JP5148672B2 - Die for blow molding machine, blow molding machine, sheath tube manufacturing method - Google Patents

Die for blow molding machine, blow molding machine, sheath tube manufacturing method Download PDF

Info

Publication number
JP5148672B2
JP5148672B2 JP2010209682A JP2010209682A JP5148672B2 JP 5148672 B2 JP5148672 B2 JP 5148672B2 JP 2010209682 A JP2010209682 A JP 2010209682A JP 2010209682 A JP2010209682 A JP 2010209682A JP 5148672 B2 JP5148672 B2 JP 5148672B2
Authority
JP
Japan
Prior art keywords
tube
flexible tube
corrugated flexible
thin plate
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010209682A
Other languages
Japanese (ja)
Other versions
JP2010281457A (en
Inventor
英樹 榊原
裕康 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Inaba Denki Sangyo Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Inaba Denki Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd, Inaba Denki Sangyo Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2010209682A priority Critical patent/JP5148672B2/en
Publication of JP2010281457A publication Critical patent/JP2010281457A/en
Application granted granted Critical
Publication of JP5148672B2 publication Critical patent/JP5148672B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、構造物の床面や壁面等に配設される給水管や給湯管等の可撓性のある流体管を保護する合成樹脂製の鞘管を製造するのに用いられるブロー成形機用ダイス、ブロー成形機、該鞘管を製造する方法に関する。 The present invention relates to a blow molding machine used for manufacturing a sheath pipe made of a synthetic resin that protects a flexible fluid pipe such as a water supply pipe or a hot water supply pipe disposed on a floor surface or a wall surface of a structure. The present invention relates to a manufacturing die, a blow molding machine, and a method of manufacturing the sheath tube .

一般に、戸建て住宅や高層住宅等の構造物に給水給湯管や暖房管等の流体管を配設する場合、構造物の床面や壁面等に予め配設された可撓性のある合成樹脂製の保護管又は鞘管内に可撓性のある流体管を挿入する二重配管工法が採用されている。この二重配管工法による場合は、流体管の施工及び保守点検作業の容易化、能率化を図ることができるものの、ウォータハンマー現象に起因する流体管の波打ちによって、流体管が保護管又は鞘管の内壁面に衝突して音が発生する問題がある。   In general, when a fluid pipe such as a hot water supply pipe or a heating pipe is installed in a structure such as a detached house or a high-rise house, it is made of a flexible synthetic resin that is arranged in advance on the floor or wall surface of the structure. A double piping method is employed in which a flexible fluid pipe is inserted into the protective pipe or the sheath pipe. In the case of this double piping method, although the construction and maintenance of the fluid pipe can be facilitated and streamlined, the fluid pipe is protected or sheathed by the undulation of the fluid pipe due to the water hammer phenomenon. There is a problem that a sound is generated by colliding with the inner wall surface.

そのため、このようなウォータハンマー現象に起因する流体管の波打ちによる衝突音の発生を抑制する対策として、従来では、図14に示すように、波形可撓管50の周方向複数箇所の各々を、管軸芯X方向視において径方向内方側にV字状に打ち出し形成して、このV字状打ち出し壁部50Aを、挿通された流体管2と径方向から当接可能な緩衝突起に構成するとともに、V字状打ち出し壁部50Aの基端における周方向での開口幅Wを、波形可撓管50の最大厚みよりも大なる寸法に構成した鞘管が提案されている(例えば、特許文献1参照)。
また、図15に示すように、波形可撓管60の内壁面60aに、それの谷部60B及び山部60Aに沿って密接する緩衝性を備えた可撓性のある合成樹脂製の緩衝管61を形成するとともに、この緩衝管61の内壁面61aにおける周方向複数箇所には、波形可撓管60の厚みと同じ厚みで径方向内方に向かって一直線状又は弧状に突出する緩衝突起62を一体形成して、挿通された流体管2を複数の緩衝突起62の先端で支持するように構成した鞘管も提案されている(例えば、特許文献2参照)。
Therefore, as a measure for suppressing the occurrence of collision sound due to the undulation of the fluid pipe due to such a water hammer phenomenon, conventionally, as shown in FIG. The V-shaped punching wall portion 50A is formed as a buffer protrusion that can come into contact with the inserted fluid pipe 2 from the radial direction. In addition, there has been proposed a sheath tube in which the opening width W in the circumferential direction at the base end of the V-shaped punching wall portion 50A is configured to be larger than the maximum thickness of the corrugated flexible tube 50 (for example, a patent). Reference 1).
Further, as shown in FIG. 15, a flexible synthetic resin buffer tube having buffering properties closely contacting the inner wall surface 60a of the corrugated flexible tube 60 along the valley portion 60B and the peak portion 60A thereof. The buffer projections 62 are formed in a straight line or arcuately inward in the radial direction with the same thickness as the corrugated flexible tube 60 at a plurality of locations in the circumferential direction on the inner wall surface 61a of the buffer tube 61. A sheath tube is also proposed in which the fluid tube 2 is formed integrally and supported by the tips of the plurality of buffer projections 62 (see, for example, Patent Document 2).

特公平7−43058号公報Japanese Examined Patent Publication No. 7-43058 特開平10−311462号公報Japanese Patent Laid-Open No. 10-311462

従来の前者の鞘管では、ウォータハンマー現象に起因して波形可撓管50内に挿設された流体管2が波打ちしたとき、この流体管2の外周面と直接接触する複数のV字状打ち出し壁部50Aの弾性拡開変形と波形可撓管50の管周壁の径方向外方側への撓み変形によって、流体管2の波打ちによる衝撃力を緩衝することができるものの、波形可撓管50の外壁面が固定物によって拘束されている条件下では緩衝機能が低下するとともに、比較的剛性の高いV字状打ち出し壁部50Aの存在によって波形可撓管50が曲がり難くなり、波形可撓管50及び流体管2の配管作業性の低下を招来し易い。   In the former former sheath tube, when the fluid tube 2 inserted in the corrugated flexible tube 50 is corrugated due to the water hammer phenomenon, a plurality of V-shapes that are in direct contact with the outer peripheral surface of the fluid tube 2 are used. Although the impact expansion force caused by the undulation of the fluid pipe 2 can be buffered by the elastic expansion and deformation of the launch wall 50A and the bending deformation of the circumferential wall of the corrugated flexible pipe 50 toward the radially outer side, the corrugated flexible pipe can be buffered. Under the condition that the outer wall surface of 50 is constrained by a fixed object, the cushioning function is lowered, and the presence of the relatively rigid V-shaped launch wall portion 50A makes it difficult for the corrugated flexible tube 50 to bend. The pipe 50 and the fluid pipe 2 are likely to be deteriorated in workability of piping.

また、従来の後者の鞘管では、ウォータハンマー現象に起因して波形可撓管60内に挿設された流体管2が波打ちしたとき、この流体管2の外周面と直接接触する緩衝突起62の弾性変形と、波形可撓管60の内壁面60aに形成された緩衝管61の弾性変形によって、流体管2が波打ちによる衝撃力を緩衝することができるものの、波形可撓管60の内壁面60aに密着する緩衝管61が一体形成され、更に、この緩衝管61の内周面61aの周方向複数箇所にも緩衝突起62を一体形成するため、波形可撓管60の重量化、製造コストの高騰化を招くばかりでなく、波形可撓管60が曲がり難くなり、波形可撓管60及び流体管2の配管作業性が大きく低下する。   Further, in the conventional latter sheath tube, when the fluid tube 2 inserted in the corrugated flexible tube 60 is corrugated due to the water hammer phenomenon, the buffer protrusion 62 that directly contacts the outer peripheral surface of the fluid tube 2. Although the fluid pipe 2 can buffer the impact force caused by the undulation by the elastic deformation of the buffer pipe 61 and the elastic deformation of the buffer pipe 61 formed on the inner wall surface 60 a of the corrugated flexible pipe 60, The buffer tube 61 that is in close contact with the 60a is integrally formed, and the buffer protrusions 62 are also integrally formed at a plurality of locations in the circumferential direction of the inner peripheral surface 61a of the buffer tube 61. The corrugated flexible tube 60 is difficult to bend, and the workability of the corrugated flexible tube 60 and the fluid tube 2 is greatly reduced.

特に、緩衝管61の内壁面61aに片持ち状態で突設された緩衝突起62の先端で流体管2を支持するため、緩衝突起62による支持機能を発揮させるためには、各緩衝突起62の周方向での厚みを少なくとも波形可撓管60の厚み以上に確保する必要があり、波形可撓管60の曲げ特性の低下を助長し易い。   In particular, since the fluid pipe 2 is supported by the tip of the buffer protrusion 62 projecting in a cantilever manner on the inner wall surface 61 a of the buffer pipe 61, It is necessary to ensure the thickness in the circumferential direction at least equal to or greater than the thickness of the corrugated flexible tube 60, and it is easy to promote a decrease in the bending characteristics of the corrugated flexible tube 60.

本発明は、上述の実状に鑑みて為されたものであって、その主たる課題は、可撓管又は波形可撓管の重量化と曲げ特性の低下を抑制して高い配管作業性を維持しながらも、ウォータハンマー現象に起因する流体管の波打ちによる衝突音の発生を効果的に抑制する点にある。   The present invention has been made in view of the above-described circumstances, and its main problem is to maintain the high piping workability by suppressing the weight of the flexible tube or the corrugated flexible tube and the deterioration of the bending characteristics. However, it is effective in suppressing the occurrence of collision noise due to the undulation of the fluid pipe caused by the water hammer phenomenon.

