JP2007210911A - Method for producing polyacyl compound and apparatus therefor - Google Patents

Method for producing polyacyl compound and apparatus therefor Download PDF

Info

Publication number
JP2007210911A
JP2007210911A JP2006030326A JP2006030326A JP2007210911A JP 2007210911 A JP2007210911 A JP 2007210911A JP 2006030326 A JP2006030326 A JP 2006030326A JP 2006030326 A JP2006030326 A JP 2006030326A JP 2007210911 A JP2007210911 A JP 2007210911A
Authority
JP
Japan
Prior art keywords
reaction
temperature
water
solvent
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006030326A
Other languages
Japanese (ja)
Other versions
JP4953341B2 (en
Inventor
Yutaka Ikushima
豊 生島
Masahiro Sato
正大 佐藤
Hajime Kawanami
肇 川波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006030326A priority Critical patent/JP4953341B2/en
Publication of JP2007210911A publication Critical patent/JP2007210911A/en
Application granted granted Critical
Publication of JP4953341B2 publication Critical patent/JP4953341B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for the continuous and quick synthesis of a polyacyl compound from a carboxylic acid anhydride and a polyhetero-hydride in high yield without using a catalyst while adjusting the acylation number and provide an apparatus and reaction composition for the synthesis. <P>SOLUTION: The method for the continuous and quick synthesis of a polyacyl compound from a carboxylic acid anhydride and a polyhetero-hydride in high yield while adjusting the acylation number comprises the use of a subcritical fluid or supercritical fluid having a temperature of 100-400°C and a pressure of 0.1-40 MPa as a reaction solvent, introduction of a substrate and the reaction solvent into a high temperature and pressure flow reactor in the absence of catalyst and the adjustment of various conditions comprising the temperature and the amount of the carboxylic acid anhydride. The invention further provides an apparatus and reaction composition for the synthesis. The invention can provide a polyacyl compound composition having biocompatibility and useful as perfume, medicine, food, etc. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ポリアシル化合物組成物、その製造方法及び装置に関するものであり、更に詳しくは、高温高圧状態の水あるいは酢酸、それらの混合溶媒を反応溶媒とし、無触媒かつ一段階でポリアシル化合物を製造する方法、その装置及びアシル化合物組成物に関するものである。本発明は、温度100〜400℃、圧力0.1〜40MPaの水あるいは酢酸、それらの混合溶媒を反応溶媒として、触媒無添加で無水カルボン酸とポリヘテロ水素化物からポリアシル化合物を一段階かつ短時間で、連続的に合成する方法及びその反応組成物を提供するものである。ここで、ポリヘテロ水素化物におけるヘテロ原子としては、酸素、窒素、硫黄が挙げられ、それぞれポリオール、ポリアミン、ポリチオールに対応する。   The present invention relates to a polyacyl compound composition, a method for producing the same, and more specifically, and more specifically, a polyacyl compound is produced in a single step without using a high temperature and high pressure water or acetic acid or a mixed solvent thereof as a reaction solvent. Method, apparatus thereof, and acyl compound composition. In the present invention, water or acetic acid at a temperature of 100 to 400 ° C. and a pressure of 0.1 to 40 MPa is used as a reaction solvent, and a polyacyl compound is converted from a carboxylic anhydride and a polyheterohydride in one step in a short time without adding a catalyst. Thus, a method for continuously synthesizing and a reaction composition thereof are provided. Here, examples of the hetero atom in the polyheterohydride include oxygen, nitrogen, and sulfur, which correspond to polyol, polyamine, and polythiol, respectively.

ポリアシル化合物は、原料、基質の機能性を改質向上し、更に、付加価値を付与するため、特に、香料、医薬品、食品等の分野において有用である。通常、ポリアシル化合物を合成する場合、従来法では、非プロトン性有機溶媒に加えて酸・塩基触媒が必要であり、例えば、食品、医薬品に利用される場合、残存する有機溶媒、触媒は、その除去に大きな労力を必要とし、また、環境に影響を与えるのみならず生体に有害である等の問題点を有していた。本発明は、無水カルボン酸とポリオール、ポリアミン、ポリチオール等のポリヘテロ水素化物から、無触媒で、水を用いるプロセスのみでポリアシル化合物を合成する方法、その装置及びその反応組成物を提供するものであり、香料、医薬品や食品のみならず、化成品合成にも応用可能であり、ポリアシル化合物を効率良く、短時間で、大量に生産し、提供することを可能にするものである。   Polyacyl compounds are particularly useful in the fields of fragrances, pharmaceuticals, foods and the like because they improve and improve the functionality of raw materials and substrates, and further add added value. Usually, when synthesizing a polyacyl compound, the conventional method requires an acid / base catalyst in addition to the aprotic organic solvent. For example, when used in foods and pharmaceuticals, the remaining organic solvent and catalyst are The removal requires a large amount of labor, and has problems such as being harmful to the living body as well as affecting the environment. The present invention provides a method for synthesizing a polyacyl compound from a carboxylic anhydride and a polyheterohydride such as a polyol, polyamine, polythiol, etc., without using a catalyst, and using only water, an apparatus therefor, and a reaction composition thereof. It can be applied not only to fragrances, pharmaceuticals and foods, but also to chemical synthesis, and enables polyacyl compounds to be produced and provided in large quantities efficiently in a short time.

従来、無水カルボン酸とポリヘテロ水素化物、ポリオール、ポリアミン、ポリチオール等からポリアシル化合物を合成する方法が種々報告されている(例えば、非特許文献1)。ここで、ポリオールと無水カルボン酸からポリアシル化合物を合成する技術を完成すれば、通常はポリアミンやポリチオール等の他のポリヘテロ水素化物からポリアシル化合物を合成することが可能となるため、特に、ポリアルコールからポリアシル化合物を合成する技術の報告例は非常に多い。ところが、従来法では、すべてのヘテロ水素をポリアシル化する方法のみであり、アシル化数を調整しながら選択的にポリアシル化する方法は報告されていない(図1)。図1で、R、R、Rn+1はアルキル基及びアルキル基以外のヘテロ原子を含む置換基、Qはヘテロ原子又は置換ヘテロ原子であり、具体的には、酸素(O)、硫黄(S)、窒化水素(NH)、アルキル置換窒素(NR’)、である。先行技術文献によれば、ポリアシル化合物の合成法では、例えば、無溶媒あるいは非プロトン性有機溶媒中、触媒として、CoCl(非特許文献4)、MeSiCl(非特許文献5のa)及びb))、塩基であるBuP(非特許文献6)、ピリジン(非特許文献8)等が使用されてきた。また、安定なアシル中間体形成を経由することでアシル基を活性化するDMAPの発見及びその応用は、革新的な技術とされた(特許文献9のa)及びb))。 Various methods for synthesizing polyacyl compounds from carboxylic anhydrides and polyheterohydrides, polyols, polyamines, polythiols and the like have been reported (for example, Non-Patent Document 1). Here, if a technique for synthesizing a polyacyl compound from a polyol and a carboxylic anhydride is completed, it is usually possible to synthesize a polyacyl compound from other polyheterohydrides such as polyamines and polythiols. There are numerous reports of techniques for synthesizing polyacyl compounds. However, in the conventional method, there is only a method for polyacylating all heterohydrogens, and a method for selectively polyacylating while adjusting the number of acylation has not been reported (FIG. 1). In FIG. 1, R, R n and R n + 1 are an alkyl group and a substituent containing a hetero atom other than the alkyl group, Q i is a hetero atom or a substituted hetero atom, and specifically, oxygen (O), sulfur ( S), hydrogen nitride (NH), alkyl-substituted nitrogen (NR ′). According to the prior art document, in the synthesis method of the polyacyl compound, for example, CoCl 3 (Non-patent document 4), Me 3 SiCl (a) of Non-patent document 5 and a catalyst in a solvent-free or aprotic organic solvent can be used. b)), Bu 3 P (Non-Patent Document 6), pyridine (Non-Patent Document 8), and the like, which have been bases, have been used. In addition, the discovery of DMAP that activates an acyl group through the formation of a stable acyl intermediate and its application were regarded as innovative technologies (a) and b) of Patent Document 9).

ところが、DMAPは、1等量以上のアミンを利用することから、ルイス酸である金属トリフラートが提案され、MeSiOTf(非特許文献10)、Sc(OTf)(特許文献1、2及び非特許文献11)、In(OTf)(非特許文献12)、Bi(OTf)(非特許文献13)、Sc(NTf)(非特許文献14)、が高収率でポリアシル化合物を与えることが示された。更に、V(OTf)が触媒活性を示さないが、そのオキソ化合物であるV(O)(OTf)が触媒活性があることが見出され、V=Oの触媒活性化が注目された(特許文献3、非特許文献15)。これらの触媒により、1,2級アルコールから95%以上の収率で、また、3級アルコールから80%以上の収率で、ポリアシル化合物が得られると報告されている(図1)。 However, since DMAP uses one or more equivalents of amine, metal triflate, which is a Lewis acid, has been proposed. Me 3 SiOTf (Non-patent Document 10), Sc (OTf) 3 (Patent Documents 1, 2 and Non-Patent Documents) Patent Document 11), In (OTf) 3 (Non-Patent Document 12), Bi (OTf) 3 (Non-Patent Document 13), and Sc (NTf) 3 (Non-Patent Document 14) give polyacyl compounds in high yield. It was shown that. Furthermore, V (OTf) 3 did not show catalytic activity, but its oxo compound V (O) (OTf) 2 was found to have catalytic activity, and attention was paid to catalytic activation of V = O. (Patent Literature 3, Non-Patent Literature 15). With these catalysts, it is reported that a polyacyl compound can be obtained with a yield of 95% or more from a secondary alcohol and a yield of 80% or more from a tertiary alcohol (FIG. 1).

ここで、上記の先行技術文献では、有機塩基、ルイス酸、固体酸のような触媒に加えて、有機溶媒がポリアシル化にとって必要不可欠である。また、高温条件では不純物が生成し、選択率を低下させるという理由から、アシル化は常温で行うのが最適であり、高温条件は不適であるとされている(特許文献1、2)。一方、アシル化における溶媒としての水の可能性に関しては、水を除去した粗生成物にアシル化剤を添加し、アシル化する方法が一般的であり、水は負の効果をもたらすとされており(特許文献4)、ある特許文献では、溶媒として水を列挙しているが、実際には使用されていない(特許文献1、2)。   Here, in the above prior art documents, in addition to a catalyst such as an organic base, a Lewis acid, and a solid acid, an organic solvent is indispensable for polyacylation. In addition, acylation is optimally performed at room temperature because impurities are generated under high temperature conditions and the selectivity is reduced, and high temperature conditions are considered inappropriate (Patent Documents 1 and 2). On the other hand, regarding the possibility of water as a solvent in acylation, an acylating agent is generally added to a crude product from which water has been removed and acylated, and water is said to have a negative effect. In some patent documents, water is listed as a solvent, but it is not actually used (Patent Documents 1 and 2).

ところが、アルドール反応に対する触媒活性と水中でのルイス酸の安定性との相関を元素ごと系統的に比較検討し、他の反応への適用可能性を示唆した例も存在する(非特許文献16)。更に、Bi(OTf)が触媒の場合には、脱水処理をしていない水を含有する、湿った有機溶媒が反応を促進し、収率向上が観察された文献も存在する(非特許文献13)。したがって、アシル化に対する溶媒としての水の有効性はこれまで明確ではなく、水の使用は実施されなかった。他方、Bi(OTf)を触媒とする場合の無溶媒条件では、収率が低下し、有機溶媒が必要であると報告されている(非特許文献13)。 However, there is an example in which the correlation between the catalytic activity for the aldol reaction and the stability of Lewis acid in water is systematically compared for each element and suggests the applicability to other reactions (Non-patent Document 16). . Furthermore, when Bi (OTf) 3 is a catalyst, there is a document in which a wet organic solvent containing water that has not been dehydrated promotes the reaction and an improvement in yield is observed (non-patent document). 13). Thus, the effectiveness of water as a solvent for acylation has not been clear so far and no water has been used. On the other hand, under the solvent-free conditions when Bi (OTf) 3 is used as a catalyst, it is reported that the yield decreases and an organic solvent is necessary (Non-patent Document 13).

反応後における後処理は、通常の触媒・有機溶媒中でのアシル化では、反応混合物に中和剤を添加して中和後、抽出溶媒と水あるいは飽和食塩水を加え、分液し、溶媒層は、その後乾燥、溶媒除去、蒸留あるいは精留のプロセスを得て目的物を得るが、水層には、水の他に、触媒、有機溶媒、酢酸、基質、生成物、副生成物、無機物の複雑な反応系成分の混合物が含有される。ここで、水層からの触媒の分離が容易である場合には、回収再生され、再使用されるが、分離が困難である場合には、そのまま廃棄・処分される(図2)。無触媒・高温高圧水中でのアシル化の場合のように、水層に触媒、有機溶媒が含有されず、水、酢酸、生成物のみが含有されるならば、生成物をデカンテーションにより分離後、水層に対して共沸混合物を形成する物質を添加した共沸蒸留を行うことで、水と氷酢酸とに分離することが可能である(特許文献5)。このことは、この方法は、水の再生を可能にし、通常法に比べて環境低減型のプロセスであることを意味する(図3)。   After the reaction, the post-treatment is carried out by adding a neutralizing agent to the reaction mixture and neutralizing the reaction mixture, adding an extraction solvent and water or saturated saline, and separating the solution. The layer is then subjected to a process of drying, solvent removal, distillation or rectification to obtain the desired product. In addition to water, the layer is composed of catalyst, organic solvent, acetic acid, substrate, product, by-product, It contains a mixture of inorganic complex reaction system components. Here, when the separation of the catalyst from the aqueous layer is easy, it is recovered and regenerated and reused, but when the separation is difficult, it is discarded and disposed as it is (FIG. 2). If the water layer does not contain catalyst or organic solvent and contains only water, acetic acid, and product, as in the case of acylation in non-catalyst / high temperature / high pressure water, the product is separated by decantation. It is possible to separate into water and glacial acetic acid by performing azeotropic distillation in which a substance that forms an azeotrope is added to the aqueous layer (Patent Document 5). This means that this method makes it possible to regenerate water and is an environment-reducing type process compared to the normal method (FIG. 3).

特開平9−169690号公報JP 9-169690 A 特開平9−176081号公報Japanese Patent Laid-Open No. 9-176081 米国特許第6,541,659号明細書US Pat. No. 6,541,659 米国特許第6,005,122号明細書US Pat. No. 6,005,122 米国特許第5,980,696号明細書US Pat. No. 5,980,696 W. Green, P. G. Wuts, Protective Groups in Organic Synthesis, 3rd ed., Wiley, New York, 1999, p150W. Green, P. G. Wuts, Protective Groups in Organic Synthesis, 3rd ed., Wiley, New York, 1999, p150 S. Ahmad, J. Iqbal, Chem. Commun.,1987, 114S. Ahmad, J. Iqbal, Chem. Commun., 1987, 114 a) N. C. Braus, R. P. Sharma, J.N. Baruah, Tetrahedron Lett., 1983, 24, 1189; b) J. Org. Chem., 1987, 52, 503a) N. C. Braus, R. P. Sharma, J. N. Baruah, Tetrahedron Lett., 1983, 24, 1189; b) J. Org. Chem., 1987, 52, 503 E. Vedejs, N. S. Bannet, L. M. Conn, S. T. Diver, J.Org. Chem., 1993, 58, 7286E. Vedejs, N. S. Bannet, L. M. Conn, S. T. Diver, J. Org. Chem., 1993, 58, 7286 Joseph B. Lambert, Gen Tai Wang, Rodney B. Finzel, and Douglas H. Teramura , J. Am. Chem. Soc., 1987, 109. 7838Joseph B. Lambert, Gen Tai Wang, Rodney B. Finzel, and Douglas H. Teramura, J. Am. Chem. Soc., 1987, 109. 7838 a) G. Hofle,W. Steglich, H. Vorbruggen., Angrew. Chem. Int. Ed., 1978, 17, 569、b) A. Hassner, L. R. Krepski, V. Alexanian, Tetrahedron, 1978, 34, 2069a) G. Hofle, W. Steglich, H. Vorbruggen., Angrew. Chem. Int. Ed., 1978, 17, 569, b) A. Hassner, L. R. Krepski, V. Alexanian, Tetrahedron, 1978, 34, 2069 P. A. Procopiu, S. P. D. Baugh,S. S. Flack, G. G. A. Inglis, J.Org., Chem., 1998, 63, 2342P. A. Procopiu, S. P. D. Baugh, S. S. Flack, G. G. A. Inglis, J. Org., Chem., 1998, 63, 2342 a) K. Ishihara, M. Kubota, H. Kurihara, H. Yamamoto, J. Org. Chem., 1996, 61, 4560、b) K. Ishihara, M. Kubota, H. Kurihara, H. Yamamoto, J. Am.Chem. Soc., 1995, 117, 4413a) K. Ishihara, M. Kubota, H. Kurihara, H. Yamamoto, J. Org. Chem., 1996, 61, 4560, b) K. Ishihara, M. Kubota, H. Kurihara, H. Yamamoto, J Am.Chem. Soc., 1995, 117, 4413 K. K. Chauhan, C. G. Frost, I. Love, D. Waite, Synlett, 1999, 1743K. K. Chauhan, C. G. Frost, I. Love, D. Waite, Synlett, 1999, 1743 J. Otera, A. Orita, C. Tanahashi, A. Kakuta, Angrew. Chem. Int. Ed., 2000, 39, 2877J. Otera, A. Orita, C. Tanahashi, A. Kakuta, Angrew. Chem. Int. Ed., 2000, 39, 2877 K. Ishihara, M. Kubota, Synlett, 1996, 265K. Ishihara, M. Kubota, Synlett, 1996, 265 C-T. Chen, J-H. Kuo, C-H. Li, N. B. Barhate, S-W. Hon, T-W. Li, S-D. Chao, C-C. Liu, Y-C. Li, I-H. Chang, J-S. Lin, C-J. Liu and Y-C. Chou, Org. Lett., 2001, 3, 3729CT. Chen, JH. Kuo, CH. Li, NB Barhate, SW. Hon, TW. Li, SD. Chao, CC. Liu, YC. Li, IH. Chang, JS. Lin, CJ. Liu and YC. Chou , Org. Lett., 2001, 3, 3729 S. Kobayashi, S.Nagayama, T.Busujima, J. Am. Chem. Soc., 1998, 120, 8287S. Kobayashi, S. Nagayama, T. Busujima, J. Am. Chem. Soc., 1998, 120, 8287

このように、従来法では、アシル化の場合、触媒及び有機溶媒が必要であるため、製品の品質上、反応後の分離操作において、触媒、有機溶媒やカルボン酸の除去が必要であり、分離操作後の水層は廃棄物となりやすく廃液の問題を生じる。更に、環境に対する影響や生体への有害性への配慮から、また、ヒトが経口する食品・医薬品の安全性から、触媒・有機溶媒のより高度分離が要求される。これらの高度分離に必要なコストは、合成操作と同程度であり、望ましくは触媒と有機溶媒を使用しない方が良い。以上のことから、当該技術分野においては、簡単、低コスト、環境低減型の合成プロセスで、分離操作が容易かつ反応系成分の高度分離が可能で、触媒や有機溶媒の残存しない生体適合性を有するアシル化合物の連続的合成を可能とする合成手法が強く要請されていた。   Thus, in the conventional method, in the case of acylation, a catalyst and an organic solvent are required. Therefore, in the separation operation after the reaction, removal of the catalyst, the organic solvent and the carboxylic acid is necessary for the product quality. The water layer after the operation tends to become waste, causing a problem of waste liquid. Furthermore, in consideration of the influence on the environment and harmfulness to living organisms, and the safety of foods and pharmaceuticals that are orally administered by humans, higher separation of catalysts and organic solvents is required. The cost required for these advanced separations is comparable to that of the synthesis operation, and it is desirable not to use a catalyst and an organic solvent. In view of the above, in this technical field, a simple, low-cost, environment-reduction-type synthesis process allows easy separation operation and high-level separation of reaction system components, and biocompatibility without remaining catalyst or organic solvent. There has been a strong demand for a synthesis method that enables continuous synthesis of acyl compounds.

このような状況の中で、本発明者らは、上記従来技術に鑑みて、低コストで、環境に優しい簡単な高速合成プロセスで、上記ポリアシル化合物を連続的に合成することができる新しい合成方法を開発することを目標として鋭意研究を積み重ねた結果、高温高圧水、又は亜臨界水、又は超臨界水を反応溶媒とすることで、無触媒で無水カルボン酸とポリヘテロ水素化物からポリアシル化合物を選択的に合成できることを見出し、更に研究を重ねて、本発明を完成するに至った。本発明は、無水カルボン酸とポリヘテロ水素化物からポリアシル化合物を無触媒で、短時間の反応条件下で連続的に合成する方法、その装置及びその反応組成物を提供することを目的とするものである。   Under such circumstances, in view of the above prior art, the present inventors have developed a new synthesis method capable of continuously synthesizing the polyacyl compound by a simple high-speed synthesis process that is low in cost and friendly to the environment. As a result of intensive research with the goal of developing high-pressure, high-temperature, high-pressure water, subcritical water, or supercritical water as a reaction solvent, a polyacyl compound can be selected from carboxylic anhydride and polyheterohydride without catalyst. As a result of further research, the present invention has been completed. An object of the present invention is to provide a method for continuously synthesizing a polyacyl compound from a carboxylic anhydride and a polyheterohydride under a reaction condition in a short time without using a catalyst, an apparatus therefor, and a reaction composition thereof. is there.

