前記波形放熱管4及び両波形緩衝管5が鞘管1の管外壁面から径方向外方に突出しないため、鞘管1自体の屈曲性が低下することを抑制することができるとともに、例えば、鞘管1の管外壁面1aの一部に波形放熱管4の管外壁面の一部が突出状態で連設されている場合に比して管径方向での小型化を図ることができる。   In addition, since the corrugated heat radiating tube 4 and the two corrugated buffer tubes 5 do not protrude radially outward from the outer wall surface of the sheath tube 1, it is possible to suppress a decrease in the flexibility of the sheath tube 1 itself, For example, as compared with a case where a part of the outer wall surface of the corrugated heat radiating pipe 4 is connected to a part of the outer wall surface 1a of the sheath tube 1 in a protruding state, the size in the tube diameter direction can be reduced. it can.

また、前記波形放熱管4及び両波形緩衝管5が、鞘管1のピッチと同一ピッチに構成された円環状山部4A,5Aと円環状谷部4B,5Bを備えているので、波形放熱管4及び両波形緩衝管5の屈曲性能が高く、かつ、鞘管1の屈曲性能と波形放熱管4及び両波形緩衝管5の各屈曲性能が近くなるため、波形放熱管4及び両波形緩衝管5の接合に起因して鞘管1自体の屈曲性が低下することを良好に抑制することができ、鞘管1の配管作業性及びこれに対する給水給湯管2の配管作業性を高めることができる。   Further, since the corrugated heat radiating pipe 4 and the two corrugated buffer pipes 5 are provided with the annular ridge portions 4A and 5A and the annular valley portions 4B and 5B which are configured to have the same pitch as that of the sheath tube 1, the corrugated heat radiation. Since the bending performance of the tube 4 and the double corrugated buffer tube 5 is high, and the bending performance of the sheath tube 1 is close to that of the corrugated heat radiating tube 4 and the double corrugated buffer tube 5, the corrugated heat radiating tube 4 and the double corrugated buffer tube 5 It can suppress favorably that the flexibility of sheath tube 1 itself falls due to joining of pipe 5, and can improve piping workability of sheath pipe 1, and piping workability of hot-water supply hot-water pipe 2 to this. it can.

しかも、鞘管1の管内壁面1bの一部に波形放熱管4及び両波形緩衝管5の各外壁面の一部を管軸芯X方向に沿って一体的に形成する際、鞘管1の円環状谷部1Bと波形放熱管4及び両波形緩衝管5の円環状山部4A,5Aとを完全に合致させた状態で一体的に接合することができるので、鞘管1に対する波形放熱管4及び両波形緩衝管5の接合作業を能率良く容易に行うことができる。   In addition, when part of each outer wall surface of the corrugated heat radiating tube 4 and the two corrugated buffer tubes 5 is integrally formed along the tube axis X direction on a part of the inner wall surface 1 b of the sheath tube 1, Since the annular trough portion 1B and the corrugated heat radiating tube 4 and the annular crest portions 4A and 5A of the two corrugated buffer tubes 5 can be integrally joined together, the corrugated heat radiating tube for the sheath tube 1 can be joined. 4 and the double corrugated buffer tube 5 can be joined efficiently and easily.

更に、前記鞘管1の管内壁面1bに管軸芯X側に一体的に突出形成された可撓性のある弾性変形可能な波形放熱管4及び両波形緩衝管5の存在により、ウォータハンマー現象に起因して鞘管1内に配設された給水給湯管2が波打ちしたとき、鞘管1の管内壁面1bに突出形成されている波形放熱管4及び両波形緩衝管5が給水給湯管2との当接に連れて弾性変形することにより、給水給湯管2の波打ちによる衝撃力を緩和することができる。   Further, due to the presence of the flexible elastically deformable corrugated heat radiating pipe 4 and the two corrugated buffer pipes 5 integrally formed on the inner wall surface 1b of the sheath pipe 1 on the tube axis X side, the water hammer phenomenon is caused. When the water supply hot water supply pipe 2 disposed in the sheath pipe 1 is corrugated due to the undulation, the corrugated heat radiating pipe 4 and the two corrugated buffer pipes 5 projecting from the pipe inner wall surface 1b of the sheath pipe 1 are provided with the water supply hot water supply pipe 2 The impact force caused by the undulation of the water supply / hot water supply pipe 2 can be reduced by elastically deforming with the contact.

