JP2007210872A - Method of manufacturing super lightweight ceramic roof tile clay - Google Patents

Method of manufacturing super lightweight ceramic roof tile clay Download PDF

Info

Publication number
JP2007210872A
JP2007210872A JP2006061806A JP2006061806A JP2007210872A JP 2007210872 A JP2007210872 A JP 2007210872A JP 2006061806 A JP2006061806 A JP 2006061806A JP 2006061806 A JP2006061806 A JP 2006061806A JP 2007210872 A JP2007210872 A JP 2007210872A
Authority
JP
Japan
Prior art keywords
tile
clay
fly ash
earthenware
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006061806A
Other languages
Japanese (ja)
Inventor
Junji Kuratoko
淳二 倉床
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON MERION KK
Original Assignee
NIPPON MERION KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON MERION KK filed Critical NIPPON MERION KK
Priority to JP2006061806A priority Critical patent/JP2007210872A/en
Publication of JP2007210872A publication Critical patent/JP2007210872A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple method of manufacturing super lightweight ceramic roof tile clay as a novel resource for ceramic raw material by easily and artificially converting/forming flyash balloon (FAB) as a novel raw material into the super lightweight ceramic roof tile clay in the manufacture of a lightweight ceramic roof tile which necessitates stable supply capacity to allow large consumption through a long period and the development of lightweight roof tile clay having excellent plasticity/firing crystallinity/fire resistance or the like. <P>SOLUTION: The super lightweight ceramic roof tile clay is manufactured by adding a large quantity of the FAB to plastic roof tile raw soil, mixing high fire resistant/high heat capacity natural kaoline as an aluminum source, silica sand as a silica source and weathered granite/wasted roof tile chamotte as other extenders with natural feldspar to increase the mutual fusion/melting crystallization ability which is a novel technology, humidifying in a pulverizer or a kneader without liquefying the compound slurry-like and after that, homogeneously and finely mixing under a normal temperature and pressure to practically humidify and knead. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、超軽量陶器瓦を製造するための超軽量陶器瓦粘土の製造分野に属し、超軽量陶器瓦の製造のため石炭灰フライアッシュに含まれている、図7・8・9・13・14で示す微粉小球状のフライアッシュバルーン(FAB)を軽量剤の主原料として多量(10重量%未満を少量・10重量%以上は多量・大量の意味を表す。)配合し、瓦一枚当たりが製造消費する天然の瓦原土(粘土)を減量化し、更に現行の陶器瓦1枚当たりの総体積を変えずに、該軽量化剤の低比重性質を応用して、その重量を軽量化する技術である。更に見かけ比重が0.6〜0.8範囲の無機中空体のフライアッシュバルーンを軽量化剤の主体原料として添加配合し化合使用することを大きな特徴とする。又、この化合焼成物の瓦は均一被覆された二層構造の無機コーテング層で、独立の中空構造を有した微小球状の無数多孔質により、みかけ比重1.0以下に軽量化することができる。つまり、一般の陶器瓦の比重は2.0〜2.3であるが、本発明では軽量剤フライアッシュバルーンを配合する比率条件により、焼成物の比重を大幅に小さくすることが可能で、例えば現行2.4kg〜3.0kgの陶器瓦の重量を50%以下に減量化することができる。この超軽量陶器瓦の製造に必要な超軽量瓦粘土を実用化して製造する方法に関するものである。The present invention belongs to the field of production of ultralight earthenware clay for producing ultralight earthenware tiles, and is included in coal ash fly ash for the production of ultralight earthenware tiles.・ A small amount of fly ash balloon (FAB) as shown in 14 is used as a main ingredient of the light weight agent, and a large amount (less than 10% by weight, 10% by weight or more means a large or large amount) is added, and one tile Reduces the weight of natural tile raw clay (clay) that hits and consumes and reduces the weight by applying the low specific gravity of the lightening agent without changing the total volume per piece of current ceramic tile. Technology. Further, it is a great feature that an inorganic hollow fly ash balloon having an apparent specific gravity in the range of 0.6 to 0.8 is added and blended as a main raw material of the lightening agent. The combined fired tile is a two-layered inorganic coating layer that is uniformly coated, and can be reduced in weight to an apparent specific gravity of 1.0 or less by an infinite number of microspheres having an independent hollow structure. . That is, the specific gravity of the general earthenware tile is 2.0 to 2.3, but in the present invention, the specific gravity of the fired product can be significantly reduced by the ratio condition of blending the light weight agent fly ash balloon, for example, It is possible to reduce the weight of the present ceramic tile of 2.4 kg to 3.0 kg to 50% or less. The present invention relates to a method for practically manufacturing an ultralight tile clay necessary for manufacturing the ultralight earthenware tile.

陶器瓦業界は瓦の大量生産により天然の瓦原土(可塑性粘土)の大量消費をしながら、瓦の軽量化の研究開発を怠ってきたといえる。特に阪神大震災の発生以降は、地震対策として木造家屋の屋根材の軽量化が進む中、陶器瓦は重すぎるという理由で陶器瓦製造業界の根幹を揺るがす状況になっている。又、木造家屋の屋根瓦負荷重量の減量化問題は、このような背景で超軽量陶器瓦を製造するための超軽量陶器瓦粘土の製造方法の確立と実用化が強く要望されている。It can be said that the earthenware tile industry has neglected the research and development of lighter tiles while consuming large amounts of natural tile clay (plastic clay) through mass production of tiles. In particular, after the Great Hanshin Earthquake, as rooftop materials for wooden houses are being reduced in weight as a countermeasure against earthquakes, the groundwork of the ceramic tile manufacturing industry has been shaken because ceramic tiles are too heavy. In addition, the problem of reducing the load weight of roof tiles in wooden houses is strongly demanded to establish and put to practical use a method for producing ultralight ceramic tile clay for producing ultralight ceramic tiles.

屋根瓦の減量化問題と共に陶器瓦業界は、瓦の大量生産により天然の瓦原土(可塑性瓦粘土)の大量消費が長年進む中、代替資源の研究開発がされてこなかった。代替資源については、不安定な原料不足を引き起こす重大な状況になっている。このような背景で、天然瓦原土の枯渇対策は業界挙げての検討課題となっている。Along with the problem of reducing roof tiles, the pottery tile industry has not been researching and developing alternative resources, as mass consumption of natural tile clay (plastic tile clay) has progressed for many years due to mass production of tiles. As for alternative resources, it is a serious situation that causes unstable raw material shortages. Against this background, countermeasures against the depletion of natural roof tiles are an issue for the industry.

更に、重量物のトラック運送による大型自動車廃棄ガスの環境汚染は二酸化炭素排出による地球温暖化に繋がるものであり、規定積載重量の範囲での積載物の軽量化は、軽量陶器瓦1枚当たりの運搬に掛かる二酸化炭素の排出を抑える効果に繋がる。要約すると、一回の規定重量範囲の運搬で、軽量化された重量分の瓦枚数を増やした運搬が可能になり、例えば一例として瓦1枚当たり2.4kgが1.2kgの50%に軽量化されると、一回の瓦運搬では過去の運搬枚数の2倍の枚数を運ぶことが可能となり、2回の運搬回数が1回の運搬回数で済むことになる。つまり、排気ガスに含まれる二酸化炭素の排出を50%に減らす実用効果に繋がる。このような背景で、超軽量陶器瓦を製造するための超軽量陶器瓦粘土の製造方法の確立と実用化が強く望まれている。Furthermore, the environmental pollution of large automobile waste gas caused by heavy truck transportation leads to global warming due to carbon dioxide emissions, and the weight reduction of the load within the specified load weight range per lightweight ceramic tile. This leads to the effect of suppressing the emission of carbon dioxide for transportation. In summary, it is possible to transport with the number of roof tiles increased by the weight of the weight reduced by one transport within the specified weight range. For example, 2.4kg per roof tile is as light as 50% of 1.2kg. In this case, it is possible to carry twice as many sheets as in the past by carrying a single roof tile, and the number of times of carrying two times is sufficient. That is, it leads to a practical effect of reducing the emission of carbon dioxide contained in the exhaust gas to 50%. Against this background, establishment and practical application of a method for producing an ultralight ceramic tile clay for producing an ultralight ceramic tile is strongly desired.

フライアッシュバルーン(FAB)は、石炭灰フライアッシュ中に含まれる水より軽い無機質の中空状のものを分離精製する。又、フライアッシュやフライアッシュバルーンなどは、本発明者の住所近隣の石炭火力発電所から毎年多量の石炭灰の中から産業廃棄物として排出され、主として海岸や空き地に処分コストの伴う産業廃棄の埋め立て処分がされてきた。全国の石炭灰発生量は平成14年度末では約920万トンに至り、この処分方法に依存することは、最終的に環境破壊を引き起こすことが懸念されている。The fly ash balloon (FAB) separates and refines an inorganic hollow material lighter than water contained in coal ash fly ash. Fly ash, fly ash balloons, etc. are discharged from the coal-fired power plant near the inventor's address as industrial waste from a large amount of coal ash every year. It has been disposed of in landfills. The amount of coal ash generated nationwide reached about 9.2 million tons at the end of 2002, and depending on this disposal method is concerned that it will eventually cause environmental destruction.

