JP2007211051A - Molding intermediate material and method for producing fiber reinforced resin using the same - Google Patents

Molding intermediate material and method for producing fiber reinforced resin using the same Download PDF

Info

Publication number
JP2007211051A
JP2007211051A JP2006029847A JP2006029847A JP2007211051A JP 2007211051 A JP2007211051 A JP 2007211051A JP 2006029847 A JP2006029847 A JP 2006029847A JP 2006029847 A JP2006029847 A JP 2006029847A JP 2007211051 A JP2007211051 A JP 2007211051A
Authority
JP
Japan
Prior art keywords
carbon fiber
intermediate material
resin composition
curable resin
woven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006029847A
Other languages
Japanese (ja)
Inventor
Takumi Ishimori
巧 石森
Hajime Asai
肇 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2006029847A priority Critical patent/JP2007211051A/en
Publication of JP2007211051A publication Critical patent/JP2007211051A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for producing a fiber reinforced resin excellent in corrosion resistance and chemical resistance and a molding intermediate material which can be suitably used therein. <P>SOLUTION: The molding intermediate material is composed of a carbon fiber fabric obtained by weaving with carbon fibers having a depth of creases on the carbon fiber surface of 80-400 nm and an amount of a sizing agent attached of not more than 1 mass% at a weave opening ratio of 2-10% and a fluororesin sheet, and the fluororesin constituting the above fluororesin sheet cuts into the weaves of the above carbon fiber fabric and is integrated therewith. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、耐食性・耐薬品性に優れた繊維強化樹脂の製造方法、それに好適に使用することができる成形中間材料に関する。本発明に関連して得られる繊維強化樹脂は、化学プラントや航空機、鉄道車両で用いられるダクト、配管、タンクやパネルに適用可能である。   The present invention relates to a method for producing a fiber reinforced resin having excellent corrosion resistance and chemical resistance, and a molded intermediate material that can be suitably used for the method. The fiber reinforced resin obtained in connection with the present invention can be applied to ducts, pipes, tanks and panels used in chemical plants, aircraft and railway vehicles.

フッ素系樹脂は、耐食性・耐薬品性などに優れる反面、他の材料との親和性や濡れ性が極端に悪く、繊維強化樹脂のマトリックス樹脂とはなり難い材料である。フッ素系樹脂を強化繊維と複合化する方法として、1)フッ素系樹脂微粉末をエマルション状態にして織布に担持し、その後フッ素系樹脂を溶融する方法、2)シート状に賦型したフッ素系樹脂とガラス繊維織布とを積層し加熱圧着する方法(特許文献1)が提案されているが、含フッ素率の高い樹脂にあっては溶融温度が高く、溶融時粘度も大きいために繊維織布に均一含浸させることは難しかった。
特公昭48−33274号公報
Fluorine-based resins are excellent in corrosion resistance and chemical resistance, but have extremely poor affinity with other materials and wettability, and are difficult to become matrix resins for fiber reinforced resins. As a method of compounding a fluororesin with reinforcing fibers, 1) a method in which a fluororesin fine powder is emulsified and supported on a woven fabric, and then the fluororesin is melted. 2) a fluororesin shaped into a sheet. A method of laminating a resin and a glass fiber woven fabric and heat-pressing it has been proposed (Patent Document 1). However, a resin having a high fluorine content has a high melting temperature and a high viscosity at the time of melting. It was difficult to uniformly impregnate the cloth.
Japanese Patent Publication No. 48-33274

しかし、1)の方法では、フッ素系樹脂微粉末をエマルション状態にして織布に担持させた状態で例えば1000℃で10秒間等の高温条件で熱を加えるので、フッ素系樹脂を熱劣化させる欠点があった。また、加熱温度を360℃まで下げたとしてもフッ素樹脂を均一に溶融させて一体化するためには5時間というような長い時間が必要で、生産効率が非常に悪いという欠点があった。
また、2)の方法で、フッ素含有率の高い樹脂では溶融温度が高く、溶融時粘度も大きいために繊維織布に均一含浸させることは難しかった。
However, in the method 1), heat is applied under high temperature conditions such as 10 seconds at 1000 ° C. with the fluororesin fine powder in an emulsion state and supported on the woven fabric. was there. Further, even if the heating temperature is lowered to 360 ° C., it takes a long time such as 5 hours in order to uniformly melt and integrate the fluororesin, resulting in a disadvantage that the production efficiency is very poor.
Further, in the method 2), a resin having a high fluorine content has a high melting temperature and a high viscosity at the time of melting, so that it is difficult to uniformly impregnate the fiber woven fabric.

そこで、従来技術の欠点を解決するため、本発明は、炭素繊維表面の皺の深さが80から400nm、サイズ剤付着量が1質量%以下の炭素繊維を目開き率が2〜10%に製織した炭素繊維織布とフッ素系樹脂シートとからなり、前記炭素繊維織布の織り目に前記フッ素系樹脂シートを構成するフッ素系樹脂が食い込んで一体化している成形中間材料を要旨とする。   Therefore, in order to solve the disadvantages of the prior art, the present invention has a carbon fiber surface with a wrinkle depth of 80 to 400 nm and a sizing agent adhesion amount of 1% by mass or less. The gist of the molding intermediate material consists of a woven carbon fiber woven fabric and a fluororesin sheet, in which the fluororesin constituting the fluororesin sheet bites into the weave of the carbon fiber woven fabric and is integrated.

本発明の成形中間材料は、以下の効果を奏する。
1)炭素繊維織布の織り目、更には炭素繊維表面の皺にフッ素系樹脂が食い込んで一体化することにより、炭素繊維層とフッ素系樹脂層の間に十分な剥離強度が得られる。
The molding intermediate material of the present invention has the following effects.
1) Sufficient peel strength can be obtained between the carbon fiber layer and the fluororesin layer by integrating the fluororesin into the texture of the carbon fiber woven fabric and further into the wrinkles on the surface of the carbon fiber.

また、繊維強化樹脂の製造方法によれば、以下の効果を奏する。
2)一表面にフッ素系樹脂層が形成された繊維強化樹脂積層体を容易に成形することができ、表面に耐食性、耐薬品性に優れる層が形成された繊維強化樹脂体を容易に得ることができる。
3)繊維強化樹脂積層体の内層にフッ素系樹脂層が配された成形体を容易に成形することができ、材料の中間に耐食性、耐薬品性に優れる層が形成された繊維強化樹脂体を容易に得ることができる。
Moreover, according to the manufacturing method of fiber reinforced resin, there exist the following effects.
2) A fiber-reinforced resin laminate having a fluorine-based resin layer formed on one surface can be easily molded, and a fiber-reinforced resin body having a layer having excellent corrosion resistance and chemical resistance on the surface can be easily obtained. Can do.
3) A fiber-reinforced resin body in which a molded body in which a fluorine-based resin layer is arranged on the inner layer of the fiber-reinforced resin laminate can be easily formed, and a layer having excellent corrosion resistance and chemical resistance is formed in the middle of the material. Can be easily obtained.

以下、本発明を詳しく説明する。
『炭素繊維織布』
本発明で使用する炭素繊維織布には、炭素繊維表面の皺の深さが80から400nm、サイズ剤付着量が1質量%以下の炭素繊維を使用する。
炭素繊維として、その表面の皺の深さが80から400nmを使用することにより、炭素繊維層とフッ素系樹脂層の間に十分な剥離強度が得られることとなる。以上の皺を有する炭素繊維は、特開2002―242027公報記載の方法により得ることができる。
Hereinafter, the present invention will be described in detail.
"Carbon fiber woven fabric"
For the carbon fiber woven fabric used in the present invention, carbon fibers having a wrinkle depth of 80 to 400 nm and a sizing agent adhesion amount of 1% by mass or less are used.
By using a carbon fiber having a surface wrinkle depth of 80 to 400 nm, a sufficient peel strength can be obtained between the carbon fiber layer and the fluororesin layer. The carbon fiber having the above wrinkles can be obtained by the method described in JP-A-2002-242027.

また、サイズ剤付着量が1質量%以下の炭素繊維を使用することにより、サイズ剤の除去が容易となり、効率的にフッ素系樹脂を炭素繊維表面の皺に食い込ませ、結着させることが可能となる。
サイズ剤付着量が上記範囲内にある炭素繊維織布は、1)サイズ剤付着量が上記範囲内にある炭素繊維を公知の製織方法によって製織することによっても得られるが、サイズ剤付着量が少ない炭素繊維は製織により毛羽が発生しやすいので、2)十分な量のサイズ剤を付与し製織した後、サイズ剤を除去する方が好ましい。
In addition, the use of carbon fibers with a sizing agent adhesion of 1% by mass or less facilitates the removal of the sizing agent, and allows the fluororesin to efficiently bite and bind to the surface of the carbon fiber surface. It becomes.
A carbon fiber woven fabric having a sizing agent adhesion amount within the above range can be obtained by 1) weaving carbon fibers having a sizing agent adhesion amount within the above range by a known weaving method. Since few carbon fibers tend to generate fluff by weaving, it is preferable to remove the sizing agent after applying 2) a sufficient amount of sizing agent and weaving.

製織した炭素繊維織布からサイズ剤を除去する方法としては、サイズ剤を溶解することができる溶剤で洗浄する方法、炭素繊維織布をサイズ剤が燃焼する温度に加熱する方法が挙げられる。後者の方法で市販されている炭素繊維織布からサイズ剤を除去するには、空気中で300℃に加熱することにより可能である。   Examples of the method for removing the sizing agent from the woven carbon fiber woven fabric include a method of washing with a solvent capable of dissolving the sizing agent, and a method of heating the carbon fiber woven fabric to a temperature at which the sizing agent burns. In order to remove the sizing agent from the carbon fiber woven fabric marketed by the latter method, it is possible to heat to 300 ° C. in air.

本発明に用いる炭素繊維織布は、後述するフッ素系樹脂シートを構成するフッ素系樹脂が食い込んで一体化することができるように、その織り目が適度に開いている、すなわち、その尺度として採用する目開き率が2〜10%であることが必要である。ここで、目開き率は、炭素繊維織布の裏側から光を照射し、目明き部分から透過する光をカメラで記録した後、画像処理により100mm×100mmの領域で透過光の割合を算出する。   The carbon fiber woven fabric used in the present invention has a moderately open texture, that is, is used as a scale so that the fluororesin constituting the fluororesin sheet described later can bite and be integrated. The aperture ratio needs to be 2 to 10%. Here, the aperture ratio is obtained by irradiating light from the back side of the carbon fiber woven fabric, recording light transmitted from a clear portion with a camera, and then calculating a ratio of transmitted light in an area of 100 mm × 100 mm by image processing.

本発明で使用する炭素繊維は、以上の要件を満足すればよく、炭素繊維の原料、フィラメント数は特に限定しない。好ましくは、ポリアクリロニトリル系重合体繊維を前駆体とし、好ましくは1000〜24000フィラメント、より好ましく3000〜6000フィラメントである。   The carbon fiber used in the present invention only needs to satisfy the above requirements, and the raw material of the carbon fiber and the number of filaments are not particularly limited. Preferably, polyacrylonitrile-based polymer fiber is used as a precursor, preferably 1000 to 24000 filaments, more preferably 3000 to 6000 filaments.