また、前記給水給湯管等の流体管2としては、上述の第1実施形態で説明した架橋ポリエチレン管以外に、ポリエチレン管、ポリブテン管等の可撓性を有する合成樹脂管、及び、金属が複合された可撓性を有する金属複合合成樹脂管を好適に用いることができる。   In addition to the crosslinked polyethylene pipe described in the first embodiment, the fluid pipe 2 such as the water supply / hot water pipe is a composite resin pipe having flexibility such as a polyethylene pipe and a polybutene pipe, and a metal composite. The flexible metal composite synthetic resin tube which has been made can be suitably used.

更に、前記鞘管等の波形可撓管1と波形放熱管4及び波形緩衝管5としては、上述の第1実施形態で説明した架橋ポリエチレン管以外に、ポリエチレン管、ポリブテン管等の可撓性を有する合成樹脂管を好適に用いることができる。   Furthermore, as the corrugated flexible tube 1 such as the sheath tube, the corrugated heat radiating tube 4 and the corrugated buffer tube 5, in addition to the cross-linked polyethylene tube described in the first embodiment, a flexible tube such as a polyethylene tube or a polybutene tube is used. A synthetic resin tube having the following can be preferably used.

更にまた、当該実施形態では、鞘管1の山部1A及び谷部1B、波形放熱管4及び波形緩衝管5の各山部4A,5A及び各谷部4B,5Bを夫々円環状に形成したが、楕円環状、三角形環状、四角形環状、五角形環状等に構成することもできる。   Furthermore, in the embodiment, the crests 1A and troughs 1B of the sheath tube 1 and the crests 4A and 5A and the troughs 4B and 5B of the corrugated radiator pipe 4 and corrugated buffer pipe 5 are formed in an annular shape. However, it may be configured in an elliptical ring shape, a triangular ring shape, a quadrangular ring shape, a pentagonal ring shape, or the like.

〔第2実施形態〕
上述の第1実施形態では、前記放熱管4及び両緩衝管5を、鞘管1のピッチと同一ピッチに構成された環状山部4A,5A及び環状谷部4B,5Bが交互に連続する波形管から構成したが、図5に示すように、前記放熱管4を、ヒーター線3を挿通するための第2挿通路(発熱源挿通用通路)S2を密封状態で区画形成する可撓性のある合成樹脂の一例である架橋ポリエチレン製のストレート管から構成するとともに、前記各波形緩衝管5を、第1挿通路S1に挿通された給水給湯管2と径方向から当接可能な可撓性のある合成樹脂の一例である架橋ポリエチレン製のストレート管から構成してもよい。
尚、その他の構成は、第1実施形態で説明した構成と同一であるから、同一の構成箇所には、第1実施形態と同一の番号を付記してそれの説明は省略する。
[Second Embodiment]
In the first embodiment described above, the radiating pipe 4 and the buffer pipes 5 have a waveform in which the annular ridges 4A and 5A and the annular valleys 4B and 5B, which are configured to have the same pitch as the sheath pipe 1, are alternately continued. As shown in FIG. 5, the heat radiating tube 4 is formed of a flexible tube that forms a second insertion passage (heat source insertion passage) S2 for inserting the heater wire 3 in a sealed state. A flexible pipe that is constructed from a straight pipe made of cross-linked polyethylene, which is an example of a certain synthetic resin, and that allows each of the corrugated buffer pipes 5 to come into contact with the hot water and hot water pipes 2 inserted through the first insertion passage S1 from the radial direction. You may comprise from the straight pipe | tube made from crosslinked polyethylene which is an example of a certain synthetic resin.
In addition, since the other structure is the same as the structure demonstrated in 1st Embodiment, the same number is attached to the same structure location as 1st Embodiment, and the description is abbreviate | omitted.

次に、上述の如く構成された鞘管1を図6〜図9に示すような成形機Aを用いて製造する方法について説明する。
成形機Aでは、ダイス7の中心線及び成形される鞘管1の管軸芯Xを通る成形中心線の一側脇に形成した第1循環経路Rに沿って、鞘管1の管外壁面1aにおける上半側管外壁面に対する半円柱面状の管壁成形面6aを備えた複数の第1分割成形型6Aを循環移動させるとともに、成形中心線の他側脇に形成した第2循環経路Lに沿って、鞘管1の管外壁面1aにおける下半側外壁面に対する半円柱面状の管壁成形面6bを備えた複数の第2分割成形型6Bを循環移動させる。
Next, a method for manufacturing the sheath tube 1 configured as described above using a molding machine A as shown in FIGS.
In the molding machine A, the outer wall surface of the sheath tube 1 along the first circulation path R formed on one side of the molding center line passing through the center line of the die 7 and the tube axis X of the sheath tube 1 to be molded. The second circulation path formed on the other side of the forming center line while circulating and moving the plurality of first divided forming dies 6A having the semi-cylindrical tube wall forming surface 6a with respect to the outer wall surface of the upper half side tube at 1a A plurality of second divided molds 6B having a semi-cylindrical tube wall forming surface 6b with respect to the lower half outer wall surface of the outer tube wall surface 1a of the sheath tube 1 are circulated along L.

また、前記両循環経路R,Lのうち、ダイス7に形成された円環状の第1・第2・第3押出口9,11,13に対応する成形経路部分の始端において、各戻り経路部分に沿って戻り移動してくる一対の第1・第2分割成形型6A,6B同士を接合させるとともに、その接合状態のまま両分割成形型6A,6Bを成形経路部分の終端側に向かって移動させるように構成されている。   Further, of the circulation paths R and L, each return path portion at the start end of the molding path portion corresponding to the annular first, second and third extrusion ports 9, 11 and 13 formed in the die 7. The pair of first and second split molds 6A and 6B that move back along the line are joined together, and both split molds 6A and 6B are moved toward the end of the molding path portion while being joined. It is configured to let you.

前記成形機Aのダイス7には、鞘管1を成形するための熱軟化した第1パリソン8を連続的に押し出す円環状の第1押出口9と、この第1押出口9よりも径方向内方位置において放熱管4を成形するための熱軟化した第2パリソン10を連続的に押し出す円環状の第2押出口11と、該第2押出口11から周方向に所定間隔を置いた複数箇所(当該実施形態では第2押出口11から周方向に120度ずつ偏倚した二箇所)において、緩衝管5を成形するための熱軟化した第3パリソン12を連続的に押し出す円環状の第3押出口13と、第2押出口10及び第3押出口13から連続して押し出される熱軟化した第2パリソン9及び第3パリソン12の各々をブロー圧で円筒状に維持するための圧力空気を噴射する空気噴出口14が形成されている。   The die 7 of the molding machine A has an annular first extrusion port 9 for continuously extruding the heat-softened first parison 8 for molding the sheath tube 1, and a radial direction from the first extrusion port 9. An annular second extrusion port 11 for continuously extruding the heat-softened second parison 10 for forming the heat radiating tube 4 at the inward position, and a plurality of predetermined intervals in the circumferential direction from the second extrusion port 11 An annular third portion that continuously extrudes the heat-softened third parison 12 for forming the buffer tube 5 at the locations (in the present embodiment, two locations that are offset from the second extrusion port 11 by 120 degrees in the circumferential direction). Pressure air for maintaining each of the extrusion port 13 and the second softened second parison 9 and the third parison 12 continuously extruded from the second extrusion port 10 and the third extrusion port 13 in a cylindrical shape by a blow pressure. An air outlet 14 for jetting is formed That.

更に、前記成形機Aのダイス7には、第2押出口11から連続して押し出される熱軟化した円筒状の第2パリソン10の外壁面を成形するための管壁成形面15aと、第3押出口13から連続して押し出される熱軟化した円筒状の第3パリソン12の外壁面を成形するための管壁成形面15bとを備え、かつ、少なくとも表面がフッ素樹脂で被覆処理された成形ガイド型15が取付けられているとともに、前記第1・第2分割成形型6A,6Bには、第1押出口9から連続して押し出される熱軟化した円筒状の第1パリソン8を両分割成形型6A,6Bの管壁成形面6a,6bに吸引密着させるべく、真空ポンプPに接続される多数の吸引孔16が形成されている。   Further, the die 7 of the molding machine A has a tube wall molding surface 15a for molding the outer wall surface of the heat-softened cylindrical second parison 10 continuously extruded from the second extrusion port 11, and a third one. A molding guide comprising a tube wall molding surface 15b for molding the outer wall surface of the cylindrical third parison 12 which is continuously soft extruded from the extrusion port 13 and at least the surface thereof is coated with a fluororesin. A mold 15 is attached to the first and second split molds 6A and 6B. A thermally softened cylindrical first parison 8 that is continuously extruded from the first extrusion port 9 is formed into both split molds. A large number of suction holes 16 connected to the vacuum pump P are formed so as to suck and adhere to the tube wall molding surfaces 6a and 6b of 6A and 6B.

そして、前記両循環経路R,Lのうち、成形機Aのダイス7に形成された円環状の第1・第2・第3押出口9,11,13に対応する成形経路部分において第1・第2分割成形型6A,6B同士を接合させて移動させながら、成形機Aの第1押出口9から連続して押し出される熱軟化した円筒状の第1パリソン8を、両分割成形型6A,6Bに形成された多数の吸引孔16での吸引作用による負圧により、両分割成形型6A,6Bの管壁成形面6a,6bに吸着保持させるとともに、前記第1押出口9の径方向内方に形成された第2押出口11及び両第3押出口13からそれぞれ連続して押し出された第2パリソン10及び両第3パリソン12の各外壁面の一部を第1パリソン7の内壁面の一部に管軸芯X方向に沿って融着又は融合状態で連続させると同時に、空気噴出口14から噴射される圧力空気のブロー圧により、第2パリソン10及び両第3パリソン12の各外壁面を成形ガイド型15の管壁成形面15a,15bに押し付けることにより、鞘管1内の第1挿通路S1に対してヒーター線3を通すための第2挿通路S2を密封状態で区画形成する可撓性の放熱管4と緩衝機能を有する緩衝管5とが管内壁面1bに一体成形されている波形可撓管を成形する。   Among the circulation paths R and L, the first and second molding paths corresponding to the annular first, second and third extrusion ports 9, 11 and 13 formed in the die 7 of the molding machine A While the second divided molds 6A and 6B are joined and moved, the thermally softened cylindrical first parison 8 that is continuously extruded from the first extrusion port 9 of the molding machine A is divided into the two divided molds 6A and 6A. The negative pressure due to the suction action of the numerous suction holes 16 formed in 6B is adsorbed and held on the tube wall molding surfaces 6a and 6b of the two split molds 6A and 6B, and the inside of the first extrusion port 9 in the radial direction. A part of each outer wall surface of the second parison 10 and both third parisons 12 continuously extruded from the second extrusion port 11 and both third extrusion ports 13 formed in the direction is used as the inner wall surface of the first parison 7. Part of the tube in a fused or fused state along the tube axis X direction At the same time, the outer wall surfaces of the second parison 10 and the third parison 12 are pressed against the tube wall molding surfaces 15 a and 15 b of the molding guide die 15 by the blow pressure of the pressurized air ejected from the air ejection port 14. A flexible heat radiating tube 4 and a buffer tube 5 having a buffering function are provided to partition and form a second insertion passage S2 for passing the heater wire 3 with respect to the first insertion passage S1 in the sheath tube 1 in a sealed state. A corrugated flexible tube formed integrally with the tube inner wall surface 1b is formed.

〔第3実施形態〕
上述の第1実施形態又は第2実施形態では、前記鞘管1の管内壁面1bの谷部1B相当箇所に、可撓性のある合成樹脂製の放熱管4を管軸芯X方向に沿って一体的に形成して、給水給湯管2を挿通するための第1挿通路S1に対してヒーター線3を挿通するための第2挿通路S2を密封状態で区画形成したが、図10に示すように、鞘管1の管内壁面1bにおける山部1A及び谷部1Bに、給水給湯管2を挿通するための第1挿通路S1に対してヒーター線3を挿通するための第2挿通路S2を密封状態で区画形成する可撓性のある合成樹脂製の薄板状の放熱用区画壁部4を管軸芯X方向に沿って一体成形してもよい。
[Third Embodiment]
In the first embodiment or the second embodiment described above, a flexible synthetic resin heat radiating tube 4 is provided along the tube axis X direction at a location corresponding to the valley 1B of the tube inner wall surface 1b of the sheath tube 1. Although formed integrally, the second insertion passage S2 for inserting the heater wire 3 into the first insertion passage S1 for inserting the water supply and hot water supply pipe 2 is formed in a sealed state, as shown in FIG. As described above, the second insertion passage S2 for inserting the heater wire 3 with respect to the first insertion passage S1 for inserting the water supply and hot water supply pipe 2 into the peak portion 1A and the valley portion 1B of the inner wall surface 1b of the sheath tube 1. Alternatively, a thin plate-shaped heat-dissipating partition wall 4 made of a synthetic resin may be integrally formed along the tube axis X direction.

また、前記鞘管1の管内壁面1bにおける山部1A及び谷部1Bで、かつ、放熱用区画壁部4から周方向に所定間隔を置いた複数箇所(当該実施形態では放熱用区画壁部4から周方向に等間隔に偏倚した二箇所)には、第1挿通路S1に挿通された給水給湯管2と径方向から当接可能な可撓性のある合成樹脂製の支持体の一例で、弾性変形可能な架橋ポリエチレン製の薄板状の緩衝支持体5が、管軸芯X側に突出する状態で管軸芯X方向に沿って一体的に形成されている。
尚、その他の構成は、第1実施形態で説明した構成と同一であるから、同一の構成箇所には、第1実施形態と同一の番号を付記してそれの説明は省略する。
Moreover, it is the peak part 1A and valley | Tani part 1B in the pipe inner wall surface 1b of the said sheath pipe 1, and several places (in this embodiment, the heat dissipation partition wall part 4 in the circumferential direction) from the partition wall part 4 for heat dissipation. 2 places that are biased at equal intervals in the circumferential direction) is an example of a flexible synthetic resin support that can come into contact with the hot and cold water supply pipe 2 inserted through the first insertion passage S1 in the radial direction. A thin plate-like buffer support 5 made of cross-linked polyethylene that can be elastically deformed is integrally formed along the tube axis X direction so as to protrude toward the tube axis X side.
In addition, since the other structure is the same as the structure demonstrated in 1st Embodiment, the same number is attached to the same structure location as 1st Embodiment, and the description is abbreviate | omitted.

〔第4実施形態〕
図11は別の実施形態を示し、前記鞘管1の管内壁面1bにおける山部1A及び谷部1Bに、給水給湯管2を挿通するための第1挿通路S1に対してヒーター線3を挿通するための第2挿通路S2を密封状態で区画形成する可撓性のある合成樹脂製の半円状又は弧状の放熱用区画壁部4を管軸芯X方向に沿って一体成形するとともに、前記鞘管1の管内壁面1bにおける山部1A及び谷部1Bで、かつ、放熱用区画壁部4から周方向に所定間隔を置いた複数箇所(当該実施形態では放熱用区画壁部4から周方向に等間隔に偏倚した三箇所)には、第1挿通路S1に挿通された給水給湯管2と径方向から当接可能な可撓性のある合成樹脂製の支持体の一例で、管軸芯方向視において鞘管1の管内壁面とは逆反り方向に湾曲する片持ち状の緩衝片5が、管軸芯X側に突出する状態で管軸芯X方向に沿って一体的に形成されている。
尚、その他の構成は、第1実施形態で説明した構成と同一であるから、同一の構成箇所には、第1実施形態と同一の番号を付記してそれの説明は省略する。
[Fourth Embodiment]
FIG. 11 shows another embodiment, and the heater wire 3 is inserted into the first insertion passage S1 for inserting the hot water supply hot water supply pipe 2 into the peak portion 1A and the valley portion 1B of the inner wall surface 1b of the sheath tube 1. A flexible synthetic resin-made semicircular or arc-shaped heat-radiating partition wall portion 4 that partitions the second insertion passage S2 for sealing in a sealed state, and integrally molded along the tube axis X direction; Plural portions 1A and valleys 1B on the inner wall surface 1b of the sheath tube 1 and a plurality of locations spaced in the circumferential direction from the heat radiating partition wall portion 4 (in this embodiment, from the heat radiating partition wall portion 4 The three locations that are biased at equal intervals in the direction) are an example of a flexible synthetic resin support that can be brought into contact with the hot and cold water supply pipe 2 inserted through the first insertion passage S1 in the radial direction. Cantilevered buffer piece that curves in the direction of reverse warping with the inner wall surface of the sheath tube 1 when viewed in the axial direction. There is integrally formed along the tube axis X direction while protruding pipe axis X side.
In addition, since the other structure is the same as the structure demonstrated in 1st Embodiment, the same number is attached to the same structure location as 1st Embodiment, and the description is abbreviate | omitted.

〔その他の実施形態〕
(1)上述の各実施形態では、波形可撓管である鞘管1を円筒体に形成したが、この鞘管1を楕円形筒体、四角形筒体、三角形筒体等に構成してもよい。
(2)上述の各実施形態では、発熱源として自己制御型のヒーター線3を用いたが、これの代わりに温水や熱輸送媒体などを循環流動させるように構成してもよい。
(3)上述の各実施形態では、前記第1通路(流体管挿通用通路)S1に挿通された流体管2との当接によって弾性変形可能な可撓性の支持体5を、管内壁面1bにおける放熱用区画壁部4から周方向に偏倚した二箇所又は三箇所に形成したが、一箇所又は4箇所以上に形成してもよく、更に、前記支持体5を多数の弾性突起群から構成してもよい。
[Other Embodiments]
(1) In each of the above-described embodiments, the sheath tube 1 that is a corrugated flexible tube is formed into a cylindrical body. However, the sheath tube 1 may be formed into an elliptical cylindrical body, a rectangular cylindrical body, a triangular cylindrical body, or the like. Good.
(2) In each of the above-described embodiments, the self-control type heater wire 3 is used as a heat generation source. However, instead of this, warm water, a heat transport medium, or the like may be circulated and flowed.
(3) In each of the above-described embodiments, the flexible support body 5 that can be elastically deformed by contact with the fluid pipe 2 inserted through the first passage (fluid pipe insertion passage) S1 is used as the pipe inner wall surface 1b. The heat-dissipating partition wall 4 is formed in two or three locations deviated in the circumferential direction, but may be formed in one location or four or more locations, and the support 5 is composed of a large number of elastic protrusion groups. May be.

