JP2007210910A - Method for producing acyl compound and apparatus therefor - Google Patents

Method for producing acyl compound and apparatus therefor Download PDF

Info

Publication number
JP2007210910A
JP2007210910A JP2006030325A JP2006030325A JP2007210910A JP 2007210910 A JP2007210910 A JP 2007210910A JP 2006030325 A JP2006030325 A JP 2006030325A JP 2006030325 A JP2006030325 A JP 2006030325A JP 2007210910 A JP2007210910 A JP 2007210910A
Authority
JP
Japan
Prior art keywords
reaction
temperature
water
pressure
acyl compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006030325A
Other languages
Japanese (ja)
Other versions
JP2007210910A5 (en
JP4836181B2 (en
Inventor
Yutaka Ikushima
豊 生島
Masahiro Sato
正大 佐藤
Hajime Kawanami
肇 川波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006030325A priority Critical patent/JP4836181B2/en
Publication of JP2007210910A publication Critical patent/JP2007210910A/en
Publication of JP2007210910A5 publication Critical patent/JP2007210910A5/ja
Application granted granted Critical
Publication of JP4836181B2 publication Critical patent/JP4836181B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Furan Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for continuously synthesizing an acyl compound from a carboxylic acid anhydride and a hetero-hydride in a short time in high yield and selectivity without using a catalyst and provide an apparatus and reaction composition for the synthesis. <P>SOLUTION: The method for the continuous and quick synthesis of an acyl compound from a carboxylic acid anhydride and a hetero-hydride in high yield and selectivity comprises the use of a subcritical fluid or supercritical fluid having a temperature of 100-400°C and a pressure of 0.1-40 MPa as a reaction solvent, introduction of a substrate and the reaction solvent into a high temperature and pressure flow reactor in the absence of catalyst and the adjustment of various conditions comprising the temperature and the amount of the carboxylic acid anhydride. The invention further provides an apparatus and reaction composition for the synthesis. The invention can provide an acyl compound having biocompatibility and useful as perfume, medicine, food, etc. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、アシル化合物、その製造方法及び装置に関するものであり、更に詳しくは、高温高圧状態の水あるいは酢酸、それらの混合溶媒を反応溶媒とし、無触媒かつ一段階でアシル化合物を製造する方法、その装置及びアシル化合物組成物に関するものである。本発明は、温度100〜400℃、圧力0.1〜40MPaの水あるいは酢酸、それらの混合溶媒を反応溶媒として、触媒無添加で無水カルボン酸とヘテロ水素化物からアシル化合物を一段階かつ短時間で、連続的に合成する方法、その装置及びその反応組成物を提供するものである。ここで、ヘテロ水素化物におけるヘテロ原子としては、酸素、硫黄、窒素が挙げられ、それぞれアルコール、チオール、アミンに対応する。   The present invention relates to an acyl compound, a production method and an apparatus thereof, and more specifically, a method for producing an acyl compound in a single step without using a high-temperature and high-pressure water or acetic acid or a mixed solvent thereof as a reaction solvent. , The apparatus and the acyl compound composition. In the present invention, an acyl compound from carboxylic anhydride and heterohydride is added in one step in a short time without adding a catalyst using water or acetic acid at a temperature of 100 to 400 ° C. and a pressure of 0.1 to 40 MPa as a reaction solvent. The present invention provides a continuous synthesis method, an apparatus thereof, and a reaction composition thereof. Here, examples of the hetero atom in the hetero hydride include oxygen, sulfur, and nitrogen, which correspond to alcohol, thiol, and amine, respectively.

アシル化合物は、原料、基質の機能性を改質向上し、更に、付加価値を付与するため、特に、香料、医薬品、食品等の分野において有用である。通常、アシル化合物を合成する場合、従来法では、非プロトン性有機溶媒に加えて酸・塩基触媒が必要であり、例えば、食品、医薬品に利用される場合、残存する有機溶媒、触媒は、それらの除去に大きな労力を必要とし、また、環境に影響を与えるのみならず生体に有害である等の問題点を有していた。本発明は、無水カルボン酸とアルコール、アミン、チオール等のヘテロ水素化物から、無触媒で、水を用いるプロセスのみでアシル化合物を合成する方法とその装置及びその反応組成物を提供するものであり、香料、医薬品や食品のみならず、化成品合成にも応用可能であり、アシル化合物を効率良く、短時間で、連続的に生産し、提供することを可能にするものである。   Acyl compounds are particularly useful in the fields of fragrances, pharmaceuticals, foods, etc., because they improve and improve the functionality of raw materials and substrates, and add added value. Usually, when synthesizing acyl compounds, the conventional method requires an acid / base catalyst in addition to the aprotic organic solvent. For example, when used in foods and pharmaceuticals, the remaining organic solvent and catalyst are It requires a lot of labor to remove the water and has problems such as being harmful to the living body as well as affecting the environment. The present invention provides a method for synthesizing an acyl compound from a carboxylic anhydride and a heterohydride such as alcohol, amine, thiol, etc., without using a catalyst, and a process using water alone, an apparatus therefor, and a reaction composition thereof. It can be applied not only to fragrances, pharmaceuticals and foods, but also to chemical synthesis, and enables the acyl compound to be produced and provided continuously in a short time efficiently.

従来、無水カルボン酸とヘテロ水素化物、アルコール、アミン、チオール等からアシル化合物を合成する方法が種々報告されている(例えば、非特許文献1)。ここで、アルコールと無水カルボン酸からアシル化合物を合成する技術を完成すれば、通常はアミンやチオール等の他のヘテロ水素化物からアシル化合物を合成することが可能となるため、特に、アルコールからアシル化合物を合成する技術の報告例は非常に多い。先行技術文献によれば、アシル化合物の合成法では、例えば、無溶媒あるいは非プロトン性有機溶媒中、触媒として、強酸である硫酸、TsOH(非特許文献2)、金属塩化物であるZnCl(非特許文献3)、CoCl(非特許文献4)、MeSiCl(非特許文献5のa)及びb))、塩基であるBuP(非特許文献6)、NaOAc(非特許文献7)、ピリジン(非特許文献8)等が使用されてきた。また、安定なアシル中間体形成を経由することでアシル基を活性化するDMAPの発見とその応用は革新的な技術とされた(特許文献の9a)及びb))。 Conventionally, various methods for synthesizing acyl compounds from carboxylic anhydrides and heterohydrides, alcohols, amines, thiols and the like have been reported (for example, Non-Patent Document 1). Here, if a technique for synthesizing an acyl compound from an alcohol and a carboxylic anhydride is completed, it is usually possible to synthesize an acyl compound from another heterohydride such as an amine or thiol. There are numerous reports of techniques for synthesizing compounds. According to the prior art documents, in the method of synthesizing acyl compounds, for example, sulfuric acid as a strong acid, TsOH (Non-patent Document 2), and ZnCl 2 (metal chloride) as a catalyst in a solvent-free or aprotic organic solvent. Non-patent document 3), CoCl 3 (non-patent document 4), Me 3 SiCl (a) and b) in Non-patent document 5), Bu 3 P as a base (non-patent document 6), NaOAc (non-patent document 7). ), Pyridine (Non-Patent Document 8), and the like have been used. In addition, the discovery of DMAP that activates acyl groups via the formation of a stable acyl intermediate and its application were regarded as innovative technologies (Patent Documents 9a) and b)).

ところが、DMAPは、1等量以上のアミンを利用することから、ルイス酸である金属トリフラートが提案され、MeSiOTf(非特許文献10)、Sc(OTf)(特許文献1、2及び非特許文献11のa)及びb))、In(OTf)(非特許文献12)、Bi(OTf)(非特許文献13)、Sc(NTf)(非特許文献14)、HNTf(特許文献1、2)が高収率でアシル化合物を与えることが示された。更に、V(OTf)が触媒活性を示さないが、そのオキソ化合物であるV(O)(OTf)が触媒活性があることが見出され、V=Oの触媒活性化が注目された(特許文献3、非特許文献15)。これらの触媒により、1,2級アルコールから95%以上の収率で、また、3級アルコールから80%以上の収率で、アシル化合物が得られると報告されている(図1)。 However, since DMAP uses one or more equivalents of amine, metal triflate, which is a Lewis acid, has been proposed. Me 3 SiOTf (Non-patent Document 10), Sc (OTf) 3 (Patent Documents 1, 2 and Non-Patent Documents) Patent Document 11 a) and b)), In (OTf) 3 (Non-Patent Document 12), Bi (OTf) 3 (Non-Patent Document 13), Sc (NTf) 3 (Non-Patent Document 14), HNTf 2 ( Patent Documents 1 and 2 have shown that acyl compounds can be obtained in high yield. Furthermore, V (OTf) 3 did not show catalytic activity, but its oxo compound V (O) (OTf) 2 was found to have catalytic activity, and attention was paid to catalytic activation of V = O. (Patent Literature 3, Non-Patent Literature 15). With these catalysts, it is reported that acyl compounds can be obtained with a yield of 95% or more from secondary alcohols and with a yield of 80% or more from tertiary alcohols (FIG. 1).

ここで、上記の先行技術文献では、有機塩基、ルイス酸、固体酸のような触媒に加えて、有機溶媒がアシル化にとって必要不可欠である。また、高温条件では不純物が生成し、選択率を低下させるという理由から、アシル化は常温で行うのが最適であり、高温条件は不適であるとされている(特許文献1、2)。一方、アシル化における溶媒としての水の可能性に関しては、通常、粗生成物にアシル化剤を添加し、無水条件でアシル化する方法が一般的であって、水はアシル化を阻害するとされ(特許文献4)、ある特許文献では、溶媒として水を列挙しているが、実際には使用されていない(特許文献1、2)。   Here, in the above prior art documents, in addition to a catalyst such as an organic base, a Lewis acid, and a solid acid, an organic solvent is indispensable for acylation. In addition, acylation is optimally performed at room temperature because impurities are generated under high temperature conditions and the selectivity is reduced, and high temperature conditions are considered inappropriate (Patent Documents 1 and 2). On the other hand, with regard to the possibility of water as a solvent in acylation, generally, an acylating agent is added to a crude product and acylated under anhydrous conditions, and water is considered to inhibit acylation. (Patent Document 4), in a certain patent document, water is listed as a solvent, but it is not actually used (Patent Documents 1 and 2).

ところが、アルドール反応に対する触媒活性と水中でのルイス酸の安定性との相関を元素ごと系統的に比較検討し、他の反応への適用可能性を示唆した例も存在する(非特許文献16)。更に、Bi(OTf)が触媒の場合には、脱水処理をしていない水を含有する、湿った有機溶媒が反応を促進し、収率向上が観察された文献も存在する(非特許文献13)。したがって、アシル化に対する溶媒としての水の有効性はこれまで明確ではなく、水の使用は実施されなかった。他方、Bi(OTf)を触媒とする場合の無溶媒条件では、収率が低下し、有機溶媒が必要であると報告されている(非特許文献13)。 However, there is an example in which the correlation between the catalytic activity for the aldol reaction and the stability of Lewis acid in water is systematically compared for each element and suggests the applicability to other reactions (Non-patent Document 16). . Furthermore, when Bi (OTf) 3 is a catalyst, there is a document in which a wet organic solvent containing water that has not been dehydrated promotes the reaction and an improvement in yield is observed (non-patent document). 13). Thus, the effectiveness of water as a solvent for acylation has not been clear so far and no water has been used. On the other hand, under the solvent-free conditions when Bi (OTf) 3 is used as a catalyst, it is reported that the yield decreases and an organic solvent is necessary (Non-patent Document 13).

反応後における後処理は、通常の触媒・有機溶媒中でのアシル化では、反応混合物に中和剤を添加して中和後、抽出溶媒と水あるいは飽和食塩水を加え、分液し、溶媒層は、その後、乾燥、溶媒除去、蒸留あるいは精留のプロセスを得て目的物を得るが、水層には、水の他に、触媒、有機溶媒、酢酸、基質、生成物、副生成物、無機物の複雑な反応系成分の混合物が含有される。ここで、水層からの触媒の分離が容易である場合には、回収再生され、再使用されるが、分離が困難である場合には、そのまま廃棄・処分される(図2)。無触媒・高温高圧水中でのアシル化の場合のように、水層に触媒、有機溶媒が含有されず、水、酢酸、生成物のみが含有されるならば、生成物をデカンテーションにより分離後、水層に対して共沸混合物を形成する物質を添加した共沸蒸留を行うことで、水と氷酢酸とに分離することが可能である(特許文献5)。このことは、この方法は、水の再生を可能にし、通常法に比べて環境低減型のプロセスであることを意味する(図3)。   After the reaction, the post-treatment is carried out by adding a neutralizing agent to the reaction mixture and neutralizing the reaction mixture, adding an extraction solvent and water or saturated saline, and separating the solution. The layer is then subjected to a process of drying, solvent removal, distillation or rectification to obtain the desired product. In addition to water, the layer is a catalyst, organic solvent, acetic acid, substrate, product, by-product. In addition, a mixture of inorganic complex reaction system components is contained. Here, when the separation of the catalyst from the aqueous layer is easy, it is recovered and regenerated and reused, but when the separation is difficult, it is discarded and disposed as it is (FIG. 2). If the water layer does not contain catalyst or organic solvent and contains only water, acetic acid, and product, as in the case of acylation in non-catalyst / high temperature / high pressure water, the product is separated by decantation. It is possible to separate into water and glacial acetic acid by performing azeotropic distillation in which a substance that forms an azeotrope is added to the aqueous layer (Patent Document 5). This means that this method makes it possible to regenerate water and is an environment-reducing type process compared to the normal method (FIG. 3).

特開平9−169690号公報JP 9-169690 A 特開平9−176081号公報Japanese Patent Laid-Open No. 9-176081 米国特許第6,541,659号明細書US Pat. No. 6,541,659 米国特許第6,005,122号明細書US Pat. No. 6,005,122 米国特許第5,980,696号明細書US Pat. No. 5,980,696 W. Green, P. G. Wuts, Protective Groups in Organic Synthesis, 3rd ed., Wiley, New York, 1999, p150W. Green, P. G. Wuts, Protective Groups in Organic Synthesis, 3rd ed., Wiley, New York, 1999, p150 A. C. Cope, E. C. Herrick, Org. Syn. Coll., Vol. 4, 1963 304A. C. Cope, E. C. Herrick, Org. Syn. Coll., Vol. 4, 1963 304 R. H. Baker, E. C. Herrick, Org. Syn. Coll., Vol. 3, 1955, 141R. H. Baker, E. C. Herrick, Org. Syn. Coll., Vol. 3, 1955, 141 S. Ahmad, J. Iqbal, Chem. Commun.,1987, 114S. Ahmad, J. Iqbal, Chem. Commun., 1987, 114 a) N. C. Braus, R. P. Sharma, J.N. Baruah, Tetrahedron Lett., 1983, 24, 1189; b) J. Org. Chem., 1987, 52, 5034a) N. C. Braus, R. P. Sharma, J. N. Baruah, Tetrahedron Lett., 1983, 24, 1189; b) J. Org. Chem., 1987, 52, 5034 E. Vedejs, N. S. Bannet, L. M. Conn, S. T. Diver, J.Org. Chem., 1993, 58, 7286E. Vedejs, N. S. Bannet, L. M. Conn, S. T. Diver, J. Org. Chem., 1993, 58, 7286 The Miner Laboratories, Org. Syn. Coll. Vol. 1, 1941, 285.The Miner Laboratories, Org. Syn. Coll. Vol. 1, 1941, 285. Joseph B. Lambert, Gen Tai Wang, Rodney B. Finzel, and Douglas H. Teramura , J. Am. Chem. Soc., 1987, 109. 7838Joseph B. Lambert, Gen Tai Wang, Rodney B. Finzel, and Douglas H. Teramura, J. Am. Chem. Soc., 1987, 109. 7838 a) G. Hofle,W. Steglich, H. Vorbruggen., Angrew. Chem. Int. Ed., 1978, 17, 569、 b) A. Hassner, L. R. Krepski, V. Alexanian, Tetrahedron, 1978, 34, 2069a) G. Hofle, W. Steglich, H. Vorbruggen., Angrew. Chem. Int. Ed., 1978, 17, 569, b) A. Hassner, L. R. Krepski, V. Alexanian, Tetrahedron, 1978, 34, 2069 P. A. Procopiu, S. P. D. Baugh,S. S. Flack, G. G. A. Inglis, J.Org., Chem., 1998, 63, 2342P. A. Procopiu, S. P. D. Baugh, S. S. Flack, G. G. A. Inglis, J. Org., Chem., 1998, 63, 2342 a) K. Ishihara, M. Kubota, H. Kurihara, H. Yamamoto, J. Org. Chem., 1996, 61, 4560、b) K. Ishihara, M. Kubota, H. Kurihara, H. Yamamoto, J. Am.Chem. Soc., 1995, 117, 4413a) K. Ishihara, M. Kubota, H. Kurihara, H. Yamamoto, J. Org. Chem., 1996, 61, 4560, b) K. Ishihara, M. Kubota, H. Kurihara, H. Yamamoto, J Am.Chem. Soc., 1995, 117, 4413 K. K. Chauhan, C. G. Frost, I. Love, D. Waite, Synlett, 1999, 1743K. K. Chauhan, C. G. Frost, I. Love, D. Waite, Synlett, 1999, 1743 J. Otera, A. Orita, C. Tanahashi, A. Kakuta, Angrew. Chem. Int. Ed., 2000, 39, 2877J. Otera, A. Orita, C. Tanahashi, A. Kakuta, Angrew. Chem. Int. Ed., 2000, 39, 2877 K. Ishihara, M. Kubota, Synlett, 1996, 265K. Ishihara, M. Kubota, Synlett, 1996, 265 C-T. Chen, J-H. Kuo, C-H. Li, N. B. Barhate, S-W. Hon, T-W. Li, S-D. Chao, C-C. Liu, Y-C. Li, I-H. Chang, J-S. Lin, C-J. Liu and Y-C. Chou, Org. Lett., 2001, 3, 3729CT. Chen, JH. Kuo, CH. Li, NB Barhate, SW. Hon, TW. Li, SD. Chao, CC. Liu, YC. Li, IH. Chang, JS. Lin, CJ. Liu and YC. Chou , Org. Lett., 2001, 3, 3729 S. Kobayashi, S.Nagayama, T.Busujima, J. Am. Chem. Soc., 1998, 120, 8287S. Kobayashi, S. Nagayama, T. Busujima, J. Am. Chem. Soc., 1998, 120, 8287

このように、従来法では、アシル化の場合、触媒及び有機溶媒が必要であるため、製品の品質上、反応後の分離操作において、触媒、有機溶媒やカルボン酸の除去が必要であり、分離操作後の水層は廃棄物となりやすく、廃液の問題を生じる。更に、環境に対する影響や生体への有害性への配慮から、また、ヒトが経口する食品・医薬品の安全性から、触媒・有機溶媒のより高度分離が要求される。これらの高度分離に必要なコストは、合成操作と同程度であり、望ましくは触媒と有機溶媒を使用しない方が良い。以上のことから、当該技術分野においては、簡単、低コスト、環境低減型の合成プロセスで、分離操作が容易で、かつ反応系成分の高度分離が可能で、触媒や有機溶媒の残存しないアシル化合物の連続的合成を可能とする合成手法が強く要請されていた。   Thus, in the conventional method, in the case of acylation, a catalyst and an organic solvent are required. Therefore, in the separation operation after the reaction, removal of the catalyst, the organic solvent and the carboxylic acid is necessary for the product quality. The water layer after the operation tends to be waste, which causes a problem of waste liquid. Furthermore, in consideration of the influence on the environment and harmfulness to living organisms, and the safety of foods and pharmaceuticals that are orally administered by humans, higher separation of catalysts and organic solvents is required. The cost required for these advanced separations is comparable to that of the synthesis operation, and it is desirable not to use a catalyst and an organic solvent. In view of the above, in this technical field, an acyl compound that is simple, low-cost, environment-reduction-type synthesis process, can be easily separated, and can highly separate reaction system components, and no catalyst or organic solvent remains. There has been a strong demand for a synthesis method that enables continuous synthesis of.

このような状況の中で、本発明者らは、上記従来技術に鑑みて、低コストで、環境に優しい簡単な高速合成プロセスで、上記アシル化合物を連続的に合成することができる新しい合成方法を開発することを目標として鋭意研究を積み重ねた結果、高温高圧水、又は亜臨界水、又は超臨界水を反応溶媒とすることで、無触媒で無水カルボン酸とヘテロ水素化物からアシル化合物を合成できることを見出し、更に研究を重ねて、本発明を完成するに至った。本発明は、無水カルボン酸とヘテロ水素化物からアシル化合物を無触媒で、短時間の反応条件下で連続的に合成する方法、その装置及びその反応組成物を提供することを目的とするものである。   Under such circumstances, in view of the prior art, the present inventors have developed a new synthesis method capable of continuously synthesizing the acyl compound by a simple high-speed synthesis process that is low in cost and friendly to the environment. As a result of intensive research with the goal of developing a high-temperature, high-pressure water, subcritical water, or supercritical water as a reaction solvent, an acyl compound can be synthesized from carboxylic anhydride and heterohydride without catalyst. After finding out what can be done and further research, the present invention has been completed. An object of the present invention is to provide a method of continuously synthesizing an acyl compound from a carboxylic anhydride and a heterohydride under a non-catalytic condition under a short reaction condition, an apparatus thereof, and a reaction composition thereof. is there.

上記課題を解決するための本発明は、無水カルボン酸とヘテロ水素化物との反応で合成される反応組成物において、触媒及び有機溶媒の残存がなく、生体適合性を有することを特徴とするアシル化合物組成物、である。このアシル化合物組成物は、カルボン酸無水物とヘテロ水素化物からの反応物であり、触媒、有機溶媒の残存がなく、生体適合性を有することを特徴としている。また、本発明は、無水カルボン酸とヘテロ水素化物からアシル化合物を合成する方法において、高温高圧状態の亜臨界流体ないし超臨界流体を反応溶媒として使用し、触媒及び有機溶媒を用いることなく、無水カルボン酸とヘテロ水素化物から一段階の合成反応でアシル化合物を選択的、連続的に合成することを特徴とするものである。ここで、上記ヘテロ水素化物におけるヘテロ原子又は置換ヘテロ原子は、酸素(O)、硫黄(S)、窒化水素(NH)、又はアルキル置換窒素(NR’)であることを好ましい態様としている。また、本発明は、基質の反応点に隣接する1級、2級、3級の骨格に対して、収率を向上させる温度又は無水カルボン酸量の条件を対応させるアシル化合物の製造方法、である。   The present invention for solving the above problems is characterized in that a reaction composition synthesized by a reaction of a carboxylic anhydride and a heterohydride has no residual catalyst and organic solvent and is biocompatible. A compound composition. This acyl compound composition is a reaction product from a carboxylic acid anhydride and a hetero hydride, and is characterized by having no catalyst or organic solvent remaining and having biocompatibility. Further, the present invention provides a method for synthesizing an acyl compound from a carboxylic anhydride and a heterohydride, using a high-temperature and high-pressure subcritical fluid or supercritical fluid as a reaction solvent, and without using a catalyst and an organic solvent. It is characterized in that an acyl compound is selectively and continuously synthesized from a carboxylic acid and a heterohydride by a one-step synthesis reaction. Here, it is preferable that the hetero atom or the substituted hetero atom in the hetero hydride is oxygen (O), sulfur (S), hydrogen nitride (NH), or alkyl-substituted nitrogen (NR ′). The present invention also relates to a method for producing an acyl compound in which the temperature or the amount of carboxylic acid anhydride for improving the yield corresponds to the primary, secondary or tertiary skeleton adjacent to the reaction point of the substrate. is there.

また、本発明の方法は、(1)高温高圧状態の亜臨界ないし超臨界流体を反応溶媒とし、有機溶媒及び触媒を用いることなく、カルボン酸無水物とヘテロ水素化物から一段階の合成反応でアシル化合物を選択的に合成すること、(2)高温高圧状態の亜臨界ないし超臨界流体を反応溶媒とすること、(3)温度100〜400℃、圧力0.1〜40MPaの亜臨界流体ないし超臨界流体を反応溶媒として使用すること、(5)亜臨界流体ないし超臨界流体として、水、酢酸、それ以外の無機溶媒、もしくは有機溶媒、又は無機溶媒と有機溶媒の混合溶媒を用いること、(6)流通式高温高圧装置に、基質及び反応溶媒を導入し、反応時間を3〜60秒の範囲で変化させることで合成反応を実施すること、を好ましい態様としている。   In addition, the method of the present invention is (1) a one-step synthesis reaction from a carboxylic acid anhydride and a heterohydride without using an organic solvent and a catalyst, using a subcritical or supercritical fluid in a high temperature and high pressure state as a reaction solvent. Selectively synthesizing an acyl compound, (2) using a subcritical or supercritical fluid in a high temperature and high pressure state as a reaction solvent, (3) a subcritical fluid having a temperature of 100 to 400 ° C. and a pressure of 0.1 to 40 MPa. Using a supercritical fluid as a reaction solvent, (5) using water, acetic acid, another inorganic solvent, or an organic solvent, or a mixed solvent of an inorganic solvent and an organic solvent as a subcritical fluid or supercritical fluid, (6) A preferred mode is to introduce a substrate and a reaction solvent into a flow-type high-temperature and high-pressure apparatus, and to carry out the synthesis reaction by changing the reaction time in the range of 3 to 60 seconds.

また、本発明は、水を送液する水送液ポンプ、水加熱用コイル、高温高圧フローセル、基質を送液する反応物送液ポンプ、炉体、反応物を炉体に導入する反応物導入管、反応溶液を排出する排出液ライン、冷却フランジ及び圧力を設定する背圧弁を具備していることを特徴とするアシル化合物合成装置、である。更に、本発明は、上記方法によりアシル化後、回収水溶液に水を注入してデカンテーションし、油/水二層溶液に分離後、アシル化合物を含む油層を分液回収する一方、水層からは酢酸と水を共沸蒸留によって分離し、回収することを特徴とする反応系成分の簡易な連続分離法、である。   The present invention also includes a water feed pump for feeding water, a water heating coil, a high-temperature and high-pressure flow cell, a reactant feed pump for feeding a substrate, a furnace body, and a reactant introduction for introducing the reactant into the furnace body. An acyl compound synthesizer comprising a tube, a drain line for discharging a reaction solution, a cooling flange, and a back pressure valve for setting a pressure. Furthermore, the present invention, after acylation by the above method, decantation by injecting water into the recovered aqueous solution, separating into an oil / water bilayer solution, and separating and recovering the oil layer containing the acyl compound, Is a simple continuous separation method of reaction system components characterized by separating and recovering acetic acid and water by azeotropic distillation.

次に、本発明について更に詳細に説明する。
本発明は、アシル化合物の合成において、化1のカルボン酸無水物と化2のヘテロ水素化物から、化3に示すように、アシル化合物を、一段階の反応プロセスで、触媒無添加、短時間の反応条件下で、選択的かつ連続的に合成することを特徴とするものである。本発明では、上記反応の溶媒として、温度100〜400℃、圧力0.1〜40MPaの亜臨界流体、超臨界流体が用いられ、好適には亜臨界水が用いられる。また、反応条件として、好適には、温度200〜250℃、圧力5MPa、反応時間が60秒以下、好適には3〜60秒の範囲であり、反応時間は、より好適には10秒程度に調整される。化1の式中、Rはアルキル基及びアルキル基以外のヘテロ原子を含む置換基であり、化2の式中、R1,R2,R3はアルキル基及びアルキル基以外のヘテロ原子を含む置換基であり、Qは炭素及び炭素以外のヘテロ原子、置換ヘテロ原子である。Qはヘテロ原子又は置換ヘテロ原子であり、具体的には、酸素(O)、硫黄(S)、窒化水素(NH)、アルキル置換窒素(NR’)、である。
Next, the present invention will be described in more detail.
According to the present invention, in the synthesis of an acyl compound, an acyl compound is converted from a carboxylic acid anhydride of Chemical Formula 1 and a heterohydride of Chemical Formula 2 into a acyl compound as shown in Chemical Formula 3 in a one-step reaction process without adding a catalyst. It is characterized by being synthesized selectively and continuously under the reaction conditions of In the present invention, a subcritical fluid or a supercritical fluid having a temperature of 100 to 400 ° C. and a pressure of 0.1 to 40 MPa is used as a solvent for the reaction, and subcritical water is preferably used. The reaction conditions are preferably a temperature of 200 to 250 ° C., a pressure of 5 MPa, a reaction time of 60 seconds or less, preferably 3 to 60 seconds, and more preferably about 10 seconds. Adjusted. In the formula of R 1, R is an alkyl group and a substituent containing a hetero atom other than an alkyl group. In the formula of R 2, R 1, R 2 and R 3 are substituents containing a hetero atom other than an alkyl group and an alkyl group. And Q is carbon, a heteroatom other than carbon, or a substituted heteroatom. Q 1 is a hetero atom or a substituted hetero atom, specifically oxygen (O), sulfur (S), hydrogen nitride (NH), or alkyl-substituted nitrogen (NR ′).

Figure 2007210910
Figure 2007210910

Figure 2007210910
Figure 2007210910

Figure 2007210910
Figure 2007210910

本発明においては、上記基質及び反応溶媒を反応容器に導入して、所定の反応時間で合成反応を実施するものである。したがって、上記反応器としては、例えば、バッチ式の高温高圧反応容器、及び連続型の流通式高温高圧反応装置を使用することができるが、本発明は、これら反応装置の型式に特に制限されるものでない。   In the present invention, the substrate and the reaction solvent are introduced into a reaction vessel, and a synthesis reaction is performed in a predetermined reaction time. Therefore, as the reactor, for example, a batch-type high-temperature high-pressure reaction vessel and a continuous flow-type high-temperature high-pressure reactor can be used, but the present invention is particularly limited to the types of these reactors. Not a thing.

本発明の方法では、反応溶媒として、上記高温高圧状態にある亜臨界流体、超臨界流体が用いられるが、具体的には、亜臨界二酸化炭素(常温以上、0.1MPa以上)、亜臨界水(100℃以上、0.1MPa以上)、亜臨界メタノール(100℃以上、0.1MPa以上)、亜臨界エタノール(100℃以上、0.1MPa以上)、超臨界二酸化炭素(34℃以上、7.38MPa以上)、超臨界水(375℃以上、22MPa以上)、超臨界メタノール(239℃以上、8.1MPa以上)、超臨界エタノール(241℃以上、6.1MPa以上)、同じ状態の混合溶媒が例示され、好適には、亜臨界水(200−250℃、5MPa以上)が用いられる。反応溶媒としては、上記以外の有機溶媒や無機溶媒を任意の割合で含むことができ、具体的には、有機溶媒として、アセトン、アセトニトリル、テトラヒドロフラン等を含む反応溶媒、また、無機溶媒として、酢酸、アンモニア等を含む反応溶液に代替することも可能である。   In the method of the present invention, the subcritical fluid and supercritical fluid in the high temperature and high pressure state are used as the reaction solvent. Specifically, subcritical carbon dioxide (normal temperature or higher, 0.1 MPa or higher), subcritical water is used. (100 ° C. or higher, 0.1 MPa or higher), subcritical methanol (100 ° C. or higher, 0.1 MPa or higher), subcritical ethanol (100 ° C. or higher, 0.1 MPa or higher), supercritical carbon dioxide (34 ° C. or higher, 7. 38 MPa or more), supercritical water (375 ° C. or more, 22 MPa or more), supercritical methanol (239 ° C. or more, 8.1 MPa or more), supercritical ethanol (241 ° C. or more, 6.1 MPa or more), a mixed solvent in the same state It is illustrated and subcritical water (200-250 degreeC, 5 Mpa or more) is used suitably. As the reaction solvent, an organic solvent or an inorganic solvent other than the above can be contained in any ratio. Specifically, as the organic solvent, a reaction solvent containing acetone, acetonitrile, tetrahydrofuran or the like, and as an inorganic solvent, acetic acid is used. It is also possible to substitute a reaction solution containing ammonia or the like.

本発明では、上記亜臨界流体、超臨界流体の反応溶媒の組成、温度及び圧力条件、基質の種類及びその使用量、反応時間を調整することにより、短時間で、効率良く、反応生成物を合成することができる。また、本発明では、例えば、基質及び反応溶媒を流通式高温高圧装置に導入し、それらの反応時間を60秒以下、好適には3〜60秒の範囲で変えることにより、所定の反応生成物を合成することができる。上記反応条件は、使用する出発原料、目的とする反応生成物の種類等により適宜設定することができる。   In the present invention, by adjusting the composition of the reaction solvent of the subcritical fluid and supercritical fluid, the temperature and pressure conditions, the type and amount of the substrate used, and the reaction time, the reaction product can be efficiently produced in a short time. Can be synthesized. In the present invention, for example, a predetermined reaction product is obtained by introducing a substrate and a reaction solvent into a flow-type high-temperature and high-pressure apparatus and changing the reaction time within 60 seconds or less, preferably 3 to 60 seconds. Can be synthesized. The reaction conditions can be appropriately set depending on the starting material used, the type of the desired reaction product, and the like.

本発明の方法では、従来、触媒存在下で行われていた、カルボン酸無水物とヘテロ水素化物からのアシル化合物の合成を、高速で連続的に、しかも、無触媒で実施できるため、長時間を要するプロセスを効率化することができる。また、本発明の方法では、従来用いられていた触媒を全く使用しないので、反応後の溶液の中和処理、無害化処理等の後処理・処分の必要がなく、環境負荷低減を達成可能である。更に、反応後の分離プロセスはデカンテーションのような静置分離操作のみであるため、触媒や有機溶媒の分離回収の必要性はなく、生成物の分離が容易である。本発明によれば、触媒無添加で、10秒程度の短時間で、基質が一級アルコールの場合、選択率100%、収率99%で、また、二級アルコールの場合、選択率100%、収率98%以上で、また、三級アルコールの場合、選択率82%以上、収率75%以上で、更に、フェノール誘導体の場合、選択率100%以上、収率97%以上で、対応するアシル化合物を合成することができる。本発明のアシル化合物の合成方法は、例えば、香料、医薬品、食品に利用可能な、生体適合性を有するアシル化合物を効率良く、大量に高速で連続的に生産することを可能にするものとして有用である。   In the method of the present invention, the synthesis of an acyl compound from a carboxylic acid anhydride and a hetero hydride, which has heretofore been performed in the presence of a catalyst, can be carried out continuously at high speed and without a catalyst. Can be made more efficient. In addition, since the catalyst of the present invention is not used at all in the method of the present invention, there is no need for post-treatment and disposal such as neutralization treatment and detoxification treatment of the solution after the reaction, and environmental load reduction can be achieved. is there. Furthermore, since the separation process after the reaction is only a stationary separation operation such as decantation, there is no need to separate and recover the catalyst and the organic solvent, and the product can be easily separated. According to the present invention, without addition of a catalyst, in a short time of about 10 seconds, when the substrate is a primary alcohol, the selectivity is 100% and the yield is 99%. When the substrate is a secondary alcohol, the selectivity is 100%. In the case of a tertiary alcohol, the selectivity is 82% or more and the yield is 75% or more, and in the case of a phenol derivative, the selectivity is 100% or more and the yield is 97% or more. Acyl compounds can be synthesized. The method for synthesizing an acyl compound of the present invention is useful, for example, as being capable of efficiently and continuously producing a large amount of a biocompatible acyl compound that can be used in perfumes, pharmaceuticals, and foods. It is.

従来、二酸化炭素等の亜臨界流体、超臨界流体を利用して、リパーゼや触媒を用いてアシル化を実施した例が報告されている。しかし、カルボン酸無水物とヘテロ水素化物から、無触媒条件の亜臨界水プロセスでアシル化合物を高収率で合成できることを実証した例はなく、本発明の対象とするアシル化合物の合成反応法は、本発明者らによって初めてその有効性が実証されたものである。しかも、従来法でカルボン酸無水物とヘテロ水素化物から合成されるアシル化合物は、触媒及び有機溶媒の残存が問題とされていたが、本発明でカルボン酸無水物とヘテロ水素化物から合成される反応組成物は、触媒及び有機溶媒の残存がなく、高い生体適合性を有しており、本発明のアシル化合物組成物は、従来製品にない利点を有している。   Conventionally, examples of acylation using a lipase or a catalyst using a subcritical fluid such as carbon dioxide or a supercritical fluid have been reported. However, there is no example that demonstrates that an acyl compound can be synthesized from a carboxylic acid anhydride and a heterohydride in a non-catalytic subcritical water process in a high yield, and the method for synthesizing an acyl compound targeted by the present invention is as follows. The effectiveness of the present invention has been demonstrated for the first time by the present inventors. In addition, acyl compounds synthesized from carboxylic acid anhydrides and heterohydrides by conventional methods have been problematic in terms of remaining catalyst and organic solvent, but are synthesized from carboxylic acid anhydrides and heterohydrides in the present invention. The reaction composition has no residual catalyst and organic solvent and has high biocompatibility, and the acyl compound composition of the present invention has advantages not found in conventional products.

本発明では、無触媒条件で無水カルボン酸とヘテロ水素化物の合成反応を実現するために、例えば、基質をあらかじめ溶媒に溶解した溶液を送液し、亜臨界流体、超臨界流体中の反応経過を、高温高圧赤外フローセル(図4)により赤外分光分析によって観察する流通型高温高圧赤外分光その場測定装置(図5)を用いることも可能である。しかしながら、高温高圧赤外フローセルを窓なし高温高圧フローセル(図6)に交換し、超臨界流体の流れに対して直接反応物の流れを接触反応するように配管配置した方が、高温高圧赤外フローセルにおけるセル窓付近におけるリーク等の問題が発生せず、より高流量で短時間に合成を実施することが可能である。これらのことから、後記する実施例では、この窓なし高温高圧フローセルを装着した装置を用いた。   In the present invention, in order to realize a synthesis reaction of carboxylic anhydride and heterohydride under non-catalytic conditions, for example, a solution in which a substrate is previously dissolved in a solvent is fed, and a reaction process in a subcritical fluid and a supercritical fluid is performed. It is also possible to use a flow-type high-temperature high-pressure infrared spectroscopic in-situ measurement apparatus (FIG. 5) for observing the sample by infrared spectroscopic analysis using a high-temperature high-pressure infrared flow cell (FIG. 4). However, it is better to replace the high-temperature and high-pressure infrared flow cell with a windowless high-temperature and high-pressure flow cell (FIG. 6) and arrange the piping so that the reactant flow directly contacts the supercritical fluid flow. There is no problem such as leakage near the cell window in the flow cell, and the synthesis can be performed in a short time at a higher flow rate. For these reasons, in the examples described later, an apparatus equipped with this windowless high-temperature and high-pressure flow cell was used.

ここで、窓なし高温高圧フローセル本体(図6)は、例えば、市販のSUS316製のクロス1にネジを切り、次に説明する温度センサーシース(図7の12)に固定できるようにすることで構築することができる。炉体雰囲気の温度を測定せずに、セル温度を示すように温度センサーを調節し、シース固定ネジとオネジ3でネジ止めする。SUS316の配管4はクロス1にワンリングフェラル付きのテーパーネジ2でクロス1に接続される。もちろん、クロス1は、エンドネジで一つの流路を塞ぐことによってティーとしても使用可能である。   Here, the windowless high-temperature and high-pressure flow cell main body (FIG. 6) can be fixed to a temperature sensor sheath (12 in FIG. 7) described below by, for example, screwing a commercially available SUS316 cloth 1. Can be built. Without measuring the temperature of the furnace body atmosphere, adjust the temperature sensor to indicate the cell temperature, and screw with the sheath fixing screw and male screw 3. The pipe 4 of SUS316 is connected to the cross 1 with a taper screw 2 with a one-ring ferrule on the cross 1. Of course, the cloth 1 can also be used as a tee by closing one flow path with an end screw.

図7は、窓なし高温高圧フローセルを装着した流通式高温高圧反応装置の炉体部分であり、反応装置本体である。これを、図5の流通型高温高圧流体その場赤外分光測定装置の斜線位置に設置すれば、赤外分光は測定できないものの、温度、圧力、流量が可変な亜臨界・超臨界流体接触合成反応装置として利用可能となる。なお、この場合における反応の観察は、排出後の水溶液を採取し、GC−FIDにより、生成物の純品を用いた検量線から定量分析を実施し、GC/MSにより定性分析を実施して行うことができる。   FIG. 7 is a reactor body portion of a flow-type high temperature and high pressure reactor equipped with a windowless high temperature and high pressure flow cell, and is a reactor main body. If this is installed in the shaded position of the flow-type high-temperature and high-pressure fluid in-situ infrared spectrometer shown in Fig. 5, the infrared spectroscopy cannot be measured, but subcritical / supercritical fluid contact synthesis with variable temperature, pressure and flow rate. It can be used as a reactor. In this case, the reaction was observed by collecting the discharged aqueous solution, performing quantitative analysis from a calibration curve using a pure product by GC-FID, and performing qualitative analysis by GC / MS. It can be carried out.

次に、図7の流通式高温高圧反応装置本体について説明すると、水送液ポンプ5から水が送液され、冷却フランジ8を通過後、炉体13へ送液される。管コイル9を通過後、高温高圧状態で温度センサー11が挿入された温度センサーシース12に支持固定された高温高圧フローセル14に導入される。一方、反応物が反応物送液ポンプ6から送液され、冷却フランジ8を通過後、炉体13へ送液される。コイル状反応物導入管10を通過後、温度センサーシース12に固定された高温高圧フローセル14に導入される。また、洗浄水がポンプ7により送液され、配管16を通過後、ティー18に導入され、洗浄用に用いられる。高温高圧フローセルを通過した溶液は、配管17を通過後、冷却フランジ8を通過して、炉体外を空冷されながら通過する。その後、圧力を設定している背圧弁19からの排出液を採取し、サンプルとする。ここで、反応物や生成物を含む排出液の加熱による影響を排除する場合には、急速昇温を実施し、反応物導入ライン10と排出液ライン17の配管をできるだけ短く、水加熱用コイル9をできるだけ長くすることが望ましい。本発明は、これらに限らず、これらと同効の反応装置であれば同様に使用することができる。   Next, the flow-type high-temperature and high-pressure reactor main body of FIG. 7 will be described. Water is fed from the water feed pump 5, passes through the cooling flange 8, and then sent to the furnace body 13. After passing through the tube coil 9, it is introduced into a high temperature / high pressure flow cell 14 supported and fixed to a temperature sensor sheath 12 in which a temperature sensor 11 is inserted in a high temperature / high pressure state. On the other hand, the reactant is fed from the reactant feed pump 6, passes through the cooling flange 8, and then sent to the furnace body 13. After passing through the coiled reactant introduction tube 10, it is introduced into a high-temperature and high-pressure flow cell 14 fixed to the temperature sensor sheath 12. Further, the washing water is fed by the pump 7, passes through the pipe 16, is introduced into the tee 18, and is used for washing. The solution that has passed through the high-temperature and high-pressure flow cell passes through the piping 17, then passes through the cooling flange 8, and passes outside the furnace body while being air-cooled. Thereafter, the discharged liquid from the back pressure valve 19 that has set the pressure is collected and used as a sample. Here, in order to eliminate the influence of heating of the effluent containing the reactants and products, rapid heating is performed, the piping of the reactant introduction line 10 and the effluent line 17 is made as short as possible, and the water heating coil It is desirable to make 9 as long as possible. The present invention is not limited to these, and any reaction apparatus having the same effect as these can be used in the same manner.

本発明により、次にような効果が奏される。
(1)カルボン酸無水物とヘテロ水素化物から高速で連続的にアシル化合物を合成することができる。
(2)触媒及び有機溶媒を用いないアシル化合物の合成プロセスを実現できる。
(3)そのため、触媒及び有機溶媒の残存がなく、生体に対して有害性のない安全性の高い生体適合性アシル化合物組成物を提供できる。
(4)生成物が水に溶解しない場合には、排出された油水分散水溶液に対して更に水を注入することで、洗浄しつつ油水二層に分液し、高純度の生成物を容易に回収できる。
(5)香料、医薬品、食品として有用な生体適合性を有するアシル化合物の新しい大量生産プロセスとして、既存の生産プロセスに代替し得る新しい生産技術を提供できる。
The present invention has the following effects.
(1) An acyl compound can be synthesized continuously at high speed from a carboxylic acid anhydride and a heterohydride.
(2) An acyl compound synthesis process without using a catalyst and an organic solvent can be realized.
(3) Therefore, it is possible to provide a highly safe biocompatible acyl compound composition having no catalyst and organic solvent remaining and not harmful to the living body.
(4) When the product does not dissolve in water, water is injected into the discharged oil-water dispersion aqueous solution to separate the oil and water into two layers while washing, thereby easily producing a high-purity product. Can be recovered.
(5) As a new mass production process of a biocompatible acyl compound useful as a fragrance, a medicine, and a food, a new production technique that can replace the existing production process can be provided.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

実施例1〜9
本実施例では、合成条件を、無触媒、圧力5MPa、滞留時間9.9秒の条件で一定として温度の効果を検討とした。図7の流通式高温高圧反応装置の本体(主要部分)を図5の流通型高温高圧流体その場赤外分光測定装置に設置した装置に、まず、純水を流量5.0ml/minで送液し、所定温度、圧力5MPaに設定し、亜超臨界水とした。その後、トルエンを内標準として添加した(ベンジルアルコールの5mol%)、無水酢酸/ベンジルアルコール(モル比:1.1/1)混合溶液0.5ml/minをポンプで送液した(混合後の水溶液濃度:0.53mol/kg)。
Examples 1-9
In the present example, the effect of temperature was examined with the synthesis conditions being constant under the conditions of no catalyst, a pressure of 5 MPa, and a residence time of 9.9 seconds. First, pure water is sent at a flow rate of 5.0 ml / min to the apparatus in which the main body (main part) of the flow-type high-temperature and high-pressure reactor shown in FIG. 7 is installed in the flow-type high-temperature and high-pressure fluid in situ infrared spectrometer shown in FIG. Submerged and set to a predetermined temperature and a pressure of 5 MPa to obtain subsupercritical water. Thereafter, toluene was added as an internal standard (5 mol% of benzyl alcohol), and 0.5 ml / min of a mixed solution of acetic anhydride / benzyl alcohol (molar ratio: 1.1 / 1) was pumped (aqueous solution after mixing) Concentration: 0.53 mol / kg).

基質送液後、40分後の背圧弁からの排出水溶液を1ml採取した。加熱炉から背圧弁出口までの配管内容積を反応体積とした場合、反応時間は9.9秒であった。回収された1mlの水溶液に1mlのアセトンを加え振とうし、組成をGC/MS分析計(Hewlett Packard社製HP6890、カラムHP−5、注入口温度150℃、初期カラム温度60℃(保持時間2分)、昇温速度10℃/分、最終カラム温度250℃(保持時間2分))で実施し、得られたマススペクトルはWilleyデータベースで一致度90%以上で確認した。また、定量及び市販試薬がある場合の定性は、トルエンを内標準としてGC−FID(Agilent社製GC6890,カラムDB−WAX、注入口温度230℃、スプリット比5.61、初期カラム温度50℃(保持時間0.5分)、昇温速度20℃/分、最終カラム温度230℃(保持時間3分))で実施した。   1 ml of the aqueous solution discharged from the back pressure valve 40 minutes after the substrate feeding was collected. When the internal volume of the pipe from the heating furnace to the back pressure valve outlet was the reaction volume, the reaction time was 9.9 seconds. 1 ml of acetone was added to 1 ml of the collected aqueous solution and shaken, and the composition was determined by GC / MS analyzer (HP 6890, Hewlett Packard, column HP-5, inlet temperature 150 ° C., initial column temperature 60 ° C. (retention time 2 Min), a heating rate of 10 ° C./min, and a final column temperature of 250 ° C. (holding time 2 minutes)), and the obtained mass spectrum was confirmed with a Willy database with a concordance of 90% or higher. In addition, quantification and qualitativeness in the presence of commercially available reagents are GC-FID (GC 6890, Agilent DB DB-WAX, inlet temperature 230 ° C., split ratio 5.61, initial column temperature 50 ° C. with toluene as an internal standard ( Holding time 0.5 minutes), temperature rising rate 20 ° C./min, final column temperature 230 ° C. (holding time 3 minutes)).

温度25℃、50℃、100℃、125℃、150℃、200℃、250℃、300℃、350℃の9点の温度を検討した結果、温度200℃において、酢酸ベンジルの収率が99%と極大となり、このとき、転化率が99%、選択率100%で酢酸ベンジル(BnOAc)が得られた。酢酸は120%の収率であった。この結果を図10、図11の10)に示す。なお、(100%−BnOH%)は反応で消費されたベンジルアルコール(BnOH)を意味し、150〜200℃付近で酢酸ベンジルの収率と良く対応している。   As a result of examining nine temperatures of 25 ° C., 50 ° C., 100 ° C., 125 ° C., 150 ° C., 200 ° C., 250 ° C., 300 ° C., and 350 ° C., the yield of benzyl acetate was 99% at a temperature of 200 ° C. At this time, benzyl acetate (BnOAc) was obtained with a conversion of 99% and a selectivity of 100%. Acetic acid was a yield of 120%. The results are shown in FIG. 10 and FIG. In addition, (100% -BnOH%) means benzyl alcohol (BnOH) consumed in the reaction, and corresponds well with the yield of benzyl acetate at around 150 to 200 ° C.

また、得られた生成物水溶液は油水分散状態で白濁しているが、水を20ml/minで3分注入し、デカンテーションすると油水2層溶液となり、下層の油層に酢酸を含まない酢酸ベンジルを、上層の水相に酢酸水溶液を得た(GCにより確認)。このことは、生成物が水に溶解しない場合、反応終了後の油水分散水溶液に、水を更に注入することで、油水二層に変化してアシル化合物と酢酸水溶液を分液することができることを示している。酢酸水溶液は、触媒や有機溶媒を含まないため、酢酸と共沸化合物を作る化合物(例えば、酢酸ターシャリーブチル等)を添加することにより、共沸蒸留により水と氷酢酸に分留することができるため、膨大なエネルギーを必要とする精留を実施しなくても良い。   In addition, the obtained aqueous solution of the product is clouded in an oil-water dispersion state, but when water is injected at 20 ml / min for 3 minutes and decanted, it becomes an oil-water two-layer solution, and benzyl acetate not containing acetic acid is added to the lower oil layer. An aqueous acetic acid solution was obtained in the upper aqueous phase (confirmed by GC). This means that when the product does not dissolve in water, it is possible to separate the acyl compound and the aqueous acetic acid solution by changing water into two layers by further injecting water into the oil-water dispersion aqueous solution after completion of the reaction. Show. Since an acetic acid aqueous solution does not contain a catalyst or organic solvent, it can be fractionated into water and glacial acetic acid by azeotropic distillation by adding a compound that forms an azeotropic compound with acetic acid (for example, tertiary butyl acetate). Therefore, it is not necessary to perform rectification that requires enormous energy.

実施例10
本実施例では、合成条件を、無触媒、温度200℃、圧力5MPa、滞留時間9.9秒の条件で一定として無溶媒の場合を検討した。図7の流通式高温高圧反応装置の本体(主要部分)を図5の流通型高温高圧流体その場赤外分光測定装置に設置した装置に、まず、温度200℃、圧力5MPaに設定し、窓なしセル(ティー1)の配管コイル9との接続穴をエンドで塞ぎ、ポンプ5により配管コイル9への流路を塞ぎ、純水は流量5.0ml/minで、炉体外のティー18へ送液した。その後、トルエンを内標準として添加した(ベンジルアルコールの5mol%)、無水酢酸/ベンジルアルコール(モル比:1.1/1)混合溶液0.5ml/minをポンプで送液した(混合後の水溶液濃度:0.53mol/kg)。
Example 10
In this example, the synthesis conditions were constant under the conditions of no catalyst, a temperature of 200 ° C., a pressure of 5 MPa, and a residence time of 9.9 seconds. The main body (main part) of the flow-type high-temperature and high-pressure reactor shown in FIG. 7 is set in the flow-type high-temperature and high-pressure fluid in situ infrared spectrometer shown in FIG. None The connection hole of the cell (tee 1) with the piping coil 9 is closed at the end, the flow path to the piping coil 9 is closed by the pump 5, and pure water is sent to the tee 18 outside the furnace body at a flow rate of 5.0 ml / min. Liquid. Thereafter, toluene was added as an internal standard (5 mol% of benzyl alcohol), and 0.5 ml / min of a mixed solution of acetic anhydride / benzyl alcohol (molar ratio: 1.1 / 1) was pumped (aqueous solution after mixing) Concentration: 0.53 mol / kg).

基質送液後、40分後の背圧弁からの排出水溶液を1ml採取した。加熱炉から背圧弁出口までの配管内容積を反応体積とした場合、反応時間は9.9秒であった。回収された1mlの水溶液に1mlのアセトンを加え振とうし、組成をGC/MS分析計(Hewlett Packard社製HP6890、カラムHP−5、注入口温度150℃、初期カラム温度60℃(保持時間2分)、昇温速度10℃/分、最終カラム温度250℃(保持時間2分))で実施し、得られたマススペクトルはWilleyデータベースで一致度90%以上で確認した。また、定量及び市販試薬がある場合の定性は、トルエンを内標準としてGC−FID(Agilent社製GC6890,カラムDB−WAX、注入口温度230℃、スプリット比5.61、初期カラム温度50℃(保持時間0.5分)、昇温速度20℃/分、最終カラム温度230℃(保持時間3分))で実施した。   1 ml of the aqueous solution discharged from the back pressure valve 40 minutes after the substrate feeding was collected. When the internal volume of the pipe from the heating furnace to the back pressure valve outlet was the reaction volume, the reaction time was 9.9 seconds. 1 ml of acetone was added to 1 ml of the collected aqueous solution and shaken, and the composition was determined by GC / MS analyzer (HP 6890, Hewlett Packard, column HP-5, inlet temperature 150 ° C., initial column temperature 60 ° C. (retention time 2 Min), a heating rate of 10 ° C./min, and a final column temperature of 250 ° C. (holding time 2 minutes)), and the obtained mass spectrum was confirmed with a Willy database with a concordance of 90% or higher. In addition, quantification and qualitativeness in the presence of commercially available reagents are GC-FID (GC 6890, Agilent DB DB-WAX, inlet temperature 230 ° C., split ratio 5.61, initial column temperature 50 ° C. with toluene as an internal standard ( Holding time 0.5 minutes), temperature rising rate 20 ° C./min, final column temperature 230 ° C. (holding time 3 minutes)).

その結果、転化率は88%、選択率100%、収率88%で酢酸ベンジルが得られた。その結果を図11の11)に示す。   As a result, benzyl acetate was obtained with a conversion rate of 88%, a selectivity of 100%, and a yield of 88%. The result is shown in FIG. 11 at 11).

実施例11
本実施例では、流通型反応装置との比較のために、バッチ式反応装置でアシル化を実施した。図8に示したように、外径1/2インチ、肉厚1.65ミリのSUS316チューブ(40)に、一方をSwagelock 1/2インチキャップ(41)、他端を温度センサ(42)を挿入したSwagelock 1/16−1/2インチユニオン(43)を装着し、バッチ型反応管(内容積10.0cm)とした。これに、200℃、5MPaになるように水を8.69g、ベンジルアルコールを0.415g、無水酢酸を0.435g入れ、直ちに、塩浴(硝酸カリウム/硝酸ナトリウム=1/1)に浸漬した。図9の温度経過を得て、200℃に到達してから15秒後(塩浴浸漬から80秒後)、塩浴より取り出し、氷水に浸漬急冷して反応を停止した。
Example 11
In this example, acylation was carried out in a batch reactor for comparison with a flow reactor. As shown in FIG. 8, a SUS316 tube (40) having an outer diameter of 1/2 inch and a wall thickness of 1.65 mm, one with a Swagelock 1/2 inch cap (41) and the other end with a temperature sensor (42). The inserted Swagelock 1 / 16-1 / 2 inch union (43) was attached to form a batch-type reaction tube (internal volume 10.0 cm 3 ). To this, 8.69 g of water, 0.415 g of benzyl alcohol and 0.435 g of acetic anhydride were added so as to be 200 ° C. and 5 MPa, and immediately immersed in a salt bath (potassium nitrate / sodium nitrate = 1/1). After obtaining the temperature course of FIG. 9, 15 seconds after reaching 200 ° C. (80 seconds after immersion in the salt bath), it was removed from the salt bath, immersed in ice water and quenched to stop the reaction.

回収した水溶液の1mlにアセトン1mlを加え振とうし、組成をGC/MS分析計(Hewlett Packard社製HP6890、カラムHP−5、注入口温度150℃、初期カラム温度60℃(保持時間2分)、昇温速度10℃/分、最終カラム温度250℃(保持時間2分))で実施し、得られたマススペクトルはWilleyデータベースで一致度90%以上で確認した。また、定量及び市販試薬がある場合の定性は、トルエンを内標準としてGC−FID(Agilent社製GC6890,カラムDB−WAX、注入口温度230℃、スプリット比5.61、初期カラム温度50℃(保持時間0.5分)、昇温速度20℃/分、最終カラム温度230℃(保持時間3分))で実施した。   1 ml of acetone is added to 1 ml of the collected aqueous solution and shaken, and the composition is determined by GC / MS analyzer (HP 6890 manufactured by Hewlett Packard, column HP-5, inlet temperature 150 ° C., initial column temperature 60 ° C. (holding time 2 minutes)) The temperature was increased at a rate of 10 ° C./min and the final column temperature was 250 ° C. (holding time 2 minutes). The obtained mass spectrum was confirmed by the Willy database with a coincidence of 90% or higher. In addition, quantification and qualitativeness in the presence of commercially available reagents are GC-FID (GC 6890, Agilent DB DB-WAX, inlet temperature 230 ° C., split ratio 5.61, initial column temperature 50 ° C. with toluene as an internal standard ( Holding time 0.5 minutes), temperature rising rate 20 ° C./min, final column temperature 230 ° C. (holding time 3 minutes)).

その結果、転化率は18%、選択率95%、収率17%で酢酸ベンジルが得られた。その結果を図11の12)に示す。   As a result, benzyl acetate was obtained with a conversion of 18%, a selectivity of 95%, and a yield of 17%. The result is shown in FIG.

実施例12〜48
本実施例では、各種基質を用いてアシル化を実施した。合成条件を、無触媒、圧力5MPa、滞留時間9.9秒の条件で一定として温度とカルボン酸無水物量の好適な条件を求めた。図7の流通式高温高圧反応装置の本体(主要部分)を図5の流通型高温高圧流体その場赤外分光測定装置に設置した装置に、まず、純水を流量5.0ml/minで送液し、所定温度、圧力5MPaに設定し、亜超臨界水とした。その後、基質が固体又は無水カルボン酸との相溶性がない場合には、酢酸を加え基質を溶解し、トルエンを内標準として添加した(基質の5mol%)、無水酢酸/基質/酢酸(モル比:1.1〜40/1/0〜45)混合溶液の0.5ml/minをポンプで送液した(混合後の水溶液濃度:0.01〜0.53mol/kg)。
Examples 12-48
In this example, acylation was carried out using various substrates. The synthesis conditions were constant under the conditions of no catalyst, a pressure of 5 MPa, and a residence time of 9.9 seconds, and suitable conditions of temperature and carboxylic acid anhydride amount were determined. First, pure water is sent at a flow rate of 5.0 ml / min to the apparatus in which the main body (main part) of the flow-type high-temperature and high-pressure reactor shown in FIG. 7 is installed in the flow-type high-temperature and high-pressure fluid in situ infrared spectrometer shown in FIG. Submerged and set to a predetermined temperature and a pressure of 5 MPa to obtain subsupercritical water. Thereafter, when the substrate is not compatible with solid or carboxylic anhydride, acetic acid is added to dissolve the substrate, and toluene is added as an internal standard (5 mol% of the substrate). Acetic anhydride / substrate / acetic acid (molar ratio) : 1.1-40 / 1 / 0-45) 0.5 ml / min of the mixed solution was fed by a pump (aqueous solution concentration after mixing: 0.01-0.53 mol / kg).

送液後、40分後の背圧弁からの排出水溶液を1ml採取した。加熱炉から背圧弁出口までの配管内容積を反応体積とした場合、反応時間は9.9秒であった。回収された1mlの水溶液に1mlのアセトンを加え振とうし、組成をGC/MS分析計(Hewlett Packard社製HP6890、カラムHP−5、注入口温度150℃、初期カラム温度60℃(保持時間2分)、昇温速度10℃/分、最終カラム温度250℃(保持時間2分))で実施し、得られたマススペクトルはWilleyデータベースで一致度90%以上で確認した。また、定量及び市販試薬がある場合の定性は、トルエンを内標準としてGC−FID(Agilent社製GC6890,カラムDB−WAX、注入口温度230℃、スプリット比5.61、初期カラム温度50℃(保持時間0.5分)、昇温速度20℃/分、最終カラム温度230℃(保持時間3分))で実施した。   After the feeding, 1 ml of the aqueous solution discharged from the back pressure valve 40 minutes later was collected. When the internal volume of the pipe from the heating furnace to the back pressure valve outlet was the reaction volume, the reaction time was 9.9 seconds. 1 ml of acetone was added to 1 ml of the collected aqueous solution and shaken, and the composition was determined by GC / MS analyzer (HP 6890, Hewlett Packard, column HP-5, inlet temperature 150 ° C., initial column temperature 60 ° C. (retention time 2 Min), a heating rate of 10 ° C./min, and a final column temperature of 250 ° C. (holding time 2 minutes)), and the obtained mass spectrum was confirmed with a Willy database with a concordance of 90% or higher. In addition, quantification and qualitativeness in the presence of commercially available reagents are GC-FID (GC 6890, Agilent DB DB-WAX, inlet temperature 230 ° C., split ratio 5.61, initial column temperature 50 ° C. with toluene as an internal standard ( Holding time 0.5 minutes), temperature rising rate 20 ° C./min, final column temperature 230 ° C. (holding time 3 minutes)).

基質がアルコールの場合の結果を表1〜4に示す。表1ではベンジルアルコール、フェネチルアルコール誘導体のアシル化を、表2では脂肪族アルコール、フルフリルアルコール、プロパルギルアルコール誘導体、カルボン酸基を有するメチル乳酸、及びクエン酸のアシル化を、表3ではフェノール誘導体のアシル化を、表4ではテルペンアルコール誘導体のアシル化を実施した。この結果から、最良の反応条件は、基質の化学構造に強く依存しており、1級アルコールの場合には、基質に対して無水カルボン酸1.1モル等量、温度200℃、圧力5MPa、滞留時間9.9秒の条件で、選択率100%、収率99%で対応するアシル化合物が得られた(実施例10、13、22、27、39)。また、2級アルコールの場合には、基質に対して無水カルボン酸1.1モル等量、温度225℃、圧力5MPa、滞留時間9.9秒の条件で、選択率100%、収率98%以上で対応するアシル化合物が得られた(実施例24、41、43)。   The results when the substrate is alcohol are shown in Tables 1-4. Table 1 shows acylation of benzyl alcohol and phenethyl alcohol derivatives, Table 2 shows acylation of aliphatic alcohol, furfuryl alcohol, propargyl alcohol derivatives, methyl lactic acid having a carboxylic acid group, and citric acid, and Table 3 shows phenol derivatives. Table 4 shows the acylation of terpene alcohol derivatives. From this result, the best reaction conditions strongly depend on the chemical structure of the substrate, and in the case of a primary alcohol, 1.1 molar equivalent of carboxylic anhydride to the substrate, temperature 200 ° C., pressure 5 MPa, The corresponding acyl compounds were obtained with a selectivity of 100% and a yield of 99% under the conditions of a residence time of 9.9 seconds (Examples 10, 13, 22, 27, 39). In the case of a secondary alcohol, the selectivity is 100% and the yield is 98% under the conditions of 1.1 mol equivalent of carboxylic anhydride, temperature 225 ° C., pressure 5 MPa, residence time 9.9 seconds with respect to the substrate. The corresponding acyl compound was thus obtained (Examples 24, 41, 43).