『フッ素系樹脂シート』
本発明で、シート状にして用いるフッ素系樹脂としては、PTFE(ポリテトラフルオロエチレン)およびその共重合体であるPFA(テトラフルオロエチレン〜パーフルオロアルキルビニルエーテル共重合体)、FEP(テトラフルオロエチレン〜ヘキサフルオロプロピレン共重合体)が例示できる。本発明の成形中間材料を成形した繊維強化樹脂を適用する用途に応じた耐食性を有するフッ素系樹脂を選択すればよい。共重合成分や分子量などには特に限定はなく、二種類以上のフッ素系樹脂が混合されていても良い。
"Fluorine resin sheet"
In the present invention, the fluororesin used in the form of a sheet includes PTFE (polytetrafluoroethylene) and its copolymer, PFA (tetrafluoroethylene to perfluoroalkyl vinyl ether copolymer), FEP (tetrafluoroethylene to Hexafluoropropylene copolymer). What is necessary is just to select the fluororesin which has corrosion resistance according to the use which applies the fiber reinforced resin which shape | molded the shaping | molding intermediate material of this invention. There are no particular limitations on the copolymerization component, molecular weight, etc., and two or more types of fluororesins may be mixed.

フッ素系樹脂は、厚み0.02〜2mm、より好ましくは0.05〜1mmのシート状に賦形されて、本発明に使用される。
『炭素繊維織布とフッ素系樹脂シートとの一体化』
本発明の成形中間材料は、炭素繊維織布の織り目にフッ素系樹脂シートを構成するフッ素系樹脂が食い込んで一体化している。この構成により、剥離強度で数百g/cm以上で一体化することが可能である。ここで、剥離強度は、
以下のようにして測定された値である。
The fluororesin is shaped into a sheet having a thickness of 0.02 to 2 mm, more preferably 0.05 to 1 mm, and is used in the present invention.
"Integration of carbon fiber woven fabric and fluorine resin sheet"
In the molding intermediate material of the present invention, the fluororesin constituting the fluororesin sheet bites into the weave of the carbon fiber woven fabric and is integrated. With this configuration, it is possible to integrate with a peel strength of several hundred g / cm or more. Here, the peel strength is
It is a value measured as follows.

成形中間材料を幅10mm、長さ150mmに切出し、フッ素系樹脂シートが一体化されていない方の面全面に両面テープを貼り、成形中間材料を金属のステージに貼り付け固定する。その後成形中間材料端部のフッ素系樹脂シートを成形中間材料から手で強制的に約10mm剥がし、剥がしたフッ素系樹脂シート10mmの部分をつかみしろとして2枚の繊維強化樹脂板(30mm×30mm×2mm厚)に挟持し、繊維強化樹脂板の半分の高さ、両端に開けた穴にM3のボルトナットを通して締め付けてフッ素系樹脂シートを繊維強化樹脂板に固定する。そして繊維強化樹脂板の上端に開けた穴にバネばかり(最大測定重量2kg)のフックを通した後、バネばかりを成形中間材料表面に対して90℃の方向に引っ張り上げ、フッ素系樹脂シートが炭素繊維織布から剥離する際の荷重をバネばかりで読み取る。   The molding intermediate material is cut out to a width of 10 mm and a length of 150 mm, and a double-sided tape is applied to the entire surface where the fluororesin sheet is not integrated, and the molding intermediate material is fixed to a metal stage. Thereafter, the fluororesin sheet at the end of the molding intermediate material is forcibly peeled off from the molding intermediate material by about 10 mm by hand, and two fiber reinforced resin plates (30 mm × 30 mm × 2mm thick), and tighten the fluorine-based resin sheet to the fiber reinforced resin plate by tightening it with a M3 bolt and nut in a hole opened at both ends at half height of the fiber reinforced resin plate. Then, after passing the hook of the spring only (maximum measured weight 2 kg) through the hole opened in the upper end of the fiber reinforced resin plate, the spring alone was pulled in the direction of 90 ° C with respect to the surface of the molding intermediate material, The load at the time of peeling from the carbon fiber woven fabric is read only with a spring.

炭素繊維織布の織り目にフッ素系樹脂シートを構成するフッ素系樹脂が食い込んで一体化するには、熱プレスの熱板間に炭素繊維織布とフッ素系樹脂シートとを重ねて配置し、フッ素系樹脂シートを構成するフッ素系樹脂の融点より20〜80℃高い温度に加熱すると同時に10〜60MPaの圧力を負荷し、5〜60分保持した後、加圧下に降温することで得られる。   To integrate the fluororesin constituting the fluororesin sheet into the weave of the carbon fiber woven fabric, the carbon fiber woven fabric and the fluororesin sheet are placed on top of each other between the hot press hot plates. It is obtained by heating to a temperature 20 to 80 ° C. higher than the melting point of the fluororesin constituting the resin sheet and simultaneously applying a pressure of 10 to 60 MPa and holding it for 5 to 60 minutes, and then lowering the temperature under pressure.

『成形中間材の積層構成』
本発明の成形中間材料は、2つの異なる積層構成を有する。一つは、炭素繊維織布/フッ素系樹脂シートであり、もう一つは、炭素繊維織布/フッ素系樹脂シート/炭素繊維織布である。
“Laminated composition of molded intermediate materials”
The molding intermediate material of the present invention has two different laminated configurations. One is carbon fiber woven fabric / fluorine-based resin sheet, and the other is carbon fiber woven fabric / fluorine-based resin sheet / carbon fiber woven fabric.

前者は、強化繊維樹脂製ダクト、配管、タンク等の腐食性の流体等に接する壁にフッ素系樹脂シート側が来るように配するために使用することができ、後者は、強化繊維樹脂製ダクト、配管、タンクの中間層に配置し、中間層で腐食性の流体等の浸透を食い止めるために使用できる。
本発明の成形中間材料は、後述する種々の繊維強化樹脂の製造方法のほかにも、単に炭素繊維織布側に接着剤を塗布し、既に加熱硬化された他の成形品や金属部材に容易に接合させることが可能であり、タンクやパイプ類のライニング処理材として有用である。
The former can be used so that the fluororesin sheet side comes to the wall in contact with corrosive fluid such as a reinforced fiber resin duct, piping, tank, etc., the latter is a reinforced fiber resin duct, It can be used in the middle layer of pipes and tanks to prevent the penetration of corrosive fluids in the middle layer.
The molding intermediate material of the present invention can be easily applied to other molded products and metal members that have already been heat-cured by simply applying an adhesive to the carbon fiber woven fabric side, in addition to various fiber-reinforced resin manufacturing methods described later. It is useful as a lining treatment material for tanks and pipes.

『成形中間材料を用いた繊維強化樹脂の製造方法』
つぎに本発明の成形中間材料を用いた繊維強化樹脂の製造方法を説明する。
本発明の成形中間材料は、以下の3つの繊維強化樹脂の製造方法に使用できる。
"Production method of fiber reinforced resin using molding intermediate material"
Next, a method for producing a fiber reinforced resin using the molding intermediate material of the present invention will be described.
The molding intermediate material of the present invention can be used in the following three fiber reinforced resin production methods.

1)本発明の成形中間材料の炭素繊維織布側に硬化性樹脂組成物層を設けたのち、加圧加熱し、前記硬化性樹脂組成物層を構成する硬化性樹脂組成物を、前記成形中間体を構成する炭素繊維織布に含浸して、樹脂含浸された成形中間材料を得、これと強化繊維に硬化性樹脂組成物を含浸した繊維強化樹脂中間材料とを積層したのち、加圧加熱し、硬化性樹脂組成物を硬化する、繊維強化樹脂の製造方法。 1) After forming the curable resin composition layer on the carbon fiber woven fabric side of the molding intermediate material of the present invention, pressurizing and heating the curable resin composition constituting the curable resin composition layer, the molding Carbon fiber woven fabric constituting the intermediate is impregnated to obtain a resin-impregnated molding intermediate material, which is laminated with a fiber-reinforced intermediate material impregnated with a curable resin composition on a reinforcing fiber and then pressed A method for producing a fiber reinforced resin, which is heated to cure a curable resin composition.

2)本発明の成形中間材料の成形中間材料と、強化繊維に硬化性樹脂組成物を含浸した繊維強化樹脂中間材料とを積層したのち、加圧加熱し、前記繊維強化樹脂中間材料中の余剰の硬化性樹脂組成物を、前記成形中間体を構成する炭素繊維織布に含浸するとともに、前記硬化性樹脂組成物を硬化する、繊維強化樹脂の製造方法。 2) The molding intermediate material of the present invention and the fiber reinforced resin intermediate material impregnated with the curable resin composition in the reinforcing fiber are laminated and then heated under pressure, and the surplus in the fiber reinforced resin intermediate material A method for producing a fiber reinforced resin, wherein the curable resin composition is impregnated into a carbon fiber woven fabric constituting the molding intermediate and the curable resin composition is cured.

3)本発明の成形中間材料の成形中間材料と、強化繊維に硬化性樹脂組成物を含浸した繊維強化樹脂中間材料とを、硬化性樹脂組成物層を介して積層したのち、加圧加熱し、前記硬化性樹脂組成物層を構成する硬化性樹脂組成物を、前記成形中間体を構成する炭素繊維織布に含浸するとともに、前記硬化性樹脂組成物を硬化する、繊維強化樹脂の製造方法。 3) A molding intermediate material of the present invention and a fiber reinforced resin intermediate material obtained by impregnating a curable resin composition with reinforcing fibers are laminated through a curable resin composition layer, and then heated under pressure. A method for producing a fiber reinforced resin, wherein the curable resin composition constituting the curable resin composition layer is impregnated into a carbon fiber woven fabric constituting the molding intermediate and the curable resin composition is cured. .

上記の繊維強化樹脂の製造方法で、硬化性樹脂組成物として使用される樹脂組成物としては、エポキシ樹脂組成物、ポリイミド樹脂組成物、フェノール樹脂組成物が挙げられる。この中で特にフェノール樹脂組成物は、フッ素系樹脂シートを構成するフッ素系樹脂とあいまって耐食性や難燃性において優れた特徴を発揮する。フェノール樹脂組成物としては、繊維強化樹脂のマトリックス樹脂としての適正を有するタイプが優れている。   Examples of the resin composition used as the curable resin composition in the fiber reinforced resin production method include an epoxy resin composition, a polyimide resin composition, and a phenol resin composition. Among them, the phenol resin composition particularly exhibits excellent characteristics in corrosion resistance and flame retardancy together with the fluorine resin constituting the fluorine resin sheet. As a phenol resin composition, the type which has the appropriateness as a matrix resin of a fiber reinforced resin is excellent.

上記1)の製造方法では、まず成形中間材料の炭素繊維織布にマトリックス樹脂となる硬化性樹脂組成物を含浸し、いわゆるプリプレグとする。この工程は、硬化性樹脂組成物を溶剤に溶解してその溶液を炭素繊維織布に含浸し、その後溶剤を除去する溶剤法によってもよいが、硬化性樹脂組成物を加熱溶融するホットメルト法が品質安定性の面で望ましい。なお、上述のようにフッ素系樹脂シートを構成するフッ素系樹脂は炭素繊維織布に強固に食い込んでいるのでプリプレグ化工程で両者が剥がれることはない。   In the production method of 1) above, first, a carbon fiber woven fabric as a molding intermediate material is impregnated with a curable resin composition serving as a matrix resin to form a so-called prepreg. This process may be performed by a solvent method in which the curable resin composition is dissolved in a solvent, the carbon fiber woven fabric is impregnated with the solution, and then the solvent is removed, but a hot melt method in which the curable resin composition is heated and melted. Is desirable in terms of quality stability. In addition, since the fluororesin which comprises a fluororesin sheet | seat has entrapped firmly in the carbon fiber woven fabric as mentioned above, both are not peeled off at the prepreg process.

上記2)の製造方法では、繊維強化樹脂中間材料中の余剰の硬化性樹脂組成物を、成形中間体を構成する炭素繊維織布に含浸することを特徴としている。余剰の硬化性樹脂組成物を余らせることは、繊維強化樹脂中間材料の樹脂含有率を50〜70体積%としておくことにより可能である。   The production method 2) is characterized by impregnating a surplus curable resin composition in the fiber reinforced resin intermediate material into a carbon fiber woven fabric constituting the molded intermediate. It is possible to leave an excess of the curable resin composition by setting the resin content of the fiber reinforced resin intermediate material to 50 to 70% by volume.

上記3)の製造方法では、本発明の成形中間材料と、強化繊維に硬化性樹脂組成物を含浸した繊維強化樹脂中間材料とを、硬化性樹脂組成物層を介して積層することを特徴としている。硬化性樹脂組成物層の樹脂量は108〜646g/mとすることが好ましい。 The production method of 3) above is characterized in that the molding intermediate material of the present invention and a fiber reinforced resin intermediate material obtained by impregnating a curable resin composition into reinforcing fibers are laminated via a curable resin composition layer. Yes. The resin amount of the curable resin composition layer is preferably 108 to 646 g / m 2 .

上記1)〜3)によれば、本発明の成形中間材料は、通常の炭素繊維プリプレグを積層するのと同様に積層することができ、繊維強化樹脂の製造は非常に簡便であり、加工性にも優れる特徴を有する。すなわち、本発明の成形中間材料を用いて深絞りなどの複雑形状体に成形する場合、フッ素系樹脂シートに切り込みを入れておき、同種のフッ素系樹脂製の接合棒などを用いて加熱接合することによって形状加工が可能である。   According to the above 1) to 3), the molding intermediate material of the present invention can be laminated in the same manner as the usual carbon fiber prepreg is laminated, and the production of the fiber reinforced resin is very simple and processability. Also has excellent characteristics. That is, when forming into a complex shape body such as deep drawing using the molding intermediate material of the present invention, a cut is made in the fluororesin sheet, and heat joining is performed using a joining rod made of the same fluororesin. Therefore, shape processing is possible.

以下に実施例を示し、本発明をさらに具体的に説明する。
『剥離試験』
成形中間材料を幅10mm、長さ150mmに切出し、フッ素系樹脂シートが一体化していない面全面に両面テープを貼り、成形中間材料を金属のステージに貼り付け固定する。その後成形中間材料端部のフッ素系樹脂シートを成形中間材料から手で強制的に約10mm剥がし、剥がしたフッ素系樹脂シート10mmの部分をつかみしろとして2枚の繊維強化樹脂板(30mm×30mm×2mm厚)に挟持し、繊維強化樹脂板の半分の高さ、両端に開けた穴にM3のボルトナットを通して締め付けてフッ素系樹脂シートを繊維強化樹脂板に固定する。そして繊維強化樹脂板の上端に開けた穴にバネばかり(最大測定重量2kg)のフックを通した後、バネばかりを成形中間材料表面に対して90℃の方向に引っ張り上げ、フッ素系樹脂シートが炭素繊維織布から剥離する際の荷重をバネばかりで読み取る。
The following examples illustrate the present invention more specifically.
"Peel test"
The molding intermediate material is cut into a width of 10 mm and a length of 150 mm, a double-sided tape is applied to the entire surface where the fluororesin sheet is not integrated, and the molding intermediate material is affixed to a metal stage and fixed. Thereafter, the fluororesin sheet at the end of the molding intermediate material is forcibly peeled off from the molding intermediate material by about 10 mm by hand, and two fiber reinforced resin plates (30 mm × 30 mm × 2mm thick), and tighten the fluorine-based resin sheet to the fiber reinforced resin plate by tightening it with a M3 bolt and nut in a hole opened at both ends at half height of the fiber reinforced resin plate. Then, after passing the hook of the spring only (maximum measured weight 2 kg) through the hole opened in the upper end of the fiber reinforced resin plate, the spring alone was pulled in the direction of 90 ° C with respect to the surface of the molding intermediate material, The load at the time of peeling from the carbon fiber woven fabric is read only with a spring.

