JP2007210528A - Temperature distribution prediction method of tire, thermal analysis model, and temperature distribution prediction calculating program of tire - Google Patents

Temperature distribution prediction method of tire, thermal analysis model, and temperature distribution prediction calculating program of tire Download PDF

Info

Publication number
JP2007210528A
JP2007210528A JP2006034285A JP2006034285A JP2007210528A JP 2007210528 A JP2007210528 A JP 2007210528A JP 2006034285 A JP2006034285 A JP 2006034285A JP 2006034285 A JP2006034285 A JP 2006034285A JP 2007210528 A JP2007210528 A JP 2007210528A
Authority
JP
Japan
Prior art keywords
tire
model
thermal analysis
analysis
temperature distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006034285A
Other languages
Japanese (ja)
Other versions
JP4931431B2 (en
Inventor
Toshiya Miyazono
俊哉 宮園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2006034285A priority Critical patent/JP4931431B2/en
Publication of JP2007210528A publication Critical patent/JP2007210528A/en
Application granted granted Critical
Publication of JP4931431B2 publication Critical patent/JP4931431B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of accurately predicting temperature distribution of a tire during traveling. <P>SOLUTION: In this method is performed, a stress analysis model is developed composed of a tire model, a rim model, and a road model. Stress analysis is made by respectively giving physical properties such as density and an elasticity modulus to the element of each model. The heat generation distribution of the tire is determined by calculating stress σ and the amount of strain ε acting on each part of the tire. In executing heat analysis calculation based on the heat generation distribution, a three-dimensional heat analysis model constituted by adding a numeral analysis model composed of the tire model 40 and the rim model 50 to an inside air model 60 which divides air inside the tire into finite elements, a cut sample model, or an axisymmetric heat analysis model M2 to obtain the temperature distribution on the surface of and inside the tire by executing heat analysis calculation on the heat analysis model M2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、タイヤを有限個の要素に分割してタイヤの数値解析モデルを用いて走行時のタイヤの温度分布を予測する方法と、これに用いられる熱解析モデル、及び、タイヤの温度分布予測計算プログラムに関するものである。   The present invention relates to a method of predicting a tire temperature distribution during traveling using a numerical analysis model of a tire by dividing a tire into a finite number of elements, a thermal analysis model used therefor, and a tire temperature distribution prediction It relates to a calculation program.

従来、タイヤの性能をシミュレーションする方法として、評価しようとするタイヤを有限個の多数の要素に分割したタイヤ有限要素モデルで近似し、各有限要素に密度や弾性率などの材料物性を与えるとともに、上記モデルに内圧、荷重などの境界条件を与えて上記各要素の変形状態を計算してタイヤの変形や転がり抵抗などのタイヤの動特性を数値解析する有限要素法(Finite Element Method)が多く用いられている(例えば、特許文献1,2参照)。
一方、タイヤの耐久性を評価する方法の一つとして、粘弾性体であるゴム材料の転動時の発熱による温度上昇を考慮した評価方法が提案されている。
図6はそのフローチャートを示す図で、図7はこの評価方法に用いられるタイヤの有限要素モデル(タイヤモデル)70の概要を示す図である。このタイヤモデル70は、タイヤを有限個の要素70Sに分割するとともに、トレッド部71とサイド部72等のゴム部材をソリッド要素でモデル化し、ベルト73等の補強部材を膜要素などでモデル化したもので、耐久性の評価を行う際には、まず、上記タイヤモデル70を用いて静的応力解析、あるいは、転動解析等の動的解析を行って、上記タイヤモデル70の各要素の応力解析を行った(ステップS51)後、上記応力解析で得られた各要素の、タイヤを一回転させた場合の応力σと歪εを求めるとともに、上記歪εにゴム材料の損失係数に応じた位相遅れδを与えて得られる応力σと歪εとのヒステリシスループの面積から各要素の発熱エネルギーを演算し(ステップS52)、この発熱エネルギーを温度に換算して、タイヤが所定時間θだけ走行して発熱した場合の温度分布を求める(ステップS53)。
次に、上記モデル化したタイヤを所定時間θだけ走行させて放熱させる伝熱解析を実行してタイヤの温度分布を予測し(ステップS54)、上記予測された放熱後の各要素の温度における破断強度と破断伸びとから当該タイヤの安全率を演算して(ステップS55)、タイヤの耐久性を評価する(ステップS56)。なお、発熱時の解析においては、タイヤは発熱するのみで放熱しないものとし、放熱時の解析においては、タイヤは放熱するのみで発熱はしないものとして計算する。
このように、発熱の解析と放熱の解析とを別個に行った後、発熱時間と放熱時間とを一致させることにより、温度分布の予測計算時間を大幅に短縮することができる(例えば、特許文献3参照)。
特開2003−118328号公報 特開2005−186900号公報 特開2005−138621号公報
Conventionally, as a method of simulating tire performance, the tire to be evaluated is approximated by a tire finite element model divided into a finite number of elements, and material properties such as density and elastic modulus are given to each finite element, The Finite Element Method is often used for numerical analysis of tire dynamics such as tire deformation and rolling resistance by applying boundary conditions such as internal pressure and load to the above model and calculating the deformation state of each element. (For example, see Patent Documents 1 and 2).
On the other hand, as one method for evaluating the durability of a tire, an evaluation method has been proposed that takes into account the temperature rise due to heat generated during rolling of a rubber material that is a viscoelastic body.
FIG. 6 is a diagram showing the flowchart, and FIG. 7 is a diagram showing an outline of a finite element model (tire model) 70 of the tire used in this evaluation method. In the tire model 70, the tire is divided into a finite number of elements 70S, rubber members such as the tread portion 71 and the side portion 72 are modeled as solid elements, and a reinforcing member such as the belt 73 is modeled as a membrane element. Therefore, when evaluating the durability, first, the tire model 70 is used to perform a static stress analysis or a dynamic analysis such as a rolling analysis to determine the stress of each element of the tire model 70. After the analysis (step S51), the stress σ and the strain ε when the tire is rotated once for each element obtained in the stress analysis are obtained, and the strain ε is determined according to the loss factor of the rubber material. The heat generation energy of each element is calculated from the area of the hysteresis loop of the stress σ and the strain ε obtained by giving the phase delay δ (step S52). Determine the temperature distribution in the case of exothermic traveling by theta (step S53).
Next, a heat transfer analysis is performed in which the modeled tire travels for a predetermined time θ to dissipate heat to predict the temperature distribution of the tire (step S54), and the predicted breakage at the temperature of each element after heat dissipation. The tire safety factor is calculated from the strength and elongation at break (step S55), and the durability of the tire is evaluated (step S56). In the analysis at the time of heat generation, it is assumed that the tire only generates heat but does not dissipate heat, and in the analysis at the time of heat dissipation, the tire only calculates heat and does not generate heat.
In this way, after performing the heat generation analysis and the heat dissipation analysis separately, by matching the heat generation time and the heat dissipation time, the prediction calculation time of the temperature distribution can be greatly shortened (for example, patent document) 3).
JP 2003-118328 A JP 2005-186900 A JP 2005-138621 A

ところで、上記従来の温度分布の予測方法では、タイヤモデル70の伝熱面として、トレッド71の路面との接触面とトレッド71が外気にさらされている面、サイド部72が外気にさらされている面の他に、タイヤモデル70の図示しないリムとの嵌合面を伝熱面として考慮するとともに、内部の空気に対してもタイヤモデル70の内表面を伝熱面として空洞輻射伝熱を設定している。
しかしながら、上記従来の方法では、熱伝導解析にタイヤのみのモデルを使用しているだけでなく、リムや内部の空気については、単にタイヤの伝熱面を増やしただけであって、タイヤからリムを介して外気に放出される熱の流れや、タイヤにより昇温させられた内部空気の熱がリムを介して外気に放出される熱の流れを考慮しているわけではないので、タイヤの温度分布を精度よく求めることが困難であった。
By the way, in the conventional temperature distribution predicting method, as the heat transfer surface of the tire model 70, the contact surface with the road surface of the tread 71, the surface where the tread 71 is exposed to the outside air, and the side portion 72 are exposed to the outside air. In addition to the surface of the tire model 70, a fitting surface with a rim (not shown) of the tire model 70 is considered as a heat transfer surface. It is set.
However, in the above conventional method, not only the tire-only model is used for the heat conduction analysis, but the rim and the air inside are simply increased in the heat transfer surface of the tire. This does not take into account the flow of heat released to the outside air through the rim or the heat flow of the internal air heated by the tire to the outside air through the rim. It was difficult to obtain the distribution accurately.

本発明は、従来の問題点に鑑みてなされたもので、走行時のタイヤの温度分布を精度よく予測することのできる方法を提供することを目的とする。   The present invention has been made in view of the conventional problems, and an object of the present invention is to provide a method capable of accurately predicting the temperature distribution of a tire during traveling.

本願の請求項1に記載の発明は、3次元タイヤモデルまたは3次元タイヤモデルと路面モデルとから成る応力解析モデルを作成するとともに、上記タイヤモデルの各ゴム部材の要素に弾性率を与えて、負荷または転動解析を行ってタイヤ各部の応力と歪量とを算出した後、上記算出されたタイヤ各部の応力と歪量とゴム部材の損失正接とを用いて求められたタイヤの発熱分布に基づいて熱解析モデルを作成し、この熱解析モデルを用いて熱解析計算を行って、タイヤの表面及び内部の温度分布を予測するタイヤの温度分布予測方法において、上記熱解析モデルとして、タイヤモデルに、タイヤ内部の空気を有限個の要素に分割したモデル、及び、少なくともリム部を含むホイールの一部または全部を有限個の要素に分割したモデルのいずれか一方または両方を付加した熱解析モデルを作成し、この熱解析モデルを用いて上記熱解析計算を行うようにしたことを特徴とするものである。
請求項2に記載の発明は、請求項1に記載のタイヤの温度分布予測方法において、上記熱解析計算を、カットサンプルモデルまたは軸対称の2次元解析モデルを用いて行うようにしたものである。
また、請求項3に記載の発明は、請求項1または請求項2に記載のタイヤの温度分布予測方法の熱解析計算に用いられる熱解析モデルであって、タイヤモデルに、タイヤ内部の空気を有限個の要素に分割したモデル、及び、少なくともリム部を含むホイールの一部または全部を有限個の要素に分割したモデルのいずれか一方または両方を付加して成ることを特徴とする。
The invention according to claim 1 of the present application creates a stress analysis model composed of a three-dimensional tire model or a three-dimensional tire model and a road surface model, and gives an elastic modulus to each rubber member element of the tire model, After calculating the stress and strain amount of each part of the tire by performing load or rolling analysis, the heat distribution of the tire obtained using the calculated stress and strain amount of each part of the tire and the loss tangent of the rubber member is obtained. In the tire temperature distribution prediction method for creating a thermal analysis model based on the thermal analysis model and performing thermal analysis calculation using the thermal analysis model to predict the temperature distribution on the tire surface and inside, the tire model is used as the thermal analysis model. Either a model in which the air inside the tire is divided into a finite number of elements, or a model in which at least part or all of the wheel including the rim is divided into a finite number of elements Create a thermal analysis model obtained by adding the rectangular or both, it is characterized in that to perform the thermal analysis calculated using the thermal analysis model.
The invention according to claim 2 is the tire temperature distribution prediction method according to claim 1, wherein the thermal analysis calculation is performed using a cut sample model or an axisymmetric two-dimensional analysis model. .
The invention according to claim 3 is a thermal analysis model used for thermal analysis calculation of the tire temperature distribution prediction method according to claim 1 or claim 2, wherein the tire model is provided with air inside the tire. One or both of a model divided into a finite number of elements and a model obtained by dividing at least a part of the wheel including at least the rim portion into a finite number of elements are added.

請求項4に記載の発明は、タイヤの表面及び内部の温度分布を、タイヤを有限個の要素に分割した解析モデルを用いて予測計算するための計算プログラムであって、
3次元のタイヤモデルまたは3次元のタイヤモデルと路面モデルとから成る応力解析モデルを作成する第1のステップと、
上記タイヤモデルの各ゴム部材の要素に弾性率を与える第2のステップと、
上記応力解析モデルを用いて負荷または転動解析を行ってタイヤ各部の応力と歪量とを算出する第3のステップと、
上記算出されたタイヤ各部の応力と歪量とから歪エネルギーの密度分布を求め、この密度分布に損失正接を乗算してタイヤの発熱分布を求める第4のステップと、
タイヤモデルに、タイヤ内部の空気を有限個の要素に分割したモデル、及び、少なくともリム部を含むホイールの一部または全部を有限個の要素に分割したモデルを付加した3次元の熱解析モデルを作成するとともに、この3次元の熱解析モデル、もしくは、カットサンプルモデルまたは軸対称の2次元解析モデルについて、上記発熱分布に基づいて熱解析計算を行って、タイヤの表面及び内部の温度分布を求める第5のステップ、とを備えたことを特徴とするものである。
なお、上記請求項3及び請求項4に記載のタイヤモデルは、請求項1に記載の応力解析モデルで使用したタイヤモデルであってもよいし、熱解析用に新たに作成された分割方法や要素数の異なる新たなタイヤモデルであってもよい。
The invention according to claim 4 is a calculation program for predicting and calculating the temperature distribution inside and outside the tire using an analysis model in which the tire is divided into a finite number of elements.
A first step of creating a stress analysis model comprising a three-dimensional tire model or a three-dimensional tire model and a road surface model;
A second step of providing an elastic modulus to each rubber member element of the tire model;
A third step of calculating a stress and a strain amount of each part of the tire by performing load or rolling analysis using the stress analysis model;
A fourth step of obtaining a strain energy density distribution from the calculated stress and strain amount of each part of the tire and multiplying the density distribution by a loss tangent to obtain a heat generation distribution of the tire;
A three-dimensional thermal analysis model that adds a tire model to a model in which the air inside the tire is divided into a finite number of elements and a model in which at least a part or all of the wheel including the rim is divided into a finite number of elements. The temperature distribution of the tire surface and the interior is obtained by creating a thermal analysis calculation based on the heat generation distribution for the three-dimensional thermal analysis model, or the cut sample model or the axisymmetric two-dimensional analysis model. And a fifth step.
Note that the tire model according to claim 3 and claim 4 may be a tire model used in the stress analysis model according to claim 1, or a division method newly created for thermal analysis, It may be a new tire model with a different number of elements.

本発明によれば、3次元タイヤモデルまたは3次元タイヤモデルと路面モデルとから成る応力解析モデルを用いて負荷または転動解析を行ってタイヤ各部の応力と歪量とを算出し、上記算出されたタイヤ各部の応力と歪量とゴム部材の損失正接とを用いて求められたタイヤの発熱分布に基づいて、熱解析計算を行って、タイヤの表面及び内部の温度分布を予測する際に、上記熱解析計算を行うための数値解析モデルとして、タイヤモデルと、タイヤ内部の空気を有限個の要素に分割したモデル、及び、少なくともリム部を含むホイールの一部または全部を有限個の要素に分割したモデルのいずれか一方または両方を付加した3次元の熱解析モデル、もしくは、カットサンプルモデルまたは軸対称の2次元解析モデルを作成し、上記3次元の熱解析モデル、もしくは、上記2次元解析モデルを用いて上記熱解析計算を行うことにより、リムからの放熱やタイヤにより昇温させられた内部空気のリムへの放熱等を含んだ熱解析を行うことができるので、タイヤの温度分布を精度よく求めることができる。   According to the present invention, load or rolling analysis is performed using a stress analysis model composed of a three-dimensional tire model or a three-dimensional tire model and a road surface model to calculate the stress and strain amount of each part of the tire. Based on the heat generation distribution of the tire obtained using the stress and strain amount of each tire part and the loss tangent of the rubber member, the thermal analysis calculation is performed to predict the tire surface and the internal temperature distribution. As a numerical analysis model for performing the thermal analysis calculation, a tire model, a model in which the air inside the tire is divided into a finite number of elements, and at least a part or all of the wheel including the rim portion are converted into a finite number of elements. Create a 3D thermal analysis model with either or both of the divided models, or a cut sample model or an axisymmetric 2D analysis model By performing the thermal analysis calculation using the analysis model or the two-dimensional analysis model, the thermal analysis including heat dissipation from the rim and heat dissipation from the internal air heated by the tire to the rim is performed. Therefore, the tire temperature distribution can be obtained with high accuracy.

以下、本発明の最良の形態について、図面に基づき説明する。
図1(a),(b)は、タイヤの負荷または転動解析を行うための応力解析モデルM1の概要を示す図で、図2は本発明によるタイヤの温度分布予測を行うための熱解析モデルM2の概要を示す図である。
上記応力解析モデルM1は、タイヤモデル10とリムモデル20と路面モデル30とから構成され、タイヤモデル10については、トレッド部11やサイド部12などのゴム部材とビードワイヤ13とをソリッド要素でモデル化し、ベルト14,カーカスプライ15等の補強部材はシェル要素、膜要素、リバー要素でモデル化し、リムモデル20についてはソリッド要素でモデル化している。一方、路面30は、平坦な剛体シェル要素でモデル化しているが、実際の路面凹凸をモデル化することも可能である(なお、図1(a)ではリムモデル20については省略した)。
一方、熱解析モデルM2は、上記タイヤモデル10及びリムモデル20と同様に分割したタイヤモデル40及びリムモデル50とから構成される数値解析モデルに、更に、タイヤ内部の気体(ここでは、空気)を有限個の要素に分割した内部空気モデル60を付加して成る3次元熱解析モデルのカットサンプルモデルまたは軸対称の2次元解析モデルで、本例では、この熱解析モデルM2について、熱解析計算を行って、タイヤの表面及び内部の温度分布を求める。
Hereinafter, the best mode of the present invention will be described with reference to the drawings.
1 (a) and 1 (b) are diagrams showing an outline of a stress analysis model M1 for performing tire load or rolling analysis, and FIG. 2 is a thermal analysis for performing temperature distribution prediction of the tire according to the present invention. It is a figure which shows the outline | summary of the model M2.
The stress analysis model M1 includes a tire model 10, a rim model 20, and a road surface model 30. For the tire model 10, the rubber member such as the tread portion 11 and the side portion 12 and the bead wire 13 are modeled as solid elements. The reinforcing members such as the belt 14 and the carcass ply 15 are modeled by shell elements, membrane elements, and river elements, and the rim model 20 is modeled by solid elements. On the other hand, the road surface 30 is modeled by a flat rigid shell element, but actual road surface unevenness can also be modeled (note that the rim model 20 is omitted in FIG. 1A).
On the other hand, the thermal analysis model M2 is a numerical analysis model composed of the tire model 40 and the rim model 50 divided in the same manner as the tire model 10 and the rim model 20, and further the gas (here, air) inside the tire is finite. A cut sample model of a three-dimensional thermal analysis model formed by adding an internal air model 60 divided into individual elements or an axisymmetric two-dimensional analysis model. In this example, thermal analysis calculation is performed for the thermal analysis model M2. Thus, the temperature distribution inside and inside the tire is obtained.

次に、本発明によるタイヤの温度分布予測方法について、図3のフローチャートに基づき説明する。
まず、図1に示すような応力解析モデルを作成する(ステップS11)とともに、上記各モデル10〜30の各要素に、それぞれ初期設定温度における弾性率などの材料物性を初期特性として与える(ステップS12)。
そして、上記応力解析モデルを用いて負荷または転動解析を行ない、タイヤ各部に作用する応力σと歪量εとを算出する(ステップS13)。
ここで、タイヤを転動させる方法としては、車軸周りにタイヤ、ホイールが自由に回転するように境界条件を設定したり、ジョイント要素を使う等のモデル作成を行い、路面または車軸のどちらか一方を固定し、もう一方をタイヤ前後方向に並行移動させることで解析できる。更には、タイヤにスリップ角やキャンバー角を付与したり、タイヤにスリップ角やキャンバー角がついたように路面を移動させることも可能である。なお、上記転動解析に代えて、タイヤモデル10の平押し計算(負荷解析)をおこなってもよい。
タイヤ各部の応力σと歪量εとの算出が完了した後には、各要素のタイヤ1回転分の歪エネルギーを計算し、これに各要素の上記初期設定温度におけるtanδを乗算して各要素の歪エネルギーロスを算出して、タイヤの発熱分布を求める(ステップS14)。
Next, the tire temperature distribution prediction method according to the present invention will be described with reference to the flowchart of FIG.
First, a stress analysis model as shown in FIG. 1 is created (step S11), and material properties such as elastic modulus at an initial set temperature are given as initial characteristics to each element of the models 10 to 30 (step S12). ).
Then, load or rolling analysis is performed using the stress analysis model, and stress σ and strain amount ε acting on each part of the tire are calculated (step S13).
Here, as a method of rolling the tire, set a boundary condition so that the tire and wheel rotate freely around the axle, create a model such as using joint elements, and either the road surface or the axle Can be analyzed by moving the other side in the longitudinal direction of the tire. Furthermore, it is possible to give the tire a slip angle or a camber angle, or to move the road surface so that the tire has a slip angle or a camber angle. Instead of the above rolling analysis, a flat push calculation (load analysis) of the tire model 10 may be performed.
After the calculation of the stress σ and the strain amount ε of each part of the tire is completed, the strain energy for one rotation of the tire of each element is calculated, and this is multiplied by the tan δ at the initial setting temperature of each element. The strain energy loss is calculated to determine the heat distribution of the tire (step S14).

次に、上記求められた発熱分布に基づいて熱解析計算を行って、タイヤの表面及び内部の温度分布を求める(ステップS15)。本例では、3次元の熱解析モデル、もしくは、上記図2に示した、カットサンプル型または軸対称の2次元解析モデル(熱解析モデル)M2について、熱解析計算を行って、タイヤの表面及び内部の温度分布を求めるようにしている。このとき、上記タイヤモデル40の形状を内圧時の形状とするとともに、リムモデル50の各要素には、ホイールの材質に合わせた熱伝導率を、内部空気モデル60に対しては、空気の熱伝導率を物性値として設定する。
本例のように、熱解析モデルM2として、タイヤモデル40とリムモデル50とに内部空気モデル60とを付加したモデルを採用することにより、図4に示すように、タイヤモデル40のトレッド部41やサイド部42から放出される熱の流れだけでなく、ビード部46からリムモデル50のフランジ部51を介して外気に放出される熱の流れや、タイヤモデル40の内表面からリムモデル50のベース部52に伝導されて外気に放出される熱の流れについても考慮することができるので、タイヤの温度分布を精度よく求めることができる。
なお、上記トレッド部41の熱解析計算は、路面に接している状態と路面とは接していない状態との平均的な熱の流れを用いて行う。
Next, thermal analysis calculation is performed based on the obtained heat generation distribution, and the temperature distribution inside and inside the tire is obtained (step S15). In this example, the thermal analysis calculation is performed on the three-dimensional thermal analysis model or the cut sample type or axially symmetric two-dimensional analysis model (thermal analysis model) M2 shown in FIG. The internal temperature distribution is obtained. At this time, the shape of the tire model 40 is set to the shape at the time of internal pressure, and each element of the rim model 50 has a thermal conductivity matched to the material of the wheel. Set the rate as a physical property value.
As in this example, by adopting a model in which the tire model 40 and the rim model 50 are added with the internal air model 60 as the thermal analysis model M2, as shown in FIG. In addition to the heat flow emitted from the side portion 42, the heat flow emitted from the bead portion 46 to the outside air via the flange portion 51 of the rim model 50, and the base portion 52 of the rim model 50 from the inner surface of the tire model 40. Since it is possible to consider the flow of heat that is conducted to and released to the outside air, the tire temperature distribution can be obtained with high accuracy.
The thermal analysis calculation of the tread portion 41 is performed using an average heat flow in a state in contact with the road surface and a state in which the road surface is not in contact.

このように、本最良の形態では、タイヤモデル10とリムモデル20と路面モデル30とから成る応力解析モデルを作成するとともに、上記各モデル10〜30の各要素にそれぞれ密度、弾性率などの材料物性を与えて応力解析を行ない、タイヤ各部に作用する応力σと歪量εとを算出して、タイヤの発熱分布を求めるとともに、この発熱分布に基づいて熱解析計算を行う際に、タイヤモデル40とリムモデル50とから構成される数値解析モデルに、更に、タイヤ内部の気体を有限個の要素に分割した内部空気モデル60を付加して成る3次元熱解析モデル、もしくは、カットサンプルモデルまたは軸対称の2次元解析モデル(熱解析モデル)M2を作成し、この熱解析モデルM2について、熱解析計算を行って、タイヤの表面及び内部の温度分布を求めるようにしたので、リムからの放熱やタイヤにより昇温させられた内部空気のリムへの放熱等を含んだ熱解析を行うことができるので、タイヤの温度分布を精度よく求めることができる。   As described above, in the present best mode, a stress analysis model including the tire model 10, the rim model 20, and the road surface model 30 is created, and material physical properties such as density and elastic modulus are provided in each element of each of the models 10-30. Is applied to the tire to calculate the stress σ and the strain amount ε acting on each part of the tire to obtain the heat generation distribution of the tire, and when performing the thermal analysis calculation based on the heat generation distribution, the tire model 40 A three-dimensional thermal analysis model obtained by adding an internal air model 60 obtained by dividing a gas inside a tire into a finite number of elements, or a cut sample model or an axial symmetry A two-dimensional analysis model (thermal analysis model) M2 is created, and thermal analysis calculation is performed on the thermal analysis model M2 to determine the temperature of the tire surface and the inside. Since the temperature distribution is calculated, it is possible to perform thermal analysis including heat dissipation from the rim and heat dissipation from the internal air heated by the tire to the rim. Can do.

なお、上記最良の形態では、タイヤモデル10として、タイヤ回転方向に対して同じ要素が並んでいるモデルを採用したが、トレッドパターンを考慮してモデル化したり、実物タイヤにあるような部材の小さな重なり、厚みの変化、剛性の変化をモデル化して、回転方向に不均一なモデルを作成するようにすれば、解析の精度を更に向上させることができる。
なお、タイヤの発熱はトレッド部が主となるので、上記ステップS13で行う応力解析をタイヤモデル10のみで行ってもよい。
また、上記例では、熱解析モデルM2で、リム部のみをモデル化したリムモデル50を用いたが、ホイールのリム部及びディスク部を構成する材料は熱伝導性が良好なので、熱解析においては、ホイール全体をモデル化すれば、タイヤ温度の予測精度を更に向上させることができる。
また、熱解析計算は3次元モデルを用いれば精度は向上するが境界条件が複雑になるだけでなく、計算時間が膨大となるといった問題点がある。タイヤは回転体であるので、本例のように、カットサンプル型または軸対称の2次元解析モデルを用いて行うようにすれば、計算を効率よく行うことができる。
In the above-mentioned best mode, a model in which the same elements are arranged in the tire rotation direction is adopted as the tire model 10; however, the tire model 10 is modeled in consideration of the tread pattern, or a small member as in a real tire. By modeling overlap, thickness change, and rigidity change to create a non-uniform model in the rotational direction, the accuracy of analysis can be further improved.
In addition, since the heat generation of the tire is mainly in the tread portion, the stress analysis performed in step S13 may be performed only with the tire model 10.
In the above example, the thermal analysis model M2 uses the rim model 50 in which only the rim portion is modeled. However, since the materials constituting the rim portion and the disk portion of the wheel have good thermal conductivity, in the thermal analysis, If the entire wheel is modeled, the tire temperature prediction accuracy can be further improved.
In addition, the accuracy of the thermal analysis calculation is improved if a three-dimensional model is used, but not only the boundary condition becomes complicated, but also the calculation time becomes enormous. Since the tire is a rotating body, calculation can be efficiently performed by using a cut sample type or an axially symmetric two-dimensional analysis model as in this example.

タイヤサイズがPSR195/65R14のタイヤの数値解析モデルを作成し、室温38℃、速度80km/h、荷重100%にて、路面上で転動させる応力解析を行うとともに、熱解析計算を行う際に、リム部及び内部空気のいずれか一方または両方のモデルを付加した熱解析モデルを用いて熱解析計算を行い、タイヤの温度分布を予測するシミュレーションを行ない、熱解析をタイヤモデルのみで行った従来例と比較した結果を以下の表1に示す。

Figure 2007210528
なお、上記表1の数字は、試験車両を、上記シミュレーションと同様の条件で走行させて平行状態となった時点でのベルト端の実測温度を100としたときの予測温度である。
実施例1はタイヤモデルにリムモデルのみを付加したもの、実施例2は内部空気モデルのみを付加したもので、実施例3は、図5(a)に示すような、タイヤとリムと内部空気とをモデル化した熱解析モデルを用いて熱解析を行ったものである。
表1から明らかなように、本発明の実施例1〜3は、従来例の予測温度より低く、かつ、実測温度にかなり近いことから、本発明の方法を用いることにより、リムからの放熱及び内部空気からリムを介しての放熱を正確に把握することができ、タイヤ温度の予測精度を大幅に向上させることができることが確認された。
また、実施例1,2より、リムからの放熱と内部空気からの放熱とはほぼ同等であり、実施例3のように、リムと内部空気とをモデル化してタイヤモデルに付加することにより、タイヤ温度の予測精度を更に向上させることができることが確認された。 When creating a numerical analysis model of a tire with a tire size of PSR195 / 65R14, performing stress analysis for rolling on the road surface at room temperature 38 ° C, speed 80 km / h, load 100%, and performing thermal analysis calculation Conventionally, thermal analysis calculation was performed using a thermal analysis model to which one or both of the rim and internal air models were added, and the simulation was performed to predict the temperature distribution of the tire. The results compared with the examples are shown in Table 1 below.
Figure 2007210528
The numbers in Table 1 above are predicted temperatures when the measured temperature of the belt end at the time when the test vehicle is driven under the same conditions as in the simulation and becomes parallel is 100.
Example 1 is obtained by adding only the rim model to the tire model, Example 2 is obtained by adding only the internal air model, and Example 3 shows the tire, the rim, the internal air, and the like as shown in FIG. The thermal analysis was performed using the thermal analysis model that modeled.
As is clear from Table 1, Examples 1 to 3 of the present invention are lower than the predicted temperature of the conventional example and quite close to the actually measured temperature. Therefore, by using the method of the present invention, heat radiation from the rim and It was confirmed that the heat radiation from the internal air through the rim can be accurately grasped and the prediction accuracy of the tire temperature can be greatly improved.
Further, from Examples 1 and 2, the heat release from the rim and the heat release from the internal air are substantially equivalent, and as in Example 3, by modeling the rim and the internal air and adding them to the tire model, It was confirmed that the prediction accuracy of the tire temperature can be further improved.

タイヤサイズがTBR295/75R22.5のタイヤの数値解析モデルを作成し、上記実施例1〜3と同様の方法で、タイヤの温度分布を予測するシミュレーションを行った結果を以下の表2に示す。なお、上記タイヤとしては、プライ端がワイヤーチェーファー端よりも高い構造のもの(TBR-1)と、ワイヤーチェーファー端がプライ端よりも高い構造のもの(TBR-2)とを作成し、TBR-1については、室温38℃、速度70km/h、荷重120%の条件で、TBR-2については、室温38℃、速度70km/h、荷重110%の条件で解析した。
また、上記Tタイプのタイヤの予測箇所及び測定箇所は、3ベルト端、プライ端、ナイロンチェーファー端(プライ端がワイヤーチェーファー端よりも高い構造のタイヤの場合)またはワイヤーチェーファー端(ワイヤーチェーファー端がプライ端よりも高い構造のタイヤの場合;表2の*印〜TBR-2)の3箇所である。

Figure 2007210528
従来例は熱解析をタイヤモデルのみで行ったもので、実施例4はタイヤモデルにリムモデルのみを付加したもの、実施例5は内部空気モデルのみを付加したもので、実施例6は、図5(b)に示すような、タイヤとリムと内部空気とをモデル化した熱解析モデルを用いて熱解析を行ったものである。
表2から明らかなように、本発明の実施例4〜6は、従来例の予測温度より低く、かつ、実測温度にかなり近いことから、本発明の方法を用いることにより、Tタイプのタイヤにおいても、温度の予測精度を大幅に向上させることができることが確認された。
また、実施例4,5より、空気圧が高く、内部空気量が相対的多いTタイプのタイヤでは、内部空気からの放熱の方がリムからの放熱よりも若干影響が大きいこともわかった。また、実施例6のように、リムと内部空気とをモデル化してタイヤモデルに付加することにより、Tタイプのタイヤにおいても、タイヤ温度の予測精度を更に向上させることができることが確認された。
なお、構造の違いはそれほど大きくはなかった。 A numerical analysis model of a tire having a tire size of TBR295 / 75R22.5 was created, and the results of a simulation for predicting the tire temperature distribution in the same manner as in Examples 1 to 3 are shown in Table 2 below. In addition, as the above-mentioned tire, a tire having a ply end higher than the wire chafer end (TBR-1) and a tire having a wire chafer end higher than the ply end (TBR-2) are prepared. TBR-1 was analyzed under conditions of room temperature 38 ° C., speed 70 km / h, and load 120%, and TBR-2 was analyzed under conditions of room temperature 38 ° C., speed 70 km / h, load 110%.
The predicted and measured locations of the T-type tire are 3 belt ends, ply ends, nylon chafer ends (when the ply end is higher than the wire chafer end) or wire chafer ends (wire In the case of a tire having a structure where the chafer end is higher than the ply end; there are three locations from * mark to TBR-2) in Table 2.
Figure 2007210528
In the conventional example, thermal analysis was performed only on the tire model, Example 4 was obtained by adding only the rim model to the tire model, Example 5 was obtained by adding only the internal air model, and Example 6 is shown in FIG. The thermal analysis is performed using a thermal analysis model that models the tire, the rim, and the internal air as shown in FIG.
As is apparent from Table 2, Examples 4 to 6 of the present invention are lower than the predicted temperature of the conventional example and quite close to the actually measured temperature. Therefore, by using the method of the present invention, in the T type tire, It was also confirmed that the temperature prediction accuracy can be greatly improved.
Further, from Examples 4 and 5, it was also found that in the T type tire having a high air pressure and a relatively large amount of internal air, the heat radiation from the internal air has a slightly larger effect than the heat radiation from the rim. Moreover, it was confirmed that the prediction accuracy of the tire temperature can be further improved even in the T type tire by modeling the rim and the internal air as in Example 6 and adding the model to the tire model.
The difference in structure was not so great.

このように、本発明によれば、タイヤの表面及び内部の温度分布を精度よくシミュレーションすることができるので、タイヤの耐久性を正確に評価することができるとともに、タイヤの設計・開発効率を向上させることができる。   As described above, according to the present invention, the temperature distribution inside and inside the tire can be accurately simulated, so that the durability of the tire can be accurately evaluated, and the design and development efficiency of the tire can be improved. Can be made.

本発明の負荷または転動解析に使用する応力解析モデルを示す図である。It is a figure which shows the stress analysis model used for the load or rolling analysis of this invention. 本発明の熱解析に使用する熱解析モデルを示す図である。It is a figure which shows the thermal analysis model used for the thermal analysis of this invention. 本発明の最良の形態に係るタイヤの温度予測方法を示すフローチャートである。It is a flowchart which shows the temperature prediction method of the tire which concerns on the best form of this invention. 熱解析モデルにおけるタイヤの放熱状態を説明するための図である。It is a figure for demonstrating the thermal radiation state of the tire in a thermal analysis model. 本発明の実施例に使用した熱解析モデルの一例を示す図である。It is a figure which shows an example of the thermal analysis model used for the Example of this invention. 従来のタイヤの温度分布予測に用いられるタイヤモデルを示す図である。It is a figure which shows the tire model used for the temperature distribution prediction of the conventional tire. 従来のタイヤの温度分布予測方法を示すフローチャートである。It is a flowchart which shows the temperature distribution prediction method of the conventional tire.

符号の説明Explanation of symbols

M1 応力解析モデル、10 タイヤモデル、11 トレッド部、12 サイド部、
13 ビードワイヤ、14 ベルト、15 カーカスプライ、20 リムモデル、
30 路面モデル、
M2 熱解析モデル、40 タイヤモデル、41 トレッド部、42 サイド部、
46 ビード部、50 リムモデル、51 フランジ部、52 ベース部、
60 内部空気モデル。
M1 stress analysis model, 10 tire model, 11 tread part, 12 side part,
13 bead wires, 14 belts, 15 carcass plies, 20 rim models,
30 road surface model,
M2 thermal analysis model, 40 tire model, 41 tread part, 42 side part,
46 bead part, 50 rim model, 51 flange part, 52 base part,
60 Internal air model.

Claims (4)

3次元タイヤモデルまたは3次元タイヤモデルと路面モデルとから成る応力解析モデルを作成するとともに、上記タイヤモデルの各ゴム部材の要素に弾性率を与えて、負荷または転動解析を行ってタイヤ各部の応力と歪量とを算出した後、上記算出されたタイヤ各部の応力と歪量とゴム部材の損失正接とを用いて求められたタイヤの発熱分布に基づいて熱解析モデルを作成し、この熱解析モデルを用いて熱解析計算を行って、タイヤの表面及び内部の温度分布を予測するタイヤの温度分布予測方法において、上記熱解析モデルとして、タイヤモデルに、タイヤ内部の空気を有限個の要素に分割したモデル、及び、少なくともリム部を含むホイールの一部または全部を有限個の要素に分割したモデルのいずれか一方または両方を付加した熱解析モデルを作成し、この熱解析モデルを用いて上記熱解析計算を行うようにしたことを特徴とするタイヤの温度分布予測方法。   A stress analysis model composed of a three-dimensional tire model or a three-dimensional tire model and a road surface model is created, and an elastic modulus is given to each rubber member element of the tire model, and a load or rolling analysis is performed to analyze each part of the tire. After calculating the stress and strain, a thermal analysis model is created based on the tire heat distribution obtained using the calculated stress and strain of each part of the tire and the loss tangent of the rubber member. In the tire temperature distribution prediction method for predicting the temperature distribution on the surface and inside of the tire by performing thermal analysis calculation using the analysis model, the tire model is used as the above-mentioned thermal analysis model, and the air inside the tire is a finite number of elements. Analysis with one or both of the model divided into a finite part and the model where at least part or all of the wheel including the rim part is divided into a finite number of elements Create a Dell, temperature distribution prediction method of the tire, characterized in that to perform the thermal analysis calculated using the thermal analysis model. 上記熱解析計算をカットサンプルモデルまたは軸対称の2次元解析モデルを用いて行うようにしたことを特徴とする請求項1に記載のタイヤの温度分布予測方法。   The tire temperature distribution prediction method according to claim 1, wherein the thermal analysis calculation is performed using a cut sample model or an axisymmetric two-dimensional analysis model. 請求項1または請求項2に記載のタイヤの温度分布予測方法の熱解析計算に用いられる熱解析モデルであって、タイヤモデルに、タイヤ内部の空気を有限個の要素に分割したモデル、及び、少なくともリム部を含むホイールの一部または全部を有限個の要素に分割したモデルのいずれか一方または両方を付加して成ることを特徴とするタイヤの熱解析モデル。   A thermal analysis model used for thermal analysis calculation of the tire temperature distribution prediction method according to claim 1 or claim 2, wherein the tire model is a model in which air inside the tire is divided into a finite number of elements, and A tire thermal analysis model characterized by adding either or both of a model in which at least a part or all of a wheel including a rim portion is divided into a finite number of elements. タイヤの表面及び内部の温度分布を、タイヤを有限個の要素に分割した解析モデルを用いて予測計算するための計算プログラムであって、
3次元のタイヤモデルまたは3次元タイヤモデルと路面モデルとから成る応力解析モデルを作成する第1のステップと、
上記タイヤモデルの各ゴム部材の要素に弾性率を与える第2のステップと、
上記応力解析モデルを用いて負荷または転動解析を行ってタイヤ各部の応力と歪量とを算出する第3のステップと、
上記算出されたタイヤ各部の応力と歪量とから歪エネルギーの密度分布を求め、この密度分布に損失正接を乗算してタイヤの発熱分布を求める第4のステップと、
タイヤモデルに、タイヤ内部の空気を有限個の要素に分割したモデル、及び、少なくともリム部を含むホイールの一部または全部を有限個の要素に分割したモデルを付加した3次元の熱解析モデルを作成するとともに、この3次元の熱解析モデル、もしくは、カットサンプルモデルまたは軸対称の2次元解析モデルについて、上記発熱分布に基づいて熱解析計算を行って、タイヤの表面及び内部の温度分布を求める第5のステップ、とを備えたことを特徴とするタイヤの温度分布予測計算プログラム。
A calculation program for predicting and calculating the temperature distribution inside and outside the tire using an analytical model in which the tire is divided into a finite number of elements,
A first step of creating a stress analysis model comprising a three-dimensional tire model or a three-dimensional tire model and a road surface model;
A second step of providing an elastic modulus to each rubber member element of the tire model;
A third step of calculating a stress and a strain amount of each part of the tire by performing load or rolling analysis using the stress analysis model;
A fourth step of obtaining a strain energy density distribution from the calculated stress and strain amount of each part of the tire and multiplying the density distribution by a loss tangent to obtain a heat generation distribution of the tire;
A three-dimensional thermal analysis model that adds a tire model to a model in which the air inside the tire is divided into a finite number of elements and a model in which at least a part or all of the wheel including the rim is divided into a finite number of elements. The temperature distribution of the tire surface and the interior is obtained by creating a thermal analysis calculation based on the heat generation distribution for the three-dimensional thermal analysis model, or the cut sample model or the axisymmetric two-dimensional analysis model. A tire temperature distribution prediction calculation program comprising: a fifth step.
JP2006034285A 2006-02-10 2006-02-10 Tire thermal analysis model and tire temperature distribution prediction calculation program Active JP4931431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006034285A JP4931431B2 (en) 2006-02-10 2006-02-10 Tire thermal analysis model and tire temperature distribution prediction calculation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006034285A JP4931431B2 (en) 2006-02-10 2006-02-10 Tire thermal analysis model and tire temperature distribution prediction calculation program

Publications (2)

Publication Number Publication Date
JP2007210528A true JP2007210528A (en) 2007-08-23
JP4931431B2 JP4931431B2 (en) 2012-05-16

Family

ID=38489326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006034285A Active JP4931431B2 (en) 2006-02-10 2006-02-10 Tire thermal analysis model and tire temperature distribution prediction calculation program

Country Status (1)

Country Link
JP (1) JP4931431B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116571A1 (en) * 2008-03-21 2009-09-24 株式会社Ihi Rolling mill and rolling method
CN101435744B (en) * 2007-11-14 2011-10-19 韩国轮胎株式会社 Combining method of pattern model for forecasting tyre performance
JP2011219027A (en) * 2010-04-13 2011-11-04 Bridgestone Corp Simulation method and simulation device
US8155933B2 (en) 2009-05-26 2012-04-10 King Fahd University Of Petroleum & Minerals Method of modeling residual stresses during laser cutting
US8160846B2 (en) 2009-05-18 2012-04-17 King Fahd University Of Petroleum & Minerals Method of modeling phase changes due to laser pulse heating
US8190402B2 (en) 2009-05-04 2012-05-29 King Fahd University Of Petroleum & Minerals Method of modeling flexural characteristics of a bar subjected to local heating
JP2014024416A (en) * 2012-07-25 2014-02-06 Sumitomo Rubber Ind Ltd Tire endurance evaluation method and design method using the same
KR20140084263A (en) * 2011-10-25 2014-07-04 스냅-온 이퀴프먼트 에스알엘 아 유니코 소시오 Determination of behavior of loaded wheels by load simulation
WO2017212915A1 (en) * 2016-06-09 2017-12-14 株式会社ブリヂストン Tire deterioration state prediction method
CN109766625A (en) * 2019-01-08 2019-05-17 江苏理工学院 A kind of magic formula tire model calculation method considering tyre temperature

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005047295A (en) * 2003-07-29 2005-02-24 Bridgestone Corp Method, device, program and medium for estimating secular change of tire
JP2005306174A (en) * 2004-04-20 2005-11-04 Toyo Tire & Rubber Co Ltd Tire performance predicting method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005047295A (en) * 2003-07-29 2005-02-24 Bridgestone Corp Method, device, program and medium for estimating secular change of tire
JP2005306174A (en) * 2004-04-20 2005-11-04 Toyo Tire & Rubber Co Ltd Tire performance predicting method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101435744B (en) * 2007-11-14 2011-10-19 韩国轮胎株式会社 Combining method of pattern model for forecasting tyre performance
KR101234820B1 (en) 2008-03-21 2013-02-19 아이에이치아이 메탈테크 가부시키가이샤 Rolling mill and rolling method
US8573015B2 (en) 2008-03-21 2013-11-05 Ihi Corporation Rolling mill and rolling method
WO2009116571A1 (en) * 2008-03-21 2009-09-24 株式会社Ihi Rolling mill and rolling method
US8190402B2 (en) 2009-05-04 2012-05-29 King Fahd University Of Petroleum & Minerals Method of modeling flexural characteristics of a bar subjected to local heating
US8160846B2 (en) 2009-05-18 2012-04-17 King Fahd University Of Petroleum & Minerals Method of modeling phase changes due to laser pulse heating
US8155933B2 (en) 2009-05-26 2012-04-10 King Fahd University Of Petroleum & Minerals Method of modeling residual stresses during laser cutting
JP2011219027A (en) * 2010-04-13 2011-11-04 Bridgestone Corp Simulation method and simulation device
KR20140084263A (en) * 2011-10-25 2014-07-04 스냅-온 이퀴프먼트 에스알엘 아 유니코 소시오 Determination of behavior of loaded wheels by load simulation
JP2014531037A (en) * 2011-10-25 2014-11-20 スナップ−オン エクイップメント エッセエッレエッレ ア ウーニコ ソーチョ Measurement of wheel behavior by mounting simulation
KR102049246B1 (en) 2011-10-25 2019-11-27 스냅-온 이퀴프먼트 에스알엘 아 유니코 소시오 Determination of behavior of loaded wheels by load simulation
JP2014024416A (en) * 2012-07-25 2014-02-06 Sumitomo Rubber Ind Ltd Tire endurance evaluation method and design method using the same
WO2017212915A1 (en) * 2016-06-09 2017-12-14 株式会社ブリヂストン Tire deterioration state prediction method
US11312188B2 (en) 2016-06-09 2022-04-26 Bridgestone Corporation Tire deterioration state prediction method
CN109766625A (en) * 2019-01-08 2019-05-17 江苏理工学院 A kind of magic formula tire model calculation method considering tyre temperature

Also Published As

Publication number Publication date
JP4931431B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP4931431B2 (en) Tire thermal analysis model and tire temperature distribution prediction calculation program
JP4931430B2 (en) Tire temperature distribution prediction method and tire temperature distribution prediction calculation program
JP4469172B2 (en) Tire simulation method
JP4699682B2 (en) Tire temporal change prediction method, apparatus, program, and medium
JP2005306174A (en) Tire performance predicting method
JP4372515B2 (en) Durability prediction method of rotating body, computer program for durability prediction of rotating body, and durability prediction apparatus of rotating body
JP2007131206A (en) Method and model for analyzing assembly of tire and wheel
Nakajima Application of computational mechanics to tire design—yesterday, today, and tomorrow
JP4486420B2 (en) Tire temporal change prediction method, apparatus, program, and medium
Mars et al. Incremental, critical plane analysis of standing wave development, self-heating, and fatigue during regulatory high-speed tire testing protocols
JP4594030B2 (en) Tire performance prediction method, tire simulation method, tire performance prediction program, and recording medium
WO2012011551A1 (en) Method for predicting tire performance and method for designing tire
JP2006232138A (en) Tire behavior simulating method
JP5721982B2 (en) Tire performance simulation method, tire performance simulation apparatus, and tire performance simulation program
JP4905915B2 (en) Method for creating tire numerical analysis model and method for analyzing tire rolling resistance
JP2008137635A (en) Design method for pneumatic tire
JP2005212523A (en) Simulation method and tire manufacturing method
JP5320806B2 (en) Rotating body simulation method
JP4466101B2 (en) Method for creating simulation model of structure and simulation method
JP6312975B2 (en) Tire durability evaluation method and design method using the same
JP2011226991A (en) Rolling resistance prediction method and rolling resistance prediction apparatus
JP4708759B2 (en) Simulation method
JP5705425B2 (en) Tire performance simulation method, tire performance simulation apparatus, and tire performance simulation program
JP4557630B2 (en) Tire behavior simulation method
JP6027361B2 (en) Tire durability evaluation method and design method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120214

R150 Certificate of patent or registration of utility model

Ref document number: 4931431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250