軽量陶器など過去の技術について、例えば特許文献1では、高耐火度のフライアッシュバルーン(FAB)を選択し添加して得られる陶器の軽量効果を禿筆しているが、該フライアッシュバルーンの耐火度はSK27又は、図14で示すSK28の範囲であり、陶器瓦製造の骨材の原料としてはその耐火性は優れる。しかし本発明では、生成物全体の均質な耐火性向上のためにアルミニウム源として図3、5で示す天然カオリンを選択し、更に相互融合焼結剤として図6で示す、天然長石を主要添加剤として実用化使用している。更に、シリカ源としてケイ石の耐火性・結晶性も活用し、代替策として全国的に豊富な資源であり、図2が示す天然珪砂を特定して選択し、その外に該珪砂を骨材にも活用している点や、大量生産が可能な実用化技術として特許文献1とは技術内容が大きく違うところである。Regarding past technologies such as lightweight ceramics, for example, Patent Document 1 describes the light weight effect of ceramics obtained by selecting and adding fly ash balloons (FAB) with high fire resistance, but the fire resistance of the fly ash balloons Is in the range of SK27 or SK28 shown in FIG. 14, and is excellent in fire resistance as a raw material of aggregate for the production of earthenware tiles. However, in the present invention, natural kaolin shown in FIGS. 3 and 5 is selected as an aluminum source for the homogeneous fire resistance improvement of the entire product, and natural feldspar as shown in FIG. As practical use. Furthermore, utilizing the fire resistance and crystallinity of silica as a silica source, it is an abundant resource nationwide as an alternative, and the natural silica sand shown in FIG. 2 is specified and selected, and the silica sand is used as an aggregate. However, the technical content of this technology is very different from that of Patent Document 1 as a practical technology that can be used for mass production.

特許文献2のように軽量化剤の特定固有名詞や特性原理を明示せず、輸入された外国産軽量化剤として市販されている軽量化剤を単純に活用したもので、これを配合比率別に複数の実施例を挙げて活用した、軽量陶器に関する技術も提案されている。このような点は、本発明と大きく技術内容が食い違う部分である。更に、本発明は大量生産が可能な実用化技術として特許文献2とは技術内容が大きく違うところである。
特開平11−43381 特許第3411242号
It does not clearly indicate the specific proper nouns and characteristic principles of the lightening agent as in Patent Document 2, but simply uses a lightening agent marketed as an imported foreign lightening agent. Techniques related to lightweight pottery that have been used with several examples have also been proposed. Such a point is a part in which the technical contents are greatly different from those of the present invention. Furthermore, the technical content of the present invention is significantly different from Patent Document 2 as a practical technology capable of mass production.
JP-A-11-43381 Patent No. 3411242

従来、陶器瓦は断熱性・凍結性・耐久性に優れているが重い、ということが最大の欠点で生産者、流通業者、販売業者、施工業者、消費者及び環境などに負担が掛かりすぎていた。特に地震立国の我国では、命に係わる耐震対策として瓦一枚当たりの軽量化による屋根材全体重量の減量化が求められ、具体的には平均15トンの重量を10トンまでの軽量化を陶器瓦業界は実用課題としてきた。しかし、生産者側としては軽量化ができる陶器瓦製造のためには、可塑性・成形性・焼成結晶性・耐火性などに優れ、尚且つ軽量の特性を併せ持ち、長期間の大量消費に耐え得る長期安定供給が可能な、上記要件を併せ持つ瓦粘土類の開発が必須とされてきたが、開発には至らなかった。更に、物流面では重量物の運搬は化石燃料の大量消費などによる二酸化炭素の多量排出で地球温暖化の元凶とされ、上記の特許文献1・2に記載されている技術は、種々の活用試験に留まるもので量産化が可能な実用化には至っていないものである。Traditionally, ceramic tiles have excellent heat insulation, freezing and durability, but are heavy, and the biggest drawback is that they put too much burden on producers, distributors, distributors, contractors, consumers and the environment. It was. Especially in our country, which is an earthquake-prone country, it is required to reduce the total weight of roofing materials by reducing the weight per tile as a seismic measure related to life. Specifically, we have reduced the average weight of 15 tons to 10 tons. The tile industry has been a practical issue. However, for the production of earthenware tiles that can be reduced in weight on the producer side, it is excellent in plasticity, moldability, fired crystallinity, fire resistance, etc., and also has lightweight characteristics and can withstand large-scale consumption over a long period of time. It has been essential to develop tile clays that have the above-mentioned requirements and can be stably supplied over the long term. Furthermore, in terms of logistics, the transportation of heavy objects is a major cause of global warming due to a large amount of carbon dioxide emission due to the large consumption of fossil fuels, and the techniques described in Patent Documents 1 and 2 described above are various utilization tests. However, it has not yet been put into practical use that can be mass-produced.

瓦原土の代替原料の研究開発について、陶器瓦業界は瓦の大量生産により天然の瓦原土(粘土)を大量消費し続け、代替の瓦粘土の研究開発をしてこなかったといえる。このことは、不安定な原料不足を引き起こす重大な状況になっており、天然瓦原土の枯渇対策は業界挙げての検討課題となっている。したがって、本発明は陶器瓦の超軽量化を具体的に達成すると共に、図13で示す軽量化剤フライアッシュバルーンの大量添加による増量化配合の実施は、同時に耐火性向上剤・融合促進剤・結晶促進剤・骨材などを各添加・化合することの条件を満たせば、天然の瓦原土の使用消費量を著しく減量化することに繋がるものである。この技術の発明は、陶器瓦天然原土の消費量を大幅に節約するシステムの実用化を確立をさせることができたといえる。Regarding the research and development of alternative raw materials for tiled clay, it can be said that the pottery tile industry has continued to consume large amounts of natural tiled clay (clay) through mass production of tiles, and has not researched and developed alternative tiled clay. This is a serious situation that causes an unstable shortage of raw materials, and measures to deplete natural roof tiles are an issue for the industry. Therefore, the present invention specifically achieves ultra-lightening of the earthenware tile, and at the same time, the increase in the composition by adding a large amount of the lightening agent fly ash balloon shown in FIG. If the conditions for adding and combining crystal accelerators, aggregates, etc. are satisfied, it will lead to a significant reduction in the consumption of natural tile raw soil. It can be said that the invention of this technology has made it possible to establish a practical application of a system that greatly saves the consumption of pottery tile natural earth.

このような軽量剤の研究開発について、発明者は長期間・大量に安定供給が可能となり、超軽量陶器瓦の製造が可能な無機中空体のフライアッシュバルーン(FAB)を軽量剤の原料として活用することに着目しただけではなく、消費実用化が可能で超軽量陶器瓦粘土へと容易に変換・生成できる、課題を解消することに創意工夫をなして本発明を完成した。又、軽量陶器瓦の製造で該フライアッシュバルーンを安定した窯業原料の有効資源として、実用消費できる超軽量陶器瓦粘土に生成変換する新技術は、生成方法が簡潔で実効性、実用化が確立できる発明でなければならないものであるが、図10が示すとおり、その点にも本発明の独自性と有効性が存在するものである。For the research and development of such light weight agents, the inventor can use a fly ash balloon (FAB), which is an inorganic hollow body capable of producing ultralight earthenware tiles, as a raw material for light weight materials. The present invention was completed with an ingenuity in solving the problem that not only focused on, but also could be put into practical use and easily converted into ultra-light ceramic tile clay. In addition, the new technology for producing and converting the fly ash balloon into an ultra-lightweight ceramic tile clay that can be used practically as an effective resource for stable ceramic materials in the manufacture of lightweight ceramic tiles has a simple generation method, and has established its effectiveness and practical application. The invention should be able to be made, but as shown in FIG. 10, the uniqueness and effectiveness of the present invention also exist in this respect.

生成物の焼成中に250℃付近で大きな体積膨張を引き起こす、クリストバライト現象や該現象による冷め割れなどの不具合の解決は、避けて通れない必須の要件で実用化が確立できる発明でなければならない。The solution of defects such as the cristobalite phenomenon and the cold cracking caused by the phenomenon that cause a large volume expansion at around 250 ° C. during the firing of the product must be an invention that can be put into practical use with inevitable requirements that cannot be avoided.

本発明は、前述の課題解決のため第一に図1が示すとおり、陶器瓦の主原料である可塑性原土に軽量化剤の原料として、無機中空体のフライアッシュバルーンを大量に配合することを特徴とする。又、前記配合の生成前化合物に耐火性向上のためのアルミニウム源および、融合促進剤、結晶化促進剤を添加して均質化合さすため、大型粉砕機や土錬機などで撹拌して均質・微細によく混ぜて練り合わす技術を採用して、加水・加湿混練処理することを特徴とした超軽量の陶器瓦製造のための超軽量陶器瓦粘土を製造することができる。In the present invention, as shown in FIG. 1, in order to solve the above-mentioned problems, a large amount of inorganic hollow fly ash balloon is blended as a raw material of a lightening agent into a plastic clay, which is a main raw material of earthenware tile. It is characterized by. In addition, an aluminum source for improving fire resistance, a fusion accelerator, and a crystallization accelerator are added to the pre-formation compound of the above composition and homogenized, so the mixture is stirred and homogenized with a large pulverizer or earth smelter. It is possible to produce an ultralight earthenware tile clay for the production of ultralight earthenware tiles, which is characterized by employing a technique of finely mixing and kneading finely, and performing a hydro-humidification kneading process.

第二の課題解決手段として、図7・8・9・13・14が示す、無機中空体のフライアッシュバルーン(FAR)を大量添加・化合して生じた化合生成物、全体の均質な耐火性・熱量性を向上さすためにアルミニウム源として、融点2050℃、沸点3000℃の特性を持ち図11で示す、アルミナ(Al)やカオリナイト(Al・2SiO・2HO)、ハロサイト(Al・2SiO・4HO)を主成分とする、図3・5にある天然カオリン鉱物を選択し、シリカ源として二酸化シリカSiOの耐火性も選択する。又、該カオリンを化合し人工的に高耐火性・高熱量化を好適に向上させることを特徴とする超軽量の陶器瓦製造のため、図10にある超軽量陶器瓦粘土を製造することができる。As a second means for solving the problem, a compound product produced by adding and combining a large amount of inorganic hollow fly ash balloon (FAR) shown in FIGS. 7, 8, 9, 13, and 14, the entire homogeneous fire resistance Alumina (Al 2 O 3 ) and kaolinite (Al 2 O 3 .2SiO 2 .2H 2 O) having the characteristics of melting point 2050 ° C. and boiling point 3000 ° C. as an aluminum source in order to improve caloric properties and shown in FIG. ), And the natural kaolin mineral shown in FIGS. 3 and 5 mainly composed of halosite (Al 2 O 3 .2SiO 2 .4H 2 O), and the fire resistance of silica dioxide SiO 2 as the silica source. Moreover, the ultralight ceramic tile clay shown in FIG. 10 can be manufactured for the production of an ultralight ceramic tile characterized by suitably combining the kaolin and artificially improving the high fire resistance and high calorific value. .

その他のアルミニウム源としては、水酸化アルミニウム、可溶性アルミニウム塩、各種の水和アルミナなどの物質群から選択された耐火性向上のアルミニウム化合物とする。又、クリストバライト現象や冷め割れなどの不具合の原因は、シリカ源に対しアルミニウム源不足から生じる現象であるので、本発明は図3・5で示した天然カオリンを添加して図11が示す、アルミナ(Al)を増やして化合することで解決した。The other aluminum source is an aluminum compound with improved fire resistance selected from a group of substances such as aluminum hydroxide, soluble aluminum salts, and various hydrated aluminas. Further, since the cause of defects such as cristobalite phenomenon and cold cracking is a phenomenon caused by a shortage of aluminum source with respect to the silica source, the present invention adds the natural kaolin shown in FIGS. It was solved by increasing (Al 2 O 3 ) and compounding.

第三の課題解決手段として、弱性溶融結晶力の性質を持つ、無機中空体フライアッシュバルーンの溶融結晶力を向上さすため、シリカ源のケイ石や溶け残りが骨材となる天然珪砂や風化花崗岩を選択し、二酸化シリカSiOを鉱物群から化合し、焼成瓦の焼成強度を高める特徴の方法により、超軽量陶器瓦粘土を製造することができる。As a third means to solve the problem, natural silica sand or weathering, which is silica silica as a silica source and the undissolved residue is used as an aggregate to improve the melt crystal strength of inorganic hollow fly ash balloons that have weak melt crystal strength. By selecting granite, combining silica dioxide SiO 2 from the mineral group, a super lightweight earthen tile clay can be produced by a method characterized by increasing the firing strength of the fired tile.

ケイ酸原料としてのケイ石は、石英の単結晶から石英の集合体に至る。実用的には溶け残った残留物が骨材に併用できるシリカ成分高純度の図2で示す天然珪砂が好適である。Silica as a silicic acid raw material ranges from a single crystal of quartz to an aggregate of quartz. Practically, the natural silica sand shown in FIG. 2 having a high purity of the silica component that can be used together with the aggregate that remains undissolved is suitable.

第四の課題解決手段として、弱性の溶融結晶力の性質を持つ、無機中空体フライアッシュバルーンの溶融結晶力を向上さすために、図6で示した天然長石の鉱物を選択し、可塑性原土と図7・8・13・14で示す該フライアッシュバルーンの溶融・結合・結晶の融合力を高め、その他の添加物原料や骨材と相互の融合力を向上させて、焼成瓦の焼成強度を高めることを特徴とする当該の図10が示した超軽量陶器瓦粘土を製造することができる。As a fourth problem solving means, the mineral feldspar mineral shown in FIG. 6 is selected in order to improve the melt crystal force of the inorganic hollow fly ash balloon having the weak melt crystal force property, and the plastic raw material is selected. Firing of fired roof tiles by increasing the fusion power of the fly ash balloon shown in FIGS. 7, 8, 13 and 14 with fusion, bonding, and crystal fusion, and improving the mutual fusion power with other additive materials and aggregates. The ultralight earthenware tile clay shown in FIG. 10, which is characterized by increasing the strength, can be manufactured.

したがって、短時間の簡易工程における無機中空体フライアッシュバルーン(FAB)を効率よく、混練粘土に溶解・融合・結合さすには、長石KOAL6SiOという融合化促進剤を常用添加して撹拌し、均質に混練する製造システムを実用化開発する必要があった。又、長石には正長石(KAlSi)、曹長石(NaAlSi)、灰長石(CaAlSi)及び主要鉱物のバリウム長石(BaAlSi)があるが、長石質の砂礫を含め用途に応じて実効使用することで、当該の超軽量陶器瓦粘土の製造方法を完成させた。Therefore, in order to efficiently dissolve, fuse and bond inorganic hollow fly ash balloons (FAB) in a short and simple process into kneaded clay, a fusion accelerator called feldspar K 2 OAL 2 O 3 6SiO 2 is regularly added. Therefore, it was necessary to develop and commercialize a production system that stirs and kneads homogeneously. Further, the feldspar orthoclase (KAlSi 3 O 8), albite (NaAlSi 3 O 8), there is a anorthite (CaAl 2 Si 2 O 8) and the main minerals of barium feldspar (BaAl 2 Si 2 O 8) By using it effectively according to the application, including feldspar-like gravel, the manufacturing method of the ultralight earthenware clay was completed.

第五の課題解決手段として、図1で示している可塑性瓦原土に大量添加する無機中空体フライアッシュバルーン(FAB)とそれぞれ天然のカオリン、長石、珪砂、風化花崗岩などに廃瓦シャモットなど化合して超軽量の陶器瓦製造用の超軽量陶器瓦粘土を生成する技法は、これら化合物をスラリー状に液状化せず、粉砕機や土錬機などにおいて、化合物全体を常温・常圧状態で撹拌して均質・微細によく混ぜて練り合わす技術を採用した、実用化方式の加湿混練処理する特徴で当該の超軽量陶器瓦粘土を製造することができる。As a fifth problem solving means, inorganic hollow fly ash balloon (FAB) added in large quantities to the plastic tile base soil shown in Fig. 1 and natural kaolin, feldspar, quartz sand, weathered granite, etc. The technology to produce ultralight earthenware tile clay for the production of ultralight earthenware tiles does not liquefy these compounds in a slurry state. The ultra-lightweight earthenware tile clay can be manufactured with the characteristic of humidifying and kneading using a practical method that employs the technique of stirring and mixing homogeneously and finely and kneading.

自然界において粘土鉱物は、カオリナイト質粘土が主体であり、含有アルミニウムケイ酸塩鉱風化作用が繰り返し、酸性熱水による熱水変質作用で溶解・溶脱作用・海底風化作用の影響を長期間うけて生成すると一般に考えられている。しかし実用的な人工的製造方法としては短期間の簡易工程において、前述にある方法でそれら化合物同士を均一・均質に良く混ぜ合わす、撹拌・混練技法を用いる必要がある。In nature, clay minerals are mainly kaolinitic clay, and the contained aluminum silicate mineral weathering action is repeated, and the effects of dissolution, leaching and seabed weathering are affected by hydrothermal alteration by acidic hot water for a long time. It is generally considered to generate. However, as a practical artificial production method, it is necessary to use a stirring / kneading technique in which the compounds are uniformly and uniformly mixed well by the above-described method in a short and simple process.

現陶器瓦や本発明の超軽量陶器瓦を製造する際の成形性を満たすため、必要な原料となる可塑性の瓦原土は近年枯渇傾向にありながら、その枯渇対策や研究開発は見過ごされてきた。図7・8・9・13・14などが示す、無機中空体フライアッシュバルーンを軽量剤して活用した、超軽量の陶器瓦製造のため図10にある、超軽量の陶器瓦粘土を生成する技術の開発について、工場での量産を可能にする製品化に繋がる実用化を確立した事例は過去に存在しない。又、平成3年に施行された再生資源の利用の促進に関する法律では、火力発電所から多量に排出されるフライアッシュやフライアッシュバルーンが指定副産物に指定され、再生資源として利用拡大を計ることが定められた経緯もあり、石炭を使用した火力発電所から排出されるフライアッシュバルーンは、本発明を活用すれば超軽量の陶器瓦製造のため、人工的に超軽量陶器瓦粘土の製造が可能で有効な安定供給資源の原料として活用でき、陶器瓦業界の背景にある難解な陶器瓦の軽量化問題は解決する。In order to satisfy the moldability when producing the current earthenware tiles and the ultra-lightweight earthenware tiles of the present invention, plastic tiles that are necessary raw materials have recently been depleted, but their depletion countermeasures and research and development have been overlooked. It was. The ultralight earthenware tile clay shown in FIG. 10 is produced for the production of ultralight earthenware tiles using inorganic hollow fly ash balloons as a lightening agent, as shown in FIGS. 7, 8, 9, 13, 14 and the like. Regarding technology development, there has never been a case where practical application that leads to commercialization that enables mass production in a factory has been established. Also, according to the law on the promotion of the use of recyclable resources enacted in 1991, fly ash and fly ash balloons that are discharged in large quantities from thermal power plants are designated as designated by-products, and the use of reclaimed resources can be expanded. Due to the established circumstances, fly ash balloons discharged from coal-fired thermal power plants can be manufactured artificially to make ultra-light earthenware tile clay by utilizing the present invention. It can be used as a raw material for an effective and stable supply resource, and solves the difficult problem of lightening ceramic tiles behind the ceramic tile industry.

更に、本発明は産業廃棄物の無機中空体フライアッシュバルーン(FAB)を有効な軽量陶器瓦製造のための軽量化剤として長期に亘り信頼できる安定原料して、人工的に超軽量の陶器瓦粘土へ効率よく簡易に変換することが可能であることを特徴とすること。又、該フライアッシュバルーンの人工的、超軽量陶器瓦粘土への変換において、アルミニウム源の他に少量の融合・熔融促進剤とシリカ源の結晶化促進剤を添加してスラリー状に液状化せず、常温、常圧条件で撹拌し均質・微細によく混ぜて練り合わす技法の加湿混練処理をすることで、常温での超軽量陶器瓦粘土の製造が可能である。Furthermore, the present invention provides an industrial waste inorganic hollow body fly ash balloon (FAB) as a stable raw material that can be trusted over a long period of time as a lightening agent for the production of effective lightweight earthenware tiles, and artificially ultralightweight earthenware tiles. It should be characterized by being able to efficiently and easily be converted to clay. In addition, in the conversion of the fly ash balloon into an artificial and ultra-lightweight earthenware clay, a small amount of a fusion / melting accelerator and a crystallization accelerator of a silica source are added in addition to the aluminum source to liquefy the slurry. First, it is possible to produce ultralight earthenware tile clay at room temperature by humidifying and kneading using the technique of stirring and mixing homogeneously and finely under normal temperature and normal pressure conditions.

長年の陶器瓦の大量生産による天然瓦原土(粘土)の大量消費は、天然瓦原土の枯渇化に繋がり業界挙げての検討課題となっている。本発明は陶器瓦の超軽量化を具体的に達成すると共に、軽量化剤フライアッシュバルーンの大量添加による増量化配合の実施は、同時に耐火性向上剤・融合促進剤・結晶促進剤・骨材などを各添加・化合することの条件を満たせば、天然の瓦原土の使用消費量を著しく減量化することに繋がるものである。この技術の発明は、陶器瓦天然原土の消費量を大幅に節約する実用化システムを確立をさせることが可能であり、陶器瓦業界の背景にある難解な瓦原土の枯渇問題は緩和される。The large-scale consumption of natural tile clay (clay) due to the mass production of ceramic tiles over the years has led to the depletion of natural tile clay and has become an issue for the industry. The present invention specifically achieves ultra-lightening of earthenware tiles, and at the same time, it is possible to increase the weight by adding a large amount of lightening agent fly ash balloon, fire resistance improver, fusion accelerator, crystal accelerator, aggregate If the conditions for each addition / combination are satisfied, it will lead to a significant reduction in the consumption and consumption of natural roof tile. The invention of this technology makes it possible to establish a practical system that greatly saves the consumption of pottery tile natural raw material, and alleviates the difficult problem of depletion of tile tiles behind the pottery tile industry. The

図8・9で示した無機中空体フライアッシュバルーン(FAB)の粒度分布は、124.45μm〜148μmを主体として、44μm〜296μmの粒度分布範囲の不均一な粒径・粒子を有する二酸化シリカSiOや酸化アルミナAlを主成分とする高耐火の超微粒子体である。火力発電
所で使用する原料炭の殆んどは外国から輸入しており、その産地や燃焼条件などの理由でその成分は種々異なる。無機中空体フライアッシュバルーンに含有するシリカとアルミナの重量比(Al:SiO)は約63重量部:30重量部で、1.7重量部の鉄など、マグネシウム、カルシウムの他に超微量の酸化チタン(TiO)・酸化亜鉛など数種の重金属を含有し、未燃炭素が残留しているので灰色に着色している。又、該無機中空体フライアッシュバルーンは粘性や可塑性は全く無く、極めて成型性に乏しい。又、焼成結晶力が弱く、焼成物に必要な結晶性・溶融性と要熱量不足が懸念される。
The particle size distribution of the inorganic hollow fly ash balloon (FAB) shown in FIGS. 8 and 9 is silica dioxide SiO having a non-uniform particle size / particle with a particle size distribution range of 44 μm to 296 μm, mainly from 124.45 μm to 148 μm. 2 and an ultrafine particle body of high fire resistance mainly composed of alumina oxide Al 2 O 3 . Most of the coking coal used in thermal power plants is imported from foreign countries, and its components differ depending on the origin and combustion conditions. The weight ratio (Al 2 O 3 : SiO 2 ) of silica and alumina contained in the inorganic hollow fly ash balloon is about 63 parts by weight: 30 parts by weight, in addition to 1.7 parts by weight of iron, such as magnesium and calcium. It contains several kinds of heavy metals such as ultra-trace amount of titanium oxide (TiO 2 ) and zinc oxide, and is colored gray because unburned carbon remains. Further, the inorganic hollow body fly ash balloon has no viscosity or plasticity and is extremely poor in moldability. In addition, the calcination crystal power is weak, and there is a concern about the crystallinity / meltability necessary for the baked product and insufficient heat amount.

新しい技術1の実施例として、図10で示すように、生成される超軽量の陶器瓦粘土の可塑性・成形性を求めるため、瓦原土と無機中空体フライアッシュバルーンを10重量部〜90重量部の範囲で対比配合した化合物は、瓦原土本来の粘性・可塑性・焼成強度の性質も活用する。又、使用する瓦原土は図10で示す、カオリナイト粘土質・モンモリナイト粘土質の六角形層状をした図12にある微細粒の砕屑性堆積物の粒径が2μm以下で粒度分布量が20%以上の範囲とし、40%前後の粒度分布量の可塑性原土を好適とした。As an example of the new technology 1, as shown in FIG. 10, in order to obtain the plasticity and formability of the produced ultralight earthenware tile clay, 10 to 90 parts by weight of the tile raw earth and the inorganic hollow body fly ash balloon are used. The compound blended in the range of the part uses the properties of viscosity, plasticity and fired strength inherent in the tile roof. Further, the tile raw earth used is a hexagonal layer of kaolinite / montmorite clay as shown in FIG. 10, and the particle size distribution is 20 μm or less with a particle size distribution of 20 μm or less. %, And a plastic raw soil having a particle size distribution amount of around 40% was suitable.

新しい技術2の実施例とする無機中空体フライアッシュバルーン(FAB)の配合比について、人工瓦粘土の可塑性・成形性を求めるため、瓦原土(粘土)との配合比は用途ごとに10重量部〜90重量部範囲での対比配合とし、該瓦原土(粘土):無機中空体フライアッシュバルーンの配合比率は30:70〜40:60重量部範囲の対比配合を好適とする。Regarding the blending ratio of the inorganic hollow body fly ash balloon (FAB) as an example of the new technology 2, in order to determine the plasticity and moldability of the artificial tile clay, the blending ratio with the tile raw clay (clay) is 10 wt. It is preferable that the mixing ratio in the range of 30 parts by weight to 90 parts by weight and the mixing ratio of the clay raw clay (clay): inorganic hollow body fly ash balloon is in the range of 30:70 to 40:60 parts by weight.

新しい技術3の実施例とする天然カオリンの配合比について図14で示すとおり、高耐火の無機中空体フライアッシュバルーン(FAR)は、骨材としては好適であるが、生成物である陶器瓦粘土の耐火性や重要な熱量を全体的に向上さす程の効果は乏しい。このため図11で示す、融点が2050℃、沸点が3000℃のアルミナを添加することが必須であり、代替策として図3・5で示した天然カオリンの添加を1重量部〜15重量部範囲とし、好適には5重量部〜8重量部の範囲で添加してその耐火性不足を補う。天然カオリンの耐火度は第二種ゼーゲルコーン測定方法によるSK33番〜SK36番の範囲を好適とする。又、使用するカオリンはカオリン鉱床のうち、カオリナイトとハロサイトを主成分とする。その他のアルミナ源として、風化花崗岩の添加効果もあることが確認された。As shown in FIG. 14 for the blending ratio of natural kaolin as an example of the new technology 3, a high fire-resistant inorganic hollow body fly ash balloon (FAR) is suitable as an aggregate, but the product is earthen tile clay. The effect of improving the overall fire resistance and the amount of important heat is poor. Therefore, it is essential to add alumina having a melting point of 2050 ° C. and a boiling point of 3000 ° C. as shown in FIG. 11. As an alternative, the addition of natural kaolin shown in FIGS. 3 and 5 is in the range of 1 to 15 parts by weight. And preferably in the range of 5 to 8 parts by weight to compensate for the lack of fire resistance. The fire resistance of natural kaolin is preferably in the range of SK No. 33 to SK No. 36 according to the second-type Zeger cone measurement method. The kaolin used is mainly composed of kaolinite and halosite in the kaolin deposit. As another alumina source, it was confirmed that weathered granite also had an additive effect.

新しい技術4の実施例とする石炭灰の焼成結晶力や焼成強度向上のため、図6で示す天然長石を1重量部〜15重量部の範囲で瓦原土と石炭灰の化合物に添加する。好適に8重量部を添加することにより、瓦粘土と珪砂・風化花崗岩・廃瓦シャモットなど化合物と無機中空体のフライアッシュバルーン(FAB)それぞれの溶解・接着を促進させ、長石の特性による相互溶解性で焼成物の硬度・強度の向上を確認した。In order to improve the calcining crystal strength and calcining strength of coal ash as an example of the new technology 4, natural feldspar shown in FIG. 6 is added to the tile clay and coal ash compound in the range of 1 to 15 parts by weight. Addition of 8 parts by weight preferably promotes dissolution and adhesion of tile clay, silica sand, weathered granite, waste tile chamotte and inorganic hollow fly ash balloon (FAB), and mutual dissolution due to the characteristics of feldspar The improvement in hardness and strength of the fired product was confirmed.

新しい技術5の実施例とするシリカ源としてのケイ石の代替策として図2で示した天然珪砂を1重量部〜25重量部範囲で添加し、好適には15重量部とした。又珪砂のシリカ分純度は90%以上を好適とした。又、その効果は溶け残り残留物を骨材としても活用できる効果も確認し、その他のシリカ源として風化花崗岩の添加による一部効果も確認した。Natural silica sand shown in FIG. 2 is added in the range of 1 to 25 parts by weight, preferably 15 parts by weight, as an alternative to silica as an example of the new technology 5. The silica content purity of the silica sand is preferably 90% or more. In addition, the effect was confirmed that the undissolved residue can be used as an aggregate, and a partial effect by adding weathered granite as another silica source was also confirmed.

新しい技術6の実施例とするその他の配合材として、廃瓦を微粉砕したシャモットを増量・配合材として1重量部〜20重量部の範囲とし、好適には10重量部とした。その効果は骨材の用途効果も確認した。その他用途として、廃棄瓦の廃棄物処分について環境・資源の分野での循環性のある消費実用化も確立できることが確認された。As another compounding material as an example of the new technique 6, chamotte obtained by finely pulverizing waste tiles was used in an amount of 1 to 20 parts by weight, preferably 10 parts by weight as an increase / combination material. The effect also confirmed the use effect of the aggregate. As other applications, it was confirmed that the recycling of waste in the environment and resources field can be established for the disposal of waste tiles.

新しい技術7の実施例とする新たに生成される人工軽量瓦粘土は、図1のフローズで示すように原料である可塑性原土、無機中空体フライアッシュバルーン、カオリン、長石、珪砂、風化花崗岩、廃瓦シャモットなどを適量に配合して加水・加湿後、粉砕機や土錬機で入念な撹拌混練技術を実施する。それら化合物の混練を均一・均質にするために混練時間は1立方メートルあたり30分〜60分の範囲を基準として実施する。カオリンを構成するカオリナイト(Al・2SiO・2HO)合成の水熱反応は、反応別に分類し分類化される。一般に170℃〜350℃でそれらの反応がみられ、又反応温度など所定の設定条件によって、結晶化に要する反応時間は個々に著しく変化を示し異なる。使用する無機中空体の図7にあるフライアッシュバルーンは、粒径粒子を中心とする中空球状バルーンのシリカアルミナで大方はガラス質であり、石英と少量ムライトの存在が確認される。又、該無機中空体フライアッシュバルーンのカオリナイト合成原料として、焼成窯の中ではこれらの混合物は高温で燃焼し反応性自体は低いし、水熱処理の高い温度が必要となる。又、カオリンを構成するハロサイト(Al・2SiO・4HO)は100℃〜200℃で吸熱ピークを示し、500℃〜600℃で吸熱反応と900℃〜1150℃の発熱反応はカオリナイトと本質的に変わりがない。The newly produced artificial lightweight tile clay as an example of the new technology 7 includes a raw plastic raw material, an inorganic hollow fly ash balloon, kaolin, feldspar, quartz sand, weathered granite, as shown by the flow in FIG. After adding appropriate amount of waste tile chamotte and adding water / humidification, careful mixing and kneading technology is carried out with a pulverizer or earth smelter. In order to make the kneading of these compounds uniform and homogeneous, the kneading time is carried out on the basis of a range of 30 minutes to 60 minutes per cubic meter. The hydrothermal reaction of the synthesis of kaolinite (Al 2 O 3 .2SiO 2 .2H 2 O) constituting kaolin is classified and classified by reaction. In general, these reactions are observed at 170 ° C. to 350 ° C., and the reaction time required for crystallization varies significantly depending on predetermined setting conditions such as reaction temperature. The fly ash balloon shown in FIG. 7 of the inorganic hollow body to be used is a silica alumina of a hollow spherical balloon centered on particle size particles, mostly glassy, and the presence of quartz and a small amount of mullite is confirmed. Further, as a kaolinite synthesis raw material for the inorganic hollow fly ash balloon, these mixtures are burned at a high temperature in the firing kiln, and the reactivity itself is low, and a high hydrothermal treatment temperature is required. The halosite (Al 2 O 3 2SiO 2 4H 2 O) constituting kaolin exhibits an endothermic peak at 100 ° C to 200 ° C, an endothermic reaction at 500 ° C to 600 ° C, and an exothermic reaction at 900 ° C to 1150 ° C. Is essentially the same as Kaolinite.

本発明については、一実施例を添付図で参照として図1のとおりに説明する。又、図1については製造工程のフロー図を示す。ここで符号1は可塑性原土、符号2が軽量化剤の該フライアッシュバルーン(FAB)、符号3が添加アルミニウム源の該カオリン、符号4が溶融結晶化促進剤の該長石、符号5がシリカ源のケイ石、および溶解残留物を骨材にも併用できる該珪砂、符号6が風化花崗岩、符号7が廃瓦シャモット、符号8が撹拌加湿(加水)工程、符号9が撹拌・加湿混練工程、符号10が図10で示した生成物が超軽量陶器瓦粘土である。図示のとおり、可塑性原土に軽量化剤の原料として、該フライアッシュバルーンを大量配合した生成前の化合物にアルミニウム源および結晶化促進剤を均一・均質に添加化合さすため、微細によく混ぜて練り合わす技術を採用した加湿混練処理をして人工的に超軽量の陶器瓦粘土を生成する各工程を包含するものである。The present invention will be described with reference to FIG. 1 by way of example with reference to the accompanying drawings. FIG. 1 shows a flow chart of the manufacturing process. Here, reference numeral 1 is a plastic base, reference numeral 2 is the fly ash balloon (FAB), which is a lightening agent, reference numeral 3 is the kaolin, which is an added aluminum source, reference numeral 4 is the feldspar, a melt crystallization accelerator, and reference numeral 5 is silica. Silica sand, which can be used together with aggregates of the source silica and dissolved residue, symbol 6 is weathered granite, symbol 7 is waste tile chamotte, symbol 8 is an agitation / humidification (hydration) step, symbol 9 is an agitation / humidification kneading step The product indicated by reference numeral 10 in FIG. 10 is an ultralight ceramic tile clay. As shown in the figure, as a raw material for the lightening agent in the plastic clay, the aluminum source and the crystallization accelerator are added uniformly and homogeneously to the compound before production containing a large amount of the fly ash balloon. It includes each step of artificially producing ultra-lightweight earthen tile clay by humidifying and kneading using a kneading technique.

本発明の人工軽量瓦粘土の製造において、図7・8・9・13・14が示す試料8のフライアッシュバルーンが人工軽量瓦粘土の生成変換に及ぼす、耐火性・溶融性・融合性・結晶性を高めるための該サンプル3・該試料3の各促進剤の効果を図4に示す。ここでの実施は各促進剤の配合量・添加量の製造条件を違えて、人工瓦粘土の生成を確認したものであり、試料毎に表中に示した比較例1、2、3と実施例1、2、3、4、5、6、7である。つまり、各加湿混練処理について比較例1は、可塑性原土とフライアッシュバルーンの単純化合物(以下、化合物という。)に各促進剤が無添加のものであり、比較例2は、この化合物に天然長石と珪砂を結晶促進剤とした。比較例3は、この化合物に添加する結晶促進剤は該天然長石、該珪砂の他、アルミ源として該天然カオリンを耐火促進剤とした。実施例1〜7は、添加する耐火性、結晶性促進剤の配合量を変化させて実施し、その効果を表わしたものである。尚、加湿混練処理時間は化合物量が0.1立方メートル以下で何れも30分以内とした。In the production of the artificial lightweight tile clay of the present invention, the fire ash balloon of the sample 8 shown in FIGS. 7, 8, 9, 13 and 14 affects the formation and conversion of the artificial lightweight tile clay. FIG. 4 shows the effects of the promoters of Sample 3 and Sample 3 for enhancing the properties. The implementation here was to confirm the production of artificial tile clay by changing the production conditions of the blending amount / addition amount of each accelerator, and carried out with Comparative Examples 1, 2, and 3 shown in the table for each sample. Examples 1, 2, 3, 4, 5, 6, and 7. That is, in each humidifying kneading treatment, Comparative Example 1 is a simple compound (hereinafter referred to as “compound”) of plastic raw earth and fly ash balloon, in which each accelerator is not added, and Comparative Example 2 is natural to this compound. Ferrite and quartz sand were used as crystal accelerators. In Comparative Example 3, the natural feldspar and the quartz sand were used as the crystal accelerator added to this compound, and the natural kaolin was used as a fire resistance accelerator as an aluminum source. Examples 1-7 carry out by changing the compounding quantity of the fire resistance and crystallinity promoter to add, and represent the effect. In addition, the humidification kneading treatment time was set to be within 30 minutes for the compound amount of 0.1 cubic meter or less.

比較例1、2、3にある試料8フライアッシュバルーン(FAB)の含有成分量を図7で示す。試料8の蛍光X線による定性分析は、試料10gを分手しタングステンカーバイド製容器に入れ、振動ミルで粉砕した。この粉砕物を秤量瓶に入れ105℃±5℃で12時間以上乾燥後、デシケーター中で放冷した。この乾燥物を磁製るつぼ中で1050℃2時間焼成した。この焼成物及びその10倍量の四ホウ酸リチウムを、白金(Pt)95%+金(Au)5%合金皿に入れ1200℃で溶融してガラスビードを作製した。このガラスピードを理学電気(株)製の蛍光X線定性分析装置SYSTEM3270Eで分析した。したがって、検出元素中のAuは合金皿からの混入物が含まれる。以上の分析結果から該フライアッシュバルーンが人工的に製造することができる超軽量の陶器瓦粘土を生成する好適な軽量化剤原料としての条件を満たしていることが確認される。FIG. 7 shows the amount of components contained in Sample 8 fly ash balloon (FAB) in Comparative Examples 1, 2, and 3. For qualitative analysis of sample 8 by fluorescent X-ray, 10 g of sample was divided and placed in a tungsten carbide container and pulverized with a vibration mill. The pulverized product was placed in a weighing bottle and dried at 105 ° C. ± 5 ° C. for 12 hours or more, and then allowed to cool in a desiccator. The dried product was fired in a porcelain crucible at 1050 ° C. for 2 hours. This fired product and 10 times its amount of lithium tetraborate were placed in a platinum (Pt) 95% + gold (Au) 5% alloy pan and melted at 1200 ° C. to produce a glass bead. This glass speed was analyzed with a fluorescent X-ray qualitative analyzer SYSTEM 3270E manufactured by Rigaku Corporation. Therefore, Au in the detection element contains contaminants from the alloy dish. From the above analysis results, it is confirmed that the fly ash balloon satisfies the conditions as a suitable lightening agent raw material for producing an ultralight ceramic tile clay that can be artificially manufactured.

比較例1、2、3にある試料3の該長石の含有成分量を図6で示す。試料3を秤量瓶に入れ105℃±5℃で12時間以上で乾燥後、デシケーター中で放冷した。この乾燥物を磁製るつぼ中で1050℃2時間焼成した。この焼成物及び、その10倍量の四ホウ酸リチウムを白金(Pt)95%+金(Au)5%合金皿に入れ1200℃で溶融してガラスビードを作製し、理学電気(株)製の蛍光X線定性分析装置SYSTEM3270Eで分析した。以上の分析結果から、試料2の長石は、結晶促進剤として好適な原料としての条件を満たしていることが確認される。The content of the feldspar contained in Sample 3 in Comparative Examples 1, 2, and 3 is shown in FIG. Sample 3 was placed in a weighing bottle, dried at 105 ° C. ± 5 ° C. for 12 hours or more, and then allowed to cool in a desiccator. The dried product was fired in a porcelain crucible at 1050 ° C. for 2 hours. This fired product and 10 times its amount of lithium tetraborate are placed in a platinum (Pt) 95% + gold (Au) 5% alloy pan and melted at 1200 ° C. to produce a glass bead, manufactured by Rigaku Denki Co., Ltd. Were analyzed using a fluorescent X-ray qualitative analyzer SYSTEM 3270E. From the above analysis results, it is confirmed that the feldspar of Sample 2 satisfies the conditions as a suitable raw material as a crystal accelerator.

比較例3にある該カオリン(サンプル3)の含有成分量を図5で示す。サンプル3を約10g分取しタングステンカーバイト製容器に入れ、振動ミルで1次粉砕した。この粉砕物を秤量瓶に入れ、105℃±5℃で12時間以上乾燥後、デシケータ中で放冷し、この乾燥を磁製るつぼに精秤し1050℃2時間焼成した。焼成物をメノウ乳鉢で粉砕、乾燥後、10倍量の四ホウ酸リチウムを溶剤とし、ガラスビードを作製した。ガラスビードは蛍光X線分析装置で分析した。図3は該サンプル3の熱膨張試験を示し、その平均線熱膨張係数(室温〜500℃)は3.92×10−6乗である原料とし。以上の分析結果からアルミニウム源としてのカオリン鉱物は、耐火性熱量向上の促進剤として好適な全ての条件を満たしていることが確認される。FIG. 5 shows the content of the kaolin (sample 3) in Comparative Example 3. About 10 g of sample 3 was collected and placed in a tungsten carbide container, and first ground by a vibration mill. The pulverized product was put in a weighing bottle, dried at 105 ° C. ± 5 ° C. for 12 hours or more, then allowed to cool in a desiccator, and this dried was precisely weighed in a magnetic crucible and baked at 1050 ° C. for 2 hours. The fired product was pulverized and dried in an agate mortar, and 10 times the amount of lithium tetraborate was used as a solvent to prepare a glass bead. The glass beads were analyzed with a fluorescent X-ray analyzer. FIG. 3 shows a thermal expansion test of Sample 3, and the average linear thermal expansion coefficient (room temperature to 500 ° C.) is a raw material having a power of 3.92 × 10 −6. From the above analysis results, it is confirmed that the kaolin mineral as the aluminum source satisfies all conditions suitable as an accelerator for improving the refractory heat quantity.

比較例3の効果を確認するため図10で示す。試料6生物の蛍光X線による定性分析は、生成物試料をタングステンカーバイド(WC)製容器に入れ、振動ミルにより微粉砕した。この微粉砕物を105℃〜110℃で乾燥放冷後、磁製るつぼに精秤し、電気炉1050℃で加熱し、強熱減量を確認した。強熱後の試料を用い10倍量の四ホウ酸リチウムを融剤とし、白金(Pt)95%+金(Au)5%合金皿に入れ1200℃で溶融して作製したガラスビードを分析した。以上の分析結果から生成物は、耐火性熱量向上の促進剤の好適な条件を満たしていることが確認される。In order to confirm the effect of the comparative example 3, it shows in FIG. For the qualitative analysis of sample 6 organism by fluorescent X-ray, the product sample was placed in a tungsten carbide (WC) container and pulverized by a vibration mill. The finely pulverized product was dried and allowed to cool at 105 ° C. to 110 ° C., then precisely weighed in a magnetic crucible and heated at 1050 ° C. in an electric furnace to confirm the loss on ignition. Using a sample after ignition, a glass bead prepared by melting 10 times the amount of lithium tetraborate in a platinum (Pt) 95% + gold (Au) 5% alloy dish at 1200 ° C. was analyzed. . From the above analysis results, it is confirmed that the product satisfies suitable conditions for the accelerator for improving the refractory calorific value.

実施例1〜7の説明について、試料8のフライアッシュバルーン(FAB)の耐火性向上促進剤としてフライアッシュバルーンに対して5%のサンプル3の該天然カオリン(実施例1〜4)、同じく7%の該天然カオリン(実施例5〜7)、8%の試料3の該天然長石(実施例1〜7)、10%の該天然珪砂をそれぞれ添加し、上記比較例と同様に表中に示したとおり、超軽量の陶器瓦粘土の生成が認められる。したがって、ここでは人工的に超軽量陶器瓦粘土の生成が可能であることが注目される。As for the explanation of Examples 1 to 7, 5% of the natural kaolin of Sample 3 (Examples 1 to 4), 7% of the fly ash balloon as a fire resistance improvement accelerator of the fly ash balloon (FAB) of Sample 8, % Of the natural kaolin (Examples 5 to 7), 8% of the natural feldspar of Sample 3 (Examples 1 to 7) and 10% of the natural silica sand were added, respectively, in the table as in the above comparative example. As shown, the production of ultralight ceramic tile clay is observed. Therefore, it is noted here that it is possible to artificially produce ultralight ceramic tile clay.

前述の実施例3で得られた超軽量陶器瓦粘土の生成物の蛍光X線定性分析では、図10の試料6が示すとおり、耐火性の酸化アルミナAlの含有値は20wt%、耐火性・結晶性を示す二酸化シリカSiOの含有値は66wt%であった。In the fluorescent X-ray qualitative analysis of the ultralight earthenware clay product obtained in Example 3 above, the content of refractory alumina oxide Al 2 O 3 is 20 wt%, as shown by sample 6 in FIG. The content value of silica dioxide SiO 2 exhibiting fire resistance and crystallinity was 66 wt%.

又、耐火度検査においてはSK20番を測定し、焼生物が赤くなる原因の酸化鉄Feの含有は2.5wt%の測定値を示し、焼成色は薄いベージュ色で好適な瓦焼成色を示した。その他の含有物は図10が示すとおりである。In the fire resistance test, SK No. 20 was measured, and the content of iron oxide Fe 2 O 3 that caused burnt organisms to turn red showed a measured value of 2.5 wt%. Shown color. The other inclusions are as shown in FIG.

粒度分布測定においては、2〜5μのシルト類は15%を測定し、図12が示すカオリナイト粘土質やモンモリナイト粘土質の六角形層状をした2μm以下の超微細粒の砕屑性堆積物の粒度分布測定値は40%を示した。この数値は高耐火性と高可塑性・高成形性をうらずけるものである。In the particle size distribution measurement, 2% to 5 μt silt measures 15%, and the particle size of the ultrafine particles of 2 μm or less in the form of hexagonal layers of kaolinite clay or montmorillonite clay shown in FIG. The distribution measurement showed 40%. This numerical value is high fire resistance, high plasticity and high formability.

生成物の焼成試験は、室温〜200℃まで2時間、200℃〜500℃まで3時間、500℃〜1000℃まで5時間、1000℃〜1200℃まで2時間30分で焼成した。尚、測定方法は16KWシリコニット電気炉で焼成したもので、焼成物の結晶性は1200℃で焼成される陶器瓦の要素を十分満たしていることを確認した。In the firing test of the product, firing was performed for 2 hours from room temperature to 200 ° C, 3 hours from 200 ° C to 500 ° C, 5 hours from 500 ° C to 1000 ° C, and 2 hours 30 minutes from 1000 ° C to 1200 ° C. The measurement method was fired in a 16 KW siliconite electric furnace, and it was confirmed that the crystallinity of the fired product sufficiently satisfied the elements of ceramic tiles fired at 1200 ° C.

このようにして該フライアッシュバルーン(FAB)の大量配合によって生成された人工的超軽量の陶器瓦粘土は、可塑性・成形性・耐火性・結晶性・熔融性などの促進剤、およびその他配合材の化合・均一撹拌・混練工程などは、粉砕機・土錬機などの調整具合により、好適で実用的な品質管理が可能で、信頼性の高い良質な超軽量陶器瓦粘土に転換して製造することができる。更に本発明はスラリー状に液状化しないため、オートクレープ処理などの加圧しながら加熱する複雑工程を省略するので、大規模生産プロセスの迅速な実用化が適用できる。The artificial ultralight earthenware clay clay thus produced by mass blending of the fly ash balloon (FAB) is an accelerator for plasticity, moldability, fire resistance, crystallinity, meltability, and other blending materials. The chemical compounding, uniform agitation, and kneading processes, etc., can be controlled by adjusting the conditions of the crusher, earth smelter, etc., and suitable and practical quality control is possible. can do. Furthermore, since the present invention does not liquefy into a slurry, a complicated process of heating while applying pressure such as an autoclave process is omitted, so that a rapid practical application of a large-scale production process can be applied.

および、本発明が難解な陶器瓦の超軽量化と天然瓦原土(粘土)の資源枯渇課題を解決し、火力発電所から大量排出・廃棄されるフライアッシュに含まれるフライアッシュバルーン(FAB)の産業廃棄物をリサイクルの循環資源として再利用し実用化することは、環境破壊の防止に役立ち、陶器瓦一枚当たりの製造に要する天然の可塑性瓦原土(粘土)の消費減量化と、重いとされてきた陶器瓦の超軽量化につながる。又、原料供給の安定化とリサイクル循環システムによる超軽量陶器瓦粘土の新しい製造方法を構築することになる。And, the fly ash balloon (FAB) included in the fly ash that is mass-discharged / discarded from the thermal power plant, solving the super light weight of earthen tiles and the resource depletion problem of natural clay (soil) Reusing and commercializing industrial waste as a recycling resource helps to prevent environmental destruction, and reduces the consumption of natural plastic roof tile (clay) required for production per piece of earthenware tile. It leads to the super light weight of the earthenware tile that has been considered heavy. In addition, a new production method for ultralight earthenware clay will be established by stabilizing the supply of raw materials and recycling system.

本発明の一実施例である製造工程を示す生成フロー図である。It is a production | generation flowchart which shows the manufacturing process which is one Example of this invention. 比較例3と実施例で添加したシリカ源(試料2珪砂)の蛍光X線回折図である。It is a fluorescence X-ray-diffraction figure of the silica source (sample 2 silica sand) added by the comparative example 3 and the Example. 比較例3と実施例で添加したアルミウム源(サンプル3カオリン)の差熱重量分析曲線を示す説明図である。It is explanatory drawing which shows the differential thermogravimetric analysis curve of the aluminum source (sample 3 kaolin) added by the comparative example 3 and the Example. 例示する比較例1〜3と実施例1〜7を示す、図表である。It is a graph which shows the comparative examples 1-3 and the examples 1-7 which are illustrated. 例示するアルミニウム源として、比較例3と各実施例でサンプル3として使用した天然カオリンの蛍光X線による定性分析試験成績書であり、シリカSiOとアルミナAlの含有成分量など主成分を表す。Fluorescent X-ray qualitative analysis test report of natural kaolin used as sample 3 in Comparative Example 3 and each example as an aluminum source to be exemplified, and main components such as content of silica SiO 2 and alumina Al 2 O 3 Represents. 例示する融合・熔融・結晶促進剤として比較例2、3と各実施例に試料3として使用した天然長石の蛍光X線による定性分析試験成績書であり、シリカSiO2とアルミナAlの含有成分量など主成分を表す。A qualitative analysis test report and Comparative Examples 2 and 3 as illustrated fused-melt-crystallization accelerator X-ray fluorescence of natural feldspar used in each example as a sample 3, containing silica SiO2 and alumina Al 2 O 3 Represents the main component such as the amount of ingredients. 例示する軽量化剤の主原料として比較例と各実施例に使用した試料8フライアッシュバルーンの蛍光X線による定性分析試験成績書であり、シリカSiOとアルミナAlの含有成分量など主成分を表す。Fluorescent X-ray qualitative analysis test report of sample 8 fly ash balloon used in the comparative examples and examples as the main raw material of the illustrated lightening agent, including content of silica SiO 2 and alumina Al 2 O 3 Represents the main component. 例示する軽量化剤の主原料として比較例と各実施例に使用した試料8フライアッシュバルーン(FAB)の蛍光X線による定性分析試験成績書であり、不均一な中空粒子の大きさとその粒度分布量などをグラフで表す。Fluorescent X-ray qualitative analysis test report of sample 8 fly ash balloon (FAB) used in the comparative example and each example as the main raw material of the illustrated lightening agent. The amount etc. are expressed in a graph. 例示する軽量化剤の主原料として比較例と各実施例に使用した試料8フライアッシュバルーン(FAB)の蛍光X線による定性分析試験成績書であり、不均一な中空粒子の大きさとその粒度分布量などを数値で表す。Fluorescent X-ray qualitative analysis test report of sample 8 fly ash balloon (FAB) used in the comparative example and each example as the main raw material of the illustrated lightening agent. Express quantity etc. with numerical values. 例示する比較例3と各実施例にある試料6生成物(生成した超軽量陶器瓦粘土)の蛍光X線による定性分析試験成績書であり、シリカSiOとアルミナAlの含有成分量など主成分含有量を表す。It is a qualitative analysis test result by fluorescent X-rays of the sample 6 product (generated ultralight earthenware clay clay) in the comparative example 3 and each example illustrated, and the content of silica SiO 2 and alumina Al 2 O 3 Represents the main component content. 例示する耐火性向上のために使用する、アルミニウム源としてのアルミナAl(酸化アルミニウム)の粉末を2万倍に拡大した電子顕微鏡写真Electron micrograph of alumina Al 2 O 3 (aluminum oxide) powder used as an aluminum source magnified 20,000 times, used for improving fire resistance as exemplified. 例示するフライアッシュバルーンを混合する相手方の可塑性原土を2万倍に拡大した、カオリナイト粘土質・モンモリナイト粘土質の六角形層状をした、粒径が2μm以下の超微細粒の砕屑性堆積物の電子顕微鏡写真Kaolinite / Montmorinite hexagonal layered crushed sediment with a grain size of 2 μm or less, which is a 20,000 times enlargement of the plastic ground of the other party mixed with the fly ash balloon illustrated Electron micrograph of 例示する軽量化剤フライアッシュバルーンを500倍に拡大した顕微鏡写真で、粒径が不ぞろいの粒度分布を表す。A photomicrograph obtained by magnifying the exemplified lightening agent fly ash balloon 500 times shows a particle size distribution with uneven particle size. 例示する軽量化剤として試料8のフライアッシュバルーン(FAB)の耐火度測定表であり、該フライアッシュバルーンの耐火度がSK28番であることを表す。It is a fire resistance measurement table | surface of the fly ash balloon (FAB) of the sample 8 as a lightening agent to illustrate, It represents that the fire resistance of this fly ash balloon is SK28.

符号の説明Explanation of symbols

1 瓦原土(可塑性粘土)
2 アルミニウム源(耐火性向上剤→天然カオリン鉱物)
3 熔融促進剤(天然長石鉱物)
4 シリカ源(結晶促進剤のケイ石として天然珪砂・骨材にも併用)
5 風化花崗岩
6 廃瓦シャモット
7 加水処理
8 粉砕機・土錬機で加湿混練処理
9 生成(超軽量陶器瓦粘土の生成)
1 roof tile soil (plastic clay)
2 Aluminum source (fire resistance improver → natural kaolin mineral)
3 Melting accelerator (natural feldspar mineral)
4 Silica source (Combination with natural silica sand and aggregate as a crystal accelerator)
5 Weathered granite 6 Waste tile chamotte 7 Water treatment 8 Humidification and kneading treatment with pulverizer and earth smelter 9 Production (production of ultralight earthenware tile clay)

Claims (7)

陶器瓦1枚当たりの総体積を変えずにその重量を軽量化するには、見かけ比重が0.6〜0.9範囲の無機中空体のフライアッシュバルーン(FAB)を軽量化剤の主体原料として、シリカとアルミナ及び、超微細粒2μm以下の砕屑性堆積物を主成分とした、陶器瓦製造用の可塑性原土類に添加・化合することを最大の特徴とする。又、天然瓦原土の耐火度はSK18以上が好適とされるが、該瓦原土やその配合土化合物の耐火性を向上さすためにアルミニウム源、融合化促進剤・結晶化促進剤のシリカ源など各促進剤を添加して均質化合するため、微細によく撹拌し練り合わす技術の加湿混練処理することを特徴とする。よって、得られた混練生成物を成形後1200℃前後で中空体多孔質に焼成して軽量化することを特徴とした超軽量の陶器瓦を製造するための超軽量陶器瓦粘土の製造方法。In order to reduce the weight without changing the total volume per piece of earthenware roof tile, the fly ash balloon (FAB) of inorganic hollow body with apparent specific gravity in the range of 0.6 to 0.9 is used as the main raw material of the lightening agent. As a main feature, it is added to and combined with silica, alumina, and a plastic clay for the production of earthenware tiles composed mainly of detrimental deposits of ultrafine particles of 2 μm or less. Moreover, the fire resistance of natural roof tiles is preferably SK18 or higher. In order to improve the fire resistance of the roof tiles and their mixed soil compounds, an aluminum source, a fusion accelerator / crystallization accelerator, silica. Since each accelerator such as a source is added and homogenized, it is characterized by a humidified kneading process using a technique of finely stirring and kneading finely. Therefore, the manufacturing method of the ultralight earthenware tile clay for manufacturing the ultralight earthenware roof tile characterized by baking the obtained kneaded product to hollow body porous at around 1200 degreeC after shaping | molding, and reducing weight. 該フライアッシュバルーン(FBA)の耐火度は高く、第二種ゼーゲルコーン測定のSK27〜28の範囲であり骨材としては好適である。可塑性原土類:フライアッシュバルーンの対比配合比率の割合は、用途ごとに10:90〜90:10重量部の範囲とする。該フライアッシュバルーンは、水よりも軽い中空粒子状で中空構造を有し、微粉小球状の粒子径は約40μm〜約300μmの範囲である。又、球面全体が珪酸化合物を主成分とする無機コーテング層によって均一に被覆された二層構造を有して、独立した中空体多孔質の超軽量陶器瓦を製造することを特徴とする請求項1記載の超軽量陶器瓦粘土の製造方法。The fly ash balloon (FBA) has a high fire resistance and is in the range of SK27 to 28 of the second type Zegel cone measurement, which is suitable as an aggregate. The ratio of the contrast ratio of the plastic raw earth: fly ash balloon is in the range of 10:90 to 90:10 parts by weight for each application. The fly ash balloon has a hollow structure that is lighter than water and has a hollow structure, and the particle size of fine and small spheres is in the range of about 40 μm to about 300 μm. In addition, the present invention has a two-layer structure in which the entire spherical surface is uniformly coated with an inorganic coating layer mainly composed of a silicate compound, and manufactures an independent hollow body porous ultralight ceramic tile. A method for producing an ultralight earthenware clay according to 1. 該瓦原土類に多量(10%未満を少量・10%以上は多量・大量の意味を表す。)添加する軽量化剤のフライアッシュバルーンは高耐火の性質を持つが、添加・化合して生じた未生成物全体の耐火性・熱量性を均質に向上さすためにはアルミニウム源として、アルミナ(酸化アルミニウムAl)やカオリナイト、ハロサイトを主成分とする天然カオリン鉱物を選択し、シリカ源としてのケイ石に含まれる二酸化シリカSiOも選択して耐火性も向上させ、高耐火性粘土に含有のこれら主成分の鉱物を化合し、人工的に高耐火性・高熱量化を好適に向上させることを特徴とする前請求項1記載の超軽量陶器瓦粘土の製造方法。The fly ash balloon, a light weight agent that is added in large quantities (less than 10%, 10% or more means large quantity or large quantity), is highly fire-resistant. In order to improve the fire resistance and calorific properties of the entire unproduced product uniformly, natural kaolin minerals mainly composed of alumina (aluminum oxide Al 2 O 3 ), kaolinite and halosite are selected as the aluminum source. In addition, silica dioxide SiO 2 contained in silica as a silica source is also selected to improve fire resistance, and these main component minerals contained in high fire-resistant clay are combined to artificially increase the fire resistance and heat capacity. The method for producing an ultralight earthenware clay according to claim 1, wherein the method is preferably improved. 弱い溶融結晶力の欠点の性質を持つ、フライアッシュバルーンの溶融結晶力を向上さすための結晶促進剤として、シリカ源のケイ石としての天然珪砂、又風化花崗岩などを選択し、二酸化シリカSiOを鉱物群から化合して、焼成瓦の焼成・結晶強度を高めることを特徴とする前記請求項1乃至3記載の超軽量陶器瓦粘土の製造方法。Silica dioxide SiO 2 is selected by selecting natural silica sand or weathered granite as silica source silica, as a crystal accelerator for improving the melt crystal strength of fly ash balloons, which has the disadvantage of weak melt crystal strength. The method for producing an ultralight earthenware tile clay according to any one of claims 1 to 3, wherein a combination of minerals and minerals is combined to increase the firing and crystal strength of the fired tile. 該フライアッシュバルーンの溶融結晶力を向上さすために、融合促進剤として天然長石の鉱物を選択し、該瓦原土と該フライアッシュバルーンの未生成物の溶融・結合・結晶の融合力を高め、前記請求項1にあるその他添加物原料や骨材と相互の融合力を向上させて、焼成瓦の焼成強度を高めることを特徴とする前記請求項1乃至4記載の超軽量陶器瓦粘土の製造方法。In order to improve the melt crystal strength of the fly ash balloon, a natural feldspar mineral is selected as a fusion accelerator, and the fusion power of the tile raw earth and the ungenerated fly ash balloon is increased. The ultra-lightweight earthenware tile clay according to any one of claims 1 to 4, wherein the fusion strength between the other additive raw materials and aggregates of claim 1 is improved to increase the firing strength of the fired tile. Production method. 該瓦原土に添加するフライアッシュバルーンとそれぞれ天然のカオリン、長石、珪砂、風化花崗岩などに廃瓦シャモットなど化合して人工軽量瓦粘土を生成する技法は、これら化合物をスラリー状に液状化せず、粉砕機や土錬機などにおいて撹拌し、化合物全体を常温常圧状態で均質・微細によく混ぜて練り合わす技術を採用した、実用化方式の加湿混練処理をすることを特徴とする前記請求項1乃至5記載の超軽量陶器瓦粘土の製造方法。The technology to produce artificial lightweight tile clay by combining fly ash balloon to be added to the tile clay and natural kaolin, feldspar, quartz sand, weathered granite, etc. and waste tile chamotte, liquefies these compounds into a slurry. In addition, the above-mentioned humidifying kneading treatment is carried out using a technique of stirring in a pulverizer or earth smelting machine, and mixing and kneading the whole compound uniformly at room temperature and normal pressure. A method for producing an ultralight ceramic tile clay according to claim 1. 前請求項にあるこの超軽量瓦粘土から焼成された焼成物の中空体多孔質の超軽量陶器瓦は、フライアッシュバルーンの用途ごとの配合比率別にして、みかけ比重が0.8〜2.0の範囲未満で給水率は6.0%未満の低い給水性を持ち、曲げ破壊加重は1960N以上の高強度を有すことを特徴とする前記請求項1記載の超軽量陶器瓦粘土の製造方法。The hollow porous ultra-light earthenware roof tiles fired from the ultra-light tile clay according to the previous claim have an apparent specific gravity of 0.8-2. 2. The production of ultralight earthenware tile clay according to claim 1, characterized in that the water supply rate is less than 6.0 and has a low water supply rate of less than 6.0%, and the bending fracture load has a high strength of 1960 N or more. Method.
JP2006061806A 2006-02-06 2006-02-06 Method of manufacturing super lightweight ceramic roof tile clay Pending JP2007210872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006061806A JP2007210872A (en) 2006-02-06 2006-02-06 Method of manufacturing super lightweight ceramic roof tile clay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006061806A JP2007210872A (en) 2006-02-06 2006-02-06 Method of manufacturing super lightweight ceramic roof tile clay

Publications (1)

Publication Number Publication Date
JP2007210872A true JP2007210872A (en) 2007-08-23

Family

ID=38489636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006061806A Pending JP2007210872A (en) 2006-02-06 2006-02-06 Method of manufacturing super lightweight ceramic roof tile clay

Country Status (1)

Country Link
JP (1) JP2007210872A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2470894C1 (en) * 2011-08-31 2012-12-27 Юлия Алексеевна Щепочкина Ceramic mixture for making facing tiles
JP2013053043A (en) * 2011-09-02 2013-03-21 Misawa Homes Co Ltd Calcium silicate hydrate-based building material
RU2481303C2 (en) * 2011-08-16 2013-05-10 Автономное муниципальное образовательное учреждение высшего профессионального образования "Самарская академия государственного и муниципального управления" (АМОУ ВПО "САГМУ") Ceramic composition for making light brick
KR101420110B1 (en) * 2013-02-22 2014-07-21 한국세라믹기술원 compo sition used for manufacturing large-sized ceramic ware without chamotte, preparation method thereof, method for manufacturing large-sized ceramic ware using the composition, and large-sized ceramic ware manufactured thereby
KR101523508B1 (en) * 2015-01-15 2015-06-01 주식회사 고령기와 Using a composite material of clay type and properties of Korean and Korean-type geueulrim geueulrim groups possessing composition tile manufacturing method
CN113213963A (en) * 2021-06-26 2021-08-06 江西陶瓷工艺美术职业技术学院 Light refractory material prepared from construction waste and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2481303C2 (en) * 2011-08-16 2013-05-10 Автономное муниципальное образовательное учреждение высшего профессионального образования "Самарская академия государственного и муниципального управления" (АМОУ ВПО "САГМУ") Ceramic composition for making light brick
RU2470894C1 (en) * 2011-08-31 2012-12-27 Юлия Алексеевна Щепочкина Ceramic mixture for making facing tiles
JP2013053043A (en) * 2011-09-02 2013-03-21 Misawa Homes Co Ltd Calcium silicate hydrate-based building material
KR101420110B1 (en) * 2013-02-22 2014-07-21 한국세라믹기술원 compo sition used for manufacturing large-sized ceramic ware without chamotte, preparation method thereof, method for manufacturing large-sized ceramic ware using the composition, and large-sized ceramic ware manufactured thereby
KR101523508B1 (en) * 2015-01-15 2015-06-01 주식회사 고령기와 Using a composite material of clay type and properties of Korean and Korean-type geueulrim geueulrim groups possessing composition tile manufacturing method
CN113213963A (en) * 2021-06-26 2021-08-06 江西陶瓷工艺美术职业技术学院 Light refractory material prepared from construction waste and preparation method thereof
CN113213963B (en) * 2021-06-26 2022-09-06 江西陶瓷工艺美术职业技术学院 Light refractory material prepared from construction waste and preparation method thereof

Similar Documents

Publication Publication Date Title
Boltakova et al. Utilization of inorganic industrial wastes in producing construction ceramics. Review of Russian experience for the years 2000–2015
Rakhimova et al. Alkali-activated cements and mortars based on blast furnace slag and red clay brick waste
ES2638051T3 (en) Processing of fly ash and manufacture of articles that incorporate fly ash compositions
CN103755361B (en) A kind of Aluminum-chromium-sifireproof fireproof material
Hossain et al. Manufacturing of green building brick: recycling of waste for construction purpose
JP2007197295A (en) Method of producing artificial clay for roof tile
CN109987892A (en) One kind is based on flyash-iron tailings geo-polymer fibre reinforced materials and preparation method thereof
More et al. Assessment of suitability of fly ash and rice husk ash burnt clay bricks
CN106007434A (en) Alkali-activated high-titanium slag baking-free haycite and preparation method thereof
JP2007210872A (en) Method of manufacturing super lightweight ceramic roof tile clay
CN114072369A (en) Cement agent and its production method and use
CN102260084A (en) Corundum refractory castable
JP5013232B1 (en) Aggregate using Shinmoedake eruption ash, its manufacturing method and building material using the same
CN106588059A (en) Prefabricated member for lime rotary kiln and preparation method of prefabricated member
Liu et al. Performance of glass-ceramic-based lightweight aggregates manufactured from waste glass and muck
Luo et al. Recycling vanadium-bearing shale leaching residue for the production of one-part geopolymers
Lin et al. Characterizations of temperature effects on sintered ceramics manufactured with waste foundry sand and clay
CN100391891C (en) Haydite prepared from dregs of oil shale, and preparation method
JPH04501406A (en) low cement refractories
Glazev et al. Environmental technologies in the production of metallurgical silicon
Lăzărescu et al. Alternative Concrete–Geopolymer Concrete: Emerging Research and Opportunities
JP2000119050A (en) Production of artificial lightweight aggregate and artificial lightweight aggregate obtained by the method
CN104556962A (en) Yellow sintered landscape brick and production method thereof
Vakalova et al. Phase formation, structure and properties of light-weight aluminosilicate proppants based on clay-diabase and clay-granite binary mixes
CN104529323B (en) A kind of heat resistance concrete that full weight slag aggregate is prepared with Portland cement

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080604

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080604

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804