『炭素繊維織布のサイズ剤の除去』
炭素繊維織布として、特開2002―242027号の実施例1により得られた炭素繊維(表面の皺の深さ210nm、フィラメント数3000本、サイズ剤付着量0.22質量%)を経緯糸ともに12.5本/インチで平織りした炭素繊維織布を用意した。これを熱プレスの熱板間に挟み、300℃に加熱した。300℃で10分放置した後、熱板を開き操作を3回繰り返した後、熱板間から炭素繊維織布を取り出した。熱プレス前後の質量差からサイズ剤除去後の炭素繊維織布のサイズ剤量は、ほぼ0質量%であった。これを以下の実施例では炭素繊維織布として用いた。
"Removal of carbon fiber woven fabric sizing agent"
As carbon fiber woven fabric, carbon fiber (surface wrinkle depth 210 nm, number of filaments 3000, attached amount of sizing agent 0.22% by mass) obtained in Example 1 of JP-A-2002-242027 is used for both warp and weft A carbon fiber woven fabric plain-woven at 12.5 pieces / inch was prepared. This was sandwiched between hot press hot plates and heated to 300 ° C. After leaving at 300 ° C. for 10 minutes, the hot plate was opened and the operation was repeated three times, and then the carbon fiber woven fabric was taken out from between the hot plates. The sizing amount of the carbon fiber woven fabric after removal of the sizing agent was approximately 0% by mass from the mass difference before and after the hot pressing. In the following examples, this was used as a carbon fiber woven fabric.

『目開き率』
目開き率は、炭素繊維織布の裏側から光を照射し、目明き部分から透過する光を画像処理センサー(株式会社キーエンス社製CV−100)により100mm×100mmの領域で透過光の割合を算出する。
"Opening rate"
The aperture ratio is calculated by calculating the ratio of transmitted light in the region of 100 mm x 100 mm by irradiating light from the back side of the carbon fiber woven fabric and using the image processing sensor (Keyence Co., Ltd. CV-100) to transmit the light transmitted from the clear part To do.

『炭素繊維織布』
表1に示す、皺深さの異なる炭素繊維、サイズ剤付着量、目明き率の異なる炭素繊維織布を用意した。炭素繊維織布は、いずれも経緯糸ともに12.5本/インチで平織りした炭素繊維織布である。
"Carbon fiber woven fabric"
Carbon fibers having different wrinkle depths, sizing agent adhesion amounts, and carbon fiber woven fabrics having different visibility ratios shown in Table 1 were prepared. All of the carbon fiber woven fabrics are carbon fiber woven fabrics that are plain woven at 12.5 yarns / inch for both the warp and the weft.

(実施例1〜3、比較例1〜3)
離型処理された2枚の金属板間に、炭素繊維織布とPTFEシート(日東電工株式会社製のニトフロンNO.900UL、厚み100μm)とを重ねて配置した。これを熱プレスの熱板上に置き、室温で15MPaで加圧しながら30分かけて370℃に昇温した。その温度圧力で30分保持した後徐冷して室温となった成形中間材料を取り出した。得られた成形中間材料について『剥離試験』を実施した。
(Examples 1-3, Comparative Examples 1-3)
A carbon fiber woven fabric and a PTFE sheet (Nitoflon NO. 900UL manufactured by Nitto Denko Corporation, thickness 100 μm) were placed between the two metal plates subjected to the release treatment. This was placed on a hot plate of a hot press and heated to 370 ° C. over 30 minutes while being pressurized at 15 MPa at room temperature. After being held at that temperature and pressure for 30 minutes, the molded intermediate material which was gradually cooled to room temperature was taken out. A “peeling test” was performed on the obtained molding intermediate material.

Figure 2007211051
Figure 2007211051

Figure 2007211051
Figure 2007211051

(実施例4)
炭素繊維織布とPTFEシートとを重ねて配置する代わりに、2枚の炭素繊維織布の間にPTFEシートを重ねて配置する以外は実施例1と同様に操作して、成形中間材料を得た。
Example 4
Instead of placing the carbon fiber woven fabric and the PTFE sheet on top of each other, the same operation as in Example 1 was performed except that the PTFE sheet was placed on top of the two carbon fiber woven fabrics to obtain a molding intermediate material. It was.

(実施例5)
強化繊維に硬化性樹脂組成物を含浸した繊維強化樹脂中間材料として、三菱レイヨン株式会社製パイロフィルプリプレグTR350J250M(三菱レイヨン株式会社製炭素繊維TR30Sに三菱レイヨン株式会社製エポキシ樹脂組成物#350を樹脂含有率37.5質量%、プリプレグ目付400g/m)を10枚積層したものを用意した。この上に実施例1で得られた成形中間材料を炭素繊維織布が下になるように積層した。これを真空バッグに入れ、熱風炉中で130℃×3時間で硬化した。
(Example 5)
Mitsubishi Rayon Co., Ltd. Pyrofil Prepreg TR350J250M (Mitsubishi Rayon Co., Ltd. carbon fiber TR30S, Mitsubishi Rayon Co., Ltd. epoxy resin composition # 350 resin as a fiber reinforced resin intermediate material in which reinforced resin composition is impregnated with reinforced resin. What laminated | stacked ten sheets of content rate 37.5 mass% and prepreg basis weight 400g / m < 2 >) was prepared. On top of this, the molding intermediate material obtained in Example 1 was laminated so that the carbon fiber woven fabric was on the bottom. This was put in a vacuum bag and cured in a hot air oven at 130 ° C. for 3 hours.

(実施例6)
ガラス繊維強化樹脂板(3mm厚)上に、実施例1で得られた成形中間材料の炭素繊維織布にビニルエステル樹脂組成物(日本ユピカ株式会社製ネオポール8250M100質量部に対して、日本油脂株式会社製重合開始剤パークミルH80を0.8質量部添加)を塗布しながら貼り付け、室温に放置し、ビニルエステル樹脂組成物を硬化した。
(Example 6)
On a glass fiber reinforced resin plate (thickness 3 mm), a carbon ester woven fabric of the molding intermediate material obtained in Example 1 was used as a vinyl ester resin composition (Nippon Oil & Fat Co. It was affixed while applying a company-made polymerization initiator Park Mill H80 (added 0.8 parts by mass) and allowed to stand at room temperature to cure the vinyl ester resin composition.

(実施例7)
ホットメルトタイプのフェノール樹脂組成物(昭和高分子株式会社製BRM−797H)を離型紙上に圧延して、目付108g/mのフェノール樹脂組成物シートを得た。これを実施例1で得られた成形中間材料の炭素繊維織布側に積層し、旭繊維機械社製連続プレス機に通して、80℃、2kg/cmで加熱加圧(線圧)してプリプレグを得た。
(Example 7)
A hot-melt type phenolic resin composition (BRM-797H manufactured by Showa Polymer Co., Ltd.) was rolled onto a release paper to obtain a phenolic resin composition sheet having a basis weight of 108 g / m 2 . This was laminated on the carbon fiber woven fabric side of the molding intermediate material obtained in Example 1, passed through a continuous press machine manufactured by Asahi Textile Machinery Co., Ltd., and heated and pressurized (linear pressure) at 80 ° C. and 2 kg / cm. A prepreg was obtained.

(実施例8)
実施例7で得られたフェノール樹脂組成物シートを実施例4で得られた成形中間材料の両面に積層し、旭繊維機械社製連続プレス機に通して、80℃、2kg/cmで加熱加圧(線圧)してプリプレグを得た。
(Example 8)
The phenolic resin composition sheet obtained in Example 7 was laminated on both sides of the molding intermediate material obtained in Example 4, and passed through a continuous press machine manufactured by Asahi Textile Machinery Co., Ltd., heated at 80 ° C. and 2 kg / cm. A prepreg was obtained by pressure (linear pressure).

(実施例8)
実施例7で得られたプリプレグを、三菱レイヨン株式会社製炭素繊維織布TRK510(三菱レイヨン株式会社製炭素繊維TR50S、フィラメント数12000本を経緯糸とも10本/インチで平織りしたもの)に実施例5に示したホットメルトタイプのフェノール樹脂組成物を樹脂含有率が40質量%となるように含浸したプリプレグを用意した。同プリプレグを5枚積層し、この上に実施例8で得られた成形中間材料を置き、その上に前記プリプレグを2枚積層し、さらにその上に実施例1で得られた成形中間材料を炭素繊維織布が下になるように積層した。これを真空バッグに入れ、熱風炉中で120℃×5時間で硬化した。
(Example 8)
The prepreg obtained in Example 7 was applied to a carbon fiber woven fabric TRK510 (manufactured by Mitsubishi Rayon Co., Ltd.) (carbon fiber TR50S manufactured by Mitsubishi Rayon Co., Ltd., 12,000 filaments in a plain weave with 10 wefts per inch). A prepreg impregnated with the hot melt type phenol resin composition shown in No. 5 so as to have a resin content of 40% by mass was prepared. 5 sheets of the same prepreg are laminated, the molding intermediate material obtained in Example 8 is placed thereon, two sheets of the prepreg are laminated thereon, and the molding intermediate material obtained in Example 1 is further laminated thereon. Lamination was performed with the carbon fiber woven fabric facing down. This was placed in a vacuum bag and cured in a hot air oven at 120 ° C. for 5 hours.

Claims (6)

炭素繊維表面の皺の深さが80から400nm、サイズ剤付着量が1質量%以下の炭素繊維を目開き率が2〜10%に製織した炭素繊維織布とフッ素系樹脂シートとからなり、前記炭素繊維織布の織り目に前記フッ素系樹脂シートを構成するフッ素系樹脂が食い込んで一体化している成形中間材料。   The carbon fiber surface consists of a carbon fiber woven fabric and a fluororesin sheet in which carbon fibers having a wrinkle depth of 80 to 400 nm and a sizing agent adhesion amount of 1% by mass or less are woven to an opening ratio of 2 to 10%, A molding intermediate material in which a fluororesin constituting the fluororesin sheet bites into a weave of the carbon fiber woven fabric and is integrated. 炭素繊維表面の皺の深さが80から400nm、サイズ剤付着量が1質量%以下の炭素繊維を目開き率が2〜10%に製織した炭素繊維織布2枚とその間に配されたフッ素系樹脂シートとからなり、前記炭素繊維織布の織り目に前記フッ素系樹脂シートを構成するフッ素系樹脂が食い込んで一体化している成形中間材料。   Two carbon fiber woven fabrics made by weaving carbon fibers having a wrinkle depth of 80 to 400 nm and a sizing amount of 1% by mass or less on the surface of the carbon fiber to an opening ratio of 2 to 10%, and fluorine disposed therebetween A molding intermediate material comprising a fluororesin sheet, wherein the fluororesin constituting the fluororesin sheet is bitten into the weave of the carbon fiber woven fabric. 請求項1または請求項2に記載された成形中間材料の炭素繊維織布側に硬化性樹脂組成物層を設けたのち、加圧加熱し、前記硬化性樹脂組成物層を構成する硬化性樹脂組成物を、前記成形中間体を構成する炭素繊維織布に含浸して、樹脂含浸された成形中間材料を得、これと強化繊維に硬化性樹脂組成物を含浸した繊維強化樹脂中間材料とを積層したのち、加圧加熱し、硬化性樹脂組成物を硬化する、繊維強化樹脂の製造方法。   A curable resin constituting the curable resin composition layer by providing a curable resin composition layer on the carbon fiber woven fabric side of the intermediate molding material according to claim 1 or 2 and then heating under pressure. The composition is impregnated into a carbon fiber woven fabric constituting the molding intermediate to obtain a resin-impregnated molding intermediate material, and a fiber-reinforced resin intermediate material in which the reinforcing fiber is impregnated with the curable resin composition. A method for producing a fiber reinforced resin, which is laminated and then heated under pressure to cure the curable resin composition. 請求項1または請求項2に記載された成形中間材料と、強化繊維に硬化性樹脂組成物を含浸した繊維強化樹脂中間材料とを積層したのち、加圧加熱し、前記繊維強化樹脂中間材料中の余剰の硬化性樹脂組成物を、前記成形中間体を構成する炭素繊維織布に含浸するとともに、前記硬化性樹脂組成物を硬化する、繊維強化樹脂の製造方法。   After laminating the molding intermediate material according to claim 1 and the fiber reinforced resin intermediate material impregnated with a curable resin composition in a reinforcing fiber, pressurizing and heating the intermediate material in the fiber reinforced resin intermediate material A carbon fiber woven fabric constituting the molding intermediate is impregnated with an excess of the curable resin composition, and the curable resin composition is cured. 請求項1または請求項2に記載された成形中間材料と、強化繊維に硬化性樹脂組成物を含浸した繊維強化樹脂中間材料とを、硬化性樹脂組成物層を介して積層したのち、加圧加熱し、前記硬化性樹脂組成物層を構成する硬化性樹脂組成物を、前記成形中間体を構成する炭素繊維織布に含浸するとともに、前記硬化性樹脂組成物を硬化する、繊維強化樹脂の製造方法。   The molding intermediate material according to claim 1 and the fiber reinforced resin intermediate material obtained by impregnating the reinforced resin with a curable resin composition are laminated through a curable resin composition layer and then pressed. A fiber reinforced resin which is heated and impregnated with a carbon fiber woven fabric constituting the molding intermediate with the curable resin composition constituting the curable resin composition layer and curing the curable resin composition. Production method. 請求項1または請求項2に記載された成形中間材料の炭素繊維織布側に硬化性樹脂組成物層を形成した後、加熱加圧して炭素繊維織布に硬化性樹脂組成物を含浸する、成形中間材料の製造方法。   After forming the curable resin composition layer on the carbon fiber woven fabric side of the molding intermediate material according to claim 1 or claim 2, the carbon fiber woven fabric is impregnated with the curable resin composition by heating and pressing. A method for producing a molding intermediate material.
JP2006029847A 2006-02-07 2006-02-07 Molding intermediate material and method for producing fiber reinforced resin using the same Pending JP2007211051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006029847A JP2007211051A (en) 2006-02-07 2006-02-07 Molding intermediate material and method for producing fiber reinforced resin using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006029847A JP2007211051A (en) 2006-02-07 2006-02-07 Molding intermediate material and method for producing fiber reinforced resin using the same

Publications (1)

Publication Number Publication Date
JP2007211051A true JP2007211051A (en) 2007-08-23

Family

ID=38489781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006029847A Pending JP2007211051A (en) 2006-02-07 2006-02-07 Molding intermediate material and method for producing fiber reinforced resin using the same

Country Status (1)

Country Link
JP (1) JP2007211051A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014200986A (en) * 2013-04-04 2014-10-27 株式会社Nsp Ks Finishing sheet for concrete structure, and concrete structure finishing method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014200986A (en) * 2013-04-04 2014-10-27 株式会社Nsp Ks Finishing sheet for concrete structure, and concrete structure finishing method using the same

Similar Documents

Publication Publication Date Title
JP6325193B2 (en) Carbon fiber reinforced composite material and method for producing the same
JP6627756B2 (en) Resin supply material, preform, and method for producing fiber reinforced resin
JP6642423B2 (en) Resin supply material, method of using reinforced fiber, preform, and method of producing fiber reinforced resin
JP6702185B2 (en) Resin supply material, preform, and method for producing fiber-reinforced resin
WO2012169011A1 (en) Surface layer material for cushioning material and cushioning material for hot-pressing
JP2004050574A (en) Prepreg and method for producing fiber-reinforced composite material using prepreg
JP5251004B2 (en) Preform manufacturing method, preform, and fiber reinforced plastic girder
JP2009062648A (en) Method for producing chopped fiber bundle, molded material, and fiber reinforced plastic
JP2013202890A (en) Molding material and method of manufacturing the same
TWI699270B (en) Resin supply material, preform, and manufacturing method of fiber reinforced resin
JP2012192645A (en) Method for manufacturing molded article
JP5913970B2 (en) Cushion material for heat press
JP5341733B2 (en) Cushion material surface layer and heat press cushion material
JP5236840B1 (en) Carbon fiber reinforced composite material and method for producing the same
JP5753892B2 (en) Method for producing fiber-reinforced resin molded body
JP5441437B2 (en) Partially impregnated prepreg, method for producing the same, and method for producing a fiber-reinforced composite material using the same
JP2007211051A (en) Molding intermediate material and method for producing fiber reinforced resin using the same
JP2007099966A (en) Prepreg
JP2962570B2 (en) Release protection sheet for hot press lamination
JP2767329B2 (en) Prepreg for resin mold to form surface layer of resin mold
JP2020128075A (en) Method of producing laminate and laminate
JP7380945B1 (en) Fiber-reinforced resin structure and method for manufacturing fiber-reinforced resin structure
JP2018144274A (en) Molded product manufacturing method and molded product made from metal and fiber-reinforced composite material
JPH08327290A (en) Panel for heat exchanger made of fiber-reinfored thermoplastic resin
JP2022120692A (en) Method for producing fiber-reinforced composite material