フェノール誘導体の場合には、無水カルボン酸1.1モル等量、温度250℃、圧力5MPa、滞留時間9.9秒の条件で、選択率100%、収率97%以上で対応するアシル化合物が得られた(実施例34、35、37、38)。ところが、3級アルコールの場合には、225℃以上の温度、5MPa以上の圧力では水酸基又はアシル基が脱離しやすくなるため、オレフィン誘導体を生成しやすくなる。そのため、無水カルボン酸を4モル等量以上に添加し、より低温の200℃、圧力5MPa、滞留時間9.9秒の条件で反応を行うことで、選択率82〜99%、収率75〜99%で対応するアシル化合物が得られた(実施例19、26、31、32、46、48)。   In the case of a phenol derivative, the corresponding acyl compound with a selectivity of 100% and a yield of 97% or more under the conditions of 1.1 molar equivalent of carboxylic anhydride, temperature 250 ° C., pressure 5 MPa, residence time 9.9 seconds. Obtained (Examples 34, 35, 37, 38). However, in the case of a tertiary alcohol, since a hydroxyl group or an acyl group is easily detached at a temperature of 225 ° C. or higher and a pressure of 5 MPa or higher, an olefin derivative is easily generated. Therefore, by adding 4 mol equivalent or more of carboxylic anhydride and performing the reaction under the conditions of a lower temperature of 200 ° C., a pressure of 5 MPa, and a residence time of 9.9 seconds, the selectivity is 82 to 99% and the yield is 75 to 99% of the corresponding acyl compound was obtained (Examples 19, 26, 31, 32, 46, 48).

Figure 2007210910
Figure 2007210910

Figure 2007210910
Figure 2007210910

Figure 2007210910
Figure 2007210910

Figure 2007210910
Figure 2007210910

以上の実施例から、高温高圧水を反応溶媒として、無触媒でアシル化合物が高収率で合成可能であることが明らかとなった。また、アシル化後、回収水溶液に水を注入してデカンテーションし、油/水二層溶液に分離後、アシル化合物を含む油層を分液回収する一方、水層からは酢酸と水を共沸蒸留によって分離し、回収する簡易な連続分離法も実施可能であることが明らかとなった。   From the above examples, it became clear that acyl compounds can be synthesized in high yield without catalyst using high-temperature and high-pressure water as a reaction solvent. After acylation, water is injected into the recovered aqueous solution and decanted. After separation into an oil / water bilayer solution, the oil layer containing the acyl compound is separated and recovered, while acetic acid and water are azeotroped from the aqueous layer. It became clear that a simple continuous separation method of separating and recovering by distillation was also feasible.

以上詳述したように、本発明は、高温高圧流体を反応溶媒として、カルボン酸無水物及びヘテロ水素化物から有機溶媒を用いることなく、無触媒でアシル化合物を合成する方法、その装置及びその反応組成物に係るものであり、従来法では、ヘテロ水素化物とカルボン酸無水物からアシル化合物の合成は、有機溶媒に触媒を添加し、数時間の反応で実施する必要があったが、本発明では、亜臨界流体、超臨界流体を用いることにより、触媒無添加で、有機溶媒を使用することなく、高速で連続的にアシル化合物を合成することが可能である。このことは、香料、医薬品、食品として有用な生体適合性を有するアシル化合物を短時間で、大量に連続的に生産できるというメリットをもたらす。また、アシル化後、回収水溶液に水を注入してデカンテーションし、油/水二層溶液に分離後、アシル化合物を含む油層を分液回収する一方、水層からは酢酸と水を共沸蒸留によって分離し、回収する反応系成分の簡易な連続分離法により、氷酢酸と水を分離し、水をリサイクルすることが可能である。これらのことから、合成・分離プロセスを単純化させることで、プロセスの初期コスト及びランニングコストを圧縮することが可能である。更に、本発明では、中和処理の後処理も不必要であり、環境調和型生産が可能となる。本発明は、例えば、香料、医薬品、食品として有用な生体適合性を有するアシル化合物の新しい大量生産プロセスとして、既存の生産プロセスに代替し得るものである。   As described above in detail, the present invention provides a method for synthesizing an acyl compound without catalyst without using an organic solvent from a carboxylic acid anhydride and a hetero hydride using a high-temperature and high-pressure fluid as a reaction solvent, an apparatus thereof, and a reaction thereof. According to the conventional method, the synthesis of an acyl compound from a heterohydride and a carboxylic acid anhydride had to be carried out by adding a catalyst to an organic solvent and performing the reaction for several hours. Then, by using a subcritical fluid or a supercritical fluid, it is possible to synthesize an acyl compound continuously at a high speed without adding a catalyst and without using an organic solvent. This brings about the merit that acyl compounds having biocompatibility useful as perfumes, pharmaceuticals, and foods can be continuously produced in large quantities in a short time. After acylation, water is injected into the recovered aqueous solution and decanted. After separation into an oil / water bilayer solution, the oil layer containing the acyl compound is separated and recovered, while acetic acid and water are azeotroped from the aqueous layer. By simple continuous separation of reaction system components separated and recovered by distillation, it is possible to separate glacial acetic acid and water and recycle the water. From these facts, it is possible to compress the initial cost and running cost of the process by simplifying the synthesis / separation process. Furthermore, in the present invention, post-treatment of the neutralization treatment is unnecessary, and environmentally conscious production is possible. The present invention can replace an existing production process as a new mass production process of a biocompatible acyl compound useful as, for example, a fragrance, a pharmaceutical, or a food.

触媒・有機溶媒用いるヘテロ水素化物のアシル化を示す。This shows acylation of heterohydride using a catalyst / organic solvent. 触媒・有機溶媒を用いるアシル化の後処理フローチャートを示す。The post-process flowchart of acylation using a catalyst and an organic solvent is shown. 無触媒・水溶媒を用いるアシル化の後処理フローチャートを示す。The post-process flowchart of acylation using a non-catalyst and a water solvent is shown. 高温高圧赤外フローセルを示す。1 shows a high temperature high pressure infrared flow cell. 実施例で用いた流通型高温高圧流体その場赤外分光測定装置を示す。1 shows a flow-type high-temperature and high-pressure fluid in-situ infrared spectrometer used in the examples. 窓なし高温高圧フローセルを示す。1 shows a high temperature and high pressure flow cell without windows. 実施例で用いた流通式高温高圧反応装置の主要部分を示す。The main part of the flow-type high temperature / high pressure reactor used in the examples is shown. 実施例で用いたバッチ型反応器を示す。The batch type reactor used in the Example is shown. 実施例におけるバッチ型反応器内外の温度経過を示す。The temperature course inside and outside the batch reactor in the examples is shown. 実施例におけるアシル化の温度依存性を示す。The temperature dependence of acylation in an Example is shown. 実施例におけるバッチ型亜臨界水、流通型無溶媒、流通型亜臨界水の各条件によるアシル化の比較を示す。A comparison of acylation under each condition of batch-type subcritical water, flow-type solventless, and flow-type subcritical water in Examples is shown.

符号の説明Explanation of symbols

1 ティー又はクロス(片側口φ4mmネジ切り)
2 φ4mm×5.0mmL六角ネジ
3 ワンリングフェラル付オネジ
4 SUS316チューブ
5 水送液ポンプ
6 反応物送液ポンプ
7 洗浄水送液ポンプ
8 冷却フランジ(冷却水が循環する)
9 水加熱コイル
10 反応物導入管
11 温度センサ
12 温度センサーシース
13 炉体
14 高温高圧フローセル(通常昇温ではティー型、急速昇温ではクロス型)
15 ZnSe窓
16 溶媒導入管
17 排出配管
18 ティー
19 背圧弁
21 水溶液
22 洗浄水
23 水溶液ポンプ
24 洗浄用純水送液ポンプ
25 炉体加熱システム
26 炉体
27 高温高圧赤外フローセル
28 冷却水(入口)
29 冷却水(出口)
30 背圧弁
31 排出水溶液受器
32 可動鏡
33 可動鏡
34 干渉計
35 光源
36 赤外レーザー
37 MCT受光器
38 TGS受光器
39 解析モニター
40 SUS316チューブ
41 キャップ
42 温度センサ
43 ユニオン
1 Tee or cloth (one side opening φ4mm threaded)
2 φ4mm × 5.0mmL hexagon screw 3 Male screw with one ring ferrule 4 SUS316 tube 5 Water feed pump 6 Reactant feed pump 7 Washing water feed pump 8 Cooling flange (cooling water circulates)
9 Water heating coil 10 Reactant introduction pipe 11 Temperature sensor 12 Temperature sensor sheath 13 Furnace body 14 High-temperature high-pressure flow cell (Tee type for normal temperature rise, cross-type for rapid temperature rise)
15 ZnSe window 16 Solvent introduction pipe 17 Discharge pipe 18 Tee 19 Back pressure valve 21 Aqueous solution 22 Washing water 23 Aqueous solution pump 24 Cleaning pure water feed pump 25 Furnace heating system 26 Furnace 27 High-temperature high-pressure infrared flow cell 28 Cooling water (inlet) )
29 Cooling water (exit)
30 Back pressure valve 31 Discharged aqueous solution receiver 32 Movable mirror 33 Movable mirror 34 Interferometer 35 Light source 36 Infrared laser 37 MCT light receiver 38 TGS light receiver 39 Analysis monitor 40 SUS316 tube 41 Cap 42 Temperature sensor 43 Union

Claims (10)

無水カルボン酸とヘテロ水素化物との反応で合成される反応組成物において、触媒及び有機溶媒の残存がなく、生体適合性を有することを特徴とするアシル化合物組成物。   An acyl compound composition characterized in that a reaction composition synthesized by a reaction of a carboxylic anhydride and a heterohydride has no compatibility with a catalyst and an organic solvent and has biocompatibility. カルボン酸無水物とヘテロ水素化物からアシル化合物を合成する方法において、高温高圧状態の亜臨界ないし超臨界流体を反応溶媒として使用することを特徴とするアシル化合物の製造方法。   A process for synthesizing an acyl compound from a carboxylic acid anhydride and a heterohydride, comprising using a subcritical or supercritical fluid in a high temperature and high pressure state as a reaction solvent. 上記方法において、触媒を用いることなく、無水カルボン酸とヘテロ水素化物から一段階の合成反応でアシル化合物を選択的に合成する、請求項2記載の方法。   The method according to claim 2, wherein in the method, an acyl compound is selectively synthesized from a carboxylic anhydride and a heterohydride by a one-step synthesis reaction without using a catalyst. ヘテロ水素化物におけるヘテロ原子又は置換ヘテロ原子が、酸素(O)、硫黄(S)、窒化水素(NH)、又はアルキル置換窒素(NR’)である、請求項2又は3記載の方法。   The method according to claim 2 or 3, wherein the heteroatom or substituted heteroatom in the heterohydride is oxygen (O), sulfur (S), hydrogen nitride (NH), or alkyl-substituted nitrogen (NR '). 基質の反応点に隣接する1級、2級、3級の骨格に対して、収率を向上させる温度又は無水カルボン酸量の条件を対応させる、請求項2又は3記載の方法。   The method according to claim 2 or 3, wherein the primary or secondary or tertiary skeleton adjacent to the reaction point of the substrate is associated with a temperature or carboxylic anhydride content condition for improving the yield. 温度100〜400℃、圧力0.1〜40MPaの亜臨界流体ないし超臨界流体を反応溶媒として使用する、請求項2又は3記載の方法。   The method according to claim 2 or 3, wherein a subcritical fluid or supercritical fluid having a temperature of 100 to 400 ° C and a pressure of 0.1 to 40 MPa is used as a reaction solvent. 亜臨界流体ないし超臨界流体として、水、酢酸、それ以外の無機溶媒、もしくは有機溶媒、又は無機溶媒と有機溶媒の混合溶媒を用いる、請求項2又は3記載の方法。   The method according to claim 2 or 3, wherein water, acetic acid, other inorganic solvent, or organic solvent, or a mixed solvent of an inorganic solvent and an organic solvent is used as the subcritical fluid or supercritical fluid. 流通式高温高圧装置に、基質及び反応溶媒を導入し、反応時間を3〜60秒の範囲で変化させることで合成反応を実施する、請求項2又は3記載の方法。   The method according to claim 2 or 3, wherein the synthesis reaction is carried out by introducing a substrate and a reaction solvent into a flow-type high-temperature and high-pressure apparatus and changing the reaction time in the range of 3 to 60 seconds. 水を送液する水送液ポンプ、水加熱用コイル、高温高圧フローセル、基質を送液する反応物送液ポンプ、炉体、反応物を炉体に導入する反応物導入管、反応溶液を排出する排出液ライン、冷却フランジ及び圧力を設定する背圧弁を具備していることを特徴とするアシル化合物合成装置。   Water feed pump for feeding water, coil for water heating, high-temperature and high-pressure flow cell, reactant feed pump for feeding substrate, furnace body, reactant introduction pipe for introducing reactant into the furnace body, discharging reaction solution An acyl compound synthesizing apparatus comprising a drain line for cooling, a cooling flange, and a back pressure valve for setting a pressure. 請求項2又は3に記載の方法によりアシル化後、回収水溶液に水を注入してデカンテーションし、油/水二層溶液に分離後、アシル化合物を含む油層を分液回収する一方、水層からは酢酸と水を共沸蒸留によって分離し、回収することを特徴とする反応系成分の簡易な連続分離法。   After acylation by the method according to claim 2 or 3, water is injected into the recovered aqueous solution and decanted, and after separation into an oil / water bilayer solution, an oil layer containing an acyl compound is separated and recovered, while an aqueous layer Is a simple continuous separation method of reaction system components characterized in that acetic acid and water are separated and recovered by azeotropic distillation.
JP2006030325A 2006-02-07 2006-02-07 Acyl compound production method and apparatus Expired - Fee Related JP4836181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006030325A JP4836181B2 (en) 2006-02-07 2006-02-07 Acyl compound production method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006030325A JP4836181B2 (en) 2006-02-07 2006-02-07 Acyl compound production method and apparatus

Publications (3)

Publication Number Publication Date
JP2007210910A true JP2007210910A (en) 2007-08-23
JP2007210910A5 JP2007210910A5 (en) 2007-10-04
JP4836181B2 JP4836181B2 (en) 2011-12-14

Family

ID=38489668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006030325A Expired - Fee Related JP4836181B2 (en) 2006-02-07 2006-02-07 Acyl compound production method and apparatus

Country Status (1)

Country Link
JP (1) JP4836181B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291096A (en) * 2006-03-31 2007-11-08 National Institute Of Advanced Industrial & Technology Selective sequential polyacylation and device therefor
JP2012121851A (en) * 2010-12-09 2012-06-28 Mitsubishi Rayon Co Ltd Method for producing carboxylic acid monomer
JP2013517253A (en) * 2010-01-13 2013-05-16 ディーエスエム アイピー アセッツ ビー.ブイ. Acylation using microreaction system
CN110078594A (en) * 2019-04-19 2019-08-02 新昌县泰如科技有限公司 A kind of synthetic method of p-hydroxyphenylethanol

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116314A (en) * 1977-03-19 1978-10-11 Mitsui Petrochem Ind Ltd Separation of acetic acid and water
JPH1087604A (en) * 1996-08-27 1998-04-07 Haarmann & Reimer Gmbh Use of 3-acylthiohexyl as aromatic substance and fragrance generating substance
JP2000053591A (en) * 1998-08-06 2000-02-22 Konica Corp Acylation
JP2000053592A (en) * 1998-08-06 2000-02-22 Konica Corp Acylation
JP2000143586A (en) * 1998-09-09 2000-05-23 Sumitomo Chem Co Ltd Production of fatty acid ester and fuel comprising the same
JP2002105019A (en) * 2000-09-29 2002-04-10 Sumitomo Chem Co Ltd Method for producing o-acetylation products of phenol compounds
JP2002105037A (en) * 2000-09-29 2002-04-10 Sumitomo Chem Co Ltd Method for producing acetylamine
JP2002308864A (en) * 2001-04-11 2002-10-23 Dainippon Jochugiku Co Ltd Production method for 5-propargylfurfuryl alcohol
JP2005281264A (en) * 2004-03-30 2005-10-13 National Institute Of Advanced Industrial & Technology Synthetic reaction method for monoterpenes and apparatus for the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116314A (en) * 1977-03-19 1978-10-11 Mitsui Petrochem Ind Ltd Separation of acetic acid and water
JPH1087604A (en) * 1996-08-27 1998-04-07 Haarmann & Reimer Gmbh Use of 3-acylthiohexyl as aromatic substance and fragrance generating substance
JP2000053591A (en) * 1998-08-06 2000-02-22 Konica Corp Acylation
JP2000053592A (en) * 1998-08-06 2000-02-22 Konica Corp Acylation
JP2000143586A (en) * 1998-09-09 2000-05-23 Sumitomo Chem Co Ltd Production of fatty acid ester and fuel comprising the same
JP2002105019A (en) * 2000-09-29 2002-04-10 Sumitomo Chem Co Ltd Method for producing o-acetylation products of phenol compounds
JP2002105037A (en) * 2000-09-29 2002-04-10 Sumitomo Chem Co Ltd Method for producing acetylamine
JP2002308864A (en) * 2001-04-11 2002-10-23 Dainippon Jochugiku Co Ltd Production method for 5-propargylfurfuryl alcohol
JP2005281264A (en) * 2004-03-30 2005-10-13 National Institute Of Advanced Industrial & Technology Synthetic reaction method for monoterpenes and apparatus for the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291096A (en) * 2006-03-31 2007-11-08 National Institute Of Advanced Industrial & Technology Selective sequential polyacylation and device therefor
JP2013517253A (en) * 2010-01-13 2013-05-16 ディーエスエム アイピー アセッツ ビー.ブイ. Acylation using microreaction system
JP2012121851A (en) * 2010-12-09 2012-06-28 Mitsubishi Rayon Co Ltd Method for producing carboxylic acid monomer
CN110078594A (en) * 2019-04-19 2019-08-02 新昌县泰如科技有限公司 A kind of synthetic method of p-hydroxyphenylethanol
CN110078594B (en) * 2019-04-19 2022-07-15 新昌县泰如科技有限公司 Synthetic method of p-hydroxyphenylethanol

Also Published As

Publication number Publication date
JP4836181B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP2021119178A (en) Acesulfame potassium composition and method for producing the same
JP4836181B2 (en) Acyl compound production method and apparatus
EP3350144B1 (en) Process for the cyclopropanation of olefins using n-methyl-n-nitroso compounds
JP2009132663A (en) Method for producing acroleins and apparatus producing the same
Lugiņina et al. On Moffatt dehydration of glucose-derived nitro alcohols
Caravati et al. Solvent-modified supercritical CO2: A beneficial medium for heterogeneously catalyzed oxidation reactions
JP4953341B2 (en) Process for producing polyacyl compound and apparatus therefor
JP5369349B2 (en) Process for producing 5-hydroxymethyl-2-furfurylaldehyde and apparatus therefor
EP3109227A1 (en) Method for continuously producing ketomalonic acid compound using flow reactor
JP5146928B2 (en) Method for producing Claisen rearrangement compound and synthesis apparatus thereof
JP5077908B2 (en) Method for producing acylated tocopherol
JP2007291096A (en) Selective sequential polyacylation and device therefor
JP4784913B2 (en) Citral synthesis method and equipment
RU2605604C1 (en) Method of producing 2,2,3,3,4,4,5,5-octafluoropentylethylcarbonate
JP2007297338A (en) N-acyl compound, and method and device for producing the same
JP5077911B2 (en) Method for producing saccharide acyl compounds
Mosslemin et al. B (HSO 4) 3 as an Efficient Catalyst for the Syntheses of Bis (1H-Indol-3-yl) ethanones and Bis (benzotriazol-1-yl) ethanones
JP3873123B2 (en) Method for synthesizing acrylic acid and / or pyruvic acid
JP5549898B2 (en) Process for producing 5-hydroxymethyl-2-furfural
JP2005281270A (en) Isomerization of allyl alcohol and apparatus for the same
JP4310436B2 (en) Terpene hydrocarbon synthesis reaction method
JP4320402B2 (en) Synthetic reaction method and apparatus of diallyl ether compound
JP2010013398A (en) Mononitration process and reaction apparatus for manufacture
Leiva et al. Thermal decomposittion of the acetone cyclic diperoxide in 1-octanol solution
JP5344293B2 (en) Method for producing 1,3,5-tribenzoylbenzene

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110912

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110922

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4836181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees