JP2007197295A - Method of producing artificial clay for roof tile - Google Patents

Method of producing artificial clay for roof tile Download PDF

Info

Publication number
JP2007197295A
JP2007197295A JP2006103620A JP2006103620A JP2007197295A JP 2007197295 A JP2007197295 A JP 2007197295A JP 2006103620 A JP2006103620 A JP 2006103620A JP 2006103620 A JP2006103620 A JP 2006103620A JP 2007197295 A JP2007197295 A JP 2007197295A
Authority
JP
Japan
Prior art keywords
clay
tile
coal ash
artificial
natural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006103620A
Other languages
Japanese (ja)
Inventor
Junji Kuratoko
淳二 倉床
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON MERION KK
Original Assignee
NIPPON MERION KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON MERION KK filed Critical NIPPON MERION KK
Priority to JP2006103620A priority Critical patent/JP2007197295A/en
Publication of JP2007197295A publication Critical patent/JP2007197295A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing artificial clay for a roof tile as a new resource for a ceramic raw material in which a new material of coal ash is easily converted to and generates the artificial clay for the roof tile and which is simply applicable, though clay for roof tiles having a stable supply capacity sustainable for a long time and large amount consumption and excellent in plasticity, firing crystallinity and fire resistance has been necessary to be developed in order to manufacture ceramic roof tiles. <P>SOLUTION: The artificial clay for the roof tile can be produced by a novel technical art which enhances a mutual fuse and melt crystallinity among compounds such as a mineral of a natural kaolin as an aluminum source having properties of high heat resistance and high heat capacity, silica sand, and a weathered granite and a waste tile chamotte as another extender raw material when coal ash is added and blended in a significantly large extending proportion to plastic raw clay of a main raw material of the ceramic roof tiles, the novel technical art comprising making up with a new technique of adding a mineral of a natural feldspar, humidifying and blunging in a practical way of moisturing the total compounds in a pulverizer, a clay blunger or the like and thereafter mixing homogeneously by stirring at normal temperatures and pressure without liquefying into a slurry. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は陶器瓦製造の人工瓦粘土製造方法の分野に属し、陶器瓦製造のため図7・11の石炭灰を増量材の原料として瓦一枚当たりが消費する天然の瓦原土(粘土)の使用量を減量化し、この陶器瓦製造に必要な人工瓦粘土を実用化して製造する方法に関するものである。The present invention belongs to the field of artificial tile clay manufacturing method for pottery tile manufacturing, and natural tile tile clay (clay) that is consumed per tile by using the coal ash of Figs. This invention relates to a method for reducing the amount of the use of the artificial tile and putting the artificial tile clay necessary for manufacturing the ceramic tile into practical use.

陶器瓦業界は瓦の大量生産(全国の年間総生産量約15億枚)により、図10で示す天然の瓦原土(可塑性瓦粘土)の大量消費(全国の年間消費量約450万トン)が長年進む中、代替資源の研究開発がされてこなかった。このことは不安定な原料不足を引き起こす重大な問題で、陶器瓦製造業の根幹を揺るがす状況になっている。このような背景で、人工瓦粘土の製造方法の確立と実用化が強く望まれている。The pottery tile industry has a large amount of natural tile tile (plastic tile clay) shown in Fig. 10 due to mass production of tiles (total annual production of about 1.5 billion nationwide) (annual consumption of nationwide is about 4.5 million tons) However, research and development of alternative resources has not been conducted over the years. This is a serious problem that causes an unstable raw material shortage and shakes the foundation of the ceramic tile manufacturing industry. Against this background, establishment and practical application of a method for producing artificial tile clay is strongly desired.

図11で示した石炭灰(フライアッシュ)は、本発明者住所近隣や全国の石炭火力発電所から毎年大量(2004年実績で約920万トン)の石炭灰が産業廃棄物として排出され、主として海岸や空き地に処分コストの伴う産業廃棄の埋め立て処分がされている現状にある。この処分方法に依存することは最終的に環境破壊を引き起こすことが懸念されている。そのため、例えば特許文献1のように、石炭灰をスラリー状に調整してから粘土製造に活用する技術も提案されている。
特許第2519666号公報
The coal ash (fly ash) shown in FIG. 11 is a large amount of coal ash discharged from the vicinity of the inventor's address and nationwide coal-fired power plants (approximately 9.2 million tons in 2004) as industrial waste. At present, landfill disposal of industrial waste with disposal costs is being carried out on the coast and vacant land. There is concern that relying on this disposal method will eventually cause environmental destruction. Therefore, for example, as disclosed in Patent Document 1, a technique of adjusting coal ash to a slurry and then utilizing it for clay production has been proposed.
Japanese Patent No. 2519666

陶器瓦製造のために、可塑性・成形性・焼成結晶性・融合溶融性・耐火性などの各性質に優れた天然の瓦原土(可塑性粘土)を主体土として大量消費してきた経緯から、代替の同類資源の発見が課題として求められたきた。又、瓦製造の要件には長期間の大量消費に耐え得る長期安定供給が可能な、前述の各性質を併せ持つ瓦粘土類の開発が必須とされてきたが、未だ商品化への開発には至らなかった。そして、上記の特許文献1に記載されている技術は、実験室段階での種々の活用試験に留まるもので量産化に至っていないものである。Substituted from the background of large-scale consumption of natural clay tile (plastic clay) with excellent properties such as plasticity, moldability, fired crystallinity, fusion meltability, and fire resistance for the production of earthenware tiles The discovery of similar resources has been a challenge. In addition, it has been essential to develop tile clays with the above-mentioned properties that can provide a long-term stable supply that can withstand long-term mass consumption. It did not come. And the technique described in said patent document 1 is what has not reached mass production only in the various utilization test in a laboratory stage.

このような背景で発明者は、長期間・大量に安定供給が可能な上述の石炭灰を人工瓦粘土の新たな原料として活用することに着目し、消費実用化が可能で人工瓦粘土へと容易に変換・生成するための課題を解消することに創意工夫をなして本発明を完成した。又、陶器瓦の製造で石炭灰(フライアッシュ)を安定した窯業原料の有効資源として、実用消費できる人工瓦粘土に生成変換する新技術は、生成方法が簡潔で実効性、実用化が確立できる発明でなければならないものであるが、その点にも本発明の有効性が存在するものである。With this background, the inventor has focused on utilizing the above-mentioned coal ash, which can be stably supplied in large quantities for a long period of time, as a new raw material for artificial tile clay. The present invention has been completed by making ingenuity in solving the problem of easy conversion and generation. In addition, the new technology for producing and converting coal ash (fly ash) into an artificial tile clay that can be used practically as an effective resource for stable ceramic materials in the production of earthenware tiles is simple in production method and can be established for effectiveness and practical use. Although it must be an invention, the effectiveness of the present invention also exists in that respect.

本発明は、前述の課題解決のため第一に、陶器瓦の主原料である可塑性原土に増量剤の原料として、石炭灰を配合した生成前の化合物に必要に応じてアルミニウム源および、融合促進剤、結晶化促進剤を添加して均一化合さすため、化合物全体を常温常圧状態で均質・微細によく混ぜて練り合わす技術を採用した、加湿混練処理することを特徴とする陶器瓦製造のための瓦粘土を人工的に製造することができる。In order to solve the above-mentioned problems, the present invention, firstly, as a raw material of a bulking agent, which is a main raw material for earthenware tiles, as an extender raw material, an aluminum source and a fusion as needed to a compound before coal blended with coal ash Manufacturing of ceramic tiles characterized by humidifying and kneading, which employs a technology that mixes and kneads the entire compound uniformly and finely at room temperature and normal pressure to add and homogenize accelerators and crystallization accelerators. The tile clay for can be manufactured artificially.

第二に、低耐火・低熱量の各性質を持つ、石炭灰を大量添加・化合して生じた化合生成物の耐火性・熱量性を向上さすため必要に応じアルミニウム源として、融点2050℃、沸点3000℃の特性を持ち図9で示す、アルミナ(Al)やカオリナイト(Al・2SiO・2HO)、ハロサイト(Al・2SiO・4HO)を主成分とする天然カオリン鉱物を選択し、シリカ源として二酸化シリカSiOの耐火性も選択する。又、それら粘土主成分を化合し、人工的に高耐火性・高熱量化を好適に向上させる特徴で、人工瓦粘土を製造することができる。Secondly, to improve the fire resistance and calorific properties of the combined product produced by adding and combining a large amount of coal ash with low fire resistance and low calorie properties, as an aluminum source as necessary, melting point 2050 ° C, Alumina (Al 2 O 3 ), kaolinite (Al 2 O 3 .2SiO 2 .2H 2 O), halosite (Al 2 O 3 .2SiO 2 .4H 2 O) having a boiling point of 3000 ° C. and shown in FIG. ) Is selected as the main component, and the fire resistance of silica dioxide SiO 2 is also selected as the silica source. In addition, artificial clay clay can be produced with the characteristics of suitably combining these clay main components and artificially improving high fire resistance and high calorific value.

又、その他のアルミニウム源としては、水酸化アルミニウム、可溶性アルミニウム塩、各種の水和アルミナなどの物質群から選択された耐火性向上のアルミニウム化合物とする。又、クリストバライト現象や冷め割れ、焼成物の炭化現象による異形・変形・クラックなどの不具合の原因は、アルミニウム源の不足で耐火性の低下・劣化から生じる現象であるので、本発明は図3・5にある該カオリンを添加して図9が示す、アルミナ(Al)を増やして化合し、耐火性や熱量性を強化改質することで解決した。The other aluminum source is an aluminum compound with improved fire resistance selected from a group of substances such as aluminum hydroxide, soluble aluminum salts, and various hydrated aluminas. In addition, the cause of defects such as cristobalite phenomenon, cold cracking, deformed shape / deformation / crack due to carbonization phenomenon of the fired product is a phenomenon caused by deterioration and deterioration of fire resistance due to lack of aluminum source. This problem was solved by adding the kaolin in No. 5 and increasing the amount of alumina (Al 2 O 3 ) shown in FIG.

第三に弱い溶融結晶力の性質を持つ、石炭灰の溶融結晶力を向上さすためのシリカ源のケイ石や骨材併用の天然珪砂や風化花崗岩を必要に応じて選択し、二酸化シリカSiOを鉱物群から化合し、焼成瓦の焼成強度を高める特徴で人工瓦粘土を製造することができる。With weak melt crystallization force properties Thirdly, selected according to need natural silica sand and weathered granite quartzite and aggregate combination of the silica source to refer improve melt crystallization force of coal ash, silica dioxide SiO 2 It is possible to produce artificial tile clay with the characteristic that it combines from the mineral group to increase the firing strength of the fired tile.

ケイ酸原料としてのケイ石は、石英の単結晶から石英の集合体に至る。実用的には骨材に併用できるシリカ成分高純度の天然珪砂が好適である。Silica as a silicic acid raw material ranges from a single crystal of quartz to an aggregate of quartz. Practically, natural silica sand with high purity silica component that can be used in combination with aggregate is suitable.

第四に、弱い溶融結晶力の性質を持つ、石炭灰の溶融結晶力を向上さすために必要に応じて、天然長石の鉱物を選択し、可塑性原土と石炭灰の溶融・結合・結晶の融合力を高め、その他の添加物原料や骨材と相互の融合力を向上させて、焼成瓦の焼成強度を高める特徴で人工瓦粘土を製造することができる。Fourthly, natural feldspar minerals are selected as necessary to improve the coal ash melt crystallization force, which has a weak melt crystal strength property, and the plastic raw earth and coal ash are fused, bonded, and crystallized. Artificial roof clay can be manufactured with the feature of increasing the fusion strength and improving the mutual fusion strength with other additive raw materials and aggregates to increase the firing strength of the fired tile.

したがって短時間の簡易工程で石炭灰を効率よく、混練粘土に溶解・溶融合・結合さすためには、必要に応じて長石という融合化促進剤を常用添加・混練するシステムを実用化開発する必要があった。又、長石には正長石(KAlSi)、曹長石(NaAlSi)、灰長石(CaAlSi)及び主要鉱物のバリウム長石(BaAlSi)があるが、長石質の砂礫を含め用途に応じて使用することで、人工瓦粘土製造方法を完成させた。Therefore, in order to efficiently dissolve, melt and bond coal ash into kneaded clay in a short simple process, it is necessary to develop and use a system that regularly adds and kneads a fusion accelerator called feldspar, if necessary. was there. Further, the feldspar orthoclase (KAlSi 3 O 8), albite (NaAlSi 3 O 8), there is a anorthite (CaAl 2 Si 2 O 8) and the main minerals of barium feldspar (BaAl 2 Si 2 O 8) By using it according to the application including feldspar-like gravel, the artificial tile clay manufacturing method was completed.

第五に、可塑性原土に1重量部から90重量部の範囲で添加する石炭灰と必要に応じて、天然のカオリン、長石、珪砂、風化花崗岩などに廃瓦シャモットなど化合して人工瓦粘土を生成する技法は、これら化合物をスラリー状に液状化せず、粉砕機や土錬機などにおいて、化合物全体を常温常圧状態で均一に混ぜ合わす高精度技術を重要とした、実用化方式の加湿混練処理する特徴で人工瓦粘土を製造することができる。Fifth, artificial tile clay combined with coal ash added in the range of 1 to 90 parts by weight to the plastic clay and, if necessary, natural kaolin, feldspar, quartz sand, weathered granite, etc. The technology to produce the above is a practical method of humidification, which does not liquefy these compounds in a slurry state, but emphasizes high-precision technology that uniformly mixes the entire compound at normal temperature and normal pressure in a pulverizer or earth smelter. Artificial tile clay can be produced with the characteristics of kneading.

自然界において粘土鉱物は、カオリナイト質粘土が主体であり、含有アルミニウムケイ酸塩鉱風化作用が繰り返し、酸性熱水による熱水変質作用で溶解・溶脱作用・海底風化作用の影響を長期間うけて生成すると一般に考えられている。しかし、実用的な人工的製造方法としては短期間の簡易工程において、前記にある方法でそれら必要に応じた化合物同士を均一に混ぜ合わす技法を用いる必要がある。In nature, clay minerals are mainly kaolinitic clay, and the contained aluminum silicate mineral weathering action is repeated, and the effects of dissolution, leaching and seabed weathering are affected by hydrothermal alteration by acidic hot water for a long time. It is generally considered to generate. However, as a practical artificial manufacturing method, it is necessary to use a technique in which the compounds according to necessity are uniformly mixed by the above-described method in a simple process in a short period of time.

