JP3873123B2 - Method for synthesizing acrylic acid and / or pyruvic acid - Google Patents

Method for synthesizing acrylic acid and / or pyruvic acid Download PDF

Info

Publication number
JP3873123B2
JP3873123B2 JP2002284658A JP2002284658A JP3873123B2 JP 3873123 B2 JP3873123 B2 JP 3873123B2 JP 2002284658 A JP2002284658 A JP 2002284658A JP 2002284658 A JP2002284658 A JP 2002284658A JP 3873123 B2 JP3873123 B2 JP 3873123B2
Authority
JP
Japan
Prior art keywords
temperature
acid
reaction
acrylic acid
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002284658A
Other languages
Japanese (ja)
Other versions
JP2004115480A (en
Inventor
清隆 畑田
豊 生島
佐藤  修
功夫 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002284658A priority Critical patent/JP3873123B2/en
Publication of JP2004115480A publication Critical patent/JP2004115480A/en
Application granted granted Critical
Publication of JP3873123B2 publication Critical patent/JP3873123B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超臨界水中で乳酸からアクリル酸及び/又はピルビン酸を合成する方法に関するものであり、更に詳しくは、特定の高温高圧条件の高温高圧水(350℃以上、20MPa以上)を反応溶媒として、触媒無添加で、乳酸からアクリル酸及び/又はピルビン酸を高い選択率で合成する方法に関するものである。本発明は、触媒やハロゲン化合物等の環境処理上困難な有害物を使用することなく、バイオマスの乳酸発酵等で容易に得られる乳酸を出発原料として、複雑な反応が生じることを抑えて、アクリル酸とピルビン酸の両者を高い選択率で合成仕分ける方法を提供するものとして有用である。
【0002】
【従来の技術】
従来のアクリル酸の合成法としては、例えば、アクリルニトリルの加水分解(非特許文献1参照)、アクロレインの酸化、オキシプロピオン酸、ハロゲン化プロピオン酸等からの脱水、脱ハロゲン化水素等、いろいろな方法がある(非特許文献2参照)。また、工業的に重要なものとしては、次式で示されるようなレッペ法がある。
【0003】
【化1】

Figure 0003873123
【0004】
更に、アクリル酸の従来の合成法として、シアン化アセチルの加水分解、或いは酒石酸を硫酸水素カリウムと加熱することによってアクリル酸を得る方法がある(非特許文献3参照)。
【0005】
【非特許文献1】
Kaszuba,J.Am.Chem.Soc.67,1227(1945)
【非特許文献2】
Various other syntheses,Org.Syn.,coll.vol.III ,30−34(1955)
【非特許文献3】
化学大事典(昭和37年8月5日)7、p583−584
【0006】
しかしながら、これらのアクリル酸の合成法の先行技術では、石油化学工業で得られるエチレン等の炭化水素を原料とし、各種の触媒やハロゲン化合物等の有害物を使用しなければならないことから、触媒やハロゲン化合物等の環境処理上困難な有害物質の後処理が必要とされるという問題があり、当技術分野では、このような触媒やハロゲン化合物等の環境処理上困難な有害物質を使用しない新しい合成方法の開発が強く要請されていた。
【0007】
【発明が解決しようとする課題】
このような状況の中で、本発明者らは、上記従来技術に鑑みて、触媒やハロゲン化合物等の環境処理上困難な有害物を使用することなく、アクリル酸等を合成する反応方法を開発することを目標として鋭意研究を積み重ねた結果、高温高圧水を反応溶媒として、バイオマスの乳酸発酵等で容易に得られる乳酸を出発原料として使用することでアクリル酸及び/又はピルビン酸を製造できることを見出し、本発明を完成するに至った。
即ち、本発明は、特定の高温高圧条件の高温高圧水を反応溶媒として、乳酸からアクリル酸とピルビン酸の両者を高い選択率で合成仕分けることを可能とする新しいアクリル酸及び/又はピルビン酸の製造方法を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)高温高圧水(350℃以上、20MPa以上)を反応溶媒として、乳酸からアクリル酸及び/又はピルビン酸を合成することを特徴とするアクリル酸及び/又はピルビン酸の製造方法。
(2)超臨界点以上(374℃以上、22.1MPa以上)の水を反応溶媒として使用する、前記(1)に記載の方法。
(3)乳酸から、1段階の反応プロセスで、アクリル酸及び/又はピルビン酸を合成する、前記(1)に記載の方法。
(4)流通式高温高圧反応装置の反応器に、基質及び反応溶媒を導入し、所定の設定反応温度でアクリル酸及び/又はピルビン酸を合成する、前記(1)に記載の方法。
(5)所定の設定反応温度に至る経過時間が少なくとも0.02−0.05秒である、前記(4)に記載の方法。
(6)高温高圧水供給装置により400−700℃及び20−50MPaの流体を反応器に供給して、反応器における基質及び反応溶媒の温度を所定の設定反応温度に少なくとも0.02−0.05秒で到達させる、前記(5)に記載の方法。
(7)反応器における基質及び反応溶媒の滞在時間を変化させることにより、アクリル酸及び/又はピルビン酸を合成仕分ける、前記(4)に記載の方法。
【0009】
【発明の実施の形態】
次に、本発明について更に詳細に説明する。
本発明は、特定の高温高圧条件の高温高圧水を反応溶媒として、乳酸からアクリル酸及び/又はピルビン酸を高い選択率で合成する方法に関するものである。本発明の方法では、乳酸を出発原料として、合成樹脂の原料であるアクリル酸、及び生体内物質代謝経路における重要中間体であるピルビン酸が合成される。本発明においては、上記反応溶媒として、特定の高温高圧条件の高温高圧水が用いられるが、具体的には、高温高圧水(350℃以上、20MPa以上)、亜臨界水(370℃以上、21MPa以上)、超臨界水(375℃以上、22.1MPa以上)が用いられ、好適には、超臨界点以上の水(374℃以上、22.1MPa以上)が用いられる。
【0010】
上記反応溶媒の上記高温高圧水、亜臨界水、超臨界水を製造するために用いる水は、特に制限はなく、例えば、蒸留水、イオン交換水、水道水、地下水等を用いればよいが、溶存酸素が反応に悪影響を与える場合があるので、予め窒素ガス、ヘリウム等でバブリングし、除去しておくことが望ましい。本発明の方法は、従来の合成法とは異なり、金属触媒や有機溶媒を使用することなくアクリル酸及び/又はピルビン酸を合成することができるので、これらの触媒や有機溶媒は必要としないが、それらの使用を必ずしも妨げるものではない。本発明では、例えば、触媒を用いる場合には、触媒の添加やその除去工程を適宜付加することができる。触媒としては、一般に、この種の反応に使用される触媒であれば何れのものも使用でき、例えば、上記変換反応を促進するものであれば、何でも良く、例えば、酸塩基などの触媒を使用することができる。本発明の方法では、基質及び反応溶媒を反応器に導入し、所定の時間保持することにより、乳酸を反応生成物であるアクリル酸及び/又はピルビン酸に変換することができる。この場合、基質としては、乳酸、乳酸含有成分、生分解プラスチックのポリ乳酸等が例示されるが、これらに限らず、これらと同効のものであれば同様に使用することができる。本発明においては、基質の乳酸は、これらと同質の成分を含むものとして定義される。また、上記反応溶媒は、水の他にアルコール等を含むことができ、これらとして、具体的には、水の他にメチルアルコール、エチルアルコール、アセトンなどの親水性溶媒を含むものが例示される。また、本発明では、上記反応器として、好適には、例えば、400−700℃及び20−50MPaの流体を供給できる高温高圧水供給装置を利用した、希望する設定温度に少なくとも0.02−0.05秒で到達する機構を有する、流通式高温高圧反応装置が用いられるが、バッチ反応器、通常の流通式反応器も用いられる。本発明では、これらを含む適宜の反応器を用いて、本発明の合成方法及びその合成システムを任意に設計することができる。
【0011】
本発明において、好適な反応条件は、反応温度350−400℃、反応圧力20−50MPa、反応時間5−0.05秒であり、反応器に、基質及び反応溶媒を導入し、所定の設定反応温度に少なくとも0.02−0.05秒で到達させることが好ましい。本発明では、希望する設定温度に少なくとも0.02−0.05秒で達する機構を有している反応装置を用いることが好ましく、これにより、例えば、バッチ反応器(1−5時間)、従来の流通式反応器(10−120秒)と比べて、設定反応温度に至る経過時間が極端に短縮されると同時に、反応時間を0.1秒台で制御することが可能となる。これによって、その設定反応温度に至る経過時間内での複雑な反応が生じにくく、シャープな反応が可能となる。即ち、設定温度に至る経過時間が長くなると、複雑な反応が生じて、目的化合物を高選択率で合成することが困難となる。
【0012】
また、後記する実施例に示されるように、反応器における基質及び反応溶媒の滞在時間を変えることにより、アクリル酸及び/又はピルビン酸を高い選択率で合成仕分けることができる。具体的には、例えば、反応時間を0.012秒変えることによって、ピルビン酸の選択率を5.7%変動させることができる。本発明は、触媒やハロゲン化合物等の環境処理上困難な有害物を使用することなく、バイオマスの乳酸発酵等で容易に得られる乳酸、乳酸含有成分、生分解プラスチックのポリ乳酸等を出発原料として、反応器における基質及び反応溶媒の滞在時間を変化させることによって、アクリル酸とピルビン酸の両者を高い選択率で合成仕分け、これらに変換することができる。このことは、バイオマス等で得られる対象物を化学工業用原料として還元及びリサイクルできることを意味しており、本発明の方法は、環境上又は資源エネルギー的に理想的なシステムとして有用である。
【0013】
本発明の方法で合成されるアクリル酸については、アクリル酸は、アクリル樹脂の原料であり、アクリル樹脂は、例えば、自動車用燃料配管チューブ、プラスチック磁石のバインダー等に利用されており、現在、その利用範囲が拡大しつつある重要な樹脂である。また、本発明の方法で合成されるピルビン酸については、ピルビン酸は、生体内物質代謝経路における重要中間体として、生化学試薬等の代謝経路の研究等に広く用いられており、本発明の方法は、バイオマス乳酸発酵等で得られる上記乳酸等をこれらの重要成分に変換する方法として有用である。
【0014】
従来、高温高圧水を利用して、有機合成を行う方法が知られているが、本発明は、特定の高温高圧条件の高温高圧水(350℃、20MPa以上)を反応溶媒として、乳酸からアクリル酸及び/又はピルビン酸を選択的に合成することを可能とするものであり、本発明の方法では、希望する設定温度に少なくとも0.02−0.05秒で到達させることが好ましく、それにより、設定反応温度に至る経過時間が極端に短縮されると同時に、反応時間を0.1秒台で制御することができ、その設定温度に至る経緯時間内で複雑な反応が生じるのを抑制して、高い選択率でアクリル酸及び/又はピルビン酸を合成することが可能となる。その設定温度に至る経過時間が長いと、その経過時間内で複雑な反応が生じ、高い選択率で目的化合物を合成することは困難となる。本発明は、上記特定の構成要件を採用することにより、無触媒で、乳酸からこれらの化合物を高い選択率で合成仕分けることを可能にしたものであり、本発明は、これらの特定の反応条件を満たさない限り所期の目的を達成することができない。
【0015】
【実施例】
次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。
実施例1
(1)バッチ法によるアクリル酸の合成
バッチ反応により、バッチ反応器に基質及び反応溶媒を封入し、溶融塩バスで反応させた。図1に、バッチ反応器と溶融塩バスを示す。反応管はSUS316(外形1.27cm、内径0.87cm、長さ17.7cm)、反応管体積は10.5cm3 であった。
超臨界水による反応条件は、反応温度400℃、反応圧力30MPa、及び反応時間30秒とした。この場合の設定温度到達時間は、約30秒であった。バッチ反応器の設定温度測定例を図2に示す。
【0016】
乳酸(lactic acid)、及び分析同定用既知物質のアクリル酸(acrylic acid)、ピルビン酸(pyruvic acid)は、いずれも市販の特級試薬(和光製薬)を使用した。この反応器への基質の仕込量は0.1gであり、水は設定圧に必要な量3.76gを封入した。反応終了後、アクリル酸を常法に従って分離、精製し、分離生成物をLC、IRによって分析した結果、既知物質のアクリル酸と全てのスペクトルにおいて完全に一致した。
【0017】
(2)アクリル酸の確認
分離生成物のLCクロマトグラフィー保持時間は、既知物質に一致し、その比較した結果を図3に示す。尚、検出器は、ホトダイオードアレーであり、それぞれの化合物の紫外線吸収スペクトルも完全に一致した。また、反応生成物のIRスペクトルも既知物質と一致した。この実施例で合成されたアクリル酸の収量は、6.3%であり、アクリル酸の選択率は、98%であった。
【0018】
実施例2
(1)流通法によるピルビン酸の合成
超臨界水による反応条件は、反応温度380−400℃、反応圧力40MPaとした。反応管内容積は、0.082cm3 (外形1/16インチ、内径0.5mm、長さ420mm)であり、基質は、実施例1のバッチ実験と同様、市販の特級試薬を使用した。分離生成物の分析は、実施例1のバッチ実験の場合と同様に行なった。図4に、流通実験に使用するために作製した装置を示す。
【0019】
(2)アクリル酸及び/又はピルビン酸合成装置
この装置の最高圧力は、50MPa、流体最高温度は、600℃であった。
ポンプからの高圧ラインは、ハステロイC−276の1/8インチ(内径1.6mm)及び1/16インチ(内径0.5mm)の管を使用した。高温高圧水は、高温高圧流体水製造装置により、20−50MPa、400−700℃の条件で供給した。リアクター部5には、反応器内温度測定用熱電対7と基質導入口を設け、一定温度に保持した。反応器の反応管は、ハステロイC−276、1/16インチ(内径0.5mm)で、長さ50cmであり、その反応管体積は約0.098cm3 であった。
【0020】
反応器全体を、±0.5℃以内で温度制御した。冷却部6は、冷水で冷却した。このシステムの安全装置は52MPaで作動する。ポンプ1aは基質連続送液ポンプ、ポンプ1bは水連続送液ポンプである。この合成装置で使用される水は、全てヘリウムを通じて脱酸素処理した。基質とした乳酸(lactic acid)、及び分析同定用既知物質のアクリル酸(acrylic acid)、ピルビン酸(pyruvic acid)は、いずれも市販の特級試薬(和光純薬)を使用した。反応液を、一定時間ごとに採取し、HP−1100高速液体クロマトグラフィー(254nm)で定量分析した。
【0021】
(3)装置の操作
装置の操作手順について、40MPa、380℃の反応条件に設定する場合を例に説明する。タンク2aに0.01M乳酸水溶液、タンク2bに水を準備し、電子圧力調整器10を40MPaに設定した後、室温のままポンプ1a、1bを作動させ、送液量を確認した。次いで、高温高圧流体水製造装置を作動させ、ポンプ1bにより送られる水を加熱した。反応管前部に取り付けた熱電対7で温度を確認し、リアクター部が380℃になるように、高温高圧流体水製造装置の加熱温度を制御した。リアクター部の温度が安定した後、反応液の採取を開始した。採取時における高温高圧流体水製造装置本体の温度は514℃であった。
【0022】
合成時の送液量は、いずれもポンプ1a:1.7ml/min(0.01M乳酸水溶液、ポンプ1b:11.7ml/min(水)とした。反応温度(リアクター部)を380℃、390℃、400℃に設定した場合、採取時における高温高圧流体水製造装置本体の温度は514℃、526℃、543℃であった。
【0023】
(4)ピルビン酸の確認
分離生成物のLCクロマトグラフィー保持時間は、既知物質に一致し、その比較した結果を図5に示す。尚、検出器は、ホトダイオードアレーであり、それぞれの化合物の紫外線吸収スペクトルも完全に一致した。また、IRスペクトルも既知物質と一致した。
それらの分析結果を表1に示す。
【0024】
【表1】
Figure 0003873123
【0025】
以上の結果、滞在時間0.2秒台、380℃、40MPaで、ピルビン酸の収率は、約2.2%であり、その選択率は、約80%であった。
【0026】
【発明の効果】
以上詳述したように、本発明は、高温高圧水(350℃以上、20MPa以上)を反応溶媒として、乳酸よりアクリル酸及び/又はピルビン酸を合成し、これらに変換する方法に係るものであり、本発明によれば、触媒やハロゲン化合物等の環境処理上困難な有害物を使用することなく、バイオマスの乳酸発酵等で容易に得られる乳酸を出発原料として、アクリル酸及び/又はピルビン酸を高い選択率で合成することができる。本発明の方法及びその反応装置では、基質及び反応溶媒の反応器への滞在時間を変化させることによって、アクリル酸とピルビン酸の両者を合成仕分けることができる。このことは、バイオマス等で得られる対象物を化学工業用原料として還元及びリサイクルできることを意味しており、本発明は、環境上又は資源エネルギー的に理想的なシステムを提供するものとして有用である。
【図面の簡単な説明】
【図1】バッチ反応器を示す。
【図2】バッチ反応器の設定温度測定例を示す。
【図3】LCクロマトグラフィーによる既知物質との比較を示す。
【図4】アクリル酸及び/又はピルビン酸の合成装置を示す。
【図5】LCクロマトグラフィーによる既知物質との比較を示す。
【符号の説明】
1a 基質連続送液ポンプ(0.001−100ml/min)
1b 水連続送液ポンプ(0.001−100ml/min)
2a 基質タンク
2b 水タンク
3 逆止弁
4 高温高圧水供給装置
5 リアクター部
6 冷却部
7 熱電対
8 圧力計(ブルドン管型)
9 フィルター(2ミクロン)
10 電子圧力調整器テスコム社製ER3000ER(±0.01MPa以内)
11 捕集器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for synthesizing acrylic acid and / or pyruvic acid from lactic acid in supercritical water, and more specifically, high-temperature high-pressure water (350 ° C. or higher, 20 MPa or higher) under specific high-temperature and high-pressure conditions as a reaction solvent. The present invention relates to a method for synthesizing acrylic acid and / or pyruvic acid from lactic acid with high selectivity without adding a catalyst. The present invention suppresses the occurrence of complicated reactions starting from lactic acid that is easily obtained by lactic acid fermentation of biomass without using harmful substances that are difficult to environmentally treat such as catalysts and halogen compounds. It is useful for providing a method for synthesizing and sorting both acid and pyruvic acid with high selectivity.
[0002]
[Prior art]
Examples of conventional methods for synthesizing acrylic acid include various methods such as hydrolysis of acrylonitrile (see Non-Patent Document 1), oxidation of acrolein, dehydration from oxypropionic acid, halogenated propionic acid, and dehydrohalogenation. There is a method (see Non-Patent Document 2). Further, as an industrially important one, there is a Reppe method represented by the following formula.
[0003]
[Chemical 1]
Figure 0003873123
[0004]
Furthermore, as a conventional synthesis method of acrylic acid, there is a method of obtaining acrylic acid by hydrolysis of acetyl cyanide or heating tartaric acid with potassium hydrogen sulfate (see Non-Patent Document 3).
[0005]
[Non-Patent Document 1]
Kasuzuba, J. et al. Am. Chem. Soc. 67, 1227 (1945)
[Non-Patent Document 2]
Various other syntheses, Org. Syn. , Coll. vol. III, 30-34 (1955)
[Non-Patent Document 3]
Encyclopedia of Chemistry (August 5, 1963) 7, p583-584
[0006]
However, in the prior art of these acrylic acid synthesis methods, hydrocarbons such as ethylene obtained in the petrochemical industry must be used as raw materials, and various catalysts and toxic substances such as halogen compounds must be used. There is a problem that post-treatment of hazardous substances such as halogen compounds that are difficult to treat in the environment is required, and in this technical field, new synthesis that does not use such harmful substances that are difficult to treat in the environment such as catalysts and halogen compounds. There was a strong demand for method development.
[0007]
[Problems to be solved by the invention]
Under such circumstances, the present inventors have developed a reaction method for synthesizing acrylic acid and the like without using harmful substances that are difficult in environmental treatment, such as catalysts and halogen compounds, in view of the above prior art. As a result of intensive research with the goal of producing acrylic acid and / or pyruvic acid by using high temperature and high pressure water as a reaction solvent and lactic acid easily obtained by lactic acid fermentation of biomass as a starting material. The headline and the present invention were completed.
That is, the present invention is a novel acrylic acid and / or pyruvic acid that enables high-selectivity synthesis of both acrylic acid and pyruvic acid from lactic acid using high-temperature and high-pressure water under specific high-temperature and high-pressure conditions as a reaction solvent. The object is to provide a manufacturing method.
[0008]
[Means for Solving the Problems]
The present invention for solving the above-described problems comprises the following technical means.
(1) A method for producing acrylic acid and / or pyruvic acid, comprising synthesizing acrylic acid and / or pyruvic acid from lactic acid using high-temperature and high-pressure water (350 ° C. or higher, 20 MPa or higher) as a reaction solvent.
(2) The method according to (1) above, wherein water at a supercritical point or higher (374 ° C. or higher, 22.1 MPa or higher) is used as a reaction solvent.
(3) The method according to (1) above, wherein acrylic acid and / or pyruvic acid is synthesized from lactic acid in a one-step reaction process.
(4) The method according to (1), wherein a substrate and a reaction solvent are introduced into a reactor of a flow-type high-temperature and high-pressure reactor, and acrylic acid and / or pyruvic acid is synthesized at a predetermined set reaction temperature.
(5) The method according to (4), wherein the elapsed time to reach a predetermined set reaction temperature is at least 0.02-0.05 seconds.
(6) A 400-700 ° C. and 20-50 MPa fluid is supplied to the reactor by a high-temperature high-pressure water supply device, and the temperature of the substrate and the reaction solvent in the reactor is at least 0.02-0. The method according to (5), wherein the method is reached in 05 seconds.
(7) The method according to (4), wherein acrylic acid and / or pyruvic acid are synthesized and sorted by changing the residence time of the substrate and the reaction solvent in the reactor.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail.
The present invention relates to a method for synthesizing acrylic acid and / or pyruvic acid from lactic acid with high selectivity using high-temperature and high-pressure water under specific high-temperature and high-pressure conditions as a reaction solvent. In the method of the present invention, acrylic acid, which is a raw material of a synthetic resin, and pyruvic acid, which is an important intermediate in a biological substance metabolic pathway, are synthesized using lactic acid as a starting material. In the present invention, high-temperature and high-pressure water under specific high-temperature and high-pressure conditions is used as the reaction solvent. Specifically, high-temperature and high-pressure water (350 ° C. or higher, 20 MPa or higher), subcritical water (370 ° C. or higher, 21 MPa or higher). As described above, supercritical water (375 ° C. or higher and 22.1 MPa or higher) is used, and water having a supercritical point or higher (374 ° C. or higher, 22.1 MPa or higher) is preferably used.
[0010]
The water used for producing the high-temperature high-pressure water, subcritical water, and supercritical water of the reaction solvent is not particularly limited, and for example, distilled water, ion-exchanged water, tap water, ground water, etc. may be used. Since dissolved oxygen may adversely affect the reaction, it is desirable to previously remove it by bubbling with nitrogen gas, helium or the like. Unlike the conventional synthesis method, the method of the present invention can synthesize acrylic acid and / or pyruvic acid without using a metal catalyst or an organic solvent. Therefore, these catalysts and organic solvents are not required. Does not necessarily prevent their use. In the present invention, for example, in the case of using a catalyst, a catalyst addition and removal step can be added as appropriate. In general, any catalyst can be used as long as it is used in this type of reaction. For example, any catalyst that promotes the conversion reaction can be used. For example, a catalyst such as an acid base is used. can do. In the method of the present invention, lactic acid can be converted into acrylic acid and / or pyruvic acid as reaction products by introducing a substrate and a reaction solvent into the reactor and holding them for a predetermined time. In this case, examples of the substrate include lactic acid, lactic acid-containing components, biodegradable plastic polylactic acid, and the like. However, the substrate is not limited thereto, and any substrate having the same effect can be used. In the present invention, the substrate lactic acid is defined as containing components similar to these. The reaction solvent can contain alcohol in addition to water, and specific examples thereof include those containing a hydrophilic solvent such as methyl alcohol, ethyl alcohol, and acetone in addition to water. . In the present invention, the reactor is preferably at least 0.02-0 at a desired set temperature using, for example, a high-temperature and high-pressure water supply device capable of supplying fluid at 400 to 700 ° C. and 20 to 50 MPa. A flow-type high-temperature and high-pressure reactor having a mechanism that can be reached in .05 seconds is used, but a batch reactor and a normal flow-type reactor are also used. In this invention, the synthesis | combining method and its synthesis system of this invention can be arbitrarily designed using the appropriate reactor containing these.
[0011]
In the present invention, preferable reaction conditions are a reaction temperature of 350 to 400 ° C., a reaction pressure of 20 to 50 MPa, a reaction time of 5 to 0.05 seconds, a substrate and a reaction solvent are introduced into the reactor, and a predetermined set reaction is performed. It is preferred to reach the temperature in at least 0.02-0.05 seconds. In the present invention, it is preferable to use a reactor having a mechanism for reaching a desired set temperature in at least 0.02-0.05 seconds, and thus, for example, a batch reactor (1-5 hours), conventional Compared with the flow reactor (10-120 seconds), the elapsed time to the set reaction temperature is extremely shortened, and at the same time, the reaction time can be controlled in the order of 0.1 seconds. As a result, a complex reaction is less likely to occur within the elapsed time up to the set reaction temperature, and a sharp reaction is possible. That is, when the elapsed time to the set temperature is long, a complicated reaction occurs, and it becomes difficult to synthesize the target compound with high selectivity.
[0012]
Further, as shown in the examples described later, acrylic acid and / or pyruvic acid can be synthesized and sorted with high selectivity by changing the residence time of the substrate and the reaction solvent in the reactor. Specifically, for example, the selectivity of pyruvic acid can be changed by 5.7% by changing the reaction time by 0.012 seconds. The present invention uses, as a starting material, lactic acid, a lactic acid-containing component, a biodegradable plastic polylactic acid, and the like that can be easily obtained by lactic acid fermentation of biomass without using harmful substances that are difficult to environmentally treat such as catalysts and halogen compounds. By changing the residence time of the substrate and reaction solvent in the reactor, both acrylic acid and pyruvic acid can be synthesized and sorted with high selectivity and converted into these. This means that an object obtained from biomass or the like can be reduced and recycled as a raw material for the chemical industry, and the method of the present invention is useful as an ideal system in terms of environment or resource energy.
[0013]
As for acrylic acid synthesized by the method of the present invention, acrylic acid is a raw material for acrylic resin, and acrylic resin is used, for example, as a fuel piping tube for automobiles, a binder for plastic magnets, and the like. It is an important resin whose range of use is expanding. In addition, for pyruvic acid synthesized by the method of the present invention, pyruvic acid is widely used as an important intermediate in the metabolic pathway of in vivo substances for the study of metabolic pathways such as biochemical reagents. The method is useful as a method for converting the lactic acid obtained by biomass lactic acid fermentation or the like into these important components.
[0014]
Conventionally, a method of performing organic synthesis using high-temperature high-pressure water is known, but the present invention is based on lactic acid from lactic acid using high-temperature high-pressure water (350 ° C., 20 MPa or more) under specific high-temperature high-pressure conditions as a reaction solvent. It is possible to selectively synthesize acid and / or pyruvic acid, and in the method of the present invention, it is preferable to reach a desired set temperature in at least 0.02-0.05 seconds, whereby The elapsed time to the set reaction temperature is drastically shortened, and at the same time, the reaction time can be controlled in the order of 0.1 second, suppressing the occurrence of complicated reactions within the set time to the set temperature. Thus, acrylic acid and / or pyruvic acid can be synthesized with high selectivity. If the elapsed time to reach the set temperature is long, a complicated reaction occurs within the elapsed time, and it becomes difficult to synthesize the target compound with high selectivity. The present invention makes it possible to synthesize and sort these compounds from lactic acid with high selectivity without employing a catalyst by adopting the above-mentioned specific constituent requirements, and the present invention provides these specific reaction conditions. Unless the above is satisfied, the intended purpose cannot be achieved.
[0015]
【Example】
EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.
Example 1
(1) Synthesis of acrylic acid by batch method A substrate and a reaction solvent were sealed in a batch reactor by a batch reaction, and reacted in a molten salt bath. FIG. 1 shows a batch reactor and a molten salt bath. The reaction tube was SUS316 (outer diameter 1.27 cm, inner diameter 0.87 cm, length 17.7 cm), and the reaction tube volume was 10.5 cm 3 .
The reaction conditions with supercritical water were a reaction temperature of 400 ° C., a reaction pressure of 30 MPa, and a reaction time of 30 seconds. The set temperature arrival time in this case was about 30 seconds. An example of measuring the set temperature of the batch reactor is shown in FIG.
[0016]
Commercially available special grade reagents (Wako Pharmaceutical Co., Ltd.) were used for lactic acid and acrylic acid (acrylic acid) and pyruvic acid (known substances for analysis and identification). The amount of substrate charged into the reactor was 0.1 g, and 3.76 g of water required for the set pressure was sealed. After completion of the reaction, acrylic acid was separated and purified according to a conventional method, and the separated product was analyzed by LC and IR. As a result, it completely coincided with acrylic acid of a known substance in all spectra.
[0017]
(2) Confirmation of acrylic acid The LC chromatography retention time of the separated product coincides with that of a known substance, and the comparison result is shown in FIG. The detector was a photodiode array, and the ultraviolet absorption spectra of the respective compounds were completely matched. The IR spectrum of the reaction product was also consistent with the known substance. The yield of acrylic acid synthesized in this example was 6.3%, and the selectivity for acrylic acid was 98%.
[0018]
Example 2
(1) Synthesis of pyruvic acid by flow method Reaction conditions with supercritical water were a reaction temperature of 380 to 400 ° C. and a reaction pressure of 40 MPa. The internal volume of the reaction tube was 0.082 cm 3 (outer diameter 1/16 inch, inner diameter 0.5 mm, length 420 mm), and a commercially available special grade reagent was used as in the batch experiment of Example 1. The analysis of the separated product was performed in the same manner as in the batch experiment of Example 1. FIG. 4 shows an apparatus produced for use in a distribution experiment.
[0019]
(2) Acrylic acid and / or pyruvic acid synthesizer The maximum pressure of this apparatus was 50 MPa, and the maximum fluid temperature was 600 ° C.
The high pressure line from the pump used Hastelloy C-276 1/8 inch (inner diameter 1.6 mm) and 1/16 inch (inner diameter 0.5 mm) tubes. The high-temperature and high-pressure water was supplied by a high-temperature and high-pressure fluid water production apparatus under the conditions of 20 to 50 MPa and 400 to 700 ° C. The reactor unit 5 was provided with a thermocouple 7 for measuring the temperature in the reactor and a substrate inlet, and kept at a constant temperature. The reactor reaction tube was Hastelloy C-276, 1/16 inch (inner diameter 0.5 mm), 50 cm long, and its reaction tube volume was about 0.098 cm 3 .
[0020]
The entire reactor was temperature controlled within ± 0.5 ° C. The cooling unit 6 was cooled with cold water. The safety device of this system operates at 52 MPa. The pump 1a is a substrate continuous liquid feed pump, and the pump 1b is a water continuous liquid feed pump. All water used in this synthesizer was deoxygenated through helium. Commercially available special grade reagents (Wako Pure Chemical Industries) were used for lactic acid (lactic acid) as a substrate and acrylic acid (pyricic acid) and pyruvic acid known substances for analysis and identification. The reaction solution was collected at regular intervals and quantitatively analyzed by HP-1100 high performance liquid chromatography (254 nm).
[0021]
(3) The operation procedure of the operation device of the apparatus will be described by taking as an example a case where reaction conditions of 40 MPa and 380 ° C. are set. A 0.01M aqueous lactic acid solution was prepared in the tank 2a, and water was prepared in the tank 2b. After setting the electronic pressure regulator 10 to 40 MPa, the pumps 1a and 1b were operated at room temperature, and the amount of liquid fed was confirmed. Next, the high-temperature and high-pressure fluid water production apparatus was operated to heat the water sent by the pump 1b. The temperature was confirmed with a thermocouple 7 attached to the front of the reaction tube, and the heating temperature of the high-temperature and high-pressure fluid water production apparatus was controlled so that the reactor part would be 380 ° C. After the temperature of the reactor section was stabilized, sampling of the reaction solution was started. The temperature of the high-temperature high-pressure fluid water production apparatus main body at the time of collection was 514 ° C.
[0022]
The amount of liquid fed during synthesis was pump 1a: 1.7 ml / min (0.01 M lactic acid aqueous solution, pump 1b: 11.7 ml / min (water). Reaction temperature (reactor part) was 380 ° C., 390 When set to ℃ and 400 ℃, the temperature of the high-temperature and high-pressure fluid water production apparatus main body at the time of collection was 514 ℃, 526 ℃, and 543 ℃.
[0023]
(4) Confirmation of pyruvic acid The LC chromatographic retention time of the separated product coincides with that of known substances, and the comparison result is shown in FIG. The detector was a photodiode array, and the ultraviolet absorption spectra of the respective compounds were completely matched. The IR spectrum was also consistent with the known substance.
The analysis results are shown in Table 1.
[0024]
[Table 1]
Figure 0003873123
[0025]
As a result, the residence time was on the order of 0.2 seconds, 380 ° C., 40 MPa, the yield of pyruvic acid was about 2.2%, and the selectivity was about 80%.
[0026]
【The invention's effect】
As described above in detail, the present invention relates to a method for synthesizing and converting acrylic acid and / or pyruvic acid from lactic acid using high-temperature and high-pressure water (350 ° C. or higher, 20 MPa or higher) as a reaction solvent. According to the present invention, acrylic acid and / or pyruvic acid is used as a starting material, starting from lactic acid that is easily obtained by lactic acid fermentation of biomass, without using harmful substances that are difficult to environmentally treat such as catalysts and halogen compounds. It can be synthesized with high selectivity. In the method and the reaction apparatus of the present invention, both acrylic acid and pyruvic acid can be synthesized and sorted by changing the residence time of the substrate and reaction solvent in the reactor. This means that an object obtained from biomass or the like can be reduced and recycled as a raw material for the chemical industry, and the present invention is useful for providing an ideal system in terms of environment or resource energy. .
[Brief description of the drawings]
FIG. 1 shows a batch reactor.
FIG. 2 shows an example of measuring the set temperature of a batch reactor.
FIG. 3 shows a comparison with known substances by LC chromatography.
FIG. 4 shows an apparatus for synthesizing acrylic acid and / or pyruvic acid.
FIG. 5 shows a comparison with known substances by LC chromatography.
[Explanation of symbols]
1a Substrate continuous feed pump (0.001-100 ml / min)
1b Water continuous feed pump (0.001-100ml / min)
2a Substrate tank 2b Water tank 3 Check valve 4 High-temperature high-pressure water supply device 5 Reactor section 6 Cooling section 7 Thermocouple 8 Pressure gauge (Bourdon tube type)
9 Filter (2 microns)
10 Electronic pressure regulator Tescom ER3000ER (within ± 0.01 MPa)
11 Collector

Claims (7)

高温高圧水(350℃以上、20MPa以上)を反応溶媒として、乳酸からアクリル酸及び/又はピルビン酸を合成することを特徴とするアクリル酸及び/又はピルビン酸の製造方法。A method for producing acrylic acid and / or pyruvic acid, comprising synthesizing acrylic acid and / or pyruvic acid from lactic acid using high-temperature and high-pressure water (350 ° C. or higher, 20 MPa or higher) as a reaction solvent. 超臨界点以上(374℃以上、22.1MPa以上)の水を反応溶媒として使用する、請求項1に記載の方法。The method according to claim 1, wherein water at a supercritical point or higher (374 ° C. or higher, 22.1 MPa or higher) is used as a reaction solvent. 乳酸から、1段階の反応プロセスで、アクリル酸及び/又はピルビン酸を合成する、請求項1に記載の方法。The method according to claim 1, wherein acrylic acid and / or pyruvic acid is synthesized from lactic acid in a one-step reaction process. 流通式高温高圧反応装置の反応器に、基質及び反応溶媒を導入し、所定の設定反応温度でアクリル酸及び/又はピルビン酸を合成する、請求項1に記載の方法。The method according to claim 1, wherein a substrate and a reaction solvent are introduced into a reactor of a flow-type high-temperature and high-pressure reactor, and acrylic acid and / or pyruvic acid is synthesized at a predetermined set reaction temperature. 所定の設定反応温度に至る経過時間が少なくとも0.02−0.05秒である、請求項4に記載の方法。The method of claim 4, wherein the elapsed time to a predetermined set reaction temperature is at least 0.02-0.05 seconds. 高温高圧水供給装置により400−700℃及び20−50MPaの流体を反応器に供給して、反応器における基質及び反応溶媒の温度を所定の設定反応温度に少なくとも0.02−0.05秒で到達させる、請求項5に記載の方法。A fluid of 400-700 ° C. and 20-50 MPa is supplied to the reactor by a high-temperature high-pressure water supply device, and the temperature of the substrate and the reaction solvent in the reactor is set to a predetermined set reaction temperature at least 0.02-0.05 seconds. 6. The method of claim 5, wherein the method is reached. 反応器における基質及び反応溶媒の滞在時間を変化させることにより、アクリル酸及び/又はピルビン酸を合成仕分ける、請求項4に記載の方法。The method according to claim 4, wherein acrylic acid and / or pyruvic acid are synthesized and sorted by changing the residence time of the substrate and the reaction solvent in the reactor.
JP2002284658A 2002-09-30 2002-09-30 Method for synthesizing acrylic acid and / or pyruvic acid Expired - Lifetime JP3873123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002284658A JP3873123B2 (en) 2002-09-30 2002-09-30 Method for synthesizing acrylic acid and / or pyruvic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002284658A JP3873123B2 (en) 2002-09-30 2002-09-30 Method for synthesizing acrylic acid and / or pyruvic acid

Publications (2)

Publication Number Publication Date
JP2004115480A JP2004115480A (en) 2004-04-15
JP3873123B2 true JP3873123B2 (en) 2007-01-24

Family

ID=32278145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002284658A Expired - Lifetime JP3873123B2 (en) 2002-09-30 2002-09-30 Method for synthesizing acrylic acid and / or pyruvic acid

Country Status (1)

Country Link
JP (1) JP3873123B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204407A (en) * 2006-01-31 2007-08-16 National Institute Of Advanced Industrial & Technology Method and apparatus for producing nitrogen-containing compound
CN102596883B (en) * 2009-10-29 2015-03-25 三仪股份有限公司 Method for synthesizing unsaturated carboxylic acid and/or derivative of same
JP5764122B2 (en) * 2010-04-26 2015-08-12 株式会社日本触媒 Polyacrylic acid (salt), polyacrylic acid (salt) water-absorbing resin, and method for producing the same
JP6210508B2 (en) * 2012-10-19 2017-10-11 国立研究開発法人産業技術総合研究所 Method for producing furanone derivative or γ-butyrolactone derivative by high-temperature high-pressure water treatment of hydroxycarboxylic acid having hydrogen and hydroxyl group at α-position or oligomer thereof
JP6694641B2 (en) * 2015-06-30 2020-05-20 国立研究開発法人産業技術総合研究所 Process for producing α, β-unsaturated carboxylic acid such as acrylic acid and its derivatives

Also Published As

Publication number Publication date
JP2004115480A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
WO2008092115A1 (en) Conversion of glycerol from biodiesel production to allyl alcohol
WO2009040367A1 (en) Process for the preparation of fluorine containing organic compound
Koolman et al. Automated library synthesis of cyclopropyl boronic esters employing diazomethane in a tube-in-tube flow reactor
Bi et al. Catalyst-free and highly selective electrophilic mono-fluorination of acetoacetamides: facile and efficient preparation of 2-fluoroacetoacetamides in PEG-400
JP3873123B2 (en) Method for synthesizing acrylic acid and / or pyruvic acid
Gustafsson et al. Fluorination reactions in microreactors
Sedelmeier et al. An efficient and transition metal free protocol for the transfer hydrogenation of ketones as a continuous flow process
Snead et al. An improved Balz-Schiemann reaction enabled by ionic liquids and continuous processing
CN108047187B (en) Preparation method of xanthone
CN106554255A (en) A kind of preparation method of 2,6 orcin
JP5146928B2 (en) Method for producing Claisen rearrangement compound and synthesis apparatus thereof
Li et al. Continuous flow aminolysis under high temperature and pressure
Dennehy et al. Development of a continuous process for α-thio-β-chloroacrylamide synthesis with enhanced control of a cascade transformation
JP5369349B2 (en) Process for producing 5-hydroxymethyl-2-furfurylaldehyde and apparatus therefor
CN112876330B (en) Method for continuously preparing bibenzyl by using microchannel reaction device
Dennehy et al. Scale-up and Optimization of a Continuous Flow Synthesis of an α-Thio-β-chloroacrylamide
JP4784913B2 (en) Citral synthesis method and equipment
Mohammadzadeh et al. Lithium aluminum hydride in flow: overcoming exotherms, solids, and gas evolution en route to chemoselective reductions
CA2757056A1 (en) A process for dimethylation of active methylene groups
Itoh et al. Development of a fully automated continuous, integrated production system for all reaction processes of ibuprofen
TWI229065B (en) Chemical process for the preparation of 4-methyl-2,3,5,6-tetrafluorobenzyl alcohol
CN112441935B (en) Synthesis method of beta-aminoketone compound
US6258940B1 (en) Method for producing erythrose
Tomlin et al. A Survey of Continuous API Syntheses: Insights at the Interface of Chemistry and Chemical Engineering
WO2019107078A1 (en) Method for preparing ketol compound

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

R150 Certificate of patent or registration of utility model

Ref document number: 3873123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term