上記課題を解決するための本発明は、無水カルボン酸とポリヘテロ水素化物との反応で合成される反応組成物において、触媒及び有機溶媒の残存がなく、生体適合性を有することを特徴とするポリアシル化合物組成物、である。このポリアシル化合物組成物は、カルボン酸無水物とポリヘテロ水素化物からの反応物であり、触媒、有機溶媒の残存がなく、生体適合性を有することを特徴としている。また、本発明は、無水カルボン酸とポリヘテロ水素化物からポリアシル化合物を合成する方法において、高温高圧状態の亜臨界流体ないし超臨界流体を反応溶媒として使用し、触媒及び有機溶媒を用いることなく、無水カルボン酸とポリヘテロ水素化物からポリアシル化合物を選択的、連続的に合成することを特徴とするものである。ここで、上記ポリヘテロ水素化物におけるヘテロ原子又は置換ヘテロ原子は、酸素(O)、硫黄(S)、窒化水素(NH)、又はアルキル置換窒素(NR’)であることを好ましい態様としている。また、本発明は、基質の複数の反応点に隣接する1級、2級、3級の骨格に依存して、温度と無水カルボン酸の量を調整することにより、1級、2級、3級の順にアシル化し、アシル化数を調節し、ポリアシル化合物を選択的に合成するポリアシル化合物の製造方法、である。   In order to solve the above-mentioned problems, the present invention provides a reaction composition synthesized by a reaction of a carboxylic anhydride and a polyhetero hydride, wherein there is no remaining catalyst and organic solvent and is biocompatible. A compound composition. This polyacyl compound composition is a reaction product from a carboxylic acid anhydride and a polyheterohydride, and is characterized by having no catalyst and organic solvent remaining and having biocompatibility. The present invention also provides a method for synthesizing a polyacyl compound from a carboxylic anhydride and a polyheterohydride, using a subcritical fluid or supercritical fluid in a high temperature and high pressure state as a reaction solvent, and without using a catalyst and an organic solvent. A polyacyl compound is selectively and continuously synthesized from a carboxylic acid and a polyheterohydride. Here, it is preferable that the hetero atom or the substituted hetero atom in the polyhetero hydride is oxygen (O), sulfur (S), hydrogen nitride (NH), or alkyl-substituted nitrogen (NR ′). In addition, the present invention can be performed by adjusting the temperature and the amount of carboxylic anhydride depending on the primary, secondary, and tertiary skeletons adjacent to a plurality of reaction points of the substrate. A method for producing a polyacyl compound, wherein acylation is performed in the order of grades, the number of acylations is adjusted, and a polyacyl compound is selectively synthesized.

また、本発明の方法は、(1)高温高圧状態の亜臨界ないし超臨界流体を反応溶媒とし、有機溶媒及び触媒を用いることなく、カルボン酸無水物とポリヘテロ水素化物から一段階の合成反応でポリアシル化合物を選択的に合成すること、(2)高温高圧状態の亜臨界ないし超臨界流体を反応溶媒とすること、(3)温度100〜400℃、圧力0.1〜40MPaの亜臨界流体ないし超臨界流体を反応溶媒として使用すること、(5)亜臨界流体ないし超臨界流体として、水、酢酸、それ以外の無機溶媒、もしくは有機溶媒、又は無機溶媒と有機溶媒の混合溶媒を用いること、(6)流通式高温高圧装置に、基質及び反応溶媒を導入し、反応時間を3〜60秒の範囲で変化させることで合成反応を実施すること、を好ましい態様としている。   In addition, the method of the present invention comprises (1) a one-step synthesis reaction from a carboxylic acid anhydride and a polyheterohydride without using an organic solvent and a catalyst, using a subcritical or supercritical fluid in a high temperature and high pressure state as a reaction solvent. Selectively synthesizing a polyacyl compound, (2) using a subcritical or supercritical fluid in a high temperature and high pressure state as a reaction solvent, and (3) a subcritical fluid having a temperature of 100 to 400 ° C. and a pressure of 0.1 to 40 MPa. Using a supercritical fluid as a reaction solvent, (5) using water, acetic acid, another inorganic solvent, or an organic solvent, or a mixed solvent of an inorganic solvent and an organic solvent as a subcritical fluid or supercritical fluid, (6) A preferred mode is to introduce a substrate and a reaction solvent into a flow-type high-temperature and high-pressure apparatus, and to carry out the synthesis reaction by changing the reaction time in the range of 3 to 60 seconds.

また、本発明は、水を送液する水送液ポンプ、水加熱用コイル、高温高圧フローセル、基質を送液する反応物送液ポンプ、炉体、反応物を炉体に導入する反応物導入管、反応溶液を排出する排出液ライン、冷却フランジ及び圧力を設定する背圧弁を具備していることを特徴とするポリアシル化合物合成装置、である。更に、本発明は、上記方法によりアシル化後、回収水溶液に水を注入してデカンテーションし、油/水二層溶液に分離後、ポリアシル化合物を含む油層を分液回収する一方、水層からは酢酸と水を共沸蒸留によって分離し、回収することを特徴とする反応系成分の簡易な連続分離法、である。   The present invention also includes a water feed pump for feeding water, a water heating coil, a high-temperature and high-pressure flow cell, a reactant feed pump for feeding a substrate, a furnace body, and a reactant introduction for introducing the reactant into the furnace body. A polyacyl compound synthesizer comprising a tube, a drain line for discharging a reaction solution, a cooling flange, and a back pressure valve for setting a pressure. Furthermore, the present invention, after acylation by the above method, injects water into the recovered aqueous solution, decants it, separates it into an oil / water bilayer solution, and separates and recovers the oil layer containing the polyacyl compound. Is a simple continuous separation method of reaction system components characterized by separating and recovering acetic acid and water by azeotropic distillation.

次に、本発明について更に詳細に説明する。
本発明は、ポリアシル化合物の合成において、化1のカルボン酸無水物と化2のポリヘテロ水素化物から、化3に示すように、ポリアシル化合物を、一段階の反応プロセスで、触媒無添加、短時間の反応条件下で、選択的かつ連続的に合成することを特徴とするものである。本発明では、上記反応の溶媒として、温度100〜400℃、圧力0.1〜40MPaの亜臨界流体、超臨界流体が用いられ、好適には亜臨界水が用いられる。また、反応条件として、好適には、温度200〜250℃、圧力5MPa、反応時間が60秒以下、好適には3〜60秒の範囲であり、反応時間は、より好適には10秒程度に調整される。化1の式中、Rはアルキル基及びアルキル基以外のヘテロ原子を含む置換基であり、化2の式中、R、Rn+1はアルキル基及びアルキル基以外のヘテロ原子を含む置換基、Qはヘテロ原子又は置換ヘテロ原子であり、具体的には、酸素(O)、硫黄(S)、窒化水素(NH)、アルキル置換窒素(NR’)、であり、x,y,zはそれぞれα位が1級、2級、3級であるヘテロ原子の個数を示し、1級、2級、3級の結合順序は限定するものではないため点線で結合を示している。化3はα位が1級のみであってx個のポリアシル化を示し、化4はα位が1,2級の場合の(x+y)個のポリアシル化を、化5はα位が1,2,3級の場合に対する(x+y+z)個のポリアシル化を示す。
Next, the present invention will be described in more detail.
In the synthesis of the polyacyl compound, the polyacyl compound is converted from the carboxylic acid anhydride of Chemical Formula 1 and the polyheterohydride of Chemical Formula 2 into a polyacyl compound as shown in Chemical Formula 3 in a one-step reaction process without adding catalyst. It is characterized by being synthesized selectively and continuously under the reaction conditions of In the present invention, a subcritical fluid or supercritical fluid having a temperature of 100 to 400 ° C. and a pressure of 0.1 to 40 MPa is used as a solvent for the above reaction, and subcritical water is preferably used. The reaction conditions are preferably a temperature of 200 to 250 ° C., a pressure of 5 MPa, a reaction time of 60 seconds or less, preferably 3 to 60 seconds, and more preferably about 10 seconds. Adjusted. In the formula of Chemical Formula 1, R is an alkyl group and a substituent containing a hetero atom other than an alkyl group. In the Chemical Formula 2, R n and R n + 1 are a substituent containing a hetero atom other than an alkyl group and an alkyl group, Q i is a hetero atom or a substituted hetero atom, specifically, oxygen (O), sulfur (S), hydrogen nitride (NH), alkyl-substituted nitrogen (NR ′), and x, y, and z are The number of hetero atoms each having the α-position of primary, secondary, and tertiary is shown, and the bonding order of primary, secondary, and tertiary is not limited, and the bond is shown by a dotted line. Chemical formula 3 indicates that the α-position is primary only and x number of polyacylations, Chemical formula 4 indicates (x + y) polyacylation when the α-position is primary and secondary, and Chemical formula 5 indicates that the α-position is 1, (X + y + z) polyacylations for cases 2 and 3 are shown.

Figure 2007210911
Figure 2007210911

Figure 2007210911
Figure 2007210911

Figure 2007210911
Figure 2007210911

Figure 2007210911
Figure 2007210911

Figure 2007210911
Figure 2007210911

本発明においては、上記基質及び反応溶媒を反応容器に導入して、所定の反応時間で合成反応を実施するものである。したがって、上記反応器としては、例えば、バッチ式の高温高圧反応容器、及び連続型の流通式高温高圧反応装置を使用することができるが、本発明は、これら反応装置の型式に特に制限されるものでない。   In the present invention, the substrate and the reaction solvent are introduced into a reaction vessel, and a synthesis reaction is performed in a predetermined reaction time. Therefore, as the reactor, for example, a batch-type high-temperature high-pressure reaction vessel and a continuous flow-type high-temperature high-pressure reactor can be used, but the present invention is particularly limited to the types of these reactors. Not a thing.

本発明の方法では、反応溶媒として、上記高温高圧状態にある亜臨界流体、超臨界流体が用いられるが、具体的には、亜臨界二酸化炭素(常温以上、0.1MPa以上)、亜臨界水(100℃以上、0.1MPa以上)、亜臨界メタノール(100℃以上、0.1MPa以上)、亜臨界エタノール(100℃以上、0.1MPa以上)、超臨界二酸化炭素(34℃以上、7.38MPa以上)、超臨界水(375℃以上、22MPa以上)、超臨界メタノール(239℃以上、8.1MPa以上)、超臨界エタノール(241℃以上、6.1MPa以上)、同じ状態の混合溶媒が例示され、好適には、亜臨界水(200−250℃、5MPa以上)が用いられる。反応溶媒としては、上記以外の有機溶媒や無機溶媒を任意の割合で含むことができ、具体的には、有機溶媒として、アセトン、アセトニトリル、テトラヒドロフラン等を含む反応溶液、また、無機溶媒として、酢酸、アンモニア等を含む反応溶液に代替することも可能である。   In the method of the present invention, the subcritical fluid and supercritical fluid in the high temperature and high pressure state are used as the reaction solvent. Specifically, subcritical carbon dioxide (normal temperature or higher, 0.1 MPa or higher), subcritical water is used. (100 ° C. or higher, 0.1 MPa or higher), subcritical methanol (100 ° C. or higher, 0.1 MPa or higher), subcritical ethanol (100 ° C. or higher, 0.1 MPa or higher), supercritical carbon dioxide (34 ° C. or higher, 7. 38 MPa or more), supercritical water (375 ° C. or more, 22 MPa or more), supercritical methanol (239 ° C. or more, 8.1 MPa or more), supercritical ethanol (241 ° C. or more, 6.1 MPa or more), a mixed solvent in the same state It is illustrated and subcritical water (200-250 degreeC, 5 Mpa or more) is used suitably. As the reaction solvent, an organic solvent or an inorganic solvent other than those described above can be contained in any ratio. Specifically, as the organic solvent, a reaction solution containing acetone, acetonitrile, tetrahydrofuran or the like, and as the inorganic solvent, acetic acid is used. It is also possible to substitute a reaction solution containing ammonia or the like.

本発明では、上記亜臨界流体、超臨界流体の反応溶媒の組成、温度及び圧力条件、基質の種類及びその使用量、反応時間を調整することにより、短時間で、効率良く、反応生成物を合成することができる。また、本発明では、例えば、基質及び反応溶媒を流通式高温高圧装置に導入し、それらの反応時間を60秒以下、好適には3〜60秒の範囲で変えることにより、所定の反応生成物を合成することができる。上記反応条件は、使用する出発原料、目的とする反応生成物の種類等により適宜設定することができる。   In the present invention, by adjusting the composition of the reaction solvent of the subcritical fluid and supercritical fluid, the temperature and pressure conditions, the type and amount of the substrate used, and the reaction time, the reaction product can be efficiently produced in a short time. Can be synthesized. In the present invention, for example, a predetermined reaction product is obtained by introducing a substrate and a reaction solvent into a flow-type high-temperature and high-pressure apparatus and changing the reaction time within 60 seconds or less, preferably 3 to 60 seconds. Can be synthesized. The reaction conditions can be appropriately set depending on the starting material used, the type of the desired reaction product, and the like.

本発明の方法では、従来、触媒存在下で行われていた、カルボン酸無水物とポリヘテロ水素化物からのポリアシル化合物の合成を、高速で連続的に、しかも、無触媒で実施できるため、長時間を要するプロセスを効率化することができる。また、本発明の方法では、従来用いられていた触媒を全く使用しないので、反応後の溶液の中和処理、無害化処理等の後処理・処分の必要がなく、環境負荷低減を達成可能である。更に、反応後の分離プロセスは静置分離操作のみであるため、触媒や有機溶媒の分離回収の必要性はなく、生成物分離が容易になる。本発明によれば、触媒無添加で、10秒程度の短時間で、基質がジオールの場合、モノアシル化合物が転化率85%以上、選択率65%以上で、ジアシル化合物が転化率99%以上、選択率93%以上で、基質がトリオールの場合、モノアシル化合物が転化率91%以上、選択率59%以上で、ジアシル化合物が転化率93%以上、選択率25%以上で、トリアシル化合物が転化率100%、選択率93%以上で、それぞれ対応するポリアシル化合物を合成することができる。本発明のポリアシル化合物の合成方法は、香料、医薬品、食品に利用可能な、生体適合性を有するポリアシル化合物組成物を効率良く、大量に高速で連続的に生産することを可能にするものとして有用である。   In the method of the present invention, the synthesis of a polyacyl compound from a carboxylic acid anhydride and a polyheterohydride, which has been conventionally carried out in the presence of a catalyst, can be carried out continuously at a high speed and without a catalyst. Can be made more efficient. In addition, since the catalyst of the present invention is not used at all in the method of the present invention, there is no need for post-treatment and disposal such as neutralization treatment and detoxification treatment of the solution after the reaction, and environmental load reduction can be achieved. is there. Furthermore, since the separation process after the reaction is only a stationary separation operation, there is no need to separate and recover the catalyst and the organic solvent, and product separation becomes easy. According to the present invention, when no catalyst is added and the substrate is a diol in a short time of about 10 seconds, the monoacyl compound has a conversion rate of 85% or more, the selectivity is 65% or more, and the diacyl compound has a conversion rate of 99% or more. When the selectivity is 93% or more and the substrate is triol, the monoacyl compound is 91% or more, the selectivity is 59% or more, the diacyl compound is 93% or more, and the selectivity is 25% or more, and the triacyl compound is converted. The corresponding polyacyl compounds can be synthesized at 100% and a selectivity of 93% or more. The method for synthesizing a polyacyl compound of the present invention is useful as a method for efficiently and continuously producing a polyacyl compound composition having biocompatibility, which can be used for flavors, pharmaceuticals and foods, in a large amount and at a high speed. It is.

従来、二酸化炭素等の亜臨界流体、超臨界流体を利用して、リパーゼや触媒を用いてアシル化を実施した例が報告されている。しかし、亜臨界水を溶媒とした無触媒条件下で基質の複数の反応点に隣接する1級、2級、3級の骨格に依存して、温度と無水カルボン酸の量を調整することにより、1級、2級、3級の順にアシル化し、アシル化数を調節し、ポリアシル化合物を選択的に合成することを実証した例はなく、本発明の対象とするポリアシル化合物の選択的合成反応法は、本発明者らによって初めてその有効性が実証されたものである。しかも、従来法でカルボン酸無水物とポリヘテロ水素化物から合成されるポリアシル化合物は、触媒及び有機溶媒の残存が問題とされていたが、本発明でカルボン酸無水物とポリヘテロ水素化物から合成される反応組成物は、触媒及び有機溶媒の残存がなく、生体適合性を有しており、本発明のポリアシル化合物組成物は、従来製品にない利点を有している。   Conventionally, examples of acylation using a lipase or a catalyst using a subcritical fluid such as carbon dioxide or a supercritical fluid have been reported. However, by adjusting the temperature and the amount of carboxylic anhydride depending on the primary, secondary, and tertiary skeletons adjacent to multiple reaction points of the substrate under non-catalytic conditions using subcritical water as a solvent. There is no example that demonstrates acylation in the order of primary, secondary, tertiary and adjusting the number of acylation to selectively synthesize polyacyl compounds, but selective synthesis reaction of polyacyl compounds targeted by the present invention The method has been proved by the present inventors for the first time. In addition, the polyacyl compound synthesized from the carboxylic acid anhydride and the polyheterohydride by the conventional method had a problem of remaining of the catalyst and the organic solvent, but is synthesized from the carboxylic acid anhydride and the polyheterohydride in the present invention. The reaction composition has no residual catalyst and organic solvent and is biocompatible, and the polyacyl compound composition of the present invention has advantages not found in conventional products.

本発明では、無触媒条件で無水カルボン酸とポリヘテロ水素化物の合成反応を実現するために、例えば、基質をあらかじめ溶媒に溶解した溶液を送液し、亜臨界流体、超臨界流体中の反応経過を、高温高圧赤外フローセル(図4)により赤外分光分析によって観察する流通型高温高圧赤外分光その場測定装置(図5)を用いることも可能である。しかしながら、高温高圧赤外フローセルを窓なし高温高圧フローセル(図6)に交換し、超臨界流体の流れに対して直接反応物の流れを接触反応するように配管配置した方が、高温高圧赤外フローセルにおけるセル窓付近におけるリーク等の問題が発生せず、より高流量で短時間に合成を実施することが可能である。これらのことから、後記する実施例では、この窓なし高温高圧フローセルを装着した装置を用いた。   In the present invention, in order to realize a synthesis reaction of carboxylic anhydride and polyheterohydride under non-catalytic conditions, for example, a solution in which a substrate is previously dissolved in a solvent is fed, and a reaction process in a subcritical fluid and a supercritical fluid is performed. It is also possible to use a flow-type high-temperature high-pressure infrared spectroscopic in-situ measurement apparatus (FIG. 5) for observing the sample by infrared spectroscopic analysis using a high-temperature high-pressure infrared flow cell (FIG. 4). However, it is better to replace the high-temperature and high-pressure infrared flow cell with a windowless high-temperature and high-pressure flow cell (FIG. 6) and arrange the piping so that the reactant flow directly contacts the supercritical fluid flow. There is no problem such as leakage near the cell window in the flow cell, and the synthesis can be performed in a short time at a higher flow rate. For these reasons, in the examples described later, an apparatus equipped with this windowless high-temperature and high-pressure flow cell was used.

ここで、窓なし高温高圧フローセル本体(図6)は、例えば、市販のSUS316製のクロス1にネジを切り、次に説明する温度センサーシース(図7の12)に固定できるようにすることで構築することができる。炉体雰囲気の温度を測定せずに、セル温度を示すように温度センサー位置を調節し、シース固定ネジとオネジ3でネジ止めする。SUS316の配管4はクロス1にワンリングフェラル付きのテーパーネジ2でクロス1に接続される。もちろん、クロス1は、エンドネジで一つの流路を塞ぐことによってティーとしても使用可能である。   Here, the windowless high-temperature and high-pressure flow cell main body (FIG. 6) can be fixed to a temperature sensor sheath (12 in FIG. 7) described below by, for example, screwing a commercially available SUS316 cloth 1. Can be built. Without measuring the temperature of the furnace body atmosphere, the position of the temperature sensor is adjusted so as to indicate the cell temperature, and screwed with the sheath fixing screw and the male screw 3. The pipe 4 of SUS316 is connected to the cross 1 with a taper screw 2 with a one-ring ferrule on the cross 1. Of course, the cloth 1 can also be used as a tee by closing one flow path with an end screw.

図7は、窓なし高温高圧フローセルを装着した流通式高温高圧反応装置の炉体部分であり、反応装置本体である。これを、図5の流通型高温高圧流体その場赤外分光測定装置の斜線位置に設置すれば、赤外分光は測定できないものの、温度、圧力、流量が可変な亜臨界・超臨界流体接触型の合成反応装置として利用可能となる。なお、この場合における反応観察は、排出後の水溶液を採取し、GC−FIDにより、生成物の純品を用いた検量線から定量分析を実施し、GC/MSにより定性分析を実施して行うことができる。また、NMRにより定量・定性分析を実施することができる。   FIG. 7 is a reactor body portion of a flow-type high temperature and high pressure reactor equipped with a windowless high temperature and high pressure flow cell, and is a reactor main body. If this is installed in the shaded position of the flow-type high-temperature and high-pressure fluid in-situ infrared spectrometer of Fig. 5, the infrared spectroscopy cannot be measured, but the subcritical / supercritical fluid contact type with variable temperature, pressure and flow rate. It can be used as a synthesis reaction apparatus. In this case, the reaction is observed by collecting the discharged aqueous solution, performing quantitative analysis from a calibration curve using a pure product by GC-FID, and performing qualitative analysis by GC / MS. be able to. Further, quantitative and qualitative analysis can be performed by NMR.

次に、図7の流通式高温高圧反応装置本体について説明すると、水送液ポンプ5から水が送液され、冷却フランジ8を通過後、炉体13へ送液される。管コイル9を通過後、高温高圧状態で温度センサー11が挿入された温度センサーシース12に支持固定された高温高圧フローセル14に導入される。一方、反応物が反応物送液ポンプ6から送液され、冷却フランジ8を通過後、炉体13へ送液される。コイル状反応物導入管10を通過後、温度センサーシース12に固定された高温高圧フローセル14に導入される。また、洗浄水がポンプ7により送液され、配管16を通過後、ティー18に導入され、洗浄用に用いられる。高温高圧フローセルを通過した溶液は、配管17を通過後、冷却フランジ8を通過して、炉体外を空冷されながら通過する。その後、圧力を設定している背圧弁19からの排出液を採取し、サンプルとする。ここで、反応物や生成物を含む排出液の加熱による影響を排除する場合には、急速昇温を実施し、反応物導入ライン10と排出液ライン17の配管をできるだけ短く、水加熱用コイル9をできるだけ長くすることが望ましい。本発明は、これらに限らず、これらと同効の反応装置であれば同様に使用することができる。   Next, the flow-type high-temperature and high-pressure reactor main body of FIG. 7 will be described. Water is fed from the water feed pump 5, passes through the cooling flange 8, and then sent to the furnace body 13. After passing through the tube coil 9, it is introduced into a high temperature / high pressure flow cell 14 supported and fixed to a temperature sensor sheath 12 in which a temperature sensor 11 is inserted in a high temperature / high pressure state. On the other hand, the reactant is fed from the reactant feed pump 6, passes through the cooling flange 8, and then sent to the furnace body 13. After passing through the coiled reactant introduction tube 10, it is introduced into a high-temperature and high-pressure flow cell 14 fixed to the temperature sensor sheath 12. Further, the washing water is fed by the pump 7, passes through the pipe 16, is introduced into the tee 18, and is used for washing. The solution that has passed through the high-temperature and high-pressure flow cell passes through the piping 17, then passes through the cooling flange 8, and passes outside the furnace body while being air-cooled. Thereafter, the discharged liquid from the back pressure valve 19 that has set the pressure is collected and used as a sample. Here, in order to eliminate the influence of heating of the effluent containing the reactants and products, rapid heating is performed, the piping of the reactant introduction line 10 and the effluent line 17 is made as short as possible, and the water heating coil It is desirable to make 9 as long as possible. The present invention is not limited to these, and any reaction apparatus having the same effect as these can be used in the same manner.

本発明により、次のような効果が奏される。
(1)カルボン酸無水物とポリヘテロ水素化物から高速で連続的にポリアシル化合物を合成することができる。
(2)アシル化数を調節し、ポリアシル化合物を選択的に合成することができる。
(3)触媒及び有機溶媒を用いないポリアシル化合物の合成プロセスを実現できる。
(4)そのため、触媒及び有機溶媒の残存がなく、生体に対して有害性のない安全性の高い生体適合性ポリアシル化合物組成物を提供できる。
(5)生成物が水に溶解しない場合には、排出された油水分散水溶液に対して更に水を注入することで、洗浄しつつ油水二層に分液し、高純度の生成物を容易に回収できる。
(6)香料、医薬品、食品として有用な生体適合性を有するポリアシル化合物の新しい大量生産プロセスとして、既存の生産プロセスに代替し得る新しい生産技術を提供できる。
The following effects are exhibited by the present invention.
(1) A polyacyl compound can be synthesized continuously at high speed from a carboxylic acid anhydride and a polyheterohydride.
(2) A polyacyl compound can be selectively synthesized by adjusting the acylation number.
(3) A synthesis process of a polyacyl compound without using a catalyst and an organic solvent can be realized.
(4) Therefore, it is possible to provide a highly safe biocompatible polyacyl compound composition having no catalyst and organic solvent remaining and not harmful to the living body.
(5) When the product does not dissolve in water, water is injected into the discharged oil-water dispersion aqueous solution to separate the oil and water into two layers while washing, and a high-purity product can be easily obtained. Can be recovered.
(6) As a new mass production process of a polyacyl compound having biocompatibility useful as a fragrance, a pharmaceutical, and a food, a new production technique that can replace an existing production process can be provided.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

実施例1〜4
本実施例では、合成条件を、無触媒、所定温度、圧力5MPa、滞留時間9.9秒の条件で一定としてα位の骨格が同じジオールについて検討した。図7の流通式高温高圧反応装置の本体(主要部分)を図5の流通型高温高圧流体その場赤外分光測定装置に設置した装置に、まず、純水を流量5.0ml/minで送液し、所定温度、圧力5MPaに設定し、亜超臨界水とした。その後、トルエンを内標準として添加した(基質の5mol%)、無水酢酸/基質/酢酸(モル比:1.1/1/0.5〜1)混合溶液0.5ml/minをポンプで送液した(混合後の水溶液濃度:0.26〜0.53mol/kg)。
Examples 1-4
In this example, the synthesis conditions were constant under the conditions of no catalyst, a predetermined temperature, a pressure of 5 MPa, and a residence time of 9.9 seconds. First, pure water is sent at a flow rate of 5.0 ml / min to the apparatus in which the main body (main part) of the flow-type high-temperature and high-pressure reactor shown in FIG. Submerged and set to a predetermined temperature and a pressure of 5 MPa to obtain subsupercritical water. Thereafter, toluene was added as an internal standard (5 mol% of the substrate), and a mixed solution of acetic anhydride / substrate / acetic acid (molar ratio: 1.1 / 1 / 0.5 to 1) 0.5 ml / min was pumped. (Aqueous solution concentration after mixing: 0.26 to 0.53 mol / kg).

基質送液後、40分後の背圧弁からの排出水溶液を1ml採取した。加熱炉から背圧弁出口までの配管内容積を反応体積とした場合、反応時間は9.9秒であった。回収された1mlの水溶液に1mlのアセトンを加え振とうし、組成をGC/MS分析計(Hewlett Packard社製HP6890、カラムHP−5、注入口温度150℃、初期カラム温度60℃(保持時間2分)、昇温速度10℃/分、最終カラム温度250℃(保持時間2分))で実施し、得られたマススペクトルはWilleyデータベースで一致度90%以上で確認した。また、定量及び市販試薬がある場合の定性は、トルエンを内標準としてGC−FID(Agilent社製GC6890,カラムDB−WAX、注入口温度230℃、スプリット比5.61、初期カラム温度50℃(保持時間0.5分)、昇温速度20℃/分、最終カラム温度230℃(保持時間3分))で実施した。   1 ml of the aqueous solution discharged from the back pressure valve 40 minutes after the substrate feeding was collected. When the internal volume of the pipe from the heating furnace to the back pressure valve outlet was the reaction volume, the reaction time was 9.9 seconds. 1 ml of acetone was added to 1 ml of the collected aqueous solution and shaken, and the composition was determined by GC / MS analyzer (HP 6890, Hewlett Packard, column HP-5, inlet temperature 150 ° C., initial column temperature 60 ° C. (retention time 2 Min), a heating rate of 10 ° C./min, and a final column temperature of 250 ° C. (holding time 2 minutes)), and the obtained mass spectrum was confirmed with a Willy database with a concordance of 90% or higher. In addition, quantification and qualitativeness in the presence of commercially available reagents are GC-FID (GC 6890, Agilent DB DB-WAX, inlet temperature 230 ° C., split ratio 5.61, initial column temperature 50 ° C. with toluene as an internal standard ( Holding time 0.5 minutes), temperature rising rate 20 ° C./min, final column temperature 230 ° C. (holding time 3 minutes)).

表1に、α位の骨格が同じジオールの場合のポリアシル化の結果を示す。カテコール(1)の場合、モル比が無水酢酸/1/酢酸=1.1/1/0.5、温度225℃で、転化率85%、モノアセテート(1a)が選択率65%で得られた。また、モル比が無水酢酸/1/酢酸=2.2/1/1.0、温度225℃で、転化率100%、ジアセテート(1b)が選択率93%で得られた(表1、実施例1,2)。一方、エチレングリコール(2)の場合、モル比が無水酢酸/2/酢酸=1.1/1/0.5、温度200℃で、転化率36%、ジアセテート(2b)が選択率100%で得られ、モノアセテート(2a)は得られなかった。また、モル比が無水酢酸/2/酢酸=2.2/1/1.0で、200℃の温度で、転化率99%、ジアセテート(2b)が選択率100%で得られた(表1、実施例3,4)。   Table 1 shows the results of polyacylation in the case where the α-position skeleton is the same diol. In the case of catechol (1), the molar ratio is acetic anhydride / 1 / acetic acid = 1.1 / 1 / 0.5, the temperature is 225 ° C., the conversion is 85%, and the monoacetate (1a) is obtained with the selectivity of 65%. It was. Further, the molar ratio was acetic anhydride / 1 / acetic acid = 2.2 / 1 / 1.0, the temperature was 225 ° C., the conversion rate was 100%, and diacetate (1b) was obtained with the selectivity of 93% (Table 1, Examples 1, 2). On the other hand, in the case of ethylene glycol (2), the molar ratio is acetic anhydride / 2 / acetic acid = 1.1 / 1 / 0.5, the temperature is 200 ° C., the conversion is 36%, and the diacetate (2b) is the selectivity 100%. Monoacetate (2a) was not obtained. Further, the molar ratio was acetic anhydride / 2 / acetic acid = 2.2 / 1 / 1.0, and a conversion rate of 99% and diacetate (2b) were obtained at a selectivity of 100% at a temperature of 200 ° C. (Table 1, Examples 3 and 4).