撓性の流体管を挿通する屈曲可能な合成樹脂製の可撓管の内壁面における周方向複数箇所に、径方向内方に突出する緩衝突起が一体形成されている保護管であって、
前記各緩衝突起が、可撓管の厚みよりも小なる厚みで管軸芯方向視において可撓管の内壁面とは逆反り方向に湾曲又は屈曲形成された片持ち状態の薄板状片から構成されているとともに、各薄板状片が、管軸芯方向視において先端が突出方向中間位置よりも可撓管の内壁面に近くなる状態まで前記逆反り方向に湾曲又は屈曲形成され、各薄板状片の先端が、挿通された流体管との当接による薄板状片の弾性変形に連れて可撓管の内壁面に当接するように構成されていてもよい
Plurality of circumferential locations on the inner wall surface of the bendable synthetic resin flexible tube for inserting a flexible fluid tube, buffer projection projecting radially inwards a protective tube which is integrally formed,
Each of the buffer protrusions is composed of a thin plate-like piece in a cantilever state having a thickness smaller than the thickness of the flexible tube and curved or bent in a direction opposite to the inner wall surface of the flexible tube when viewed in the tube axis direction. In addition, each thin plate-like piece is curved or bent in the reverse warping direction until the tip is closer to the inner wall surface of the flexible tube than the intermediate position in the protruding direction when viewed in the tube axis direction. The tip of the piece may be configured to come into contact with the inner wall surface of the flexible tube as the thin plate-like piece is elastically deformed by contact with the inserted fluid pipe.

記構成によれば、ウォータハンマー現象に起因して可撓管内に挿通された流体管が波打ちしたとき、可撓管の内壁面の周方向複数箇所に突出形成された緩衝突起が流体管との当接に連れて弾性変形することにより、流体管の波打ちによる衝撃力を緩和することができるのであるが、特に、本構成では、前記各緩衝突起が、可撓管の厚みよりも小なる厚みで管軸芯方向視において可撓管の内壁面とは逆反り方向に湾曲又は屈曲形成された片持ち状態の薄板状片から構成されているため、各薄板状片自体が可撓管の屈曲にスムーズに追従変形し易く、可撓管の曲げ特性に与える影響を小さくすることができる。 According to the above Ki構 formed, when the fluid tube is inserted through the flexible tube due to the water hammer phenomenon is wavy, flexible tube shock projections fluid tube which is protruded in the circumferential direction a plurality of locations of the inner wall surface of the The impact force due to the undulation of the fluid pipe can be reduced by elastically deforming with the abutment. In particular, in this configuration , each of the buffer protrusions is smaller than the thickness of the flexible pipe. Since each of the thin plate-like pieces itself is a flexible tube, it is formed of a cantilevered thin piece that is bent or bent in a direction opposite to the inner wall surface of the flexible tube when viewed in the tube axis direction. It is easy to smoothly follow and deform the bending, and the influence on the bending characteristics of the flexible tube can be reduced.

それでいて、各薄板状片の先端が、挿通された流体管との当接による薄板状片の弾性変形に連れて可撓管の内壁面に当接するから、薄板状片が管軸芯方向視において両持ち支持に近い形態となり、薄板状片の厚みを可撓管の厚みよりも小に構成しながらも、可撓管の内壁面との間に空隙が形成されている薄板状片の優れたバネ性を利用して流体管から受ける衝撃力を効果的に緩和することができる。   Nevertheless, since the tip of each thin plate-like piece comes into contact with the inner wall surface of the flexible tube due to the elastic deformation of the thin plate-like piece due to contact with the inserted fluid pipe, the thin plate-like piece is in the tube axis direction view. The shape of the thin plate-like piece in which the gap is formed between the inner wall surface of the flexible tube and the thickness of the thin plate-like piece is smaller than the thickness of the flexible tube, and is close to the both-end support. The impact force received from the fluid pipe can be effectively reduced by utilizing the spring property.

しかも、各薄板状片の基端側は可撓管の内壁面に直接一体形成されているため、可撓管内に緩衝管を形成する場合に比して可撓管全体での重量の増加を抑制することができるとともに、可撓管の曲げ特性を阻害することも抑制することができる。   Moreover, since the base end side of each thin plate-like piece is directly formed integrally with the inner wall surface of the flexible tube, the weight of the entire flexible tube is increased compared to the case where a buffer tube is formed in the flexible tube. While being able to suppress, inhibiting the bending characteristic of a flexible tube can also be suppressed.

従って、可撓管の重量化と曲げ特性の低下を抑制して高い配管作業性を維持しながらも、ウォータハンマー現象に起因する流体管の波打ちによる衝突音の発生を効果的に抑制することができるとともに、可撓管全体の単位長さ当りでの使用樹脂量を大幅に減少することができるから、消音効果の高いものをコスト面で有利に市場に提供することができる。   Therefore, it is possible to effectively suppress the occurrence of collision sound due to the undulation of the fluid pipe caused by the water hammer phenomenon while maintaining the high piping workability by suppressing the weight of the flexible pipe and the deterioration of the bending characteristics. In addition, since the amount of resin used per unit length of the entire flexible tube can be greatly reduced, it is possible to provide the market with a high silencing effect advantageously in terms of cost.

撓性の流体管を挿通する屈曲可能な合成樹脂製の波形可撓管の内壁面における周方向複数箇所に、それの谷部内周面よりも径方向内方に突出する緩衝突起が一体形成されている鞘管であって、
前記各緩衝突起が、波形可撓管の厚みよりも小なる厚みで管軸芯方向視において波形可撓管の内壁面とは逆反り方向に湾曲又は屈曲形成された片持ち状態の薄板状片から構成されているとともに、各薄板状片が、管軸芯方向視において先端が突出方向中間位置よりも波形可撓管の内壁面に近くなる状態まで前記逆反り方向に湾曲又は屈曲形成され、各薄板状片の先端が、挿通された流体管との当接による薄板状片の弾性変形に連れて波形可撓管の内壁面に当接するように構成されていてもよい
Plurality of circumferential locations on the inner wall surface of the bendable synthetic resin waveform flexible tube for inserting the flexible fluid pipe, the buffer protrusion is integrally formed to protrude radially inward than the valleys in the peripheral surface of it A sheath tube,
Each of the buffer protrusions is a thin plate-like piece in a cantilever state having a thickness smaller than the thickness of the corrugated flexible tube and curved or bent in a direction opposite to the inner wall surface of the corrugated flexible tube when viewed from the tube axis direction. And each thin plate-like piece is curved or bent in the reverse warping direction until the tip is closer to the inner wall surface of the corrugated flexible tube than the intermediate position in the protruding direction in the tube axis direction view, The tip of each thin plate-like piece may be configured to come into contact with the inner wall surface of the corrugated flexible tube as the thin plate-like piece is elastically deformed by contact with the inserted fluid pipe.

記構成によれば、ウォータハンマー現象に起因して波形可撓管内に挿入された流体管が波打ちしたとき、波形可撓管の内壁面の周方向複数箇所に突出形成された緩衝突起が流体管との当接に連れて弾性変形することにより、流体管の波打ちによる衝撃力を緩和することができるのであるが、特に、本構成では、前記各緩衝突起が、波形可撓管の厚みよりも小なる厚みで管軸芯方向視において波形可撓管の内壁面とは逆反り方向に湾曲又は屈曲形成された片持ち状態の薄板状片から構成されているため、各薄板状片自体が波形可撓管の屈曲にスムーズに追従変形し易く、波形可撓管の曲げ特性に与える影響を小さくすることができる。 According to the above Ki構 formed, when the fluid tube inserted waveform flexible tube due to the water hammer phenomenon is wavy, cushioning protrusions which are protruded in the circumferential direction a plurality of locations of the inner wall surface of the waveform flexible tube By elastically deforming with the contact with the fluid pipe, the impact force due to the undulation of the fluid pipe can be alleviated. In particular, in this configuration , each of the buffer protrusions has a thickness of the corrugated flexible pipe. Each of the thin plate-like pieces itself is made of a cantilevered thin piece that is bent or bent in a direction opposite to the inner wall surface of the corrugated flexible tube when viewed in the tube axis direction with a smaller thickness. Is easy to smoothly follow and deform the corrugated flexible tube, and the influence on the bending characteristics of the corrugated flexible tube can be reduced.

それでいて、各薄板状片の先端が、挿通された流体管との当接による薄板状片の弾性変形に連れて波形可撓管の内壁面に当接するから、薄板状片が管軸芯方向視において両持ち支持に近い形態となり、薄板状片の厚みを波形可撓管の厚みよりも小に構成しながらも、波形可撓管の内壁面との間に空隙が形成されている薄板状片の優れたバネ性を利用して流体管から受ける衝撃力を効果的に緩和することができる。   Nevertheless, since the tip of each thin plate-like piece comes into contact with the inner wall surface of the corrugated flexible tube as the thin plate-like piece is elastically deformed by contact with the inserted fluid pipe, the thin plate-like piece is viewed in the tube axis direction. In this embodiment, the thickness of the thin plate-like piece is smaller than the thickness of the corrugated flexible tube, but a gap is formed between the inner wall surface of the corrugated flexible tube. The impact force received from the fluid pipe can be effectively reduced by utilizing the excellent spring property.

しかも、各薄板状片の基端側は波形可撓管の内壁面に直接一体形成されているため、波形可撓管内に緩衝管を形成する場合に比して波形可撓管全体での重量の増加を抑制することができるとともに、波形可撓管の曲げ性を阻害することも抑制することができる。   Moreover, since the base end side of each thin plate-shaped piece is directly formed integrally with the inner wall surface of the corrugated flexible tube, the weight of the entire corrugated flexible tube is larger than when a buffer tube is formed in the corrugated flexible tube. Can be suppressed, and the bendability of the corrugated flexible tube can also be inhibited.

従って、波形可撓管の重量化と曲げ特性の低下を抑制して高い配管作業性を維持しながらも、ウォータハンマー現象に起因する流体管の波打ちによる衝突音の発生を効果的に抑制することができるとともに、波形可撓管全体の単位長さ当りでの使用樹脂量を大幅に減少することができるから、消音効果の高いものをコスト面で有利に市場に提供することができる。   Therefore, while suppressing the weight of the corrugated flexible pipe and the deterioration of the bending characteristics and maintaining high piping workability, it effectively suppresses the occurrence of collision sound due to the wave of the fluid pipe due to the water hammer phenomenon. In addition, since the amount of resin used per unit length of the entire corrugated flexible tube can be greatly reduced, it is possible to provide the market with a high silencing effect advantageously in terms of cost.

また、可撓性の流体管を挿通する屈曲可能な合成樹脂製の波形可撓管の内壁面における周方向複数箇所に、それの谷部内周面よりも径方向内方に突出する緩衝突起が一体形成されている鞘管において、
前記各緩衝突起が、波形可撓管の厚みよりも小なる厚みで管軸芯方向視において波形可撓管の内壁面とは逆反り方向に湾曲又は屈曲し、かつ、その湾曲又は屈曲方向の両端が波形可撓管の内壁面に一体形成された薄板状片から構成されていてもよい。
In addition, buffer projections projecting radially inward from the inner peripheral surface of the valley portion at a plurality of locations on the inner wall surface of the bendable synthetic resin corrugated flexible tube that is inserted through the flexible fluid tube. In the integrally formed sheath tube,
Each of the buffer protrusions is bent or bent in a direction opposite to the inner wall surface of the corrugated flexible tube in a tube axis direction view with a thickness smaller than the thickness of the corrugated flexible tube, and in the curved or bent direction. You may be comprised from the thin plate-shaped piece integrally formed in the inner wall surface of the corrugated flexible tube at both ends.

上記構成によれば、ウォータハンマー現象に起因して波形可撓管内に挿設された流体管が波打ちしたとき、波形可撓管の内壁面の周方向複数箇所に突出形成された緩衝突起が流体管との当接に連れて弾性変形することにより、流体管の波打ちによる衝撃力を緩和することができるのであるが、特に、本構成では、前記各緩衝突起が、波形可撓管の厚みよりも小なる厚みで管軸芯方向視において波形可撓管の内壁面とは逆反り方向に湾曲又は屈曲形成された薄板状片から構成されているため、各薄板状片自体が波形可撓管の屈曲にスムーズに追従変形し易く、波形可撓管の曲げ特性に与える影響を小さくすることができる。 According to the above configuration, when the fluid tube inserted in the corrugated flexible tube is corrugated due to the water hammer phenomenon, the buffer projections formed to protrude at a plurality of locations in the circumferential direction of the inner wall surface of the corrugated flexible tube are fluid. By elastically deforming with the contact with the tube, the impact force due to the undulation of the fluid tube can be reduced. In particular, in this configuration , each of the buffer protrusions is less than the thickness of the corrugated flexible tube. Since each of the thin plate-like pieces itself is made of a thin plate-like piece that is curved or bent in a direction opposite to the inner wall surface of the wave-like flexible tube when viewed in the tube axis direction with a small thickness, It is easy to follow and bend smoothly, and the influence on the bending characteristics of the corrugated flexible tube can be reduced.

それでいて、各薄板状片の湾曲又は屈曲方向の両端が波形可撓管の内壁面に一体形成されているから、薄板状片の厚みを波形可撓管の厚みよりも小に構成しながらも、波形可撓管の内壁面との間に空隙が形成されている薄板状片の優れたバネ性を利用して流体管から受ける衝撃力を効果的に緩和することができ、更に、波形可撓管内に緩衝管を形成する場合に比して波形可撓管全体での重量の増加を抑制することができるとともに、波形可撓管の曲げ性を阻害することも抑制することができる。   Still, since both ends in the bending or bending direction of each thin plate-like piece are integrally formed on the inner wall surface of the corrugated flexible tube, while configuring the thickness of the thin plate-like piece smaller than the thickness of the corrugated flexible tube, It is possible to effectively relieve the impact force received from the fluid pipe by utilizing the excellent spring property of the thin plate-shaped piece in which a gap is formed between the inner wall surface of the corrugated flexible pipe, and further, the corrugated flexibility. Compared with the case where a buffer tube is formed in the tube, an increase in weight of the entire corrugated flexible tube can be suppressed, and inhibition of the bendability of the corrugated flexible tube can also be suppressed.

従って、波形可撓管の重量化と曲げ特性の低下を抑制して高い配管作業性を維持しながらも、ウォータハンマー現象に起因する流体管の波打ちによる衝突音の発生を効果的に抑制することができるとともに、波形可撓管全体の単位長さ当りでの使用樹脂量を大幅に減少することができるから、消音効果の高いものをコスト面で有利に市場に提供することができる。   Therefore, while suppressing the weight of the corrugated flexible pipe and the deterioration of the bending characteristics and maintaining high piping workability, it effectively suppresses the occurrence of collision sound due to the wave of the fluid pipe due to the water hammer phenomenon. In addition, since the amount of resin used per unit length of the entire corrugated flexible tube can be greatly reduced, it is possible to provide the market with a high silencing effect advantageously in terms of cost.

撓性の流体管を挿通する屈曲可能な合成樹脂製の波形可撓管の内壁面における周方向複数箇所に、それの谷部内周面よりも径方向内方に突出する緩衝突起が一体形成されている鞘管であって、
前記各緩衝突起が、波形可撓管の厚みよりも小なる厚みに構成され、且つ、管軸芯方向視において緩衝突起どうしの対向間隔よりも小さな対向間隔となるように集合形成された複数本の薄板状片から構成されていてもよい
Plurality of circumferential locations on the inner wall surface of the bendable synthetic resin waveform flexible tube for inserting the flexible fluid pipe, the buffer protrusion is integrally formed to protrude radially inward than the valleys in the peripheral surface of it A sheath tube,
A plurality of the buffer projections are formed so as to have a thickness smaller than the thickness of the corrugated flexible tube, and are formed so as to have an opposing interval smaller than the opposing interval between the buffer projections when viewed in the tube axis direction. You may be comprised from the thin-plate shaped piece.

記構成によれば、ウォータハンマー現象に起因して波形可撓管内に挿設された流体管が波打ちしたとき、波形可撓管の内壁面の周方向複数箇所に突出形成された緩衝突起が流体管との当接に連れて弾性変形することにより、流体管の波打ちによる衝撃力を緩和することができるのであるが、特に、本構成では、前記各緩衝突起が、波形可撓管の厚みよりも小なる厚みに構成された複数本の薄板状片を集合形成して構成されているため、各緩衝突起を構成する複数の薄板状片自体が波形可撓管の屈曲にスムーズに追従変形し易く、波形可撓管の曲げ特性に与える影響を小さくすることができる。 According to the above Ki構 formed, when the fluid tube is inserted into the waveform flexible tube due to the water hammer phenomenon is wavy, cushioning protrusions which are protruded in the circumferential direction a plurality of locations of the inner wall surface of the waveforms flexible tube Is elastically deformed along with the contact with the fluid pipe, the impact force caused by the undulation of the fluid pipe can be reduced. In particular, in this configuration , each of the buffer protrusions is formed of the corrugated flexible pipe. Since a plurality of thin plate-like pieces each having a thickness smaller than the thickness are formed as a group, the plurality of thin plate-like pieces constituting each buffer protrusion smoothly follow the bending of the corrugated flexible tube. It is easy to deform and the influence on the bending characteristics of the corrugated flexible tube can be reduced.

それでいて、各薄板状片の厚みを波形可撓管の厚みよりも小に構成しながらも、集合形成された複数の薄板状片をもって流体管から受ける衝撃力を効果的に緩和することができ、更に、波形可撓管内に緩衝管を形成する場合に比して波形可撓管全体での重量の増加を抑制することができるとともに、波形可撓管の曲げ性を阻害することも抑制することができる。   Nevertheless, while constituting the thickness of each thin plate-like piece smaller than the thickness of the corrugated flexible tube, it is possible to effectively relieve the impact force received from the fluid tube with a plurality of thin plate-like pieces formed in an aggregate, Furthermore, it is possible to suppress an increase in the weight of the entire corrugated flexible tube as compared with the case where a buffer tube is formed in the corrugated flexible tube, and also to inhibit the bendability of the corrugated flexible tube. Can do.

従って、波形可撓管の重量化と曲げ特性の低下を抑制して高い配管作業性を維持しながらも、ウォータハンマー現象に起因する流体管の波打ちによる衝突音の発生を効果的に抑制することができるとともに、波形可撓管全体の単位長さ当りでの使用樹脂量を大幅に減少することができるから、消音効果の高いものをコスト面で有利に市場に提供することができる。   Therefore, while suppressing the weight of the corrugated flexible pipe and the deterioration of the bending characteristics and maintaining high piping workability, it effectively suppresses the occurrence of collision sound due to the wave of the fluid pipe due to the water hammer phenomenon. In addition, since the amount of resin used per unit length of the entire corrugated flexible tube can be greatly reduced, it is possible to provide the market with a high silencing effect advantageously in terms of cost.

また、前記薄板状片の基端が、波形可撓管の内壁面における管軸芯方向の全域に亘って一体的に連続形成されていてもよい。   Further, the base end of the thin plate-like piece may be integrally formed continuously over the entire region in the tube axis direction on the inner wall surface of the corrugated flexible tube.

上記構成によれば、波形可撓管の内壁面における山部及び谷部に沿って一体的に連続形成されている薄板状片の基端側の腰が強くなるため、薄板状片のバネ性が高まり、流体管から受ける衝撃力をより効果的に緩和することができる。   According to the above configuration, since the waist on the base end side of the thin plate-like piece integrally formed continuously along the crests and troughs on the inner wall surface of the corrugated flexible tube becomes strong, the spring property of the thin plate-like piece The impact force received from the fluid pipe can be reduced more effectively.

水給湯用の二重配管構造に係り、前記可撓管内に前記流体管としての給水給湯管が挿通されていてもよいIt relates to a double pipe structure for supplying hot water supply, water supply hot water pipe as said fluid conduit to the flexible tube may be inserted.

前記可撓管内に前記流体管としての給水給湯管が挿通されている給水給湯用の二重配管構造であって、前記給水給湯管と前記各薄板状片との当接で各薄板状片の先端が前記可撓管の内壁面に当接したとき、前記内壁面とこれに相対向する各薄板状片との間に各薄板状片の径方向外方側への弾性変形を許容する空隙が形成されるように構成されていてもよい。
本発明の第1特徴構成は、ブロー成形機用ダイスであって、可撓性の流体管を挿通する屈曲可能な合成樹脂製の波形可撓管を成形するための熱軟化した円筒状のパリソンを連続的に押し出す円環状の第1樹脂押出口と、前記第1樹脂押出口から連続して押し出された熱軟化した前記パリソンをブロー圧で管壁成形面に押し付けるための圧力空気を噴射する空気噴出口とが形成されているとともに、
前記第1樹脂押出口の周方向複数箇所には、緩衝突起として、波形可撓管の山部及び谷部の厚みよりも小なる厚みで管軸芯方向視において波型可撓管の内壁面とは逆反り方向に湾曲又は屈曲形成された片持ち状態の薄板状片、又は、波形可撓管の山部及び谷部の厚みよりも小なる厚みで管軸芯方向視において波形可撓管の内壁面とは逆反り方向に湾曲又は屈曲し、かつ、その湾曲又は屈曲方向の両端が波形可撓管の内壁面に一体形成された薄板状片、或いは、波形可撓管の山部及び谷部の厚みよりも小なる厚みに構成された複数本の薄板状片を集合形成したものを成形するための熱軟化した薄板状又は膜板状の樹脂を前記パリソンの内壁面に連続する融着又は融合状態で押し出すべく、第1樹脂押出口から径方向内方に切れ込むスリット状の第2樹脂押出口部が連通形成されている点にある。
本発明の第2特徴構成は、前記第1特徴構成に記載のブロー成形機用ダイスが備えられているブロー成形機であって、前記ブロー成形機用ダイスの中心線及びブロー成形される波形可撓管の管軸芯を通るブロー成形中心線の両側脇に、波形可撓管の外壁面における上半側外壁面に対する半円柱面状の管壁成形面を備えた多数の分割成形型を循環移動させる第1循環経路と、波形可撓管の外壁面における下半側外壁面に対する半円柱面状の管壁成形面を備えた多数の分割成形型を循環移動させる第2循環経路とが設けられ、
前記両循環経路のうち、前記ブロー成形機用ダイスの前記第1樹脂押出口に対応する成形経路部分の始端において、各戻り経路部分に沿って戻り移動してくる一対の分割成形型同士を接合させるとともに、その接合状態のまま両分割成形型を成形経路部分の終端側に向かって移動させるように構成されている点にある。
本発明の第3特徴構成は、第2特徴構成に記載のブロー成形機を用いた鞘管製造方法であって、前記両循環経路に沿って循環移動される多数の前記分割成形型を、前記第1樹脂押出口に対応する前記成形経路部分において接合させて移動させながら、第1樹脂押出口から熱軟化した前記パリソンを連続的に押し出すと同時に、前記第2樹脂押出口部から熱軟化した薄板状又は膜板状の前記樹脂をパリソンの内壁面に連続する融着又は融合状態で押出し、薄板状又は膜板状の樹脂を一体形成してあるパリソンを前記空気噴出口からの圧力空気によるブロー圧で両分割成形型の前記管壁成形面に押し付けることにより、パリソンを波形可撓管に成形すると同時に、それの内壁面に薄板状又は膜板状の樹脂で前記薄板状片を一体形成する点にある。

A double-pipe structure for hot water and hot water in which a hot water and hot water pipe as the fluid pipe is inserted into the flexible pipe, and each thin plate piece is in contact with the thin hot water pipe and the thin plate piece. When the tip comes into contact with the inner wall surface of the flexible tube, a gap that allows elastic deformation of each thin plate-like piece radially outward between the inner wall surface and each thin plate-like piece opposed thereto. May be formed.
A first characteristic configuration of the present invention is a die for a blow molding machine, which is a heat-softened cylindrical parison for forming a corrugated flexible tube made of a bendable synthetic resin that passes through a flexible fluid tube. A first annular resin extrusion port that continuously extrudes the air and pressure air for pressing the heat-softened parison continuously extruded from the first resin extrusion port against the tube wall molding surface with a blow pressure. An air spout is formed,
The inner wall surface of the corrugated flexible tube as viewed from the tube axis direction with a thickness smaller than the thickness of the crests and troughs of the corrugated flexible tube as buffer protrusions at a plurality of circumferential positions of the first resin extrusion port Is a thin plate-like piece in a cantilever shape that is curved or bent in a reverse warping direction, or a corrugated flexible tube having a thickness smaller than the thickness of the crest and trough of the corrugated flexible tube in the tube axis direction view A thin plate-like piece that is curved or bent in a direction opposite to the inner wall of the inner wall, and both ends of the bent or bent direction are integrally formed on the inner wall of the corrugated flexible tube, or a peak portion of the corrugated flexible tube, and A heat-softened thin plate or film plate resin for molding a plurality of thin plate pieces having a thickness smaller than the thickness of the trough is continuously melted on the inner wall surface of the parison. A slit-shaped slit that cuts inward in the radial direction from the first resin extrusion port in order to be pushed out in a worn or fused state 2 resin extrusion mouth is in that it is communicating formed.
A second characteristic configuration of the present invention is a blow molding machine provided with the blow molding machine die described in the first characteristic configuration, wherein a center line of the blow molding machine die and a corrugated shape to be blow molded are available. Circulates a number of split molds with a semi-cylindrical tube wall molding surface on both sides of the blow molding center line that passes through the tube axis of the flexible tube with respect to the outer wall surface of the upper half side of the outer wall surface of the corrugated flexible tube. A first circulation path to be moved, and a second circulation path to circulate and move a large number of divided molds having a semi-cylindrical tube wall molding surface with respect to a lower half side outer wall surface of the outer wall surface of the corrugated flexible tube. And
Of the two circulation paths, a pair of split molds that move back along each return path part are joined at the start end of the molding path part corresponding to the first resin extrusion port of the blow molding machine die. In addition, the two split molds are moved toward the end side of the molding path portion in the joined state.
A third characteristic configuration of the present invention is a sheath tube manufacturing method using the blow molding machine according to the second characteristic configuration, wherein a plurality of the divided molds that are circulated and moved along the both circulation paths, While being joined and moved in the molding path portion corresponding to the first resin extrusion port, the heat-softened parison is continuously extruded from the first resin extrusion port, and at the same time, it is heat-softened from the second resin extrusion port portion. The thin plate-like or membrane-plate-like resin is extruded in a continuous fusion or fusion state to the inner wall surface of the parison, and the parison in which the thin-plate or membrane plate-like resin is integrally formed is formed by the pressure air from the air outlet. The parison is molded into a corrugated flexible tube by pressing against the tube wall molding surface of both split molds with blow pressure, and at the same time, the thin plate-like piece is integrally formed with a thin plate or film plate resin on the inner wall surface thereof There is in point to do.

本発明の第1実施形態を示す波形可撓管の縦断面図The longitudinal cross-sectional view of the corrugated flexible tube which shows 1st Embodiment of this invention 図1のII−II線断面図II-II sectional view of FIG. 給水給湯管を挿通したときの横断面図Cross section when inserted through hot and cold water supply pipes 給水給湯管を挿通したときの要部の拡大横断面図Enlarged cross-sectional view of the main part when inserted through the hot water and hot water supply pipes 波形可撓管のブロー成形製造方法を示す説明図Explanatory drawing which shows the blow molding manufacturing method of a corrugated flexible tube ブロー成形機のダイスの拡大断面側面図Expanded cross-sectional side view of a blow molding machine die 図6のVII-VII線断面図VII-VII line sectional view of FIG. 本発明の第2実施形態を示す波形可撓管の要部の拡大横断面図The expanded cross-sectional view of the principal part of the corrugated flexible tube which shows 2nd Embodiment of this invention 本発明の第3実施形態を示す波形可撓管の要部の拡大横断面図The expanded cross-sectional view of the principal part of the corrugated flexible tube which shows 3rd Embodiment of this invention. 本発明の第4実施形態を示す波形可撓管の横断面図Cross-sectional view of a corrugated flexible tube showing a fourth embodiment of the present invention 要部の拡大横断面図Enlarged cross-sectional view of the main part 本発明の第5実施形態を示す波形可撓管の要部の拡大横断面図The expanded cross-sectional view of the principal part of the corrugated flexible tube which shows 5th Embodiment of this invention 本発明の第6実施形態を示す波形可撓管の横断面図Cross-sectional view of a corrugated flexible tube showing a sixth embodiment of the present invention 従来の波形可撓管の横断面図Cross-sectional view of a conventional corrugated flexible tube 他の従来の波形可撓管の横断面図Cross-sectional view of another conventional corrugated flexible tube

〔第1実施形態〕
図1〜図4は、合成樹脂製の可撓性を備えた鞘管Pを構成する架橋ポリエチレン製の波形可撓管1内に、合成樹脂製の可撓性を備えた流体管の一例である架橋ポリエチレン製の給水給湯管2を挿通させて、鞘管Pを給水給湯管2の保護管に構成してある二重配管構造を示し、波形可撓管1の内壁面1aで、かつ、それの周方向に等間隔を隔てた複数箇所(当該実施形態では四箇所)の各々には、それの谷部1Bにおける内周面よりも径方向内方位置で給水給湯管2の外周面2aに当接する架橋ポリエチレン製の緩衝突起3が、管軸芯(管軸線)X方向に沿って一体形成されている。
[First Embodiment]
1 to 4 are examples of fluid pipes having flexibility made of synthetic resin in a corrugated flexible pipe 1 made of crosslinked polyethylene constituting a flexible sheath pipe P made of synthetic resin. A double-pipe structure in which a cross-linked polyethylene water supply hot water supply pipe 2 is inserted and the sheath pipe P is configured as a protective pipe for the water supply hot water supply pipe 2 is shown. The outer peripheral surface 2a of the hot and cold water supply pipe 2 is located at a radially inner position than the inner peripheral surface of the valley portion 1B at each of a plurality of locations (four locations in the present embodiment) that are equally spaced in the circumferential direction. A buffered projection 3 made of cross-linked polyethylene that is in contact with the tube is integrally formed along the tube axis (tube axis) X direction.

前記各緩衝突起3は、波形可撓管1の山部1A及び谷部1Bにおける厚みt1,t2よりも小なる厚みt3で管軸芯X方向視において波形可撓管1の内壁面1aとは逆反り方向に湾曲又は屈曲形成された片持ち状態の薄板状片から構成されているとともに、各薄板状片3の先端3aは、給水給湯管2と接触していない無負荷時には波形可撓管1の内壁面1aから径方向内方に離間位置し、給水給湯管2が径方向から当接したときには、その当接による薄板状片3の弾性変形に連れて波形可撓管1の内壁面1aに対して周方向に相対摺接移動自在に接触し、更に、各薄板状片3の先端3aが波形可撓管1の内壁面1aに接触した直後の接触初期状態では、波形可撓管1の内壁面1aとこれに径方向で相対向する各薄板状片3の背面との間に、各薄板状片3の径方向外方側への弾性変形(たわみ変形)を許容する空隙Sが形成されている。   Each of the buffer protrusions 3 has a thickness t3 smaller than the thicknesses t1 and t2 of the peak portion 1A and the valley portion 1B of the corrugated flexible tube 1, and the inner wall surface 1a of the corrugated flexible tube 1 in the tube axis X direction view. It is composed of a cantilevered thin plate-like piece bent or bent in the reverse warping direction, and the tip 3a of each thin plate-like piece 3 is not in contact with the hot water supply hot water pipe 2 and is a corrugated flexible pipe. The inner wall surface of the corrugated flexible tube 1 is located away from the inner wall surface 1a in the radial direction, and the water supply hot water pipe 2 is in contact with the radial direction from the radial direction. In the initial contact state immediately after the tip 3a of each thin plate-like piece 3 contacts the inner wall surface 1a of the corrugated flexible tube 1, the corrugated flexible tube contacts the la 1 between the inner wall surface 1a of 1 and the back surface of each thin plate-like piece 3 opposed to each other in the radial direction. Void S for permitting the elastic deformation in the radial outward side of the plate-like pieces 3 (bending deformation) is formed.

前記各薄板状片3の基端3bは、波形可撓管1の内壁面1aを構成する山部1A及び谷部1Bに沿って管軸芯X方向の全域にわたって一体的に連続形成されているとともに、各薄板状片3の先端3aは、管軸芯X方向に沿って一直線状に形成されている。   The base end 3b of each thin plate-like piece 3 is integrally formed continuously over the entire region in the tube axis X direction along the crest 1A and the trough 1B constituting the inner wall surface 1a of the corrugated flexible tube 1. At the same time, the tip 3a of each thin plate-like piece 3 is formed in a straight line along the tube axis X direction.

そして、ウォータハンマー現象に起因して波形可撓管1内に挿設された給水給湯管2が波打ちしたとき、波形可撓管1の内壁面1aの周方向複数箇所に突出形成された緩衝突起3が給水給湯管2との当接に連れて弾性変形することにより、給水給湯管2の波打ちによる衝撃力を緩和することができるのであるが、この各緩衝突起3が、波形可撓管1の山部1A及び谷部1Bにおける厚みt1,t2よりも小なる厚みt3で管軸芯X方向視において波形可撓管1の内壁面1aとは逆反り方向に湾曲又は屈曲形成された片持ち状態の薄板状片から構成されているため、各薄板状片3自体が波形可撓管1の屈曲にスムーズに追従変形し易く、波形可撓管1の曲げ特性に与える影響を小さくすることができる。   And when the water supply hot water supply pipe 2 inserted in the corrugated flexible tube 1 is corrugated due to the water hammer phenomenon, the buffer projections are formed to project at a plurality of locations in the circumferential direction of the inner wall surface 1a of the corrugated flexible tube 1 3 is elastically deformed as it comes into contact with the hot water supply hot water pipe 2, so that the impact force caused by the undulation of the hot water hot water supply pipe 2 can be alleviated. Cantilever that is curved or bent in a direction opposite to the inner wall surface 1a of the corrugated flexible tube 1 when viewed in the tube axis X direction with a thickness t3 smaller than the thicknesses t1 and t2 of the crest 1A and the trough 1B. Since the thin plate-like piece 3 itself is configured to smoothly follow and deform the bending of the corrugated flexible tube 1, the influence on the bending characteristics of the corrugated flexible tube 1 can be reduced. it can.

それでいて、各薄板状片3の先端3aが、挿通された給水給湯管2との当接による薄板状片3の弾性変形に連れて波形可撓管1の内壁面1aに当接するから、薄板状片3が管軸芯X方向視において両持ち支持に近い形態となり、薄板状片3の厚みt3を波形可撓管1の厚みよりも小に構成しながらも、波形可撓管1の内壁面1aとの間に空隙Sが形成されている薄板状片3の優れたバネ性を利用して給水給湯管2から受ける衝撃力を効果的に緩和することができる。   Nevertheless, the tip 3a of each thin plate-like piece 3 comes into contact with the inner wall surface 1a of the corrugated flexible tube 1 along with the elastic deformation of the thin plate-like piece 3 due to contact with the inserted water supply and hot water supply pipe 2. The piece 3 is in a form close to both-end support in the tube axis X direction view, and the thickness t3 of the thin plate-like piece 3 is smaller than the thickness of the corrugated flexible tube 1, but the inner wall surface of the corrugated flexible tube 1 The impact force received from the hot water / hot water supply pipe 2 can be effectively reduced by utilizing the excellent spring property of the thin plate-like piece 3 in which the gap S is formed between 1a and 1a.

次に、上述の如く構成された鞘管Pの寸法の一例を示す。
[実施例1]
波形可撓管1の最大外径D1が23.5mm、最小内径D2が18mm、山部1Aの厚みt1が0.35mm、谷部1Bの厚みt2が0.65mm、ピッチP1が4.3mmである鞘管Pの場合においては、前記薄板状片3の厚みt3が0.08〜0.12mm、薄板状片3の長さL1が4〜6mmに構成されている。
Next, an example of the dimension of the sheath pipe P comprised as mentioned above is shown.
[Example 1]
The maximum outer diameter D1 of the corrugated flexible tube 1 is 23.5 mm, the minimum inner diameter D2 is 18 mm, the thickness t1 of the peak 1A is 0.35 mm, the thickness t2 of the valley 1B is 0.65 mm, and the pitch P1 is 4.3 mm. In the case of a certain sheath tube P, the thickness t3 of the thin plate-like piece 3 is 0.08 to 0.12 mm, and the length L1 of the thin plate-like piece 3 is 4 to 6 mm.

[実施例2]
波形可撓管1の最大外径D1が28.0mm、最小内径D2が22.5mm、山部1Aの厚みt1が0.35mm、谷部1Bの厚みt2が0.65mm、ピッチP1が4.7mmである鞘管Pの場合においては、前記薄板状片3の厚みt3が0.08〜0.12mm、薄板状片3の長さL1が6〜8mmに構成されている。
[Example 2]
The maximum outer diameter D1 of the corrugated flexible tube 1 is 28.0 mm, the minimum inner diameter D2 is 22.5 mm, the thickness t1 of the peak 1A is 0.35 mm, the thickness t2 of the valley 1B is 0.65 mm, and the pitch P1 is 4. In the case of the sheath pipe P which is 7 mm, the thickness t3 of the thin plate-like piece 3 is 0.08 to 0.12 mm, and the length L1 of the thin plate-like piece 3 is 6 to 8 mm.

[実施例3]
波形可撓管1の最大外径D1が35.0mm、最小内径D2が28.0mm、山部1Aの厚みt1が0.35mm、谷部1Bの厚みt2が0.65mm、ピッチP1が5.1mmである鞘管Pの場合においては、前記薄板状片3の厚みt3が0.08〜0.12mm、薄板状片3の長さL1が6〜8mmに構成されている。
[Example 3]
The maximum outer diameter D1 of the corrugated flexible tube 1 is 35.0 mm, the minimum inner diameter D2 is 28.0 mm, the thickness t1 of the peak 1A is 0.35 mm, the thickness t2 of the valley 1B is 0.65 mm, and the pitch P1 is 5. In the case of the sheath tube P having a thickness of 1 mm, the thickness t3 of the thin plate-like piece 3 is 0.08 to 0.12 mm, and the length L1 of the thin plate-like piece 3 is 6 to 8 mm.

次に、上述の如く構成された鞘管1を図5〜図7に示すようなブロー成形機Aを用いて製造する方法について説明する。
ブロー成形機Aでは、ダイス6の中心線及びブロー成形される波形可撓管1の管軸芯Xを通るブロー成形中心線の両側脇に、波形可撓管1の外壁面1bにおける上半側外壁面に対する半円柱面状の管壁成形面4Aを備えた多数の分割成形型5Aを循環移動させる第1循環経路Rと、波形可撓管1の外壁面1bにおける下半側外壁面に対する半円柱面状の管壁成形面4Bを備えた多数の分割成形型5Bを循環移動させる第2循環経路Lとを設けるとともに、両循環経路R,Lのうち、ダイス6に形成された円環状の第1樹脂押出口7に対応する成形経路部分の始端において、各戻り経路部分に沿って戻り移動してくる一対の分割成形型5A,5B同士を接合させるとともに、その接合状態のまま両分割成形型5A,5Bを成形経路部分の終端側に向かって移動させるように構成されている。
Next, a method for manufacturing the sheath tube 1 configured as described above using a blow molding machine A as shown in FIGS.
In the blow molding machine A, the upper half side of the outer wall surface 1b of the corrugated flexible tube 1 is located on both sides of the blow molding center line passing through the center line of the die 6 and the tube axis X of the corrugated flexible tube 1 to be blow molded. A first circulation path R for circulating and moving a large number of divided molds 5A having a semi-cylindrical tube wall forming surface 4A with respect to the outer wall surface, and a lower half side outer wall surface in the outer wall surface 1b of the corrugated flexible tube 1 A second circulation path L that circulates and moves a large number of divided molds 5B having a cylindrical surface-shaped tube wall molding surface 4B, and an annular ring formed in the die 6 of the circulation paths R and L. At the starting end of the molding path portion corresponding to the first resin extrusion port 7, the pair of split molds 5 </ b> A and 5 </ b> B returning and moving along the return path portions are joined together, and both split moldings are performed in the joined state. Die 5A, 5B at the end of the molding path And it is configured to move toward and.

また、ブロー成形機Aのダイス6には、波形可撓管1を成形するための熱軟化したパリソン8を連続的に押出す円環状の第1樹脂押出口7と、第1樹脂押出口7から連続して押出された熱軟化したパリソン8をブロー圧で両分割成形型5A,5Bの管壁成形面4A,4Bに押し付けるための圧力空気を噴射する空気噴出口9とが形成されているとともに、ダイス6の第1樹脂押出口7の周方向に等間隔を隔てた四箇所の各々には、緩衝突起である薄板状片3を成形するための熱軟化した薄板状又は膜板状の樹脂8Aをパリソン8の内壁面に連続する融着又は融合状態で押出すべく、波形可撓管1の山部1A及び谷部1Bにおける厚みt1,t2よりも小なる厚みt3で管軸芯X方向視において波形可撓管1の内壁面1aとは逆反り方向に湾曲又は屈曲するスリット状の第2樹脂押出口部7Aが、第1樹脂押出口7から径方向内方に切れ込む状態で連通形成されている。   Further, the die 6 of the blow molding machine A has an annular first resin extrusion port 7 for continuously extruding a heat-softened parison 8 for molding the corrugated flexible tube 1, and a first resin extrusion port 7. And an air outlet 9 for injecting pressurized air for pressing the heat-softened parison 8 continuously extruded from the pipe wall molding surfaces 4A and 4B of the split molds 5A and 5B with a blow pressure. In addition, at each of the four locations that are equally spaced in the circumferential direction of the first resin extrusion port 7 of the die 6, a heat-softened thin plate or film plate shape for forming the thin plate-like piece 3 that is a buffer protrusion is formed. In order to extrude the resin 8A on the inner wall surface of the parison 8 in a continuous fusion or fusion state, the tube axis X has a thickness t3 smaller than the thicknesses t1 and t2 at the peak 1A and valley 1B of the corrugated flexible tube 1. Curved in the direction of reverse warping from the inner wall surface 1a of the corrugated flexible tube 1 in a direction view. The slit-like second resin extrusion mouth 7A bent, are communicated formed in a state of cut into the first resin extruding port 7 radially inward.

そして、両循環経路R,Lのうち、ブロー成形機Aのダイス6に形成された円環状の第1樹脂押出口7に対応する成形経路部分において分割成形型5A,5Bを接合させて移動させながら、ブロー成形機Aの第1樹脂押出口7から連続して押出された熱軟化した円筒状のパリソン8を、ダイス6の先端部に形成され空気噴出口9から噴射される圧力空気のブロー圧で両分割成形型5A,5Bの管壁成形面4A,4Bに押し付けるとともに、ダイス6の第1樹脂押出口7の周方向に等間隔を隔てた四箇所に連通形成された径方向内方に切れ込むスリット状の第2樹脂押出口部7Aからパリソン8の内壁面に連続する融着又は融合状態で熱軟化した薄板状又は膜板状の樹脂8Aを押出すことにより、波形可撓管1の山部1A及び谷部1Bにおける厚みt1,t2よりも小なる厚みt3で管軸芯X方向視において波形可撓管1の内壁面1aとは逆反り方向に湾曲又は屈曲形成された片持ち状態の薄板状片3が一体成形された波形可撓管1をブロー成形する。   Of the two circulation paths R and L, the split molds 5A and 5B are joined and moved in the molding path portion corresponding to the annular first resin extrusion port 7 formed in the die 6 of the blow molding machine A. On the other hand, the heat-softened cylindrical parison 8 continuously extruded from the first resin extrusion port 7 of the blow molding machine A is blown from the pressure air formed at the tip of the die 6 and injected from the air outlet 9. Inward in the radial direction, pressed against the tube wall molding surfaces 4A and 4B of the two split molds 5A and 5B with pressure, and communicated at four locations at equal intervals in the circumferential direction of the first resin extrusion port 7 of the die 6 A corrugated flexible tube 1 is formed by extruding a thin plate-like or membrane-like resin 8A heat-softened in a fused or fused state continuously to the inner wall surface of the parison 8 from a slit-like second resin extrusion port 7A that cuts into the wall. In mountain part 1A and valley part 1B The cantilevered thin plate-like piece 3 is formed integrally with a thickness t3 smaller than t1 and t2 and is curved or bent in the direction of warping opposite to the inner wall surface 1a of the corrugated flexible tube 1 when viewed in the tube axis X direction. The formed corrugated flexible tube 1 is blow-molded.

つまり、両循環経路R,Lに沿って循環移動される多数の分割成形型5A,5Bを、ブロー成形機Aの第1樹脂押出口7に対応する成形経路部分において接合させて移動させながら、ブロー成形機Aの第1樹脂押出口7から熱軟化したパリソン8を連続的に押し出すと同時に、第1樹脂押出口7の周方向四箇所に連通形成された径方向内方に切れ込むスリット状の第2樹脂押出口部7Aから熱軟化した薄板状又は膜板状の樹脂8Aをパリソン8の内壁面に連続する融着又は融合状態で押出し、薄板状又は膜板状の樹脂8Aを一体形成してあるパリソン8をブロー圧で分割成形型5A,5Bの管壁成形面4A,4Bに押し付けることにより、パリソン8を波形可撓管1に成形すると同時に、それの内壁面1aに薄板状又は膜板状の樹脂8Aで緩衝突起を構成する片持ち状態の薄板状片3を一体形成することができる。   That is, while a large number of divided molds 5A and 5B that are circulated and moved along both circulation paths R and L are joined and moved in the molding path portion corresponding to the first resin extrusion port 7 of the blow molding machine A, At the same time as continuously extruding the heat-softened parison 8 from the first resin extrusion port 7 of the blow molding machine A, a slit-like shape cut inward in the radial direction formed in communication with four circumferential positions of the first resin extrusion port 7. A thin plate-like or membrane-plate-like resin 8A heat-softened from the second resin extrusion port 7A is extruded in a continuous fusion or fusion state to the inner wall surface of the parison 8, and a thin plate-like or membrane-plate-like resin 8A is integrally formed. When the parison 8 is pressed against the tube wall forming surfaces 4A and 4B of the split molds 5A and 5B with a blow pressure, the parison 8 is formed into the corrugated flexible tube 1 and at the same time a thin plate or film on the inner wall surface 1a. Loose with plate-shaped resin 8A The thin plate piece 3 of cantilever state constituting the protrusion can be integrally formed.

それ故に、第1樹脂押出口7の周方向複数箇所に径方向内方に切れ込むスリット状の第2樹脂押出口部7Aを連通形成することにより、波形可撓管1の内壁面1aに薄板状片3を一体形成することができることと、単位長さ当たりの使用樹脂量を減少することができることとにより、ブロー成形設備の簡素化を図りながら、ウォータハンマー現象に起因する給水給湯管2の波打ちによる衝突音の発生を効果的に抑制することのできる鞘管Pを能率良く安価に製造することができる。   Therefore, a slit-like second resin extrusion port portion 7A that cuts radially inward at a plurality of locations in the circumferential direction of the first resin extrusion port 7 is formed in a thin plate shape on the inner wall surface 1a of the corrugated flexible tube 1. Since the piece 3 can be integrally formed and the amount of resin used per unit length can be reduced, the blow molding equipment can be simplified, and the undulation of the water supply and hot water supply pipe 2 caused by the water hammer phenomenon can be achieved. It is possible to efficiently and inexpensively manufacture the sheath pipe P that can effectively suppress the generation of the collision sound due to the above.

また、給水給湯管等の流体管2としては、上述の第1実施形態で説明した架橋ポリエチレン管以外に、ポリエチレン管、ポリブテン管等の可撓性を有する合成樹脂管、及び、金属が複合された可撓性を有する金属複合合成樹脂管を好適に用いることができる。   In addition to the cross-linked polyethylene pipe described in the first embodiment, the fluid pipe 2 such as a hot water supply hot water pipe is a composite of a flexible synthetic resin pipe such as a polyethylene pipe or a polybutene pipe, and a metal. In addition, a flexible metal composite synthetic resin tube can be suitably used.

更に、波形可撓管1としては、上述の第1実施形態で説明した架橋ポリエチレン管以外に、ポリエチレン管、ポリブテン管等の可撓性を有する合成樹脂管を好適に用いることができる。   Furthermore, as the corrugated flexible tube 1, in addition to the crosslinked polyethylene tube described in the first embodiment, a flexible synthetic resin tube such as a polyethylene tube or a polybutene tube can be suitably used.

〔第2実施形態〕
上述の第1実施形態では、各薄板状片3の先端3aを、給水給湯管2と接触していない無負荷時には波形可撓管1の内壁面1aから径方向内方に離間した位置に保持し、給水給湯管2が径方向から当接したときには、その当接による薄板状片3の弾性変形に連れて波形可撓管1の内壁面1aに対して周方向に相対摺接移動自在に接触するように構成したが、図8に示すように、給水給湯管2と接触していない無負荷時においても、各薄板状片3の先端3aを、波形可撓管1の内壁面1aに対して周方向に相対摺接移動自在に接触させてもよい。
尚、その他の構成は、第1実施形態で説明した構成と同一であるから、同一の構成箇所には、第1実施形態と同一の番号を付記してそれの説明は省略する。
[Second Embodiment]
In the first embodiment described above, the tip 3a of each thin plate-like piece 3 is held at a position spaced radially inward from the inner wall surface 1a of the corrugated flexible tube 1 when there is no load in contact with the water supply hot water supply tube 2. When the hot and cold water supply pipe 2 abuts from the radial direction, it can be slidably moved in the circumferential direction relative to the inner wall surface 1a of the corrugated flexible pipe 1 as the thin plate-like piece 3 is elastically deformed by the abutment. Although configured to be in contact with each other, as shown in FIG. 8, the tip 3 a of each thin plate-like piece 3 is connected to the inner wall surface 1 a of the corrugated flexible tube 1 even when there is no load in contact with the water supply hot water supply tube 2. On the other hand, they may be brought into contact with each other so as to be relatively slidable in the circumferential direction.
In addition, since the other structure is the same as the structure demonstrated in 1st Embodiment, the same number is attached to the same structure location as 1st Embodiment, and the description is abbreviate | omitted.

〔第3実施形態〕
図9は可撓性の流体管の一例である給水給湯管2を挿通する屈曲可能な合成樹脂製の鞘管Pの別実施形態を示し、この実施形態では、波形可撓管1の内壁面1aで、かつ、それの周方向に等間隔を隔てた複数箇所の各々に、波形可撓管1の山部1A及び谷部1Bにおける厚みt1,t2よりも小なる厚みt3で管軸芯X方向視において波形可撓管1の内壁面1aとは逆反り方向に湾曲又は屈曲形成された薄板状片3を、その湾曲又は屈曲方向の両端が波形可撓管1の内壁面1aに連続する両持ち状態で一体形成して、この各薄板状片3をもって、波形可撓管1における谷部1Bの内周面よりも径方向内方位置で給水給湯管2の外周面2aに当接する合成樹脂製の緩衝突起に構成するとともに、波形可撓管1の内壁面1aとこれに径方向で相対向する各薄板状片3の背面との間には、各薄板状片3の径方向外方側への弾性変形(たわみ変形)を許容する空隙Sを形成してある。
尚、その他の構成は、第1実施形態で説明した構成と同一であるから、同一の構成箇所には、第1実施形態と同一の番号を付記してそれの説明は省略する。
[Third Embodiment]
FIG. 9 shows another embodiment of a bendable synthetic resin sheath pipe P that is inserted through a water supply hot water supply pipe 2 that is an example of a flexible fluid pipe. In this embodiment, the inner wall surface of the corrugated flexible pipe 1 is shown. 1a and at a plurality of locations spaced at equal intervals in the circumferential direction thereof, the tube axis X has a thickness t3 smaller than the thicknesses t1 and t2 of the crest 1A and trough 1B of the corrugated flexible tube 1. The thin plate-like piece 3 that is curved or bent in a direction opposite to the inner wall surface 1a of the corrugated flexible tube 1 in a direction view is continuous with the inner wall surface 1a of the corrugated flexible tube 1 at both ends in the curved or bent direction. A composite that is integrally formed in a both-end holding state and abuts against the outer peripheral surface 2a of the hot and cold water supply pipe 2 at the radially inner position with respect to the inner peripheral surface of the valley portion 1B of the corrugated flexible pipe 1 It is constituted by a resin-made buffer projection, and is relative to the inner wall surface 1a of the corrugated flexible tube 1 in the radial direction. Between the back of each thin plate piece 3, it is formed a space S that allows elastic deformation (bending deformation) in the radially outer side of the thin plate piece 3.
In addition, since the other structure is the same as the structure demonstrated in 1st Embodiment, the same number is attached to the same structure location as 1st Embodiment, and the description is abbreviate | omitted.

〔第4実施形態〕
図10、図11は可撓性の流体管の一例である給水給湯管2を挿通する屈曲可能な合成樹脂製の鞘管Pの別実施形態を示し、この実施形態では、波形可撓管1の内壁面1aで、かつ、それの周方向に等間隔を隔てた複数箇所の各々に、波形可撓管1の山部1A及び谷部1Bにおける厚みt1,t2よりも小なる厚みt3に構成された薄板状又は膜板状の複数本の薄板状片10を、径方向内方に向かって径方向に平行に突出する状態で集合形成して、この集合形成された複数本の薄板状片10をもって、波形可撓管1における谷部1Bの内周面よりも径方向内方位置で給水給湯管2の外周面2aに当接する合成樹脂製の緩衝突起に構成するとともに、集合形成された複数本の薄板状片10の先端10aを、給水給湯管2の外周面2aに均等に接触するように、給水給湯管2の外周面2aと同一又は略同一の曲率半径に沿って形成してある。
尚、その他の構成は、第1実施形態で説明した構成と同一であるから、同一の構成箇所には、第1実施形態と同一の番号を付記してそれの説明は省略する。
[Fourth Embodiment]
FIG. 10 and FIG. 11 show another embodiment of a bendable synthetic resin sheath pipe P that is inserted through a water supply hot water supply pipe 2 that is an example of a flexible fluid pipe. In this embodiment, the corrugated flexible pipe 1 is shown. The inner wall surface 1a of the corrugated flexible tube 1 has a thickness t3 smaller than the thicknesses t1 and t2 of the peak portion 1A and the valley portion 1B of the corrugated flexible tube 1 at each of a plurality of locations that are equally spaced in the circumferential direction. A plurality of thin plate-like pieces 10 each having a thin plate shape or a membrane plate shape are formed so as to protrude radially inward and parallel to the radial direction, and the plurality of thin plate pieces thus formed are formed. 10 is formed into a synthetic resin buffer protrusion that contacts the outer peripheral surface 2a of the hot water supply hot water pipe 2 at a radially inner position than the inner peripheral surface of the trough portion 1B in the corrugated flexible pipe 1, and is formed in a collective manner. The tips 10 a of the plurality of thin plate-like pieces 10 are evenly contacted with the outer peripheral surface 2 a of the water and hot water supply pipe 2. As to, it is formed along the outer circumferential surface 2a and the same or substantially the same radius of curvature of the water supply pipe 2.
In addition, since the other structure is the same as the structure demonstrated in 1st Embodiment, the same number is attached to the same structure location as 1st Embodiment, and the description is abbreviate | omitted.

〔第5実施形態〕
上述の第4実施形態では、集合形成された複数本の薄板状片10の先端10aを、給水給湯管2の外周面2aと同一又は略同一の曲率半径に沿って形成したが、図12に示すように、集合形成された複数本の薄板状片10の先端10aを、周方向中央側ほど径方向内方への突出量が大となる状態で管軸芯X方向視において山形状に形成してもよい。
[Fifth Embodiment]
In the fourth embodiment described above, the tips 10a of the plurality of thin plate-like pieces 10 formed in an aggregate are formed along the same or substantially the same radius of curvature as the outer peripheral surface 2a of the hot water supply pipe 2. As shown in the figure, the tips 10a of a plurality of thin plate-like pieces 10 formed in an aggregate are formed in a mountain shape when viewed from the tube axis X direction in a state in which the amount of protrusion inward in the radial direction increases toward the center in the circumferential direction. May be.

〔第6実施形態〕
図13は、可撓性の流体管の一例である給水給湯管2を挿通する屈曲可能な合成樹脂製の保護管Pのうち、外周面及び内周面が同一外径及び同一内径で連続する直管状の保護管Pに本発明の技術を適用した別実施形態を示し、この実施形態では、給水給湯管2を挿通する屈曲可能な合成樹脂製の可撓管11の内壁面11aで、かつ、それの周方向に等間隔を隔てた複数箇所の各々に、可撓管11の厚みt4よりも小なる厚みt3で管軸芯X方向視において可撓管11の内壁面11aとは逆反り方向に湾曲又は屈曲形成された薄板状片3を片持ち状態で一体形成して、この各薄板状片3をもって、可撓管11の内壁面11aよりも径方向内方位置で給水給湯管2の外周面2aに当接する合成樹脂製の緩衝突起に構成するとともに、可撓管11の内壁面11aとこれに径方向で相対向する各薄板状片3の背面との間には、各薄板状片3の径方向外方側への弾性変形(たわみ変形)を許容する空隙Sを形成してある。
[Sixth Embodiment]
FIG. 13 shows that the outer peripheral surface and the inner peripheral surface are continuous with the same outer diameter and the same inner diameter in a bendable synthetic resin protective tube P that is inserted through a water supply hot water supply pipe 2 that is an example of a flexible fluid pipe. Another embodiment in which the technology of the present invention is applied to a straight tubular protective tube P is shown. In this embodiment, an inner wall surface 11a of a flexible tube 11 made of a bendable synthetic resin that passes through a hot water supply hot water tube 2, and In each of a plurality of locations that are equally spaced in the circumferential direction, a thickness t3 that is smaller than the thickness t4 of the flexible tube 11 is opposite to the inner wall surface 11a of the flexible tube 11 in the tube axis X direction. The thin plate-like pieces 3 curved or bent in the direction are integrally formed in a cantilever state, and each of the thin plate-like pieces 3 is provided at a position radially inward from the inner wall surface 11 a of the flexible tube 11. And a synthetic resin buffer projection that abuts the outer peripheral surface 2a of the flexible tube 11. A gap S is formed between the wall surface 11a and the back surface of each thin plate-like piece 3 that is opposed to the wall surface 11a in the radial direction to allow elastic deformation (flexure deformation) of each thin plate-like piece 3 to the radially outward side. It is.

〔その他の実施形態〕
(1)上述の第1実施形態では、波形可撓管1の内壁面1aで、かつ、それの周方向に等間隔を隔てた四箇所の各々に、それの谷部1bにおける内面よりも径方向内方位置で給水給湯管2の外周面2aに当接する緩衝突起としての薄板状片3を一体形成したが、この薄板状片3の形成数としては2〜10本が好適である。
(2)上述の第1実施形態では、前記各薄板状片3の基端3bを、波形可撓管1の内壁面1aを構成する山部1A及び谷部1Bに沿って管軸芯X方向の全域にわたって一体的に連続形成したが、この各薄板状片3の基端3bを、波形可撓管1における谷部1Bの内周面にのみにて一体形成してもよい。
[Other Embodiments]
(1) In the first embodiment described above, the inner wall surface 1a of the corrugated flexible tube 1 has a diameter larger than that of the inner surface of the valley portion 1b at each of four locations that are equally spaced in the circumferential direction. The thin plate-like pieces 3 as buffer protrusions that come into contact with the outer peripheral surface 2a of the water supply and hot water supply pipe 2 at the inner position in the direction are integrally formed, but the number of the thin plate-like pieces 3 formed is preferably 2 to 10.
(2) In the first embodiment described above, the base end 3b of each of the thin plate-like pieces 3 is arranged along the peak portion 1A and the valley portion 1B constituting the inner wall surface 1a of the corrugated flexible tube 1 in the tube axis X direction. However, the base end 3b of each thin plate-like piece 3 may be integrally formed only on the inner peripheral surface of the valley portion 1B of the corrugated flexible tube 1.

P 保護管(鞘管)
S 空隙
t1 山部の厚み
t2 谷部の厚み
t3 薄板状片の厚み
t4 可撓管の厚み
X 管軸芯
1 波形可撓管
1A 山部
1B 谷部
1a 内壁面
1b 外壁面
2 流体管(給水給湯管)
2a 外周面
3 緩衝突起(薄板状片)
3a 先端
3b 基端
10 緩衝突起(薄板状片)
10a 先端
11 可撓管
11a 内壁面
P protective tube (sheath tube)
S gap t1 peak thickness t2 valley thickness t3 thin plate thickness t4 flexible tube thickness X tube axis 1 corrugated flexible tube 1A peak 1B valley 1a inner wall 1b outer wall 2 fluid pipe (water supply) Hot water pipe)
2a Outer peripheral surface 3 Buffer protrusion (thin plate-shaped piece)
3a tip 3b base 10 buffer protrusion (thin plate-like piece)
10a tip 11 flexible tube 11a inner wall surface

Claims (3)

可撓性の流体管を挿通する屈曲可能な合成樹脂製の波形可撓管を成形するための熱軟化した円筒状のパリソンを連続的に押し出す円環状の第1樹脂押出口と、前記第1樹脂押出口から連続して押し出された熱軟化した前記パリソンをブロー圧で管壁成形面に押し付けるための圧力空気を噴射する空気噴出口とが形成されているとともに、
前記第1樹脂押出口の周方向複数箇所には、緩衝突起として、波形可撓管の山部及び谷部の厚みよりも小なる厚みで管軸芯方向視において波型可撓管の内壁面とは逆反り方向に湾曲又は屈曲形成された片持ち状態の薄板状片、又は、波形可撓管の山部及び谷部の厚みよりも小なる厚みで管軸芯方向視において波形可撓管の内壁面とは逆反り方向に湾曲又は屈曲し、かつ、その湾曲又は屈曲方向の両端が波形可撓管の内壁面に一体形成された薄板状片、或いは、波形可撓管の山部及び谷部の厚みよりも小なる厚みに構成された複数本の薄板状片を集合形成したものを成形するための熱軟化した薄板状又は膜板状の樹脂を前記パリソンの内壁面に連続する融着又は融合状態で押し出すべく、第1樹脂押出口から径方向内方に切れ込むスリット状の第2樹脂押出口部が連通形成されているブロー成形機用ダイス。
An annular first resin extrusion port for continuously extruding a heat-softened cylindrical parison for forming a corrugated flexible tube made of a bendable synthetic resin that passes through a flexible fluid tube; An air outlet for injecting pressurized air for pressing the heat-softened parison continuously extruded from the resin extrusion port against the tube wall molding surface with a blow pressure is formed,
The inner wall surface of the corrugated flexible tube as viewed from the tube axis direction with a thickness smaller than the thickness of the crests and troughs of the corrugated flexible tube as buffer protrusions at a plurality of circumferential positions of the first resin extrusion port Is a thin plate-like piece in a cantilever shape that is curved or bent in a reverse warping direction, or a corrugated flexible tube having a thickness smaller than the thickness of the crest and trough of the corrugated flexible tube in the tube axis direction view A thin plate-like piece that is curved or bent in a direction opposite to the inner wall of the inner wall, and both ends of the bent or bent direction are integrally formed on the inner wall of the corrugated flexible tube, or a peak portion of the corrugated flexible tube, and A heat-softened thin plate or film plate resin for molding a plurality of thin plate pieces having a thickness smaller than the thickness of the trough is continuously melted on the inner wall surface of the parison. A slit-shaped slit that cuts inward in the radial direction from the first resin extrusion port in order to be pushed out in a worn or fused state Blow molding machine die 2 resin extrusion mouth is communicating formed.
請求項1記載のブロー成形機用ダイスが備えられているブロー成形機であって、
前記ダイスの中心線及びブロー成形される波形可撓管の管軸芯を通るブロー成形中心線の両側脇に、波形可撓管の外壁面における上半側外壁面に対する半円柱面状の管壁成形面を備えた多数の分割成形型を循環移動させる第1循環経路と、波形可撓管の外壁面における下半側外壁面に対する半円柱面状の管壁成形面を備えた多数の分割成形型を循環移動させる第2循環経路とが設けられ、
前記両循環経路のうち、前記ダイスの前記第1樹脂押出口に対応する成形経路部分の始端において各戻り経路部分に沿って戻り移動してくる一対の分割成形型同士を接合させるとともに、その接合状態のまま両分割成形型を成形経路部分の終端側に向かって移動させるように構成されているブロー成形機。
A blow molding machine provided with the die for a blow molding machine according to claim 1,
On the both sides of the blow molding center line passing through the center line of the die and the tube axis of the corrugated flexible tube to be blow molded, the tube wall of a semi-cylindrical surface shape with respect to the upper half side outer wall surface of the outer wall surface of the corrugated flexible tube A first circulation path that circulates and moves a large number of divided molds having a molding surface, and a plurality of split moldings that have a semi-cylindrical tube wall molding surface with respect to the lower half outer wall surface of the outer wall surface of the corrugated flexible tube. A second circulation path for circulating the mold,
Among the circulation paths, a pair of split molds that move back along the return path portions at the start end of the molding path portion corresponding to the first resin extrusion port of the die are joined together and joined together A blow molding machine configured to move both split molds toward the end side of the molding path portion in a state.
請求項2記載のブロー成形機を用いた鞘管製造方法であって、
前記両循環経路に沿って循環移動される多数の前記分割成形型を、前記第1樹脂押出口に対応する前記成形経路部分において接合させて移動させながら、第1樹脂押出口から熱軟化した前記パリソンを連続的に押し出すと同時に、前記第2樹脂押出口部から熱軟化した薄板状又は膜板状の前記樹脂をパリソンの内壁面に連続する融着又は融合状態で押出し
、薄板状又は膜板状の樹脂を一体形成してあるパリソンを前記空気噴出口からの圧力空気によるブロー圧で両分割成形型の前記管壁成形面に押し付けることにより、パリソンを波形可撓管に成形すると同時に、それの内壁面に薄板状又は膜板状の樹脂で前記薄板状片を一体形成する鞘管製造方法。
A sheath tube manufacturing method using the blow molding machine according to claim 2,
The plurality of split molds that are circulated along the circulation paths are joined and moved in the molding path part corresponding to the first resin extrusion port, and the softened from the first resin extrusion port. Simultaneously extruding the parison and simultaneously extruding the thin plate-like or membrane-plate-like resin heat-softened from the second resin extrusion port portion in a continuous fusion or fusion state to the inner wall surface of the parison, the thin plate-like or membrane plate The parison is formed into a corrugated flexible tube at the same time by pressing the parison formed integrally with the resin into the tube wall molding surface of the two split molds with the blow pressure of the compressed air from the air outlet. A method for manufacturing a sheath tube, in which the thin plate-like piece is integrally formed with a thin plate-like or membrane-plate-like resin on the inner wall surface of the tube.
JP2010209682A 2010-09-17 2010-09-17 Die for blow molding machine, blow molding machine, sheath tube manufacturing method Active JP5148672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010209682A JP5148672B2 (en) 2010-09-17 2010-09-17 Die for blow molding machine, blow molding machine, sheath tube manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010209682A JP5148672B2 (en) 2010-09-17 2010-09-17 Die for blow molding machine, blow molding machine, sheath tube manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004233597A Division JP4646568B2 (en) 2004-08-10 2004-08-10 Double piping structure for sheath tube and hot water supply

Publications (2)

Publication Number Publication Date
JP2010281457A JP2010281457A (en) 2010-12-16
JP5148672B2 true JP5148672B2 (en) 2013-02-20

Family

ID=43538359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010209682A Active JP5148672B2 (en) 2010-09-17 2010-09-17 Die for blow molding machine, blow molding machine, sheath tube manufacturing method

Country Status (1)

Country Link
JP (1) JP5148672B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101408864B1 (en) * 2014-02-25 2014-06-19 한국생산기술연구원 Nebulizer Having Deformation-Prevention Bump
CN111441424A (en) * 2020-04-09 2020-07-24 杨寿宝 Novel fire hydrant

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2595295Y2 (en) * 1992-12-22 1999-05-24 株式会社フジタ Sheath tube structure
JP4232875B2 (en) * 1997-05-13 2009-03-04 未来工業株式会社 Sheath tube
JP4646568B2 (en) * 2004-08-10 2011-03-09 積水化学工業株式会社 Double piping structure for sheath tube and hot water supply

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101408864B1 (en) * 2014-02-25 2014-06-19 한국생산기술연구원 Nebulizer Having Deformation-Prevention Bump
CN111441424A (en) * 2020-04-09 2020-07-24 杨寿宝 Novel fire hydrant

Also Published As

Publication number Publication date
JP2010281457A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
JP7197356B2 (en) Composite pipe
US20080210327A1 (en) Corrugated pipe with outer layer
JP5875141B2 (en) Partially molded corrugated tube
JP5148672B2 (en) Die for blow molding machine, blow molding machine, sheath tube manufacturing method
JP4646568B2 (en) Double piping structure for sheath tube and hot water supply
JP4587735B2 (en) Corrugated flexible tube and blow molding manufacturing method thereof
JP2009024750A (en) Flexible hose with built-in tube
US10122158B2 (en) Corrugated plastic tube for encasing wires
JP4801531B2 (en) Protective tube or sheath tube
JP4741433B2 (en) Protective tube or sheath tube
JP6484427B2 (en) Double pipe
JP4714090B2 (en) Protective tube and sheath tube
JP2009002476A (en) Expansion joint
JP2017219149A (en) Duplex tube
JP2010210041A (en) Protective tube for water/hot water supply pipe, and water and hot water supply pipe
WO2018123781A1 (en) Composite tube
JP5340798B2 (en) Manufacturing method for underground pipe
JP6262075B2 (en) Corrugated tube manufacturing method
JP5511241B2 (en) Synthetic resin flexible tube manufacturing method
JP2007211887A (en) Corrugated flexible pipe
JP7372631B2 (en) lining material
JP5350821B2 (en) Flexible pressure tube
JPH0449428Y2 (en)
JP5517331B2 (en) Hose for vacuum cleaner
JP2021098337A (en) Rehabilitation member

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121128

R150 Certificate of patent or registration of utility model

Ref document number: 5148672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250