本発明の第1実施形態を示す波形可撓管の縦断面図The longitudinal cross-sectional view of the corrugated flexible tube which shows 1st Embodiment of this invention 図1のII−II線断面図II-II sectional view of FIG. 図1のIII−III線断面図III-III sectional view of FIG. 図2のIV−IV線断面図IV-IV sectional view of FIG. 本発明の第2実施形態を示す波形可撓管の縦断面図The longitudinal cross-sectional view of the corrugated flexible tube which shows 2nd Embodiment of this invention 第2実施形態の波形可撓管の成形製造方法を示す説明図Explanatory drawing which shows the shaping | molding manufacturing method of the corrugated flexible tube of 2nd Embodiment. 成形機のダイスの拡大断面側面図Enlarged cross-sectional side view of a forming machine die 図7のIIX−IIX線断面図Sectional view taken along line IIX-IIX in FIG. 図7のIX−IX線断面図IX-IX line sectional view of FIG. 本発明の第3実施形態を示す波形可撓管の横断面図Cross-sectional view of a corrugated flexible tube showing a third embodiment of the present invention 本発明の第4実施形態を示す波形可撓管の横断面図Cross-sectional view of a corrugated flexible tube showing a fourth embodiment of the present invention

符号の説明Explanation of symbols

S1 流体管挿通用通路(第1挿通路)
S2 発熱源用通路(第2挿通路)
X 管軸芯
1 波形可撓管(鞘管)
1A 山部
1B 谷部
1a 管外壁面
1b 管内壁面
2 流体管(給水給湯管)
3 発熱源(ヒーター線)
4 加熱用区画壁部(波形放熱管)
4A 山部
4B 谷部

S1 Fluid pipe insertion passage (first insertion passage)
S2 Heat source passage (second insertion passage)
X tube axis 1 corrugated flexible tube (sheath tube)
1A Mountain part 1B Valley part 1a Pipe outer wall surface 1b Pipe inner wall surface 2 Fluid pipe (water supply hot water pipe)
3 Heat source (heater wire)
4 division wall for heating (corrugated radiator tube)
4A Yamabe 4B Valley

Claims (4)

可撓性の流体管を挿通する屈曲可能な合成樹脂製の波形可撓管であって、
管内壁面に、流体管挿通用通路に対して発熱源を通すための通路を密封状態で区画形成する可撓性の合成樹脂製の放熱用区画壁部が管軸芯側に突出する状態で管軸芯方向に沿って一体的に形成されているとともに、前記管内壁面における放熱用区画壁部から周方向に偏倚した部位には、流体管挿通用通路に挿通された流体管と当接可能な可撓性の合成樹脂製の支持体が管軸芯側に一体的に突出形成されている波形可撓管。
A corrugated flexible tube made of a bendable synthetic resin that passes through a flexible fluid tube,
On the inner wall surface of the pipe, a passage for passing a heat generation source with respect to the passage for inserting the fluid pipe is formed in a sealed state. It is integrally formed along the axial direction, and can be brought into contact with a fluid pipe inserted through a fluid pipe insertion passage at a portion that is deviated in a circumferential direction from a heat radiating partition wall on the inner wall surface of the pipe. A corrugated flexible tube in which a flexible synthetic resin support is integrally formed on the tube axis side.
前記支持体が管内壁面の周方向複数箇所に形成されていて、前記放熱用区画壁部とで流体管挿通用通路に挿通された流体管を管内壁面から管軸芯側に離間した位置に保持するように構成されている請求項1記載の波形可撓管。   The support body is formed at a plurality of locations in the circumferential direction of the inner wall surface of the pipe, and the fluid pipe inserted through the fluid pipe insertion passage with the partition wall for heat dissipation is held at a position spaced from the inner wall surface to the pipe axis side. The corrugated flexible tube according to claim 1, wherein the corrugated flexible tube is configured to. 前記放熱用区画壁部が、山部と谷部を備えた波形放熱管から構成されている請求項1又は2記載の波形可撓管。   The corrugated flexible tube according to claim 1, wherein the heat dissipating partition wall portion is composed of a corrugated heat dissipating tube having a peak portion and a valley portion. 前記波形放熱管のピッチが波形可撓管と同じピッチに構成されている請求項3記載の波形可撓管。

The corrugated flexible tube according to claim 3, wherein the corrugated heat radiating tube has the same pitch as the corrugated flexible tube.

JP2006032435A 2006-02-09 2006-02-09 Corrugated flexible pipe Pending JP2007211887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006032435A JP2007211887A (en) 2006-02-09 2006-02-09 Corrugated flexible pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006032435A JP2007211887A (en) 2006-02-09 2006-02-09 Corrugated flexible pipe

Publications (1)

Publication Number Publication Date
JP2007211887A true JP2007211887A (en) 2007-08-23

Family

ID=38490521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006032435A Pending JP2007211887A (en) 2006-02-09 2006-02-09 Corrugated flexible pipe

Country Status (1)

Country Link
JP (1) JP2007211887A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524123A (en) * 2010-04-06 2013-06-17 ジョヌ、ジョンザ Synthetic resin tube with many inner tubes
JP7341026B2 (en) 2019-10-17 2023-09-08 株式会社ブリヂストン Composite pipe and method for manufacturing composite pipe

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231564B1 (en) * 1975-03-03 1977-08-16
JPH0384455U (en) * 1989-12-19 1991-08-27
JPH0634090A (en) * 1992-07-15 1994-02-08 Hitachi Metals Ltd Pipe structure
JPH10311462A (en) * 1997-05-13 1998-11-24 Mirai Ind Co Ltd Sheath tube
JP2002340244A (en) * 2001-03-13 2002-11-27 Sekisui Chem Co Ltd Anti-freezing composite tube
JP2003328402A (en) * 2002-05-16 2003-11-19 Sekisui Chem Co Ltd Pipe equipped with heater insertion guide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231564B1 (en) * 1975-03-03 1977-08-16
JPH0384455U (en) * 1989-12-19 1991-08-27
JPH0634090A (en) * 1992-07-15 1994-02-08 Hitachi Metals Ltd Pipe structure
JPH10311462A (en) * 1997-05-13 1998-11-24 Mirai Ind Co Ltd Sheath tube
JP2002340244A (en) * 2001-03-13 2002-11-27 Sekisui Chem Co Ltd Anti-freezing composite tube
JP2003328402A (en) * 2002-05-16 2003-11-19 Sekisui Chem Co Ltd Pipe equipped with heater insertion guide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524123A (en) * 2010-04-06 2013-06-17 ジョヌ、ジョンザ Synthetic resin tube with many inner tubes
JP7341026B2 (en) 2019-10-17 2023-09-08 株式会社ブリヂストン Composite pipe and method for manufacturing composite pipe

Similar Documents

Publication Publication Date Title
BRPI1106542A2 (en) member for preformed braided hood connection
JP2012047407A (en) Heat exchanger, heat exchange system, method of constructing heat exchange system
JP4592351B2 (en) Corrugated flexible tube
JP2007211887A (en) Corrugated flexible pipe
GB2083603A (en) A pipe made from flexible or rigid plastics material, for conveying heat transfer fluids
JP2010185578A (en) Method of forming and manufacturing corrugated flexible pipe
JP4876205B2 (en) Heat storage capsule
JP3196651U (en) Pipe material for circulating hot water
JP4587735B2 (en) Corrugated flexible tube and blow molding manufacturing method thereof
JP4646568B2 (en) Double piping structure for sheath tube and hot water supply
KR20170120457A (en) Hvac duct using vacuum insulation panel and its joint structure
JP5148672B2 (en) Die for blow molding machine, blow molding machine, sheath tube manufacturing method
JP2012026597A (en) Heat storage board and temperature conditioning panel
WO2010078686A1 (en) Capillary tube for heat exchange
JP2008089072A (en) Heat insulation tube
FI127375B (en) Tube and method of making the tube
JP2008089073A (en) Heat insulation tube
KR200362424Y1 (en) A piping for air conditioner
JP4772300B2 (en) 2-layer duct
JP4956244B2 (en) Insulated hose
CN212987477U (en) Spliced radiation air conditioner terminal
JP2005164031A (en) Flexible drain pipe
JP5770648B2 (en) Flexible hose
JP2006029382A (en) Sheath pipe for water flow pipe
KR200359844Y1 (en) A pipe for heat transfer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111102