陶器瓦の主原料となる瓦原土は近年枯渇傾向にありながら、その枯渇対策や研究開発は見過ごされてきた。この石炭灰を利用した陶器瓦製造のための人工瓦粘土を生成する技術の開発について、工場での量産を可能にする製品化に繋がるような確立した事例は過去に存在しない。又、平成3年に施行された再生資源の利用の促進に関する法律では、火力発電所から多量に排出される石炭灰が指定副産物に指定され、再生資源として利用拡大を計ることが定められた経緯もあり、石炭を使用した火力発電所から排出される石炭灰(フライアッシュ)は、実験室段階での種々の活用試験が試みられているが量産化に至っていない現状にあり、本発明の方法を採用すれば陶器瓦製造のための有効な安定供給資源として活用でき、陶器瓦業界の背景にある天然瓦原土の過剰消費問題は解決する。Although the tile roof, which is the main raw material for pottery tiles, has been depleting in recent years, its depletion countermeasures and research and development have been overlooked. In the past, there has been no established case for the development of technology for producing artificial tile clay for the production of pottery tiles using coal ash, leading to commercialization that enables mass production in factories. In addition, the law on the promotion of the use of recyclable resources enacted in 1991 established that coal ash discharged in large quantities from thermal power plants was designated as a specified by-product, and the expansion of use as a reclaimed resource was planned. The coal ash (fly ash) discharged from the thermal power plant using coal has been used in various tests at the laboratory stage, but has not yet been mass-produced. The method of the present invention Can be used as an effective and stable supply resource for the production of pottery tiles, and solves the problem of excessive consumption of natural tiles in the background of the pottery tile industry.

更に、本発明は産業廃棄物の石炭灰を有効な陶器瓦粘土の安定原料して、人工瓦粘土へ高効率に簡易変換することが可能であること。又、石炭灰の人工瓦粘土への変換において、必要に応じたアルミニウム源の他に少量の融合・熔融促進剤とシリカ源の結晶化促進剤を添加して前記特許文献1に開示されるスラリー状のように液状化せず、常温、常圧条件での撹拌・加湿混練処理することで、常温での人工瓦粘土の製造が可能である。Furthermore, the present invention can easily convert the industrial waste coal ash into artificial tile clay with high efficiency as a stable raw material for effective earthen tile clay. In addition, in the conversion of coal ash into artificial tile clay, a slurry disclosed in the above-mentioned Patent Document 1 is added by adding a small amount of fusion / melting accelerator and silica source crystallization accelerator in addition to an aluminum source as required. It is possible to produce artificial tile clay at room temperature by performing agitation and humidification kneading under normal temperature and normal pressure conditions without being liquefied.

図11で示した石炭灰の粒度分布は、5μm〜50μmを主体として、2μm〜150μmの範囲の粒度分布測定範囲の粒径・粒子を有する二酸化シリカSiOや酸化アルミナAlを主成分とする微粒子体である。火力発電所で使用する原料炭の殆んどは外国から輸入しており、その産地や燃焼条件などの理由でその成分は種々異なる。石炭灰に含有するシリカとアルミナの重量比(Al:SiO)は約25%:75%〜約30%:70%の範囲で、微少量の鉄、マグネシウム、カルシウムの他に超微量の酸化チタン・酸化亜鉛など数種の重金属を含有し、未燃炭素が2〜3%微少に残留しているので灰色に着色している。又、石炭灰は粘性や可塑性は全く無く、極めて成型性に乏しい。又、焼成結晶力が弱く、焼成物に必要な強度性や耐火性・要熱量不足が懸念される。The particle size distribution of the coal ash shown in FIG. 11 is mainly composed of silica dioxide SiO 2 and alumina oxide Al 2 O 3 having a particle size / particles in a particle size distribution measurement range of 2 μm to 150 μm mainly from 5 μm to 50 μm. It is a fine particle body. Most of the coking coal used in thermal power plants is imported from foreign countries, and its components differ depending on the origin and combustion conditions. The weight ratio of silica to alumina contained in coal ash (Al 2 O 3 : SiO 2 ) is in the range of about 25%: 75% to about 30%: 70%. It contains several kinds of heavy metals such as a small amount of titanium oxide and zinc oxide, and it is colored gray because unburned carbon remains in a slight amount of 2-3%. In addition, coal ash has no viscosity or plasticity and is extremely poor in moldability. In addition, the fired crystal strength is weak, and there is a concern about the strength, fire resistance, and insufficient heat required for the fired product.

新しい技術1の実施例として、生成される人工瓦粘土の可塑性・成形性を求めるため、瓦原土と石炭灰を1重量部〜90重量部の範囲で対比配合した化合物は、瓦原土本来の粘性・可塑性・焼成強度の性質を活用する。又、使用する瓦原土は写図10で示す、カオリナイト粘土質・モンモリナイト粘土質の六角形層状をした、超微細粒の砕屑性堆積物の粒径が2μm以下で粒度分布量が20%以上の範囲とし、40%前後の粒度分布量の粘土を好適とした。As an example of the new technique 1, in order to determine the plasticity and formability of the artificial tile clay to be produced, a compound in which the tile original clay and coal ash are mixed in the range of 1 to 90 parts by weight Utilizes the properties of viscosity, plasticity and fired strength. The tile tile used is a hexagonal layer of kaolinite clay and montmorillonite clay as shown in Fig. 10. The particle size distribution of ultrafine-grained debris deposits is 2 μm or less and the particle size distribution is 20%. Clay having a particle size distribution amount of around 40% was suitable within the above range.

新しい技術2の実施例とする石炭灰の配合比について、人工瓦粘土の可塑性・成形性を求めるため、瓦原土(粘土)石炭灰の配合比は用途ごとに1重量部〜90重量部範囲での対比配合とし、該瓦原土(粘土):石炭灰の配合比率は30:70〜40:60重量部範囲の対比配合を好適とする。Regarding the blending ratio of coal ash as an example of the new technology 2, the blending ratio of the raw clay (clay) coal ash ranges from 1 to 90 parts by weight for each application in order to obtain the plasticity and moldability of artificial tile clay. In this case, the mixing ratio of the raw clay (clay): coal ash is preferably 30:70 to 40:60 parts by weight.

新しい技術3の実施例とする天然カオリンの配合比について、石炭灰の耐火度は、第一種ゼーゲルコーンによる焼成温度測定方法でSK14番±の範囲であるので、その耐火度は低く焼成に重要な熱量が非常に乏しい。このため図9で示す、融点が2050℃、沸点が3000℃のアルミナを添加することが必須であるが、必要が生じた場合代替策として図3・5が示す天然カオリンの添加を1重量部〜20重量部の範囲とし、好適には5重量部〜8重量部の範囲で添加して、必要に応じたその耐火性不足を補う。天然カオリンの耐火度は第二種ゼーゲルコーン測定方法によるSK33番〜SK36番の範囲を好適とする。又、使用するカオリンはカオリン鉱床のうち、カオリナイトとハロサイトを主成分とする。その他のアルミナ源として、風化花崗岩の添加効果もあることが確認された。Regarding the blending ratio of natural kaolin as an example of the new technology 3, the fire resistance of coal ash is in the range of SK14 ± in the firing temperature measurement method using the first kind of Zegel cone, so the fire resistance is low and important for firing. The amount of heat is very poor. For this reason, it is essential to add alumina having a melting point of 2050 ° C. and a boiling point of 3000 ° C. as shown in FIG. 9, but if necessary, the addition of natural kaolin shown in FIGS. It is made into the range of -20 weight part, Preferably it adds in the range of 5 weight part-8 weight part, and the lack of the fire resistance as needed is compensated. The fire resistance of natural kaolin is preferably in the range of SK No. 33 to SK No. 36 according to the second-type Zeger cone measurement method. The kaolin used is mainly composed of kaolinite and halosite in the kaolin deposit. As another alumina source, it was confirmed that weathered granite also had an additive effect.

新しい技術4の実施例とする石炭灰の焼成結晶力や焼成強度向上のため、図6で示す天然長石を1重量部〜20重量部の範囲で瓦原土と石炭灰の化合物に必要に応じて添加する。好適に8重量部を添加することにより、瓦粘土と珪砂・風化花崗岩・廃瓦シャモットなど化合物と石炭灰(フライアッシュ)それぞれを溶解・接着を促進させ、長石の特性による相互溶解性で焼成物の硬度・強度の向上を確認した。In order to improve the calcining crystal strength and calcining strength of coal ash as an example of the new technology 4, the natural feldspar shown in FIG. Add. Addition of 8 parts by weight suitably promotes dissolution and adhesion of compounds such as tile clay, silica sand, weathered granite, waste tile chamotte, and coal ash (fly ash). The improvement of hardness and strength was confirmed.

新しい技術5の実施例とするシリカ源としてのケイ石の代替策として図2で示す天然珪砂を1重量部〜25重量部範囲で必要に応じて添加し、好適には10重量部とした。又珪砂のシリカ分純度は90%以上を好適とした。又、その効果は骨材としての効果も確認し、その他のシリカ源として、風化花崗岩の添加による一部効果も確認した。As an alternative to silica as an example of the new technology 5, the natural silica sand shown in FIG. 2 is added as necessary in the range of 1 to 25 parts by weight, preferably 10 parts by weight. The silica content purity of the silica sand is preferably 90% or more. Moreover, the effect also confirmed the effect as an aggregate, and also confirmed the partial effect by addition of weathered granite as another silica source.

新しい技術6の実施例とするその他の配合材として、廃瓦を微粉砕したシャモットを増量・配合材として1重量部〜20重量部の範囲とし、好適には10重量部とした。その効果は骨材の用途効果も確認した。その他用途として、廃棄瓦の廃棄物処分について環境・資源の分野での循環性のある消費実用化も確立できることが確認された。As another compounding material as an example of the new technique 6, chamotte obtained by finely pulverizing waste tiles was used in an amount of 1 to 20 parts by weight, preferably 10 parts by weight as an increase / combination material. The effect also confirmed the use effect of the aggregate. As other applications, it was confirmed that the recycling of waste in the environment and resources field can be established for the disposal of waste tiles.

新しい技術7の実施例とする新たに生成される人工瓦粘土は、原料である可塑性原土、石炭灰、カオリン、長石、珪砂、風化花崗岩、廃瓦シャモットなどを適量に配合して加水・加湿後、粉砕機や土錬機で均質・微細によく混ぜて練り合わす撹拌混練技術を実施する。それら化合物の混練を均一化するために混練時間は1立方メートルあたり30分〜60分の範囲を基準として実施する。カオリンを構成するカオリナイト(Al・2SiO・2HO)合成の水熱反応は、反応別に分類化され、反応温度など所定の設定条件によって、結晶化に要する反応時間は個々に変化を示し異なる。使用する石炭灰フライアッシュは、図11で示す数μmの粒径粒子を中心とする微細球状粒子のシリカアルミナであり、石英と少量ムライトの存在が確認される。又、カオリンを構成するハロサイト(Al・2SiO・4HO)は100℃〜200℃で吸熱ピークを示し、500℃〜600℃で吸熱反応と900℃〜1150℃の発熱反応はカオリナイトと本質的に変わりがない。The newly generated artificial tile clay as an example of the new technology 7 is composed of plastic raw earth, coal ash, kaolin, feldspar, quartz sand, weathered granite, waste tile chamotte, etc., as raw materials, and is mixed with water and humidified. After that, agitation and kneading technology is carried out, in which the mixture is kneaded and mixed homogeneously and finely with a pulverizer or earth smelter. In order to make the kneading of these compounds uniform, the kneading time is carried out on the basis of a range of 30 minutes to 60 minutes per cubic meter. The hydrothermal reactions of kaolinite (Al 2 O 3 · 2SiO 2 · 2H 2 O) synthesis constituting kaolin are classified according to reaction, and the reaction time required for crystallization depends on the predetermined setting conditions such as reaction temperature. Show change and different. The coal ash fly ash used is silica alumina of fine spherical particles centered on particles having a particle size of several μm shown in FIG. 11, and the presence of quartz and a small amount of mullite is confirmed. The halosite (Al 2 O 3 2SiO 2 4H 2 O) constituting kaolin exhibits an endothermic peak at 100 ° C to 200 ° C, an endothermic reaction at 500 ° C to 600 ° C, and an exothermic reaction at 900 ° C to 1150 ° C. Is essentially the same as Kaolinite.

本発明については一実施例を添付図で参照とし、以下の図1のとおりに説明する。又、図1については製造工程のフロー図を示す。ここで符号1は可塑性原土、符号2が増量材原料(石炭灰)、符号3が添加アルミニウム源(カオリン)、符号4が溶融促進剤(長石)、符号5がシリカ源の結晶促進剤(ケイ石・珪砂)、符号6が風化花崗岩、符号7が廃瓦シャモット、符号8が加湿(加水)工程、符号9が撹拌・加湿混練工程、符号10が生成の人工瓦粘土である。図示のとおり可塑性原土に増量剤の原料として、石炭灰を大量配合した生成前の化合物にアルミニウム源および、結晶化促進剤を均一添加化合さすため、微細に練り合す技術で加湿混練処理して人工瓦粘土を生成する各工程を包含するものである。The present invention will be described with reference to FIG. 1 below with reference to the accompanying drawings. FIG. 1 shows a flow chart of the manufacturing process. Here, reference numeral 1 is a plastic raw soil, reference numeral 2 is an extender raw material (coal ash), reference numeral 3 is an added aluminum source (kaolin), reference numeral 4 is a melting accelerator (feldspar), reference numeral 5 is a silica source crystal accelerator ( The reference numeral 6 is weathered granite, the reference numeral 7 is a waste tile chamotte, the reference numeral 8 is a humidification (hydration) step, the reference numeral 9 is a stirring / humidification kneading step, and the reference numeral 10 is an artificial roof clay. As shown in the figure, a humidified kneading process is performed with a fine kneading technique to uniformly add an aluminum source and a crystallization accelerator to a compound before formation in which a large amount of coal ash is blended as a raw material for an extender in a plastic base. It includes each step of producing artificial tile clay.

本発明の人工瓦粘土の製造において、図7で示す試料5の石炭灰フライアッシュが人工瓦粘土の生成変換に及ぼす、耐火性・溶融性・融合性・結晶性を高めるための天然カオリン鉱物(サンプル3)、天然長石鉱物(試料3)、天然珪砂(資料2)の各促進剤の効果を図4に示す。ここでの実施例比較は各促進剤の添加配合量の製造条件を違えて、人工瓦粘土の生成を確認したものであり、試料毎に図中に示した比較例1、2、3と実施例1、2、3、4、5、6、7、8、9、10である。つまり、比較例1は、可塑性原土と石炭灰だけの単純化合物に各促進剤を配合しないで混練した結果、石炭灰の添加量を10重量部未満の範囲では生成の確認ができた。比較例2は、石炭灰の添加量を10重量部〜30重量部未満の範囲した、可塑性原土と石炭灰だけの単純化合物にアルミニウム源としての天然カオリンを化合しないで、天然長石と珪砂を添加化合したが生成を確認できなかった。比較例3は、実施例2の単純化合物に溶融融合剤の天然長石、シリカ源として珪砂の他、アルミニウム源として天然カオリンを添加化合してその生成を確認した。In the production of artificial tile clay of the present invention, natural kaolin minerals for improving the fire resistance, meltability, fusion property and crystallinity of the coal ash fly ash of Sample 5 shown in FIG. FIG. 4 shows the effects of the accelerators of sample 3), natural feldspar mineral (sample 3), and natural silica sand (document 2). In this example, the production conditions of the addition amount of each accelerator were changed, and the production of artificial tile clay was confirmed. Comparison with Examples 1, 2, and 3 shown in the figure for each sample was performed. Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. That is, in Comparative Example 1, as a result of kneading without adding each accelerator to a simple compound of only plastic raw earth and coal ash, it was confirmed that the amount of coal ash added was less than 10 parts by weight. In Comparative Example 2, natural feldspar and quartz sand were combined without combining natural kaolin as an aluminum source with a simple compound of only plastic raw earth and coal ash in which the amount of coal ash added was in the range of 10 parts by weight to less than 30 parts by weight. Although the compounds were added, the formation could not be confirmed. In Comparative Example 3, the simple compound of Example 2 was combined with natural feldspar as a fusion agent, silica sand as a silica source, and natural kaolin as an aluminum source, and the formation was confirmed.

実施例1〜10の説明について、図7で示す試料5の石炭灰の耐火性向上促進剤として、石炭灰に対して図3・5が示す、5%のサンプル3の天然カオリン(実施例1〜5)、同じく7%の天然カオリン(実施例6〜10)、図6が示す8%の試料3の天然長石(実施例1〜10)、図2が示す10%の天然珪砂をそれぞれ添加し、上記比較例と同様に表中に示したとおり、実施例10を除いて人工瓦粘土の生成が認められる。したがって、ここでは人工的に瓦粘土の生成が可能であることが注目される。About description of Examples 1-10, 5% of natural kaolin of the sample 3 which FIG.3 * 5 shows with respect to coal ash (Example 1) as a fireproof improvement promoter of the coal ash of the sample 5 shown in FIG. 5), 7% natural kaolin (Examples 6 to 10), 8% sample 3 natural feldspar (Examples 1 to 10) shown in FIG. 6 and 10% natural quartz sand shown in FIG. Then, as shown in the table in the same manner as in the comparative example, the production of artificial tile clay was observed except for Example 10. Therefore, it is noted here that tile clay can be artificially generated.

実施例1〜9は、該カオリンの耐火性、該長石・該珪砂の融合結晶性など促進剤の各添加配合量を変化させて実施し、人工瓦粘土の生成確認とその効果を表わしたものであるが、実施例10は、生成物に可塑性がないため成形性に難点があるとして、瓦工場での人工的に製造する瓦粘土として陶器瓦製造のために使用することは不適合なものと確認された。又、実施例1について石炭灰配合量の量的合否は、混練相手方となる瓦原土生地土の品質性の良し悪しによって左右されるので、例えば耐火度がSK18番以下の瓦原土の生地土の場合、石炭灰配合量の許容範囲は10重量部未満となり、耐火度がSK18番以上の瓦原土の生地土の場合は、石炭灰配合量の許容範囲は10重量部〜20重量部以内が考えられるが、現実には非常に流動的で不確実性な事例といえる。したがって、この場合必要に応じて、天然カオリン鉱物、天然長石鉱物、天然ケイ石・珪砂を添加化合して使用する場合、使用する瓦原土の生地土に合わせた調合をすれば、本発明の技術を活用した人工瓦粘土を量産することができる。尚、加湿混練処理時間は化合物量が0.1立方メートル以下で何れも30分以内とした。Examples 1 to 9 were carried out by varying the amount of each accelerator added, such as the fire resistance of the kaolin and the fused crystallinity of the feldspar / silica sand, and confirmed the production of artificial tile clay and its effects. However, since Example 10 is difficult to mold because the product has no plasticity, it is unsuitable to use for the production of earthenware tiles as tile clay produced artificially in a tile factory. confirmed. In addition, the quantitative acceptance of the coal ash blending amount in Example 1 depends on the quality of the tile raw clay dough used as the kneading partner, and for example, the tile raw dough having a fire resistance of SK18 or less. In the case of soil, the allowable range of the coal ash blending amount is less than 10 parts by weight, and in the case of a clay soil of a tile raw earth having a fire resistance of SK18 or more, the allowable range of the coal ash blending amount is 10 parts by weight to 20 parts by weight. However, in reality, this is a very fluid and uncertain case. Therefore, in this case, if necessary, natural kaolin mineral, natural feldspar mineral, natural quartzite / silica sand are added and combined. Mass production of artificial tile clay using technology. In addition, the humidification kneading treatment time was set to be within 30 minutes for the compound amount of 0.1 cubic meter or less.

比較例1、2、3にある試料5の石炭灰の含有成分量を図7で示す。試料5の蛍光X線による定性分析は、試料を秤量瓶に入れ105℃±5℃で12時間以上乾燥後、デシケーター中で放冷した。この乾燥物を磁製るつぼ中でこの焼成物及び、その10倍量の四ホウ酸リチウムを白金(Pt)95%+金(Au)5%合金この乾燥皿に入れ1200℃で溶融してガラスビードを作製し、理学電気(株)製の蛍光X線定性分析装置SYSTEM3270Eで分析した。以上の分析結果から石炭灰が人工瓦粘土生成の好適な増量材原料の条件を満たしていることが確認される。FIG. 7 shows the component content of coal ash of Sample 5 in Comparative Examples 1, 2, and 3. In the qualitative analysis of sample 5 by fluorescent X-ray, the sample was placed in a weighing bottle and dried at 105 ° C. ± 5 ° C. for 12 hours or more and then allowed to cool in a desiccator. This dried product is placed in a porcelain crucible and the calcined product and 10 times its amount of lithium tetraborate are put into a platinum (Pt) 95% + gold (Au) 5% alloy in this drying dish and melted at 1200 ° C. A bead was prepared and analyzed with a fluorescent X-ray qualitative analyzer SYSTEM 3270E manufactured by Rigaku Corporation. From the above analysis results, it is confirmed that the coal ash satisfies the conditions of a suitable extender raw material for producing artificial tile clay.

比較例1、2、3にある試料3の長石の含有成分量を図6で示す。試料3を秤量瓶に入れ105℃±5℃で12時間以上で乾燥後、デシケーター中で放冷した。この乾燥物を磁製るつぼ中で1050℃2時間焼成した。この焼成物及び、その10倍量の四ホウ酸リチウムを白金(Pt)95%+金(Au)5%合金皿に入れ1200℃で溶融してガラスビードを作製し、理学電気(株)製の蛍光X線定性分析装置SYSTEM3270Eで分析した。以上の分析結果から長石は、結晶促進剤として好適な原料としての条件を満たしていることが確認される。The amount of feldspar contained in Sample 3 in Comparative Examples 1, 2, and 3 is shown in FIG. Sample 3 was placed in a weighing bottle, dried at 105 ° C. ± 5 ° C. for 12 hours or more, and then allowed to cool in a desiccator. The dried product was fired in a porcelain crucible at 1050 ° C. for 2 hours. This fired product and 10 times its amount of lithium tetraborate are placed in a platinum (Pt) 95% + gold (Au) 5% alloy pan and melted at 1200 ° C. to produce a glass bead, manufactured by Rigaku Denki Co., Ltd. Were analyzed using a fluorescent X-ray qualitative analyzer SYSTEM 3270E. From the above analysis results, it is confirmed that feldspar satisfies the conditions as a suitable raw material as a crystal accelerator.

比較例3にあるカオリン(サンプル3)の含有成分量を図5で示す。サンプル3を約10g分取しタングステンカーバイト製容器に入れ、振動ミルで1次粉砕した。この粉砕物を秤量瓶に入れ、105℃±5℃で12時間以上乾燥後デシケータ中で放冷し、この乾燥を磁製るつぼに精秤し1050℃2時間焼成した。焼成物をメノウ乳鉢で粉砕、乾燥後、10倍量の四ホウ酸リチウムを溶剤とし、ガラスビードを作製した。ガラスビードは蛍光X線分析装置で分析した。図3はサンプル3の熱膨張試験を示し、その平均線熱膨張係数(室温〜500℃)は3.92×10−6乗である原料とし、以上の分析結果からアルミニウム源としてカオリンは、耐火性熱量向上の促進剤として好適な全ての条件を満たしていることが確認される。The amount of components contained in kaolin (sample 3) in Comparative Example 3 is shown in FIG. About 10 g of sample 3 was collected and placed in a tungsten carbide container, and first ground by a vibration mill. The pulverized product was placed in a weighing bottle, dried at 105 ° C. ± 5 ° C. for 12 hours or more and then allowed to cool in a desiccator. The dried product was precisely weighed in a magnetic crucible and baked at 1050 ° C. for 2 hours. The fired product was pulverized and dried in an agate mortar, and 10 times the amount of lithium tetraborate was used as a solvent to prepare a glass bead. The glass beads were analyzed with a fluorescent X-ray analyzer. FIG. 3 shows a thermal expansion test of Sample 3. The raw material whose average linear thermal expansion coefficient (room temperature to 500 ° C.) is the power of 3.92 × 10 −6. From the above analysis results, kaolin as the aluminum source is refractory. It is confirmed that all the conditions suitable as an accelerator for improving the amount of heat are satisfied.

比較例3の効果を確認するため図8で示す。試料4(生成物)の蛍光X線による定性分析は、生成物試料をタングステンカーバイド(WC)製容器に入れ、振動ミルにより微粉砕した。この微粉砕物を105℃〜110℃で乾燥放冷後、磁製るつぼに精秤し、電気炉1050℃で加熱し、強熱減量を確認した。強熱後の試料を用い10倍量の四ホウ酸リチウムを融剤とし、白金(Pt)95%+金(Au)5%合金皿に入れ1200℃で溶融して作製したガラスビードを分析した。以上の分析結果から生成物は、図8で示すように耐火性熱量向上の促進剤の好適な条件を満たしていることが確認される。In order to confirm the effect of the comparative example 3, it shows in FIG. For the qualitative analysis of sample 4 (product) by fluorescent X-ray, the product sample was placed in a tungsten carbide (WC) container and pulverized by a vibration mill. The finely pulverized product was dried and allowed to cool at 105 ° C. to 110 ° C., then precisely weighed in a magnetic crucible and heated at 1050 ° C. in an electric furnace to confirm the loss on ignition. Using a sample after ignition, a glass bead prepared by melting 10 times the amount of lithium tetraborate in a platinum (Pt) 95% + gold (Au) 5% alloy dish at 1200 ° C. was analyzed. . From the above analysis results, it is confirmed that the product satisfies suitable conditions for the accelerator for improving the refractory heat quantity as shown in FIG.

上記実施例3で得られた人工瓦粘土の生成物の蛍光X線定性分析では、実施例の図8が示すとおり、耐火性の酸化アルミナAlの含有値は20wt%、耐火性・結晶性を示す二酸化シリカSiOの含有値は67wt%であった。In the fluorescent X-ray qualitative analysis of the artificial tile clay product obtained in Example 3, the content value of the refractory alumina oxide Al 2 O 3 is 20 wt%, as shown in FIG. The content value of silica dioxide SiO 2 exhibiting crystallinity was 67 wt%.

又、耐火度検査においてはSK20番を測定し、焼生物が赤くなる原因の酸化鉄FeOの含有は1.9wt%の測定値を示し、焼成色は薄いベージュ色となり、好適な瓦焼成色を示した。
その他の含有物は図8のとおりである。
In addition, in the fire resistance test, SK No. 20 is measured, and the content of iron oxide FeO that causes the burned organism to turn red shows a measured value of 1.9 wt%, the firing color is a light beige color, and a suitable tile firing color is obtained. Indicated.
The other inclusions are as shown in FIG.

粒度分布測定においては、2μm〜5μmのシルト類は15%を測定し、カオリナイト粘土質やモンモリナイト粘土質の図10が示す六角形層状をした2μm以下の超微細粒の砕屑性堆積物の粒度分布測定値は37%を示した。この数値は高耐火性と高可塑性・高成形性をうらずけるものである。In the particle size distribution measurement, 15% of silts of 2 μm to 5 μm measure 15%, and the particle size of the ultrafine particles of 2 μm or less in the hexagonal layer shape shown in FIG. 10 of kaolinite clay or montmorillonite clay is shown. The distribution measurement showed 37%. This numerical value is high fire resistance, high plasticity and high formability.

生成物の焼成試験は、室温〜200℃まで2時間、200℃〜500℃まで3時間、500℃〜1000℃まで5時間、1000℃〜1200℃まで2時間30分で焼成した。尚、測定方法は16KWシリコニット電気炉で焼成したもので、焼成物の結晶性は1200℃で焼成される陶器瓦の要素を十分満たしていることを確認した。In the firing test of the product, firing was performed for 2 hours from room temperature to 200 ° C, 3 hours from 200 ° C to 500 ° C, 5 hours from 500 ° C to 1000 ° C, and 2 hours 30 minutes from 1000 ° C to 1200 ° C. The measurement method was fired in a 16 KW siliconite electric furnace, and it was confirmed that the crystallinity of the fired product sufficiently satisfied the elements of ceramic tiles fired at 1200 ° C.

このようにして本発明の方法による石炭灰フライアッシュの配合によって生成された人工瓦粘土は、可塑性・成形性・耐火性・結晶性・熔融性などの改質促進、およびその他配合材の化合・均一撹拌・混練工程などは、粉砕機・土錬機などの調整具合により、好適で実用的な品質管理が可能で、信頼性の高い良質な人口粘土に転換して製造することができる。さらに、本発明はスラリー状に液状化しないため、前記特許文献1のようなオートクレープ処理などの加圧しながら加熱する複雑工程を省略するので、大規模生産プロセスの迅速な実用化が適用できる。Thus, the artificial tile clay produced by blending coal ash fly ash according to the method of the present invention promotes modification of plasticity, moldability, fire resistance, crystallinity, meltability, etc. The uniform agitation / kneading step, etc. can be manufactured by converting it into highly reliable, high-quality artificial clay that can be suitably and practically controlled by adjusting the conditions of the pulverizer or earth smelter. Furthermore, since the present invention does not liquefy into a slurry state, a complicated process of heating while applying pressure such as autoclave treatment as in Patent Document 1 is omitted, so that a rapid practical application of a large-scale production process can be applied.

更に、本発明が現状で難解とされている資源枯渇課題を解決することを可能とし、火力発電所から年間に約920万トンの大量排出される、石炭灰の産業廃棄物をリサイクルの循環資源として再利用し実用化することは、環境破壊の防止に役立ち、陶器瓦一枚当たりの製造に要する天然の可塑性瓦原土(粘土)の消費量を本格的に減量化することでき、瓦の軽量化にもつながる。又、原料供給の安定化とリサイクル循環システムによる陶器瓦製造方法を構築することになる。Furthermore, the present invention makes it possible to solve the resource depletion problem, which is currently difficult to understand, and is a recycling resource for recycling industrial waste of coal ash, which is emitted in large quantities of about 9.2 million tons per year from thermal power plants. Reusing and putting it into practical use helps to prevent environmental destruction and can reduce the amount of natural plastic roof tile (clay) required for production per earthenware tile in earnest. It also leads to weight reduction. In addition, it will establish a method for producing earthenware tiles by stabilizing the supply of raw materials and recycling system.

本発明の一実施例である製造工程を示す生成フロー図である。It is a production | generation flowchart which shows the manufacturing process which is one Example of this invention. 比較例3と実施例で添加したシリカ源(珪砂)の蛍光X線回折図である。It is a fluorescence X-ray-diffraction figure of the silica source (silica sand) added by the comparative example 3 and the Example. 比較例3と実施例で添加したアルミウム源(カオリン)の差熱重量分析曲線を示す説明図である。It is explanatory drawing which shows the differential thermogravimetric analysis curve of the aluminum source (kaolin) added by the comparative example 3 and the Example. 例示する比較例1〜3と実施例1〜10を示す、図表である。It is a graph which shows the comparative examples 1-3 and the examples 1-10 which are illustrated. 例示するアルミニウム源として、比較例3と各実施例でサンプル3として使用した天然カオリンの蛍光X線による定性分析試験成績書であり、シリカSiOとアルミナAlの含有成分量など主成分を表す。Fluorescent X-ray qualitative analysis test report of natural kaolin used as sample 3 in Comparative Example 3 and each example as an aluminum source to be exemplified, and main components such as content of silica SiO 2 and alumina Al 2 O 3 Represents. 例示する融合・熔融・結晶促進剤として比較例2、3と各実施例に試料3として使用した天然長石の蛍光X線による定性分析試験成績書であり、シリカSiOとアルミナAl2O3の含有成分量など主成分を表す。Fluorescent X-ray qualitative analysis test report of natural feldspar used as sample 3 in Comparative Examples 2 and 3 and Examples 3 as fusion, melting and crystallization accelerators, and content of silica SiO 2 and alumina Al 2 O 3 Represents the main component. 例示する増量材原料として比較例と各実施例に使用した試料5石炭灰の蛍光X線による定性分析試験成績書であり、シリカSiOとアルミナAlの含有成分量など主成分を表す。It is a qualitative analysis test result by fluorescent X-rays of the sample 5 coal ash used in the comparative example and each example as an extender raw material to be exemplified, and represents main components such as the content of silica SiO 2 and alumina Al 2 O 3 . 例示する比較例3と各実施例から生成された試料4の人工瓦粘土の蛍光X線による定性分析成績書であり、シリカSiOとアルミナAlの含有成分量など主成分を表す。A qualitative analysis result report by X-ray fluorescence of Comparative Example 3 and Sample 4 of artificial tiles clay produced from the examples illustrating represents the main component such as component contents of silica SiO 2 and alumina Al 2 O 3. 例示する耐火性向上のため、アルミニウム源の代替策としてのアルミナAl(酸化アルミニウム)の粉末を2万倍に拡大した電子顕微鏡写真Electron micrograph of alumina Al 2 O 3 (aluminum oxide) powder magnified 20,000 times as an alternative to an aluminum source to improve the fire resistance illustrated 例示する石炭灰を混合する相手方の可塑性原土を1万倍に拡大した、カオリナイト粘土質・モンモリナイト粘土質の六角形層状をした、粒径が2μm以下の超微細粒の砕屑性堆積物の電子顕微鏡写真An example of an ultrafine grained debris deposit with a grain size of 2 μm or less in a hexagonal layer of kaolinite and montmorillonite, which is 10,000 times larger than the plastic soil of the other side mixed with coal ash. Electron micrograph 例示するフライアッシュの球形微細粒子を表す5000倍拡大の電子顕微鏡写真5,000 times magnified electron micrograph showing spherical fine particles of fly ash exemplified

符号の説明Explanation of symbols

1 瓦原土(可塑性粘土)
2 増量原料(石炭灰フライアッシュ)
3 アルミニウム源(耐火性向上剤として天然カオリン鉱物の粉砕物)
4 融合溶融促進剤(天然長石鉱物の粉砕物)
5 シリカ源(結晶促進剤・骨材として天然ケイ石の粉砕物・天然珪砂)
6 風化花崗岩の粉砕物
7 廃瓦粉砕物のシャモット
8 加水処理
9 粉砕機・土錬機で加湿混練処理
10 生成(陶器瓦製造粘土)
1 roof tile soil (plastic clay)
2 Increased raw material (coal ash fly ash)
3 Aluminum source (pulverized natural kaolin mineral as fire resistance improver)
4 Fusion melting accelerator (pulverized natural feldspar mineral)
5 Silica source (crystal accelerator, crushed natural silica as aggregate, natural silica sand)
6 Crushed material of weathered granite 7 Chamotte of waste tile pulverized material 8 Water treatment 9 Humidification and kneading treatment with pulverizer and earth smelter 10 Production (Clay clay for pottery tile)

Claims (5)

陶器瓦の主原料である可塑性原土に増量剤の原料として、石炭灰(フライアッシュ)を1重量部から90重量部の範囲で配合した生成前の化合物に必要に応じて、耐火性・熱量性を向上さすアルミニウム源および、融合促進剤と結晶化促進剤を添加して均質化合さすため、微細によく撹拌し、練り合わす技術で加湿混練処理することを特徴とした陶器瓦製造のための人工瓦粘土を作ることを特徴とする人工瓦粘土製造方法。As required for the pre-production compound, coal ash (fly ash) blended in the range of 1 to 90 parts by weight as a bulking agent raw material for plastic clay, which is the main raw material for earthenware tiles, fire resistance and heat For the production of earthenware roof tiles, characterized by the addition of an aluminum source that improves the properties and homogenization by adding a fusion accelerator and a crystallization accelerator, and then humidifying and kneading with a technique of finely stirring and kneading. An artificial tile clay manufacturing method characterized by making artificial tile clay. 低耐火・低熱量の各性質を持つ、石炭灰を1重量部から90重量部の範囲で添加・化合して生じた化合生成物の耐火性・熱量性を向上さすために必要に応じて、アルミニウム源として、アルミナ(酸化アルミニウムAl)やカオリナイト、ハロサイトを主成分とする天然カオリン鉱物を選択し、シリカ源としてのケイ石に含まれる二酸化シリカSiOも選択して耐火性を向上させ、又、それら粘土主成分を化合し、人工的に高耐火性・高熱量化を好適に向上させることを特徴とする請求項1記載の人工瓦粘土製造方法。In order to improve the fire resistance and calorific properties of the combined product produced by adding and combining coal ash in the range of 1 to 90 parts by weight with low fire resistance and low heat quantity properties, As the aluminum source, alumina (aluminum oxide Al 2 O 3 ), kaolinite, natural kaolin mineral mainly composed of halosite is selected, and silica dioxide SiO 2 contained in silica as the silica source is also selected to be refractory. The artificial tile clay manufacturing method according to claim 1, wherein the clay main components are combined to improve artificially high fire resistance and high calorific value. 弱い溶融結晶力の性質を持つ、石炭灰の溶融結晶力を向上さすための融合促進剤として、必要に応じてシリカ源のケイ石や骨材にも併用となる天然珪砂や風化花崗岩を選択し、二酸化シリカSiOを鉱物群から化合し、焼成瓦の焼成強度を高めることを特徴とする請求項1記載の人工瓦粘土製造方法。Natural fusion sand or weathered granite, which is also used in combination with silica source silica and aggregates, is selected as necessary as a fusion accelerator to improve the coal ash melt crystallization strength. 2. The method for producing artificial tile clay according to claim 1, wherein silica dioxide SiO2 is combined from a mineral group to increase the firing strength of the fired tile. 弱い溶融結晶力の性質を持つ石炭灰の溶融結晶力を向上さすために必要に応じて、融合溶融促進剤として天然長石の鉱物を選択し、可塑性原土と石炭灰の溶融・結合・結晶の融合力を高め、前記請求項1乃至3にある、その他の添加物原料や骨材と相互の融合力を向上させて、焼成瓦の焼成強度を高めることを特徴とする請求項1乃至3記載の人工瓦粘土製造方法。If necessary, natural feldspar minerals are selected as a fusion melting accelerator to improve the melting crystallization strength of coal ash with weak melting crystallization strength. 4. The fusion strength of the fired roof tile is increased by increasing the fusion strength and improving the mutual fusion strength with other additive raw materials and aggregates according to claims 1 to 3. Artificial tile clay manufacturing method. 可塑性原土に1重量部から90重量部の範囲で添加する石炭灰とそれぞれ天然のカオリン、長石、珪砂、風化花崗岩などに廃瓦シャモットを化合して人工瓦粘土を生成する技法において、これら化合物をスラリー状に液状化せず、粉砕機や土錬機などにおいて、化合物全体を常温常圧状態で均質・微細によく混ぜて練り合わす技術を採用した、実用化方式の加湿混練処理をすることを特徴する請求項4記載の人工瓦粘土製造方法。These compounds are used to produce artificial tile clay by combining waste ash chamotte with coal ash and natural kaolin, feldspar, quartz sand, weathered granite, etc. added to plastic raw earth in the range of 1 to 90 parts by weight. In a pulverizer or earth smelter, etc., a practical method of humidifying and kneading using a technology that mixes and mixes the entire compound homogeneously and finely at normal temperature and pressure is used. The method for producing an artificial roof clay according to claim 4.
JP2006103620A 2005-12-31 2006-03-06 Method of producing artificial clay for roof tile Pending JP2007197295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006103620A JP2007197295A (en) 2005-12-31 2006-03-06 Method of producing artificial clay for roof tile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005381376 2005-12-31
JP2006103620A JP2007197295A (en) 2005-12-31 2006-03-06 Method of producing artificial clay for roof tile

Publications (1)

Publication Number Publication Date
JP2007197295A true JP2007197295A (en) 2007-08-09

Family

ID=38452261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006103620A Pending JP2007197295A (en) 2005-12-31 2006-03-06 Method of producing artificial clay for roof tile

Country Status (1)

Country Link
JP (1) JP2007197295A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101921644A (en) * 2010-07-30 2010-12-22 中国神华能源股份有限公司 Method for improving coal ash melting temperature by utilizing aluminium oxide as additive
CN101491919B (en) * 2009-02-20 2011-02-09 陕西科技大学 Preparation method of insulation board
CN102351509A (en) * 2011-07-04 2012-02-15 景德镇陶瓷学院 Sanitary ceramic with high infrared function prepared from fly ash and preparation method thereof
RU2467979C1 (en) * 2011-11-01 2012-11-27 Юлия Алексеевна Щепочкина Ceramic mixture for making facing tiles
CN102826833A (en) * 2012-08-20 2012-12-19 河南省偃师市古典园林有限公司 Porcelain grey tile without carburization and sintering method thereof
KR101330146B1 (en) * 2012-07-25 2013-11-15 전남대학교산학협력단 Eco-friendly roof tile mortar by using rice hush ash and eco-friendly roof tile
CN112266255A (en) * 2020-11-04 2021-01-26 偏关县晋电化工有限责任公司 Castable for ferronickel roasting rotary kiln and manufacturing method thereof
CN115353118A (en) * 2022-09-23 2022-11-18 淮阴工学院 Method for modifying attapulgite clay by molten salt

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101491919B (en) * 2009-02-20 2011-02-09 陕西科技大学 Preparation method of insulation board
CN101921644A (en) * 2010-07-30 2010-12-22 中国神华能源股份有限公司 Method for improving coal ash melting temperature by utilizing aluminium oxide as additive
CN102351509A (en) * 2011-07-04 2012-02-15 景德镇陶瓷学院 Sanitary ceramic with high infrared function prepared from fly ash and preparation method thereof
RU2467979C1 (en) * 2011-11-01 2012-11-27 Юлия Алексеевна Щепочкина Ceramic mixture for making facing tiles
KR101330146B1 (en) * 2012-07-25 2013-11-15 전남대학교산학협력단 Eco-friendly roof tile mortar by using rice hush ash and eco-friendly roof tile
CN102826833A (en) * 2012-08-20 2012-12-19 河南省偃师市古典园林有限公司 Porcelain grey tile without carburization and sintering method thereof
CN112266255A (en) * 2020-11-04 2021-01-26 偏关县晋电化工有限责任公司 Castable for ferronickel roasting rotary kiln and manufacturing method thereof
CN115353118A (en) * 2022-09-23 2022-11-18 淮阴工学院 Method for modifying attapulgite clay by molten salt

Similar Documents

Publication Publication Date Title
JP2007197295A (en) Method of producing artificial clay for roof tile
CN103755361B (en) A kind of Aluminum-chromium-sifireproof fireproof material
ES2638051T3 (en) Processing of fly ash and manufacture of articles that incorporate fly ash compositions
Hossain et al. Manufacturing of green building brick: recycling of waste for construction purpose
Su et al. Influence of thermally activated coal gangue powder on the structure of the interfacial transition zone in concrete
EP2513003B1 (en) Process for producing geopolymers
CN103449744A (en) Fly ash based geopolymer and preparation method thereof
CN102071006B (en) Petroleum support agent prepared from oil shale waste and preparation method thereof
CN103626503A (en) Longevous mullite brick for hot blast stove and preparation method thereof
JP5013232B1 (en) Aggregate using Shinmoedake eruption ash, its manufacturing method and building material using the same
CN106588059A (en) Prefabricated member for lime rotary kiln and preparation method of prefabricated member
JP2007210872A (en) Method of manufacturing super lightweight ceramic roof tile clay
CN101597174A (en) A kind of compact silica refractory material and preparation method thereof
Hossain et al. Development of sustainable calcium silicate board: Utilization of different solid wastes
Zafar et al. Thermo-chemico-mechanical activation of bagasse ash to develop geopolymer based cold-pressed block
JPH04501406A (en) low cement refractories
Glazev et al. Environmental technologies in the production of metallurgical silicon
CN104193372A (en) High-strength alkali-resistant castable and preparation method thereof
CN101955363A (en) Castable for head insert of waste heat boiler of ethylene cracking furnace
CN108863242A (en) Refractory concrete
CN109020575A (en) A kind of silica fire resistant mud of useless silica brick production
CN103159449A (en) Heat-resistant concrete prepared by blast furnace dry slag
CN101279839A (en) Solid wall insulating brick made by calcining fly ash coal gangue
BR112019005384B1 (en) METHOD FOR PRODUCING CEMENTING MATERIALS PREPARED FROM RECYCLING INDUSTRIAL WASTE FROM CERAMIC AND BRICK MANUFACTURING PROCESSES
Zhakypova et al. Properties of fine-grained concrete using ash of Kazakhstan