JP2007211272A - Non-heat treated steel for hot forging - Google Patents
Non-heat treated steel for hot forging Download PDFInfo
- Publication number
- JP2007211272A JP2007211272A JP2006030243A JP2006030243A JP2007211272A JP 2007211272 A JP2007211272 A JP 2007211272A JP 2006030243 A JP2006030243 A JP 2006030243A JP 2006030243 A JP2006030243 A JP 2006030243A JP 2007211272 A JP2007211272 A JP 2007211272A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- less
- hot forging
- heat treated
- treated steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は、熱間鍛造用非調質鋼に関する。 The present invention relates to a non-heat treated steel for hot forging.
熱間加工後に焼入・焼戻しなどの調質処理の省略を目的として、中炭素鋼(C含有量0.3質量%以上0.5質量%以下)に0.1質量%程度のVを添加したフェライト+パーライト型非調質鋼が広く機械構造用部品に用いられており、省コスト化のニーズを背景にこのような非調質鋼の用途もさらに拡大している(例えば、特許文献1)。しかし、近年ではさらなる省コスト化ニーズが増大し、Vの様な高価な添加元素を含有しない安価なフェライト+パーライト型非調質鋼の開発が望まれている。
For the purpose of omitting tempering treatment such as quenching and tempering after hot working, V of about 0.1% by mass is added to medium carbon steel (C content: 0.3% to 0.5% by mass) Ferrite + pearlite type non-heat treated steel is widely used for machine structural parts, and the use of such non-heat treated steel is further expanded against the background of cost savings (for example, Patent Document 1). ). However, in recent years, the need for further cost saving has increased, and the development of an inexpensive ferrite + pearlite type non-heat treated steel that does not contain an expensive additive element such as V is desired.
ところで、従来、非調質鋼において焼入、焼戻しなどの熱処理を行なうことなく目的とする強度を得るために、0.1質量%程度のVを添加することが行われてきた。しかし、Vは非常に高価な添加元素であり、非調質化により熱処理費は削減できるものの素材費が従来の炭素鋼に比べて大幅に増加する。このため、従来のV添加フェライト+パーライト型非調質鋼では省コスト化のニーズに十分に対応することができなかった。また、Vを添加した従来の非調質鋼は、熱間鍛造後の被削性に難があり、加工コストの高騰にもつながりやすかった。 By the way, conventionally, in order to obtain the target strength without performing heat treatment such as quenching and tempering in non-heat treated steel, V of about 0.1% by mass has been added. However, V is a very expensive additive element, and although the heat treatment cost can be reduced by detempering, the material cost is greatly increased compared to the conventional carbon steel. For this reason, the conventional V-added ferrite + pearlite type non-heat treated steel could not sufficiently meet the cost saving needs. Moreover, the conventional non-tempered steel to which V is added has difficulty in machinability after hot forging, and easily leads to an increase in processing cost.
本発明の課題は、高価なVの添加量を削減しつつも熱間鍛造後に焼入、焼戻しなどの熱処理省略しても十分な強度が得られ、かつ被削性にも優れた熱間鍛造用非調質鋼を提供することにある。 The object of the present invention is to achieve hot forging with sufficient strength even if heat treatment such as quenching and tempering is omitted after hot forging while reducing the amount of expensive V added, and excellent in machinability. The purpose is to provide non-heat treated steel.
上記の課題を解決するために、本発明の熱間鍛造用非調質鋼は、
C :0.30質量%以上0.60質量%以下;
Si :0.05質量%以上2.00質量%以下;
Mn :0.90質量%以上1.80質量%以下;
Cr :0.10質量%以上1.00質量%以下;
Al:0.010質量%以上0.045質量%以下;
N :0.005質量%以上0.025質量%以下;
S :0.01質量%以上0.20質量%以下;
Ca:0.0005質量%以上0.02質量%以下;
O:0.0005質量%以上0.01質量%以下;
を含有し、
Ti:0.002質量%以上0.010質量%以下;及び、
Zr:0.002質量%以上0.025質量%以下;
の一方又は双方を含有し、
かつ、V含有量が0.010質量%以下とされ、残部Fe及び不可避不純物元素よりなることを特徴とする。
In order to solve the above problems, the non-heat treated steel for hot forging of the present invention is
C: 0.30 mass% or more and 0.60 mass% or less;
Si: 0.05 mass% or more and 2.00 mass% or less;
Mn: 0.90 mass% or more and 1.80 mass% or less;
Cr: 0.10% by mass or more and 1.00% by mass or less;
Al: 0.010 mass% or more and 0.045 mass% or less;
N: 0.005 mass% or more and 0.025 mass% or less;
S: 0.01% by mass or more and 0.20% by mass or less;
Ca: 0.0005 mass% or more and 0.02 mass% or less;
O: 0.0005 mass% or more and 0.01 mass% or less;
Containing
Ti: 0.002% by mass or more and 0.010% by mass or less; and
Zr: 0.002% by mass or more and 0.025% by mass or less;
One or both of
And V content shall be 0.010 mass% or less, and it consists of remainder Fe and an unavoidable impurity element.
上記本発明の熱間鍛造用非調質鋼によると、V含有量が0.010質量%以下に削減されているにも拘わらず、残余の成分を上記のような組成に調整することにより、熱間鍛造後に焼入、焼戻しなどの熱処理省略しても十分な強度が得られ、熱間鍛造後においても優れた被削性を有しているので、加工コストを削減することができる。 According to the non-heat treated steel for hot forging according to the present invention, although the V content is reduced to 0.010% by mass or less, by adjusting the remaining components to the above composition, Even if heat treatment such as quenching and tempering is omitted after hot forging, a sufficient strength can be obtained, and excellent machinability is obtained even after hot forging, so that the processing cost can be reduced.
C含有量が0.60質量%以下の非調質鋼の組織は、フェライト(初析)+パーライト(フェライトとセメンタイトとの共析ラメラー組織を呈する)の混相組織となる。フェライト+パーライト組織ではパーライト中のラメラー間隔が広いほど、また、初析フェライトの面積率が大きいほど耐力や疲労限度が低下しやすく、この傾向はV含有量を削減した場合においては特に著しい。そこで、フェライト+パーライト組織のパーライトのラメラー間隔は0.8μm以下に留めることが望ましく、(初析)フェライトの組織中の面積率は30%以下とすることが望ましい。 The structure of the non-tempered steel having a C content of 0.60% by mass or less is a mixed phase structure of ferrite (predeposition) + pearlite (presenting a eutectoid lamellar structure of ferrite and cementite). In the ferrite + pearlite structure, the greater the lamellar spacing in the pearlite and the larger the area ratio of the pro-eutectoid ferrite, the easier the proof stress and fatigue limit decrease, and this tendency is particularly remarkable when the V content is reduced. Therefore, it is desirable to keep the lamellar spacing of pearlite of ferrite + pearlite structure at 0.8 μm or less, and it is desirable that the area ratio in the (deposited) ferrite structure is 30% or less.
また、本発明の熱間鍛造用非調質鋼においては、S、Mn、Ca、O、Ti及び/又はZrを上記の組成範囲で含有することにより、酸化物を主体とする介在物が芯となり、その周囲を、硫化物を主体とする介在物が取り囲んだ二重構造介在物よりなる第一の硫化物系介在物と、その第一の硫化物系介在物よりも小さい平均粒径を有するMnSよりなる第二の硫化物系介在物とが組織中に分散形成され、鋼の強度を損ねることなく、熱間鍛造後におけるその被削性を著しく向上させる。 Moreover, in the non-heat treated steel for hot forging of the present invention, inclusions mainly composed of oxide are cored by containing S, Mn, Ca, O, Ti and / or Zr in the above composition range. And a first sulfide-based inclusion composed of a double structure inclusion surrounded by an inclusion mainly composed of sulfide, and an average particle size smaller than that of the first sulfide-based inclusion. The second sulfide inclusions made of MnS are dispersed in the structure, and the machinability after hot forging is remarkably improved without deteriorating the strength of the steel.
第一の硫化物系介在物は、芯部がCa、Mg、SiないしAlの酸化物であり、その周囲を、CaSを含有するMnSが取り囲んだ二重構造粒子とすることが、鋼の被削性を改善する観点において望ましい。具体的には、CaO含有量が0.2質量%以上62質量%以下の酸化物系相の周囲が、硫化物系層により取り囲まれた二重構造を有し、全体のCa含有量が1質量%以上45質量%以下となるものである。該第一の硫化物系介在物は、材料の切削時に工具との間に適正な潤滑効果をもたらし、工具の熱拡散摩耗を防止する役割を果たす。そして、この効果を顕著なものとするためには、組織中における第一の硫化物系介在物の占有面積を、観察視野面積3.5mm2当たりにおいて、2.0×10−4mm2以上5.0×10−3mm2以下とすることが望ましい。該占有面積が2.0×10−4mm2未満では潤滑効果が不十分となり、5.0×10−3mm2を超えると熱間鍛造後の鋼の強度が損なわれることにつながる。 In the first sulfide-based inclusion, the core portion is an oxide of Ca, Mg, Si or Al, and the periphery thereof is formed as a double structure particle surrounded by MnS containing CaS. This is desirable from the viewpoint of improving machinability. Specifically, the oxide phase having a CaO content of 0.2% by mass or more and 62% by mass or less has a double structure surrounded by a sulfide-based layer, and the overall Ca content is 1 The mass is not less than 45% by mass. The first sulfide-based inclusion plays a role of providing an appropriate lubricating effect with the tool when cutting the material and preventing thermal diffusion wear of the tool. In order to this effect shall notably, the area occupied by the first sulfide inclusions in the tissue, in the observation field area 3.5 mm 2 per, 2.0 × 10 -4 mm 2 or more It is desirable to be 5.0 × 10 −3 mm 2 or less. If the occupied area is less than 2.0 × 10 −4 mm 2 , the lubricating effect is insufficient, and if it exceeds 5.0 × 10 −3 mm 2 , the strength of the steel after hot forging is impaired.
そして、本発明においては、Ti及び/又はZrが上記の組成範囲で含有されていることで、第一の硫化物系介在物よりも平均粒径の小さいMnSよりなる第二の硫化物系介在物を、前記第一の硫化物系介在物よりも小さい平均粒径にて組織中に分散形成することができる。Ti及び/又はZrは、酸素と結合して微細なTiないしZrの酸化物粒子を組織中に分散形成し、MnSはこれを核として析出する。このような第二の硫化物系介在物の形成により、切削により生ずる切り屑の破砕性が著しく向上し、長い連続切り屑が工具周辺に絡まったりする不具合が生じにくくなる。 In the present invention, when the Ti and / or Zr is contained in the above composition range, the second sulfide-based inclusion made of MnS having an average particle size smaller than that of the first sulfide-based inclusion. The product can be dispersed and formed in the structure with an average particle size smaller than that of the first sulfide inclusion. Ti and / or Zr combine with oxygen to form fine Ti or Zr oxide particles dispersed in the structure, and MnS precipitates with this as a nucleus. By the formation of such second sulfide inclusions, the friability of chips generated by cutting is remarkably improved, and the problem that long continuous chips are entangled around the tool is less likely to occur.
また、本発明の熱間鍛造用非調質鋼は、一般的な機械構造部品に適用するために、その熱間鍛造後の強度を一定レベル以上に確保する必要がある。この場合の強度は、簡易には、熱間鍛造後のロックウェル硬さにより評価することができ、例えば、自動車用のクランクシャフトやコンロッドとして使用するためには、該硬さをHRB96以上に確保する必要がある。他方、熱間鍛造後に必要な形状に切削加工を行なう必要があるから、該硬さがむやみに高すぎると、材料の被削性が低下する問題がある。しかし、本発明においては、上記のごとく、2種の硫化物系介在物の形成により、従来の熱間鍛造用非調質鋼よりも被削性が格段に高められており、この被削性が妨げられないための熱間鍛造後のロックウェルCスケール硬さの上限値はHRC30と、従来の非調質鋼よりも引き上げることができる。その結果、被削性確保と強度向上とを両立することができる。 Moreover, in order to apply the non-heat treated steel for hot forging of the present invention to general mechanical structural parts, it is necessary to ensure the strength after the hot forging to a certain level or more. The strength in this case can be simply evaluated by the Rockwell hardness after hot forging. For example, to use as a crankshaft or a connecting rod for automobiles, the hardness is ensured to be HRB96 or higher. There is a need to. On the other hand, since it is necessary to perform cutting into a necessary shape after hot forging, if the hardness is excessively high, there is a problem that the machinability of the material is lowered. However, in the present invention, as described above, the machinability is remarkably enhanced as compared with the conventional non-heat treated steel for hot forging due to the formation of two types of sulfide inclusions. The upper limit of the Rockwell C scale hardness after hot forging so that the hindering is not hindered can be higher than HRC30 and conventional non-tempered steel. As a result, both machinability and strength improvement can be achieved.
以下、各元素の組成限定理由について説明する。
V:0.010質量%以下
本発明においては、材料コスト削減の観点からVを極力含有しないことを技術上の前提とするが、不純物レベルのVについてもその含有を排除するものではなく、上記0.010質量%を超えない範囲であればVが含有されていてもよい。
Hereinafter, the reasons for limiting the composition of each element will be described.
V: 0.010% by mass or less In the present invention, from the viewpoint of reducing material costs, it is a technical premise that V is not contained as much as possible. However, the inclusion of V at the impurity level is not excluded. V may be contained as long as it does not exceed 0.010% by mass.
C:0.30質量%以上0.60質量%以下
Cは強度を確保するのに有効な元素であり、このような効果を得るためには0.30質量%未満では強度が確保されない。一方、0.60質量%を超えると硬さが過剰となり、切削加工性を劣化させる。C含有量は、より望ましくは0.35質量%以上0.55質量%以下とするのがよい。
C: 0.30% by mass or more and 0.60% by mass or less C is an element effective for securing the strength, and in order to obtain such an effect, the strength is not secured at less than 0.30% by mass. On the other hand, if it exceeds 0.60% by mass, the hardness becomes excessive and the machinability is deteriorated. The C content is more preferably 0.35% by mass or more and 0.55% by mass or less.
Si:0.05質量%以上2.00質量%以下
Siは鋼溶製時において鋼溶製時の脱酸剤として含有され、また、フェライト中に固溶して強度を有効に向上させる。これによりVの代替として耐力や疲労限度向上させる働きがある。このような効果を得るためには0.05質量%以上含有させることが必要である。しかし、含有量が多すぎると被削性を劣下させたり、熱間鍛造時の加熱により表面で著しい脱炭が生じるので2.00質量%以下とすることが必要である。
Si含有量は、より望ましくは0.20質量%以上1.50質量%以下とするのがよい。
Si: 0.05% by mass or more and 2.00% by mass or less Si is contained as a deoxidizing agent during steel melting, and is solid-dissolved in ferrite to effectively improve the strength. Thereby, as an alternative to V, there is a function of improving the proof stress and fatigue limit. In order to acquire such an effect, it is necessary to make it contain 0.05 mass% or more. However, if the content is too large, the machinability is deteriorated or significant decarburization occurs on the surface due to heating during hot forging, so it is necessary to set the content to 2.00% by mass or less.
The Si content is more preferably 0.20% by mass or more and 1.50% by mass or less.
Mn:0.90質量%以上1.80質量%以下
Cr:0.10質量%以上1.00質量%以下
Mn、Crはパーライトのラメラー間隔を微細化し、耐力や疲労限度を有効に向上させる。また、Mnは被削性向上に寄与する硫化物系介在物の必須形成元素である。Mn、Crとも、上記の下限値未満ではラメラー間隔微細化の効果が顕著でなくなる。また、Mnについては、硫化物系介在物の形成量が不十分となって被削性の低下につながる。他方、Mn及びCrの含有量が上記の上限値を超えると空冷でもベイナイトが生成して材料が硬化し、被削性を著しく低下させることにつながる。
Mn含有量は、より望ましくは0.90質量%以上1.30質量%以下とするのがよい。また、Cr含有量は、より望ましくは0.10質量%以上0.40質量%以下とするのがよい。
Mn: 0.90% by mass or more and 1.80% by mass or less Cr: 0.10% by mass or more and 1.00% by mass or less Mn and Cr refine the lamellar spacing of pearlite and effectively improve the yield strength and fatigue limit. Further, Mn is an essential element for forming sulfide inclusions that contribute to improvement of machinability. If both Mn and Cr are less than the lower limit, the effect of refining the lamellar spacing is not significant. In addition, with respect to Mn, the amount of sulfide inclusions formed becomes insufficient, leading to a decrease in machinability. On the other hand, when the contents of Mn and Cr exceed the above upper limit values, bainite is generated even in air cooling, the material is cured, and the machinability is significantly reduced.
The Mn content is more preferably 0.90% by mass or more and 1.30% by mass or less. The Cr content is more preferably 0.10% by mass or more and 0.40% by mass or less.
Al:0.010質量%以上0.045質量%以下
Alは鋼中のNと窒化物を形成し、鋼中に微細に分散し熱間鍛造時の結晶粒成長を抑制する。しかし、含有量が0.010質量%未満では該効果が顕著でなくなり、0.045質量%を超えると、効果が飽和する。
Al含有量は、より望ましくは0.015質量%以上0.030質量%以下とするのがよい。
Al: 0.010% by mass or more and 0.045% by mass or less Al forms N and nitride in steel and is finely dispersed in the steel to suppress crystal grain growth during hot forging. However, if the content is less than 0.010% by mass, the effect is not significant, and if it exceeds 0.045% by mass, the effect is saturated.
The Al content is more preferably 0.015% by mass or more and 0.030% by mass or less.
N:0.005質量%以上0.025質量%以下
NはAlと窒化物を形成し、この窒化物の微細な析出により熱間鍛造時の結晶粒成長を抑制して強度向上に寄与する。しかし、含有量が0.005質量%未満では該効果が顕著でなくなり、0.025質量%を超えると、効果が飽和する。
N含有量は、より望ましくは0.010質量%以上0.020質量%以下とするのがよい。
N: 0.005% by mass or more and 0.025% by mass or less N forms a nitride with Al and contributes to strength improvement by suppressing crystal grain growth during hot forging by fine precipitation of this nitride. However, if the content is less than 0.005% by mass, the effect is not significant, and if it exceeds 0.025% by mass, the effect is saturated.
The N content is more preferably 0.010% by mass or more and 0.020% by mass or less.
S:0.01質量%以上0.20質量%以下
SはMnとともに、被削性向上に寄与する硫化物系介在物の必須形成元素である。0.01質量%未満では硫化物系介在物の生成量が不足して被削性が不十分となる。他方、0.20質量%を超えると鋼の靭性と延性が損なわれるほか、後述のCaとともに高融点のCaSを生成し、インゴット鋳造工程において湯流れ性の阻害につながる。S含有量は、より望ましくは0.050質量%以上0.120質量%以下とするのがよい。
S: 0.01% by mass or more and 0.20% by mass or less S, together with Mn, is an essential element for forming a sulfide inclusion that contributes to improvement of machinability. If it is less than 0.01% by mass, the amount of sulfide inclusions produced is insufficient and the machinability becomes insufficient. On the other hand, if it exceeds 0.20% by mass, the toughness and ductility of the steel are impaired, and CaS having a high melting point is produced together with Ca to be described later, which leads to the inhibition of hot metal flowability in the ingot casting process. The S content is more preferably 0.050 mass% or more and 0.120 mass% or less.
Ca:0.0005質量%以上0.02質量%以下
Caは、第一の硫化物系介在物形成のために必須の元素であり、その含有量が0.0005質量%未満では、第一の硫化物系介在物が十分な量にて形成されなくなり、被削性の低下につながる。一方、含有量が0.02質量%を超えると、前記した高融点のCaSの生成を招き、インゴット鋳造工程において湯流れ性の阻害の障害につながる。Ca含有量は、より望ましくは0.0010質量%以上0.0050質量%以下とするのがよい。
Ca: 0.0005 mass% or more and 0.02 mass% or less Ca is an element essential for forming the first sulfide inclusion, and if its content is less than 0.0005 mass%, Sulfide inclusions are not formed in a sufficient amount, leading to a decrease in machinability. On the other hand, if the content exceeds 0.02% by mass, the above-described high melting point CaS is generated, leading to an obstacle to the inhibition of the flow of molten metal in the ingot casting process. The Ca content is more preferably 0.0010% by mass or more and 0.0050% by mass or less.
O:0.0005質量%以上0.01質量%以下
Oは酸化物の生成に必要な元素である。過度に脱酸した鋼においては高融点のCaSが多量に生成し、前述の理由により鋳造の支障になるから、0.0005質量%以上、好ましくは0.0015質量%を超えるOが必要である。一方、0.01質量%を超えるOは、多量の硬質な酸化物をもたらし、その結果、被削性が損なわれるとともに、第一の硫化物系介在物を構成するCaを含有した硫化物の生成が困難になる。CaおよびAlを使用して複合脱酸を行なうと、CaO−Al2O3系の複合酸化物が生成し、これは低融点の介在物であって被削性にとっては好ましいが、切屑破砕性に関しては効果がない。それゆえ、CaO−Al2O3系の複合酸化物の生成は最小限に抑える方がよく、具体的には鋼を溶製する際に、まずAl量を前記した範囲に調節することにより脱酸の程度を適切にし、その後にCaなどを添加する工程を採用するとよい。O含有量は、より望ましくは0.0010質量%以上0.0050質量%以下とするのがよい。
O: 0.0005 mass% or more and 0.01 mass% or less O is an element required for the production | generation of an oxide. In excessively deoxidized steel, a large amount of high melting point CaS is formed, which hinders casting for the reasons described above, so 0.0005% by mass or more, preferably more than 0.0015% by mass of O is required. . On the other hand, O exceeding 0.01% by mass results in a large amount of hard oxide, and as a result, the machinability is impaired, and the sulfide containing Ca that constitutes the first sulfide-based inclusion is contained. Generation becomes difficult. When composite deoxidation is performed using Ca and Al, a CaO—Al 2 O 3 -based composite oxide is formed, which is an inclusion with a low melting point, which is preferable for machinability, There is no effect on. Therefore, it is better to minimize the formation of CaO—Al 2 O 3 -based composite oxides. Specifically, when steel is melted, it is first removed by adjusting the Al content to the above range. It is advisable to adopt a process in which the degree of acid is made appropriate and then Ca or the like is added. The O content is more preferably 0.0010% by mass or more and 0.0050% by mass or less.
Ti:0.002質量%以上0.010質量%以下;及び、
Zr:0.002質量%以上0.025質量%以下;の一方又は双方
Tiは鋼中のOと結合して、微細な酸化物を形成する。これが第一の硫化物系介在物(MnS)の析出に対し核として働くので、後述のごとくMn系硫化物を微細に分散させるのに役立つ。TiとZrとは、2種併用(たとえば、Ti:0.005質量%+Zr:0.015質量%)することが、MnSの微細化効果をより高める上で有利である。第一の硫化物系介在物の芯部として必要な酸化物や、その他の酸化物の生成を妨げることなく、適量のTi酸化物またはZr酸化物を生成させるためには、TiおよびZrの量を、上記した0.002質量%以上0.010質量%以下、および0.002質量%以上0.025質量%以下、の範囲に調整する必要がある。第一の硫化物系介在物を確実に生成させるには、上述のように、調整された脱酸を実施したのちに、Tiおよび(または)Zrの添加を行なうことが望ましい。しかし、過剰の添加は被削性向上効果が飽和するので、材料コストの高騰抑制も勘案して各々上限値を上記のごとく設定する。なお、Tiは、より望ましくは0.005質量%以上0.010質量%以下、Zrは、より望ましくは0.005質量%以上0.020質量%以下の範囲にて調整することが望ましい。
Ti: 0.002% by mass or more and 0.010% by mass or less; and
One or both of Zr: 0.002% by mass or more and 0.025% by mass or less; Ti combines with O in the steel to form a fine oxide. This serves as a nucleus for the precipitation of the first sulfide inclusion (MnS), and is useful for finely dispersing the Mn sulfide as described later. Two types of Ti and Zr are used in combination (for example, Ti: 0.005% by mass + Zr: 0.015% by mass) in order to further enhance the effect of refining MnS. In order to produce an appropriate amount of Ti oxide or Zr oxide without interfering with the formation of oxides necessary for the core of the first sulfide inclusions and other oxides, the amounts of Ti and Zr Must be adjusted to the ranges of 0.002% by mass to 0.010% by mass and 0.002% by mass to 0.025% by mass. In order to reliably produce the first sulfide inclusion, it is desirable to add Ti and / or Zr after performing the adjusted deoxidation as described above. However, since the effect of improving machinability is saturated by adding excessively, the upper limit value is set as described above in consideration of the suppression of the increase in material cost. Note that Ti is more desirably adjusted in a range of 0.005 mass% to 0.010 mass%, and Zr is desirably adjusted in a range of 0.005 mass% to 0.020 mass%.
なお、本発明の熱間鍛造用非調質鋼には、以下の成分を適宜添加することが可能である。
Nb:0.30質量%以下
Nbは、高温における結晶粒の粗大化を防ぐ上で有用である。その効果は量の増大につれて飽和するので、0.30質量%以下の範囲で添加するのが得策である。
In addition, the following components can be appropriately added to the non-heat treated steel for hot forging of the present invention.
Nb: 0.30% by mass or less Nb is useful for preventing coarsening of crystal grains at a high temperature. The effect saturates as the amount increases, so it is advisable to add it in the range of 0.30% by mass or less.
Pb:0.30質量%以下
Bi:0.30質量%以下
Pb及びBiのいずれも、鋼の被削性をさらに向上させる目的で任意に添加することが可能である。Pbは、単独で、または硫化物の外周に付着する形で存在し、それ自身が被削性を高める。0.30質量%という上限は、これ以上のPbを添加しても鋼に溶解せず、凝集・沈殿して鋼の欠陥になることを理由に設けた。Biも同様である。
Pb: 0.30 mass% or less Bi: 0.30 mass% or less Both Pb and Bi can be optionally added for the purpose of further improving the machinability of the steel. Pb exists alone or in the form of adhering to the outer periphery of the sulfide, and itself improves machinability. The upper limit of 0.30% by mass was set because it does not dissolve in the steel even if Pb more than this is added, but agglomerates and precipitates, resulting in defects in the steel. The same applies to Bi.
なお、本発明において「不可避不純物」は、上記した本発明の熱間鍛造用非調質鋼の効果発現が妨げられない限り、その含有元素の種別は限定されない。また、狭義には、鋼の製造工程上不可避に生ずる要因に由来した不純物のことをいうが、本発明においては、意図的にFeの一部を置換する形で添加された元素についても、本発明の熱間鍛造用非調質鋼の上記効果発現が妨げられるものでなければ、該元素も「不可避不純物」の概念に属するものとみなす。 In the present invention, the “inevitable impurities” is not limited in the type of elements contained therein unless the effect of the above-described non-heat treated steel for hot forging of the present invention is prevented. In a narrow sense, it refers to impurities derived from factors inevitably occurring in the steel manufacturing process, but in the present invention, elements added intentionally in the form of replacing part of Fe are also present. If the above effect of the non-heat treated steel for hot forging of the invention is not hindered, the element is also considered to belong to the concept of “inevitable impurities”.
以下、本発明の効果を確認するために行なった実験結果について説明する。
まず、表1に示す組成が得られるように原料を配合し、電気炉で5tonの鋼塊を溶製した。この鋼塊を熱間鍛造にて、一辺が157mmの正方形状断面を有する鍛造素材とし、次いで、1250℃に加熱して直径22mmの丸棒に熱間鍛造した後、空冷により冷却した。また、JIS:Z2245に規定の方法により、各鍛造品の中心部のロックウェルCスケール硬さを測定した。また、鍛造品からJIS:Z2210に規定の試験片を切り出し、これをアムスラー式万能試験機により引張試験を行ない、得られた応力−歪曲線から0.2%耐力を測定した。疲労限度は回転曲げ疲労試験によって測定した。また、回転曲げ疲労試験も実施した。この試験は最大負荷荷重を種々に変えて行ない、回転1000万回にて破壊を生じない最大負荷荷重を疲労限度として求めた。
Hereinafter, experimental results performed to confirm the effects of the present invention will be described.
First, raw materials were blended so that the composition shown in Table 1 was obtained, and a 5-ton steel ingot was melted in an electric furnace. This steel ingot was made into a forging material having a square cross section with a side of 157 mm by hot forging, then heated to 1250 ° C. to hot forged into a round bar with a diameter of 22 mm, and then cooled by air cooling. Moreover, the Rockwell C scale hardness of the center part of each forged product was measured by the method prescribed | regulated to JIS: Z2245. Moreover, the test piece prescribed | regulated to JIS: Z2210 was cut out from the forged product, this was subjected to the tensile test with the Amsler universal testing machine, and 0.2% yield strength was measured from the obtained stress-strain curve. The fatigue limit was measured by a rotating bending fatigue test. A rotating bending fatigue test was also conducted. In this test, the maximum load load was changed in various ways, and the maximum load load that did not cause breakage at 10 million rotations was determined as the fatigue limit.
次に、上記の熱間鍛造品を中心軸線と直交する断面にて切断して鏡面研磨後、走査型電子顕微鏡により倍率3000倍にて10視野観察し、パーライト相のラメラー間隔(ILS:Inter Lamellar Spacing))を測定した。具体的には、各視野上にラメラーを横切る測定線を複数本描き、該測定線を横切るラメラーの間隔の最も小さくなる値を求め、該値の10視野における平均値を最終的なILSとして求めた。また、画像上で初析フェライト粒とパーライト粒とを識別し(パーライト粒は、上記のラメラーによる縞模様を呈するので、フェライト粒と容易に識別できる)、初析フェライト粒の面積率を画像解析により測定した。 Next, the hot forged product is cut in a cross section perpendicular to the central axis, mirror-polished, and observed with a scanning electron microscope at a magnification of 3000 to observe 10 fields of view, and a pearlite phase lamellar interval (ILS: Inter Lamellar). Spacing)) was measured. Specifically, a plurality of measurement lines crossing the lamellar are drawn on each visual field, the value with the smallest interval between the lamellars across the measurement line is obtained, and the average value of the values in 10 visual fields is obtained as the final ILS. It was. Also, the pro-eutectoid ferrite grains and pearlite grains are identified on the image (the pearlite grains can be easily distinguished from the ferrite grains because of the lamellar stripe pattern described above), and the area ratio of the pro-eutectoid ferrite grains is analyzed It was measured by.
一方、硫化物系介在物については、上記断面の光学顕微鏡観察画像(倍率200倍)上にて、第一の介在物(二重構造を有するもの)と第一の介在物(二重構造を有さないもの)とを識別し、観察視野面積3.5mm2当たりの第一の介在物の形成面積を求めた。また、第二の介在物の個数を計測し、単位視野面積(1mm2)当たりの数形成密度を求めた。 On the other hand, for sulfide inclusions, the first inclusion (having a double structure) and the first inclusion (double structure) on the optical microscope observation image (magnification 200 times) of the cross section. And the formation area of the first inclusion per observation field area of 3.5 mm 2 was determined. Further, the number of second inclusions was measured to determine the number formation density per unit visual field area (1 mm 2 ).
また、材料の被削性を以下のようにして評価した。
まず、超硬工具(JIS:B4503、P10)を用い、以下の条件にて各試験品の旋削加工を行なった。
・旋削速度:200m/分
・1回転当たりの工具送り量:0.2mm/回転
・切り込み深さ:2.0mm
・切削油:水溶性。
そして、S含有量が0.01質量%以上0.2質量%以下の範囲にあるイオウ快削鋼の工具寿命を標準として、つぎのようにランク付けをした。また、工具寿命は、工具の横逃げ面平均摩耗幅が0.2mmになるまでの加工時間で評価した。
その5倍の工具寿命が達成できたとき被削性良好(○印)
2倍以上5倍未満のとき被削性可(△印)
2倍未満のとき被削性不良(×印)
Moreover, the machinability of the material was evaluated as follows.
First, using a cemented carbide tool (JIS: B4503, P10), each test product was turned under the following conditions.
・ Turning speed: 200 m / min ・ Tool feed rate per rotation: 0.2 mm / rotation ・ Cutting depth: 2.0 mm
・ Cutting oil: Water-soluble.
Then, the tool life of sulfur free-cutting steel having an S content in the range of 0.01% by mass or more and 0.2% by mass or less was ranked as a standard as follows. Further, the tool life was evaluated by the processing time until the side flank average wear width of the tool reached 0.2 mm.
Good machinability when the tool life is 5 times that (○ mark)
Machinability possible when 2 times or more and less than 5 times (△ mark)
Less than 2 times machinability failure (x mark)
さらに、切削時の切屑破砕性を以下のようにして評価した。すなわち、切削工具として超硬合金(JIS:B4503、K10)チップを用いてNC旋盤により以下の条件で切削試験を行なう:
・切削速度:80m/min、100m/min及び120m/minの3条件;
・一回転当たりの切り込み量:0.3mm及び1.0mmの2条件;
・一回転当たりの送り量:0.025mm、0.050mm、0.100mmの3条件;
・切削油:水溶性。
そして、上記の切削速度3条件×切り込み量2条件×送り量3条件の計18条件で、丸棒試験片を長手方向に旋削加工したときの切屑を、表1に示す基準に基づき点数をつけ、その合計点を切屑破砕性評価の指標とした。
Furthermore, the chip crushability at the time of cutting was evaluated as follows. That is, a cutting test is performed under the following conditions using an NC lathe using a cemented carbide (JIS: B4503, K10) chip as a cutting tool:
Cutting speed: three conditions of 80 m / min, 100 m / min and 120 m / min;
-Cut amount per rotation: two conditions of 0.3 mm and 1.0 mm;
-Feed amount per rotation: three conditions of 0.025 mm, 0.050 mm, 0.100 mm;
・ Cutting oil: Water-soluble.
Then, the chips when the round bar test piece was turned in the longitudinal direction under a total of 18 conditions of the above cutting speed 3 conditions × cutting amount 2 conditions × feed amount 3 conditions were scored based on the criteria shown in Table 1. The total score was used as an index for evaluating chip crushability.
点数が高いほど切り屑破砕性が良好であることを意味する。これを、同一イオウ含有量のイオウ快削鋼の切屑破砕性指数と比較した結果に従って、つぎのように評価した。
より高い場合を良好(○印)
同点または低い場合を不良(×印)
これらの結果を第2〜9表に示す。(組成欄が空欄もしくは「−」となっているものは、積極添加を行っていないことを意味する。)
A higher score means better chip crushability. This was evaluated as follows according to the result of comparison with the chip crushability index of sulfur free-cutting steel having the same sulfur content.
Good when higher (○ mark)
If it is the same or low, it is bad (×)
These results are shown in Tables 2-9. (If the composition column is blank or "-", it means that no positive addition has been performed.)
上記の結果から、本発明の実施例に属する鋼は、熱間鍛造後に焼入、焼戻しなどの熱処理省略しても十分な強度が得られ、かつ被削性にも優れていることがわかる。 From the above results, it can be seen that the steels belonging to the examples of the present invention can obtain sufficient strength even when heat treatment such as quenching and tempering is omitted after hot forging and have excellent machinability.
Claims (5)
Si :0.05質量%以上2.00質量%以下;
Mn :0.90質量%以上1.80質量%以下;
Cr :0.10質量%以上1.00質量%以下;
Al:0.010質量%以上0.045質量%以下;
N :0.005質量%以上0.025質量%以下;
S :0.01質量%以上0.20質量%以下;
Ca:0.0005質量%以上0.02質量%以下;
O:0.0005質量%以上0.01質量%以下;
を含有し、
Ti:0.002質量%以上0.010質量%以下;及び、
Zr:0.002質量%以上0.025質量%以下;
の一方又は双方を含有し、
かつ、V含有量が0.010質量%以下とされ、残部Fe及び不可避不純物元素よりなることを特徴とする熱間鍛造用非調質鋼。 C: 0.30 mass% or more and 0.60 mass% or less;
Si: 0.05 mass% or more and 2.00 mass% or less;
Mn: 0.90 mass% or more and 1.80 mass% or less;
Cr: 0.10% by mass or more and 1.00% by mass or less;
Al: 0.010 mass% or more and 0.045 mass% or less;
N: 0.005 mass% or more and 0.025 mass% or less;
S: 0.01% by mass or more and 0.20% by mass or less;
Ca: 0.0005 mass% or more and 0.02 mass% or less;
O: 0.0005 mass% or more and 0.01 mass% or less;
Containing
Ti: 0.002% by mass or more and 0.010% by mass or less; and
Zr: 0.002% by mass or more and 0.025% by mass or less;
One or both of
And non-refining steel for hot forging characterized by V content being 0.010 mass% or less and consisting of the remainder Fe and inevitable impurity elements.
Te:0.01質量%以上0.30質量%以下;
Pb:0.01質量%以上0.30質量%以下;
Bi:0.01質量%以上0.30質量%以下;
より選ばれる1種又は2種以上を含有する請求項1ないし請求項4のいずれか1項に記載の熱間鍛造用非調質鋼。 In the form of replacing a part of the Fe,
Te: 0.01% by mass or more and 0.30% by mass or less;
Pb: 0.01% by mass to 0.30% by mass;
Bi: 0.01% by mass or more and 0.30% by mass or less;
The non-heat treated steel for hot forging according to any one of claims 1 to 4, comprising one or more selected from one or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006030243A JP2007211272A (en) | 2006-02-07 | 2006-02-07 | Non-heat treated steel for hot forging |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006030243A JP2007211272A (en) | 2006-02-07 | 2006-02-07 | Non-heat treated steel for hot forging |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007211272A true JP2007211272A (en) | 2007-08-23 |
Family
ID=38489974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006030243A Pending JP2007211272A (en) | 2006-02-07 | 2006-02-07 | Non-heat treated steel for hot forging |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007211272A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103080350A (en) * | 2010-06-16 | 2013-05-01 | 新日铁住金株式会社 | Forged crankshaft |
CN114892070A (en) * | 2022-04-02 | 2022-08-12 | 承德建龙特殊钢有限公司 | Sulfur-containing gear steel and production method thereof |
-
2006
- 2006-02-07 JP JP2006030243A patent/JP2007211272A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103080350A (en) * | 2010-06-16 | 2013-05-01 | 新日铁住金株式会社 | Forged crankshaft |
CN114892070A (en) * | 2022-04-02 | 2022-08-12 | 承德建龙特殊钢有限公司 | Sulfur-containing gear steel and production method thereof |
CN114892070B (en) * | 2022-04-02 | 2024-01-30 | 承德建龙特殊钢有限公司 | Sulfur-containing gear steel and production method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9127336B2 (en) | Hot-working steel excellent in machinability and impact value | |
JP5079788B2 (en) | Non-tempered steel for martensitic hot forging and hot-forged non-tempered steel parts | |
JP5231101B2 (en) | Machine structural steel with excellent fatigue limit ratio and machinability | |
WO2013058131A1 (en) | Bearing steel and method for producing same | |
CN102884212A (en) | Case hardened steel and method for producing the same | |
JP2009174033A (en) | Steel for machine structure having excellent machinability | |
JP2009007643A (en) | Steel for machine structure having excellent machinability | |
WO2001071050A1 (en) | Non-refined steel being reduced in anisotropy of material and excellent in strength, toughness and machinability | |
EP1270757A1 (en) | Machine structural steel being free of lead, excellent in machinability and reduced in strength anisotropy | |
JP2006299296A (en) | Rolled bar steel for case hardening having excellent fatigue property and crystal grain coarsening resistance, and method for producing the same | |
JP2001131684A (en) | Steel for machine structure excellent in treatment of chip | |
JP4041413B2 (en) | Machine structural steel having excellent chip disposal and manufacturing method thereof | |
JP4765679B2 (en) | Ferritic free-cutting stainless steel | |
JP2000034538A (en) | Steel for machine structure excellent in machinability | |
JP2007211272A (en) | Non-heat treated steel for hot forging | |
JP4023196B2 (en) | Machine structural steel with excellent machinability | |
JP2009108357A (en) | Non-heat treated steel for martensite type hot-forging, and hot-forged non-heat treated steel part | |
JP2008223043A (en) | Steel material and producing method therefor | |
JP2007247059A (en) | Steel material and its production method | |
JP3489656B2 (en) | High-strength, high-toughness tempered steel with excellent machinability | |
JP4280923B2 (en) | Steel materials for carburized parts or carbonitrided parts | |
JP3255611B2 (en) | Free-cutting steel rod and wire excellent in drilling workability and method for producing the same | |
JP3494271B2 (en) | Free-cutting non-heat treated steel with excellent strength and toughness | |
JP2011256447A (en) | High strength steel excellent in machinability, and manufacturing method therefor | |
JP5363827B2 (en) | Steel for machine structure, manufacturing method thereof and machine structure parts |