Figure 2007210911
Figure 2007210911

得られた生成物水溶液は油水分散状態で白濁しているが、水を20ml/minで3分注入し、デカンテーションすると油水2層溶液となり、下層の油層に酢酸を含まない酢酸ベンジルを、上層の水相に酢酸水溶液を得た(GCにより確認)。このことは、生成物が水に溶解しない場合、反応終了後の油水分散水溶液に、水を更に注入することで、油水二層に変化してポリアシル化合物と酢酸水溶液を分液することができることを示している。酢酸水溶液は、触媒や有機溶媒を含まないため、酢酸と共沸化合物を作る化合物(例えば、酢酸ターシャリーブチル等)を添加することにより、共沸蒸留により水と氷酢酸に分留することができるため、膨大なエネルギーを必要とする精留を実施しなくても良い。   The obtained aqueous solution of the product is clouded in an oil-water dispersion state, but when water is injected at 20 ml / min for 3 minutes and decanted, an oil-water two-layer solution is formed, and benzyl acetate containing no acetic acid is added to the lower oil layer. An aqueous acetic acid solution was obtained in the aqueous phase (confirmed by GC). This means that when the product does not dissolve in water, it is possible to separate the polyacyl compound and the acetic acid aqueous solution by changing water into two layers by further injecting water into the aqueous oil-dispersed aqueous solution after completion of the reaction. Show. Since an acetic acid aqueous solution does not contain a catalyst or organic solvent, it can be fractionated into water and glacial acetic acid by azeotropic distillation by adding a compound that forms an azeotropic compound with acetic acid (for example, tertiary butyl acetate). Therefore, it is not necessary to perform rectification that requires enormous energy.

実施例5−10
本実施例では、合成条件を、無触媒、所定温度、圧力5MPa、滞留時間9.9秒の条件で一定としてα位の骨格が異なるジオールについて検討した。図7の流通式高温高圧反応装置の本体(主要部分)を図5の流通型高温高圧流体その場赤外分光測定装置に設置した装置に、まず、純水を流量5.0ml/minで送液し、所定温度、圧力5MPaに設定し、亜超臨界水とした。その後、トルエンを内標準として添加した(基質の5mol%)、無水酢酸/基質/酢酸(モル比:1.1/1/1〜2)混合溶液0.5ml/minをポンプで送液した(混合後の水溶液濃度:0.26〜0.53mol/kg)。
Example 5-10
In this example, the synthesis conditions were constant under the conditions of no catalyst, a predetermined temperature, a pressure of 5 MPa, and a residence time of 9.9 seconds, and diols having different α-position skeletons were examined. First, pure water is sent at a flow rate of 5.0 ml / min to the apparatus in which the main body (main part) of the flow-type high-temperature and high-pressure reactor shown in FIG. Submerged and set to a predetermined temperature and a pressure of 5 MPa to obtain subsupercritical water. Thereafter, toluene was added as an internal standard (5 mol% of the substrate), and 0.5 ml / min of a mixed solution of acetic anhydride / substrate / acetic acid (molar ratio: 1.1 / 1/1 to 2) was pumped ( Aqueous solution concentration after mixing: 0.26 to 0.53 mol / kg).

基質送液後、40分後の背圧弁からの排出水溶液を1ml採取した。加熱炉から背圧弁出口までの配管内容積を反応体積とした場合、反応時間は9.9秒であった。回収された1mlの水溶液に1mlのアセトンを加え振とうし、組成をGC/MS分析計(Hewlett Packard社製HP6890、カラムHP−5、注入口温度150℃、初期カラム温度60℃(保持時間2分)、昇温速度10℃/分、最終カラム温度250℃(保持時間2分))で実施し、得られたマススペクトルはWilleyデータベースで一致度90%以上で確認した。また、定量及び市販試薬がある場合の定性は、トルエンを内標準としてGC−FID(Agilent社製GC6890,カラムDB−WAX、注入口温度230℃、スプリット比5.61、初期カラム温度50℃(保持時間0.5分)、昇温速度20℃/分、最終カラム温度230℃(保持時間3分))で実施した。   1 ml of the aqueous solution discharged from the back pressure valve 40 minutes after the substrate feeding was collected. When the internal volume of the pipe from the heating furnace to the back pressure valve outlet was the reaction volume, the reaction time was 9.9 seconds. 1 ml of acetone was added to 1 ml of the collected aqueous solution and shaken, and the composition was determined by GC / MS analyzer (HP 6890, Hewlett Packard, column HP-5, inlet temperature 150 ° C., initial column temperature 60 ° C. (retention time 2 Min), a heating rate of 10 ° C./min, and a final column temperature of 250 ° C. (holding time 2 minutes)), and the obtained mass spectrum was confirmed with a Willy database with a concordance of 90% or higher. In addition, quantification and qualitativeness in the presence of commercially available reagents are GC-FID (GC 6890, Agilent DB DB-WAX, inlet temperature 230 ° C., split ratio 5.61, initial column temperature 50 ° C. with toluene as an internal standard ( Holding time 0.5 minutes), temperature rising rate 20 ° C./min, final column temperature 230 ° C. (holding time 3 minutes)).

表2に、α位の骨格が異なるジオールとグリセリンの場合のポリアシル化の結果を示す。アルコールのα位が1級、2級を同時に持つ、1,3ブタンジオール(3)の場合、モル比が無水酢酸/3=1.1/1、温度225℃の温度、転化率94%、モノアセテート(3a)が選択率72%で得られた。また、モル比が無水酢酸/3=2.2/1、温度225℃の温度、転化率99.9%、ジアセテート(3b)が選択率99.9%で得られた(表2、実施例5,6)。一方、アルコールのα位が1級、3級を同時に持つ1−メチル−1,3−ブタンジオール(4)の場合、モル比が無水酢酸/4=1.1/1、温度200℃で、転化率99.8%、モノアセテート(4a)が選択率86%で得られた(表2,実施例7)。また、モル比が無水酢酸/4=2.2/1、温度200℃で、転化率99%、ジアセテート(4b)が選択率64%で得られた(表2、実施例8)。ここで、モル比が無水酢酸/4=2.2/1、温度を225℃にした場合、転化率94%、ジアセテート(4b)が選択率74%に向上した(表2、実施例9)。更に、モル比が無水酢酸/4=5.1/1、温度200℃で、転化率99%、ジアセテート(4b)が選択率99.7%で選択的に得られた(表2、実施例8)。   Table 2 shows the results of polyacylation in the case of diol and glycerin having different skeletons at the α-position. In the case of 1,3 butanediol (3) where the α-position of the alcohol has primary and secondary at the same time, the molar ratio is acetic anhydride / 3 = 1.1 / 1, the temperature is 225 ° C., the conversion is 94%, Monoacetate (3a) was obtained with a selectivity of 72%. Further, the molar ratio was acetic anhydride / 3 = 2.2 / 1, the temperature was 225 ° C., the conversion was 99.9%, and the diacetate (3b) was obtained with a selectivity of 99.9% (Table 2, Implementation). Examples 5, 6). On the other hand, in the case of 1-methyl-1,3-butanediol (4) in which the α-position of the alcohol has primary and tertiary at the same time, the molar ratio is acetic anhydride / 4 = 1.1 / 1, and the temperature is 200 ° C. The conversion was 99.8% and monoacetate (4a) was obtained with a selectivity of 86% (Table 2, Example 7). Further, the molar ratio was acetic anhydride / 4 = 2.2 / 1, the temperature was 200 ° C., the conversion was 99%, and diacetate (4b) was obtained with the selectivity of 64% (Table 2, Example 8). Here, when the molar ratio was acetic anhydride / 4 = 2.2 / 1 and the temperature was 225 ° C., the conversion was 94% and the diacetate (4b) was improved to 74% (Table 2, Example 9). ). Furthermore, a molar ratio of acetic anhydride / 4 = 5.1 / 1, a temperature of 200 ° C., a conversion of 99%, and diacetate (4b) were selectively obtained with a selectivity of 99.7% (Table 2, implementation). Example 8).

実施例11〜14
本実施例では、合成条件を、無触媒、所定温度、圧力5MPa、滞留時間9.9秒の条件で一定としてα位の骨格が異なる1級、2級を合わせもつトリオールであるグリセリン(5)について検討した。図7の流通式高温高圧反応装置の本体(主要部分)を図5の流通型高温高圧流体その場赤外分光測定装置に設置した装置に、まず、純水を流量5.0ml/minで送液し、所定温度、圧力5MPaに設定し、亜超臨界水とした。その後、トルエンを内標準として添加した(基質の5mol%)、無水酢酸/基質/酢酸(モル比:1.1/1/1〜3)混合溶液0.5ml/minをポンプで送液した(混合後の水溶液濃度:0.26〜0.53mol/kg)。
Examples 11-14
In this example, glycerin (5), which is a triol having both primary and secondary skeletons with different α-position skeletons under constant conditions of no catalyst, predetermined temperature, pressure of 5 MPa, and residence time of 9.9 seconds. Was examined. First, pure water is sent at a flow rate of 5.0 ml / min to the apparatus in which the main body (main part) of the flow-type high-temperature and high-pressure reactor shown in FIG. Submerged and set to a predetermined temperature and a pressure of 5 MPa to obtain subsupercritical water. Thereafter, toluene was added as an internal standard (5 mol% of the substrate), and 0.5 ml / min of a mixed solution of acetic anhydride / substrate / acetic acid (molar ratio: 1.1 / 1/1 to 3) was fed by a pump ( Aqueous solution concentration after mixing: 0.26 to 0.53 mol / kg).

基質送液後、40分後の背圧弁からの排出水溶液を1ml採取した。加熱炉から背圧弁出口までの配管内容積を反応体積とした場合、反応時間は9.9秒であった。回収された1mlの水溶液に1mlのアセトンを加え振とうし、組成をGC/MS分析計(Hewlett Packard社製HP6890、カラムHP−5、注入口温度150℃、初期カラム温度60℃(保持時間2分)、昇温速度10℃/分、最終カラム温度250℃(保持時間2分))で実施し、得られたマススペクトルはWilleyデータベースで一致度90%以上で確認した。また、定量及び市販試薬がある場合の定性は、トルエンを内標準としてGC−FID(Agilent社製GC6890,カラムDB−WAX、注入口温度230℃、スプリット比5.61、初期カラム温度50℃(保持時間0.5分)、昇温速度20℃/分、最終カラム温度230℃(保持時間3分))で実施した。   1 ml of the aqueous solution discharged from the back pressure valve 40 minutes after the substrate feeding was collected. When the internal volume of the pipe from the heating furnace to the back pressure valve outlet was the reaction volume, the reaction time was 9.9 seconds. 1 ml of acetone was added to 1 ml of the collected aqueous solution and shaken, and the composition was determined by GC / MS analyzer (HP 6890, Hewlett Packard, column HP-5, inlet temperature 150 ° C., initial column temperature 60 ° C. (retention time 2 Min), a heating rate of 10 ° C./min, and a final column temperature of 250 ° C. (holding time 2 minutes)), and the obtained mass spectrum was confirmed with a Willy database with a concordance of 90% or higher. In addition, quantification and qualitativeness in the presence of commercially available reagents are GC-FID (GC 6890, Agilent DB DB-WAX, inlet temperature 230 ° C., split ratio 5.61, initial column temperature 50 ° C. with toluene as an internal standard ( Holding time 0.5 minutes), temperature rising rate 20 ° C./min, final column temperature 230 ° C. (holding time 3 minutes)).

その結果、モル比が無水酢酸/5/酢酸=1.1/1/1、温度200℃で、転化率91%、モノアセテート(5a)が選択率59%で得られ、温度225℃で、転化率93%、モノアセテート(5a)が選択率52%で得られた(表2、実施例11、実施例12)。また、モル比が無水酢酸/5/酢酸=2.2/1/2、温度225℃で、転化率98%、ジアセテート(5b)が選択率25%で得られた(表2、実施例13)。更に、モル比が無水酢酸/5/酢酸=3.3/1/3、温度225℃で、転化率100%、トリアセテート(5c)が選択率96%で得られた(表2、実施例14)。   As a result, the molar ratio was acetic anhydride / 5 / acetic acid = 1.1 / 1/1, the temperature was 200 ° C., the conversion was 91%, and the monoacetate (5a) was obtained with the selectivity of 59%, and the temperature was 225 ° C. A conversion of 93% and monoacetate (5a) were obtained with a selectivity of 52% (Table 2, Example 11, Example 12). Further, a molar ratio of acetic anhydride / 5 / acetic acid = 2.2 / 1/2, a temperature of 225 ° C., a conversion of 98%, and a diacetate (5b) with a selectivity of 25% were obtained (Table 2, Examples). 13). Furthermore, the molar ratio was acetic anhydride / 5 / acetic acid = 3.3 / 1/3, the temperature was 225 ° C., the conversion rate was 100%, and the triacetate (5c) was obtained with the selectivity of 96% (Table 2, Example 14). ).

Figure 2007210911
Figure 2007210911

以上の実施例から、高温高圧水を反応溶媒として、無触媒でポリアシル化合物が高収率で合成可能であることが明らかとなった。また、アシル化後、回収水溶液に水を注入してデカンテーションし、油/水二層溶液に分離後、ポリアシル化合物を含む油層を分液回収する一方、水層からは酢酸と水を共沸蒸留によって分離し、回収する簡易な連続分離法も実施可能であることが明らかとなった。   From the above examples, it was revealed that polyacyl compounds can be synthesized in high yield without catalyst using high-temperature and high-pressure water as a reaction solvent. After acylation, water is injected into the recovered aqueous solution, followed by decantation. After separation into an oil / water bilayer solution, an oil layer containing a polyacyl compound is separated and recovered, while acetic acid and water are azeotroped from the aqueous layer. It became clear that a simple continuous separation method of separating and recovering by distillation was also feasible.

以上詳述したように、本発明は、カルボン酸無水物及びポリヘテロ水素化物から有機溶媒を用いることなく、高温高圧流体を反応溶媒として、無触媒でポリアシル化合物を合成する方法、及び温度と無水カルボン酸の量を調整することにより、1級、2級、3級の順にアシル化してアシル化数を調節し、ポリアシル化合物を選択的に合成する方法、その装置及びその反応組成物に係るものであり、従来法では、ポリヘテロ水素化物とカルボン酸無水物からポリアシル化合物の合成は、有機溶媒に触媒を添加し、数時間の反応を行い、すべてアシル化するため、アシル化数を調整できなかったが、本発明では、亜臨界流体、超臨界流体を用いることにより、触媒無添加で、有機溶媒を使用することなく高速で連続的に選択的にポリアシル化合物を合成することが可能である。このことは、香料、医薬品、食品として有用な生体適合性を有するポリアシル化合物を短時間で、大量に連続的に生産できるというメリットをもたらす。また、アシル化後、回収水溶液に水を注入してデカンテーションし、油/水二層溶液に分離後、ポリアシル化合物を含む油層を分液回収する一方、水層からは酢酸と水を共沸蒸留によって分離し、回収する反応系成分の簡易な連続分離法により、氷酢酸と水を分離し、水をリサイクルすることが可能である。これらのことから、本発明では、合成・分離プロセスを単純化させることで、プロセスの初期コスト及びランニングコストを圧縮することが可能である。更に、中和処理の後処理も不必要であり、環境調和型生産が可能となる。本発明は、例えば、香料、医薬品、食品として有用な生体適合性を有するポリアシル化合物の新しい大量生産プロセスとして、既存の生産プロセスに代替し得るものである。   As described in detail above, the present invention provides a method for synthesizing a polyacyl compound without using an organic solvent from a carboxylic acid anhydride and a polyhetero hydride, using a high-temperature and high-pressure fluid as a reaction solvent, and the temperature and carboxylic anhydride. A method for selectively synthesizing a polyacyl compound by acylating in the order of primary, secondary, and tertiary by adjusting the amount of acid to adjust the number of acylation, an apparatus thereof, and a reaction composition thereof. In the conventional method, the synthesis of polyacyl compounds from polyheterohydrides and carboxylic acid anhydrides was carried out by adding a catalyst to an organic solvent, reacting for several hours, and acylating all, so the acylation number could not be adjusted. However, in the present invention, by using a subcritical fluid or a supercritical fluid, a polyacyl compound can be selectively selectively continuously at high speed without using a catalyst and without using an organic solvent. It is possible to synthesize. This brings about the merit that polyacyl compounds having biocompatibility useful as fragrances, pharmaceuticals, and foods can be continuously produced in large quantities in a short time. After acylation, water is injected into the recovered aqueous solution, followed by decantation. After separation into an oil / water bilayer solution, an oil layer containing a polyacyl compound is separated and recovered, while acetic acid and water are azeotroped from the aqueous layer. By simple continuous separation of reaction system components separated and recovered by distillation, it is possible to separate glacial acetic acid and water and recycle the water. Therefore, in the present invention, it is possible to compress the initial cost and the running cost of the process by simplifying the synthesis / separation process. Furthermore, post-treatment of the neutralization treatment is unnecessary, and environmentally conscious production becomes possible. The present invention can replace existing production processes as a new mass production process of polyacyl compounds having biocompatibility useful as, for example, perfumes, pharmaceuticals, and foods.

触媒・有機溶媒用いるポリヘテロ水素化物のアシル化を示す。The acylation of polyheterohydride using catalyst / organic solvent is shown. 触媒・有機溶媒を用いるアシル化の後処理フローチャートを示す。The post-process flowchart of acylation using a catalyst and an organic solvent is shown. 無触媒・水溶媒を用いるアシル化の後処理フローチャートを示す。The post-process flowchart of acylation using a non-catalyst and a water solvent is shown. 高温高圧赤外フローセルを示す。1 shows a high temperature high pressure infrared flow cell. 実施例で用いた流通型高温高圧流体その場赤外分光測定装置を示す。1 shows a flow-type high-temperature and high-pressure fluid in-situ infrared spectrometer used in the examples. 窓なし高温高圧フローセルを示す。1 shows a high temperature and high pressure flow cell without a window. 実施例で用いた流通式高温高圧反応装置の主要部分を示す。The main part of the flow-type high temperature / high pressure reactor used in the examples is shown.

符号の説明Explanation of symbols

1 ティー又はクロス(片側口φ4mmネジ切り)
2 φ4mm×5.0mmL六角ネジ
3 ワンリングフェラル付オネジ
4 SUS316チューブ
5 水送液ポンプ
6 反応物送液ポンプ
7 洗浄水送液ポンプ
8 冷却フランジ(冷却水が循環する)
9 水加熱コイル
10 反応物導入管
11 温度センサ
12 温度センサーシース
13 炉体
14 高温高圧フローセル(通常昇温ではティー型、急速昇温ではクロス型)
15 ZnSe窓
16 溶媒導入管
17 排出配管
18 ティー
19 背圧弁
21 水溶液
22 洗浄水
23 水溶液ポンプ
24 洗浄用純水送液ポンプ
25 炉体加熱システム
26 炉体
27 高温高圧赤外フローセル
28 冷却水(入口)
29 冷却水(出口)
30 背圧弁
31 排出水溶液受器
32 可動鏡
33 可動鏡
34 干渉計
35 光源
36 赤外レーザー
37 MCT受光器
38 TGS受光器
39 解析モニター
1 Tee or cloth (one side opening φ4mm threaded)
2 φ4mm × 5.0mmL hexagon screw 3 Male screw with one ring ferrule 4 SUS316 tube 5 Water feed pump 6 Reactant feed pump 7 Washing water feed pump 8 Cooling flange (cooling water circulates)
9 Water heating coil 10 Reactant introduction pipe 11 Temperature sensor 12 Temperature sensor sheath 13 Furnace body 14 High-temperature high-pressure flow cell (Tee type for normal temperature rise, cross-type for rapid temperature rise)
15 ZnSe window 16 Solvent introduction pipe 17 Discharge pipe 18 Tee 19 Back pressure valve 21 Aqueous solution 22 Washing water 23 Aqueous solution pump 24 Cleaning pure water feed pump 25 Furnace heating system 26 Furnace 27 High-temperature high-pressure infrared flow cell 28 Cooling water (inlet) )
29 Cooling water (exit)
30 Back pressure valve 31 Discharged aqueous solution receiver 32 Movable mirror 33 Movable mirror 34 Interferometer 35 Light source 36 Infrared laser 37 MCT light receiver 38 TGS light receiver 39 Analysis monitor

Claims (10)

無水カルボン酸とポリヘテロ水素化物との反応で合成される反応組成物において、触媒及び有機溶媒の残存がなく、生体適合性を有することを特徴とするポリアシル化合物組成物。   A polyacyl compound composition characterized in that a reaction composition synthesized by a reaction of a carboxylic anhydride and a polyheterohydride has no residual catalyst and organic solvent and has biocompatibility. 無水カルボン酸とポリヘテロ水素化物からポリアシル化合物を合成する方法において、高温高圧状態の亜臨界ないし超臨界流体を反応溶媒として使用することを特徴とするポリアシル化合物の製造方法。   A process for synthesizing a polyacyl compound from a carboxylic anhydride and a polyheterohydride, wherein a subcritical or supercritical fluid in a high temperature and high pressure state is used as a reaction solvent. 上記方法において、触媒を用いることなく、無水カルボン酸とポリヘテロ水素化物から一段階の合成反応でポリアシル化合物を選択的に合成する、請求項2記載の方法。   The method according to claim 2, wherein in the method, a polyacyl compound is selectively synthesized from a carboxylic anhydride and a polyheterohydride by a one-step synthesis reaction without using a catalyst. ポリヘテロ水素化物におけるヘテロ原子又は置換ヘテロ原子が、酸素(O)、硫黄(S)、窒化水素(NH)、又はアルキル置換窒素(NR’)である、請求項2又は3記載の方法。   The method according to claim 2 or 3, wherein the heteroatom or substituted heteroatom in the polyheterohydride is oxygen (O), sulfur (S), hydrogen nitride (NH), or alkyl-substituted nitrogen (NR '). 基質におけるヘテロ水素基に隣接するα位の置換数に対応して、温度と無水カルボン酸の量を調整することにより、無置換(1級)、一置換(2級)、二置換(3級)の順にアシル化しつつアシル化数を調節し、ポリアシル化合物を選択的に合成する、請求項2又は3記載の方法。   By adjusting the temperature and the amount of carboxylic anhydride corresponding to the number of substitutions at the α-position adjacent to the heterohydrogen group in the substrate, there is no substitution (primary), monosubstitution (secondary), disubstitution (tertiary) The method according to claim 2 or 3, wherein a polyacyl compound is selectively synthesized by adjusting the number of acylation while acylating in the order of). 温度100〜400℃、圧力0.1〜40MPaの亜臨界流体ないし超臨界流体を反応溶媒として使用する、請求項2又は3記載の方法。   The method according to claim 2 or 3, wherein a subcritical fluid or supercritical fluid having a temperature of 100 to 400 ° C and a pressure of 0.1 to 40 MPa is used as a reaction solvent. 亜臨界流体ないし超臨界流体として、水、酢酸、それ以外の無機溶媒、もしくは有機溶媒、又は無機溶媒と有機溶媒の混合溶媒を用いる、請求項2又は3記載の方法。   The method according to claim 2 or 3, wherein water, acetic acid, other inorganic solvent, or organic solvent, or a mixed solvent of an inorganic solvent and an organic solvent is used as the subcritical fluid or supercritical fluid. 流通式高温高圧装置に、基質及び反応溶媒を導入し、反応時間を3〜60秒の範囲で変化させることで合成反応を実施する、請求項2又は3記載の方法。   The method according to claim 2 or 3, wherein the synthesis reaction is carried out by introducing a substrate and a reaction solvent into a flow-type high-temperature and high-pressure apparatus and changing the reaction time in the range of 3 to 60 seconds. 水を送液する水送液ポンプ、水加熱用コイル、高温高圧フローセル、基質を送液する反応物送液ポンプ、炉体、反応物を炉体に導入する反応物導入管、反応溶液を排出する排出液ライン、冷却フランジ及び圧力を設定する背圧弁を具備していることを特徴とするポリアシル化合物合成装置。   Water feed pump for feeding water, coil for water heating, high-temperature and high-pressure flow cell, reactant feed pump for feeding substrate, furnace body, reactant introduction pipe for introducing reactant into the furnace body, discharging reaction solution An apparatus for synthesizing a polyacyl compound comprising a drain line for cooling, a cooling flange, and a back pressure valve for setting pressure. 請求項2又は3に記載の方法によりアシル化後、回収水溶液に水を注入してデカンテーションし、油/水二層溶液に分離後、ポリアシル化合物を含む油層を分液回収する一方、水層からは酢酸と水を共沸蒸留によって分離し、回収することを特徴とする反応系成分の簡易な連続分離法。   After acylation by the method according to claim 2 or 3, water is injected into the recovered aqueous solution and decanted, and after separation into an oil / water bilayer solution, an oil layer containing a polyacyl compound is separated and recovered, while an aqueous layer Is a simple continuous separation method of reaction system components characterized in that acetic acid and water are separated and recovered by azeotropic distillation.
JP2006030326A 2006-02-07 2006-02-07 Process for producing polyacyl compound and apparatus therefor Expired - Fee Related JP4953341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006030326A JP4953341B2 (en) 2006-02-07 2006-02-07 Process for producing polyacyl compound and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006030326A JP4953341B2 (en) 2006-02-07 2006-02-07 Process for producing polyacyl compound and apparatus therefor

Publications (2)

Publication Number Publication Date
JP2007210911A true JP2007210911A (en) 2007-08-23
JP4953341B2 JP4953341B2 (en) 2012-06-13

Family

ID=38489669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006030326A Expired - Fee Related JP4953341B2 (en) 2006-02-07 2006-02-07 Process for producing polyacyl compound and apparatus therefor

Country Status (1)

Country Link
JP (1) JP4953341B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291096A (en) * 2006-03-31 2007-11-08 National Institute Of Advanced Industrial & Technology Selective sequential polyacylation and device therefor
JP2013517253A (en) * 2010-01-13 2013-05-16 ディーエスエム アイピー アセッツ ビー.ブイ. Acylation using microreaction system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116314A (en) * 1977-03-19 1978-10-11 Mitsui Petrochem Ind Ltd Separation of acetic acid and water
JPS62267247A (en) * 1986-04-29 1987-11-19 ヘキスト セラニーズ コーポレーション Method of deodorizing triacetin manufactured from natural glycerine
JPS63239246A (en) * 1986-11-21 1988-10-05 Ueno Seiyaku Oyo Kenkyusho:Kk Production of aromatic acetoxy compound
JPH1087604A (en) * 1996-08-27 1998-04-07 Haarmann & Reimer Gmbh Use of 3-acylthiohexyl as aromatic substance and fragrance generating substance
JP2000053591A (en) * 1998-08-06 2000-02-22 Konica Corp Acylation
JP2000053592A (en) * 1998-08-06 2000-02-22 Konica Corp Acylation
JP2002105019A (en) * 2000-09-29 2002-04-10 Sumitomo Chem Co Ltd Method for producing o-acetylation products of phenol compounds
JP2002105037A (en) * 2000-09-29 2002-04-10 Sumitomo Chem Co Ltd Method for producing acetylamine
JP2005281264A (en) * 2004-03-30 2005-10-13 National Institute Of Advanced Industrial & Technology Synthetic reaction method for monoterpenes and apparatus for the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116314A (en) * 1977-03-19 1978-10-11 Mitsui Petrochem Ind Ltd Separation of acetic acid and water
JPS62267247A (en) * 1986-04-29 1987-11-19 ヘキスト セラニーズ コーポレーション Method of deodorizing triacetin manufactured from natural glycerine
JPS63239246A (en) * 1986-11-21 1988-10-05 Ueno Seiyaku Oyo Kenkyusho:Kk Production of aromatic acetoxy compound
JPH1087604A (en) * 1996-08-27 1998-04-07 Haarmann & Reimer Gmbh Use of 3-acylthiohexyl as aromatic substance and fragrance generating substance
JP2000053591A (en) * 1998-08-06 2000-02-22 Konica Corp Acylation
JP2000053592A (en) * 1998-08-06 2000-02-22 Konica Corp Acylation
JP2002105019A (en) * 2000-09-29 2002-04-10 Sumitomo Chem Co Ltd Method for producing o-acetylation products of phenol compounds
JP2002105037A (en) * 2000-09-29 2002-04-10 Sumitomo Chem Co Ltd Method for producing acetylamine
JP2005281264A (en) * 2004-03-30 2005-10-13 National Institute Of Advanced Industrial & Technology Synthetic reaction method for monoterpenes and apparatus for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291096A (en) * 2006-03-31 2007-11-08 National Institute Of Advanced Industrial & Technology Selective sequential polyacylation and device therefor
JP2013517253A (en) * 2010-01-13 2013-05-16 ディーエスエム アイピー アセッツ ビー.ブイ. Acylation using microreaction system

Also Published As

Publication number Publication date
JP4953341B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
Struempel et al. Making diazomethane accessible for R&D and industry: generation and direct conversion in a continuous micro-reactor set-up
EP3141537B1 (en) A labeling precursor compound and method for producing radioactive fluorine labeled compound using the same
Li et al. Continuous production of anhydrous tert-butyl hydroperoxide in nonane using membrane pervaporation and its application in flow oxidation of a γ-butyrolactam
JP4836181B2 (en) Acyl compound production method and apparatus
Shimizu et al. Cleavage of unactivated amide bonds by ammonium salt-accelerated hydrazinolysis
Koguchi et al. Synthetic utilities of ionic liquid-supported NHPI complex
EP3350144B1 (en) Process for the cyclopropanation of olefins using n-methyl-n-nitroso compounds
EP3150572A1 (en) Production method for gamma, delta-unsaturated alcohols
Castiello et al. GreenMedChem: the challenge in the next decade toward eco-friendly compounds and processes in drug design
Venardou et al. On-line monitoring of the hydrolysis of acetonitrile in near-critical water using Raman spectroscopy
Caravati et al. Solvent-modified supercritical CO2: A beneficial medium for heterogeneously catalyzed oxidation reactions
JP2009132663A (en) Method for producing acroleins and apparatus producing the same
JP4953341B2 (en) Process for producing polyacyl compound and apparatus therefor
JP5146928B2 (en) Method for producing Claisen rearrangement compound and synthesis apparatus thereof
Al Otaibi et al. A methanol and protic ionic liquid Ugi multicomponent reaction path to cytotoxic α-phenylacetamido amides
JP5369349B2 (en) Process for producing 5-hydroxymethyl-2-furfurylaldehyde and apparatus therefor
JP2007291096A (en) Selective sequential polyacylation and device therefor
JP5077908B2 (en) Method for producing acylated tocopherol
Zhao et al. Hydrogenation of 2-butyne-1, 4-diol to butane-1, 4-diol in supercritical carbon dioxide
JP4784913B2 (en) Citral synthesis method and equipment
Bui et al. Facile one-pot synthesis of ketones from primary alcohols under mild conditions
Srivastava et al. A novel method for the protection of amino alcohols and carbonyl compounds over a heterogeneous, reusable catalyst
JP4310436B2 (en) Terpene hydrocarbon synthesis reaction method
JP2005281270A (en) Isomerization of allyl alcohol and apparatus for the same
JP3873123B2 (en) Method for synthesizing acrylic acid and / or pyruvic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120301

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees