JP2007208790A - Signal processing apparatus and digital modulation signal demodulator - Google Patents

Signal processing apparatus and digital modulation signal demodulator Download PDF

Info

Publication number
JP2007208790A
JP2007208790A JP2006026854A JP2006026854A JP2007208790A JP 2007208790 A JP2007208790 A JP 2007208790A JP 2006026854 A JP2006026854 A JP 2006026854A JP 2006026854 A JP2006026854 A JP 2006026854A JP 2007208790 A JP2007208790 A JP 2007208790A
Authority
JP
Japan
Prior art keywords
signal
amplitude
signals
value
digital modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006026854A
Other languages
Japanese (ja)
Other versions
JP4324594B2 (en
Inventor
Sunao Ronte
素直 論手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2006026854A priority Critical patent/JP4324594B2/en
Publication of JP2007208790A publication Critical patent/JP2007208790A/en
Application granted granted Critical
Publication of JP4324594B2 publication Critical patent/JP4324594B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a signal processing apparatus capable of reducing Gaussian noise included in an FSK or QPSK signal so as to stabilize an amplitude, and to provide a digital modulation signal demodulator. <P>SOLUTION: An A-D converter 22 converts an analog input signal s into a digital signal S which is given to a signal separation means 23. The signal separation means 23 separates the input signal S into two signals I, Q whose phases are mutually orthogonal to each other and outputs them to an amplitude calculation means 24. The amplitude calculation means 24 obtains the root of the sum of both of the squared signals I, Q as an amplitude V of the input signal. A division means 25 divides either of the signals I, Q by the amplitude V calculated by the amplitude calculation means 24 and outputs a signal S' whose amplitude is stabilized and a noise component is suppressed to a demodulation circuit 30. The demodulation circuit 30 applies demodulation processing to the signal S'. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、伝送路を経由したデジタル変調信号を処理する技術に関し、特にその伝送路による減衰や雑音の影響を除去して、誤りの少ない信号復調を可能にするための技術に関する。   The present invention relates to a technique for processing a digitally modulated signal via a transmission line, and more particularly to a technique for enabling signal demodulation with few errors by removing the influence of attenuation and noise caused by the transmission line.

1、0のデジタル情報を伝達するための変調方式として、従来から周波数シフト方式(FSK)、位相シフト方式(PSK、QPSK)が用いられている。   Conventionally, a frequency shift method (FSK) and a phase shift method (PSK, QPSK) are used as modulation methods for transmitting 1 and 0 digital information.

これらの変調方式は、伝送信号の周波数や位相を可変する方式であり、振幅性雑音の影響を受けにくい通信が可能であるが、伝送路による振幅減衰が大きいとS/Nが低下し、さらにガウス性雑音が重畳することで、復調時の誤りが大きくなってくる。   These modulation systems are systems that vary the frequency and phase of the transmission signal, and communication that is not easily affected by the amplitude noise is possible. However, if the amplitude attenuation by the transmission path is large, the S / N decreases, and By superimposing Gaussian noise, errors during demodulation increase.

このため、上記変調方式の信号を伝送するシステムでは、その伝送路による振幅減衰を抑制するために自動利得制御を行っている。   For this reason, in a system that transmits a signal of the above modulation scheme, automatic gain control is performed in order to suppress amplitude attenuation by the transmission path.

例えば、特許文献1では、中間周波数の信号を可変利得増幅器を介して直交検波回路に入力し、直交検波回路から出力されたベースバンド信号I、Qからデータ復調するとともに、I信号の2乗とQ信号の2乗との和の平方根を計算して振幅を求め、この振幅が一定になるように、可変利得増幅器の利得をフィードバック制御している。   For example, in Patent Document 1, an intermediate frequency signal is input to a quadrature detection circuit via a variable gain amplifier, data is demodulated from baseband signals I and Q output from the quadrature detection circuit, and the square of the I signal is The square root of the sum of the square of the Q signal is calculated to obtain the amplitude, and the gain of the variable gain amplifier is feedback controlled so that the amplitude becomes constant.

特開平7−321864JP-A-7-321864

しかしながら、上記特許文献1のようなフィードバック制御では平均値処理になってしまうため、信号振幅のゆっくりとした変動には追従可能であるが、振幅変動が速い、例えば信号に重畳したガウス性雑音に対しては応答できず、この雑音成分による振幅変動を抑圧することはできない。特に、雑音成分のうち、ナイキスト帯域内のものはフィルタによる除去が困難である。   However, since the feedback control as described in Patent Document 1 results in average value processing, it is possible to follow a slow fluctuation in signal amplitude, but the amplitude fluctuation is fast, for example, to Gaussian noise superimposed on a signal. In response to this, it is impossible to suppress the amplitude fluctuation due to the noise component. In particular, noise components in the Nyquist band are difficult to remove by a filter.

したがって、上記FSKやQPSKの信号をS/Nの悪い回線で伝送して復調しようとすると、ガウス性雑音の振幅変動の影響を大きく受け、誤り率が低下する。   Therefore, if the FSK or QPSK signal is transmitted through a line with a poor S / N and demodulated, it is greatly affected by the amplitude fluctuation of the Gaussian noise and the error rate is lowered.

本発明は、この問題を解決し、FSKやQPSKの信号に含まれるガウス性雑音を低減することができる信号処理装置およびデジタル変調信号復調装置を提供することを目的としている。   An object of the present invention is to solve this problem and provide a signal processing device and a digital modulation signal demodulating device that can reduce Gaussian noise contained in FSK and QPSK signals.

前記目的を達成するために、本発明の請求項1の信号処理装置は、
入力信号を互いに位相が直交する2信号I、Qに分離する信号分離手段(23)と、
前記信号I、Qに基づいて前記入力信号の振幅値を求める振幅算出手段(24)と、
前記信号I、Qのいずれか一方の信号を前記振幅算出手段により算出された振幅値で除算して、振幅が安定化され且つ雑音成分が抑圧された信号を出力する除算手段(25)とを有している。
In order to achieve the above object, a signal processing apparatus according to claim 1 of the present invention comprises:
Signal separation means (23) for separating the input signal into two signals I and Q whose phases are orthogonal to each other;
Amplitude calculation means (24) for obtaining an amplitude value of the input signal based on the signals I and Q;
Dividing means (25) for dividing one of the signals I and Q by the amplitude value calculated by the amplitude calculating means and outputting a signal whose amplitude is stabilized and whose noise component is suppressed; Have.

また、本発明の請求項2の信号処理装置は、請求項1記載の信号処理装置において、
前記振幅算出手段により算出された振幅値と所定の基準値とを比較する比較手段(28)と、
前記比較手段の結果を受け、前記振幅値が前記基準値を超えている期間は前記一方の信号を前記振幅値で除算して得られた信号を処理結果として出力し、前記振幅値が前記基準値を超えていない期間は前記一方の信号を処理結果として出力する切換手段(29)とを備えたことを特徴としている。
A signal processing device according to claim 2 of the present invention is the signal processing device according to claim 1,
Comparing means (28) for comparing the amplitude value calculated by the amplitude calculating means with a predetermined reference value;
In response to the result of the comparison means, during a period when the amplitude value exceeds the reference value, a signal obtained by dividing the one signal by the amplitude value is output as a processing result, and the amplitude value is the reference value Switching means (29) for outputting the one signal as a processing result during a period not exceeding the value is provided.

また、本発明の請求項3のデジタル変調信号復調装置は、
データ信号により周波数または位相が変調されたデジタル変調信号を復調するための復調回路(30)を有するデジタル変調信号復調装置において、
前記復調回路の前段に前記請求項1または請求項2記載の信号処理装置を設けたことを特徴としている。
A digital modulation signal demodulating device according to claim 3 of the present invention comprises:
In a digital modulation signal demodulator having a demodulation circuit (30) for demodulating a digital modulation signal whose frequency or phase is modulated by a data signal,
The signal processing device according to claim 1 or 2 is provided before the demodulating circuit.

このように本発明の信号処理装置は、入力信号から得られた2信号I、Qに基づいて算出した振幅値で信号Iまたは信号Qを除算して、振幅が安定化され且つ雑音成分が抑圧された信号を出力している。   As described above, the signal processing apparatus according to the present invention divides the signal I or the signal Q by the amplitude value calculated based on the two signals I and Q obtained from the input signal, thereby stabilizing the amplitude and suppressing the noise component. Is output.

このため、高速なリアルタイム処理で振幅を安定化でき、フィルタで除去できない雑音成分を大幅に抑圧することができる。   For this reason, the amplitude can be stabilized by high-speed real-time processing, and noise components that cannot be removed by the filter can be greatly suppressed.

また、振幅算出手段により算出された振幅値と所定の基準値とを比較手段で比較し、振幅値が基準値を超えている期間は一方の信号を振幅値で除算して得られた信号を処理結果として出力し、振幅値が基準値を超えていない期間は一方の信号を処理結果として出力するようにしたものでは、バースト波に対応することができる。   Further, the amplitude value calculated by the amplitude calculating means is compared with a predetermined reference value by the comparing means, and a signal obtained by dividing one signal by the amplitude value during a period when the amplitude value exceeds the reference value is obtained. A period in which one signal is output as a processing result during a period when the processing result is output and the amplitude value does not exceed the reference value can correspond to a burst wave.

以下、図面に基づいて本発明の実施の形態を説明する。
図1は、本発明を適用した信号処理装置を含むデジタル変調信号復調装置20の構成を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a configuration of a digital modulation signal demodulating device 20 including a signal processing device to which the present invention is applied.

このデジタル変調信号復調装置20は、復調対象の信号の振幅を安定化し雑音を抑圧する信号処理部21と、復調回路30とにより構成されている。   The digital modulation signal demodulating device 20 includes a signal processing unit 21 that stabilizes the amplitude of a signal to be demodulated and suppresses noise, and a demodulation circuit 30.

信号処理部21は、アナログの入力信号s(t)をA/D変換器22によりデジタルの信号列S(k)に変換して、信号分離手段23に入力する。   The signal processing unit 21 converts the analog input signal s (t) into a digital signal sequence S (k) by the A / D converter 22 and inputs the signal to the signal separation unit 23.

信号分離手段23は、信号S(k)を互いに位相が直交する信号I(k)、Q(k)に分離する。   The signal separation means 23 separates the signal S (k) into signals I (k) and Q (k) whose phases are orthogonal to each other.

この信号分離手段23は、信号S(k)をヒルベルト変換器23aに入力して信号S(k)を90度移相した信号Q(k)を生成している。また、遅延器23bは、ヒルベルト変換器23aの処理に必要な遅延時間Tdと等しい遅延時間を信号S(k)に与えて、これを信号I(k)として出力している。この遅延時間Tdは、サンプリング周期Tsの整数n倍で表される。   The signal separation means 23 inputs the signal S (k) to the Hilbert transformer 23a and generates a signal Q (k) obtained by shifting the signal S (k) by 90 degrees. The delay unit 23b gives the signal S (k) a delay time equal to the delay time Td necessary for the processing of the Hilbert transformer 23a, and outputs this as the signal I (k). This delay time Td is represented by an integer n times the sampling period Ts.

信号分離手段23によって得られた2つの信号I(k)、Q(k)は、振幅算出手段24に入力される。振幅算出手段24は、次の演算により信号S(k)の振幅値Vを算出する。   The two signals I (k) and Q (k) obtained by the signal separation unit 23 are input to the amplitude calculation unit 24. The amplitude calculation means 24 calculates the amplitude value V of the signal S (k) by the following calculation.

V(k)=[I(k)+Q(k)1/2 V (k) = [I (k) 2 + Q (k) 2 ] 1/2

この振幅値V(k)は信号Q(k)とともに除算手段25に入力され、次の演算がなされる。   This amplitude value V (k) is input to the dividing means 25 together with the signal Q (k), and the following calculation is performed.

S(k)′=Q(k)/V(k)=Q(k)/[I(k)+Q(k)1/2 S (k) ′ = Q (k) / V (k) = Q (k) / [I (k) 2 + Q (k) 2 ] 1/2

このようにして得られた信号S(k)′は、元の信号S(k)に含まれる雑音成分が低減され、振幅が安定化(規格化)された信号となる。   The signal S (k) ′ thus obtained becomes a signal in which the noise component contained in the original signal S (k) is reduced and the amplitude is stabilized (standardized).

例えば、図2のように振幅A、周波数fの正弦波で雑音が無い信号Sが入力された場合、各信号S、I、Qは、それぞれアナログ信号と仮定して次のように表される。   For example, as shown in FIG. 2, when a signal S having amplitude A and frequency f and having no noise is input, each signal S, I, and Q is expressed as follows assuming that each signal is an analog signal. .

S=Acos (2πft+Td)
I=Acos (2πft)
Q=Asin (2πft)
S = Acos (2πft + Td)
I = Acos (2πft)
Q = Asin (2πft)

したがって、振幅算出手段24で算出される振幅値Vは、
V=[I+Q1/2
=A{[cos (2πft)]+[sin (2πft)]1/2
=A
となる。
Therefore, the amplitude value V calculated by the amplitude calculating means 24 is
V = [I 2 + Q 2 ] 1/2
= A {[cos (2πft)] 2 + [sin (2πft)] 2 } 1/2
= A
It becomes.

よって、除算手段25から出力される信号S′は、
S′=Q/V=sin (2πft)
となる。
Therefore, the signal S ′ output from the dividing means 25 is
S ′ = Q / V = sin (2πft)
It becomes.

この出力信号S′は、図2に示しているように、信号Sの振幅を1/A倍して振幅1に規格化(減衰)し、信号Sに対して位相を90度シフトし、Td分の遅延を与えたものである。   As shown in FIG. 2, the output signal S ′ is normalized (attenuated) by multiplying the amplitude of the signal S by 1 / A and is normalized (attenuated), and the phase is shifted by 90 degrees with respect to the signal S. A delay of minutes.

図2は信号Sの振幅Aが1より大きい場合を示したが、上記処理は入力信号の任意の振幅Aに対して同一である。したがって、図3のように信号Sの振幅Aが1より小さい場合であっても、出力信号S′の振幅は1に規格化(増幅)される。   FIG. 2 shows the case where the amplitude A of the signal S is greater than 1, but the above processing is the same for an arbitrary amplitude A of the input signal. Therefore, even when the amplitude A of the signal S is smaller than 1 as shown in FIG. 3, the amplitude of the output signal S ′ is normalized (amplified) to 1.

つまり、信号Sの振幅Aが変動しても、出力信号S′の振幅は常に一定値(この場合1)に安定化される。   That is, even if the amplitude A of the signal S varies, the amplitude of the output signal S ′ is always stabilized at a constant value (in this case, 1).

しかもこの信号処理は、ヒルベルト変換のための遅延はあるもののリアルタイム制御であるので、例えば図4のように信号Sにガウス性雑音が重畳して振幅が小刻みに変化している場合であっても、上記信号処理がその変化に追従するため、出力信号S′はほぼ振幅1のSN比が改善された正弦波として出力されることになる。つまり、上記信号処理は、入力信号の振幅安定化と雑音抑圧作用を有している。換言すれば、図5のように、信号Iと信号Qの直交性が確保されているので、振幅値Vがどのように変動してもその振幅値Vに対する信号Qの比Q/V(信号S′)はsin 2πftとなり、その振幅は1で一定になる。   Moreover, since this signal processing is real-time control although there is a delay for the Hilbert transform, for example, as shown in FIG. 4, even if the signal S is superposed with Gaussian noise and the amplitude changes in small increments. Since the signal processing follows the change, the output signal S ′ is outputted as a sine wave having an amplitude ratio of about 1 and an improved S / N ratio. That is, the signal processing has an input signal amplitude stabilization and noise suppression action. In other words, as shown in FIG. 5, since the orthogonality between the signal I and the signal Q is ensured, the ratio Q / V (signal Q / V of the signal Q to the amplitude value V no matter how the amplitude value V varies) S ′) is sin 2πft, and its amplitude is constant at 1.

このようにして、入力信号sに対して振幅が安定化され、雑音成分が抑圧された信号S′は復調回路30に入力される。   In this way, the signal S ′ whose amplitude is stabilized with respect to the input signal s and whose noise component is suppressed is input to the demodulation circuit 30.

復調回路30は、例えば図6に示すように、ローカル信号発生器30aから出力され、互いに位相が直交するローカル信号L1、L2をそれぞれミキサ30b、30cに入力し、これらのミキサ30b、30cで信号S(k)′と混合し、ミキサ30b、30cの出力からそれぞれローパスフィルタ30d、30eによりベースバンド信号I′、Q′を抽出し、データ復調部30fに入力して、ベースバンド信号I′、Q′で決まるシンボル点に対応するデータを復調する。   For example, as shown in FIG. 6, the demodulating circuit 30 inputs local signals L1 and L2 that are output from the local signal generator 30a and have phases orthogonal to each other to the mixers 30b and 30c, respectively. S (k) ′, and the baseband signals I ′ and Q ′ are extracted from the outputs of the mixers 30b and 30c by the low-pass filters 30d and 30e, respectively, and input to the data demodulator 30f. Data corresponding to the symbol point determined by Q ′ is demodulated.

この復調回路30に入力される信号S(k)′は、信号処理部21においてその信号振幅が安定化され、雑音成分が抑圧されているので、データを低い誤り率で復調することができる。   Since the signal amplitude of the signal S (k) ′ input to the demodulation circuit 30 is stabilized and the noise component is suppressed in the signal processing unit 21, the data can be demodulated with a low error rate.

また、上記例では、ヒルベルト変換器23aによる移相処理を受けた信号Qを振幅Vで除算して信号S′を得ているが、ヒルベルト変換器23aの処理は基本的にハイパスフィルタ処理であるので信号Qには直流分が含まれず、出力信号S′にも直流分は含まれていない。したがって、復調回路30のミキサ30b、30cに直流分が加わることがなく、ローカル信号Ll、L2の漏れ(キャリア漏れ)による復調誤差が発生しないで済む。   In the above example, the signal Q that has undergone the phase shift processing by the Hilbert transformer 23a is divided by the amplitude V to obtain the signal S '. The processing of the Hilbert transformer 23a is basically high-pass filter processing. Therefore, the signal Q does not include a DC component, and the output signal S ′ does not include a DC component. Therefore, no direct current component is applied to the mixers 30b and 30c of the demodulation circuit 30, and demodulation errors due to leakage (carrier leakage) of the local signals L1 and L2 do not occur.

ただし、このキャリア漏れによる誤差が少ないと予想される場合には、信号Iを振幅値Vで除算して信号S′を得ることも可能である。   However, when the error due to the carrier leakage is expected to be small, the signal S can be obtained by dividing the signal I by the amplitude value V.

この場合、
S′=I/V=cos 2πft
となり、前記例と同様に振幅が1に規格され、雑音成分が抑圧された信号S′を得ることができる。
in this case,
S ′ = I / V = cos 2πft
Thus, similarly to the above example, the signal S ′ whose amplitude is standardized to 1 and the noise component is suppressed can be obtained.

また、上記例は信号sが連続的に入力される場合について説明したが、信号sがバースト状に入力される場合には、図7に示す信号処理部21′のように、振幅算出手段24で算出された振幅値Vと予め設定された基準値Vrとを比較手段28に入力し、振幅値Vが基準値Vrを超えている間(信号入力期間)は前記同様に除算手段25の演算結果S′を出力し、振幅値Vが基準値Vr以下の期間(信号無入力期間)は、除算手段25の演算結果S′の代わりに、信号Qを出力するスイッチ29を切換手段として設けることで対応できる。なお、切換手段は、この例のように出力信号を選択する方式だけでなく、除算手段25に入力される振幅値Vを強制的に1にすることで、除算手段25から信号Qを出力させることもできる。   In the above example, the case where the signal s is continuously input has been described. However, when the signal s is input in a burst shape, the amplitude calculating unit 24 as in the signal processing unit 21 ′ illustrated in FIG. The amplitude value V calculated in step (1) and a preset reference value Vr are input to the comparison means 28. While the amplitude value V exceeds the reference value Vr (signal input period), the calculation of the division means 25 is performed as described above. A switch 29 for outputting a signal Q is provided as a switching means in place of the calculation result S ′ of the dividing means 25 during a period (signal non-input period) in which the result S ′ is output and the amplitude value V is equal to or less than the reference value Vr. It can respond. Note that the switching means not only selects the output signal as in this example, but also forcibly sets the amplitude value V input to the dividing means 25 to 1 so that the signal Q is output from the dividing means 25. You can also.

また、前記実施形態では、入力信号sをA/D変換してから2信号I、Qに分離していたが、アナログの入力信号を2信号に分離してからA/D変換処理してもよい。   In the embodiment, the input signal s is A / D converted and then separated into two signals I and Q. However, the analog input signal is separated into two signals and then A / D converted. Good.

また、上記実施形態の信号処理部21、21′の処理対象は、FSKやQPSK等のデジタル変調信号に限らず、振幅変調以外の各種変調信号や無変調信号(キャリア信号)に対しても適用できる。   The processing target of the signal processing units 21 and 21 'in the above embodiment is not limited to digital modulation signals such as FSK and QPSK, but also applies to various modulation signals other than amplitude modulation and non-modulation signals (carrier signals). it can.

本発明の実施形態の構成図Configuration diagram of an embodiment of the present invention 実施形態の要部の動作説明図Operation explanatory diagram of the main part of the embodiment 実施形態の要部の動作説明図Operation explanatory diagram of the main part of the embodiment 実施形態の要部の動作説明図Operation explanatory diagram of the main part of the embodiment 実施形態の要部の動作説明図Operation explanatory diagram of the main part of the embodiment 実施形態の要部の構成図Configuration diagram of the main part of the embodiment バースト波に対応した実施形態の構成図Configuration diagram of an embodiment corresponding to a burst wave

符号の説明Explanation of symbols

20……デジタル変調信号復調装置、21、21′……信号処理部、22……A/D変換器、23……信号分離手段、23a……ヒルベルト変換器、23b……遅延器、24……振幅算出手段、25……除算手段、28……比較手段、29……スイッチ、30……復調回路   DESCRIPTION OF SYMBOLS 20 ... Digital modulation signal demodulator, 21, 21 '... Signal processing part, 22 ... A / D converter, 23 ... Signal separation means, 23a ... Hilbert converter, 23b ... Delay device, 24 ... ... Amplitude calculation means, 25 ... Division means, 28 ... Comparison means, 29 ... Switch, 30 ... Demodulation circuit

Claims (3)

入力信号を互いに位相が直交する2信号I、Qに分離する信号分離手段(23)と、
前記信号I、Qに基づいて前記入力信号の振幅値を求める振幅算出手段(24)と、
前記信号I、Qのいずれか一方の信号を前記振幅算出手段により算出された振幅値で除算して、振幅が安定化され且つ雑音成分が抑圧された信号を出力する除算手段(25)とを有する信号処理装置。
Signal separation means (23) for separating the input signal into two signals I and Q whose phases are orthogonal to each other;
Amplitude calculation means (24) for obtaining an amplitude value of the input signal based on the signals I and Q;
Dividing means (25) for dividing one of the signals I and Q by the amplitude value calculated by the amplitude calculating means and outputting a signal whose amplitude is stabilized and whose noise component is suppressed; A signal processing apparatus.
前記振幅算出手段により算出された振幅値と所定の基準値とを比較する比較手段(28)と、
前記比較手段の結果を受け、前記振幅値が前記基準値を超えている期間は前記一方の信号を前記振幅値で除算して得られた信号を処理結果として出力し、前記振幅値が前記基準値を超えていない期間は前記一方の信号を処理結果として出力する切換手段(29)とを備えたことを特徴とする請求項1記載の信号処理装置。
Comparing means (28) for comparing the amplitude value calculated by the amplitude calculating means with a predetermined reference value;
In response to the result of the comparison means, during a period when the amplitude value exceeds the reference value, a signal obtained by dividing the one signal by the amplitude value is output as a processing result, and the amplitude value is the reference value 2. A signal processing apparatus according to claim 1, further comprising switching means for outputting said one signal as a processing result during a period not exceeding the value.
データ信号により周波数または位相が変調されたデジタル変調信号を復調するための復調回路(30)を有するデジタル変調信号復調装置において、
前記復調回路の前段に前記請求項1または請求項2記載の信号処理装置を設けたことを特徴とするデジタル変調信号復調装置。
In a digital modulation signal demodulator having a demodulation circuit (30) for demodulating a digital modulation signal whose frequency or phase is modulated by a data signal,
3. A digital modulation signal demodulating device comprising the signal processing device according to claim 1 or 2 provided in a preceding stage of the demodulating circuit.
JP2006026854A 2006-02-03 2006-02-03 Digital modulation signal demodulator Expired - Fee Related JP4324594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006026854A JP4324594B2 (en) 2006-02-03 2006-02-03 Digital modulation signal demodulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006026854A JP4324594B2 (en) 2006-02-03 2006-02-03 Digital modulation signal demodulator

Publications (2)

Publication Number Publication Date
JP2007208790A true JP2007208790A (en) 2007-08-16
JP4324594B2 JP4324594B2 (en) 2009-09-02

Family

ID=38487820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006026854A Expired - Fee Related JP4324594B2 (en) 2006-02-03 2006-02-03 Digital modulation signal demodulator

Country Status (1)

Country Link
JP (1) JP4324594B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276268A (en) * 2008-05-16 2009-11-26 Anritsu Corp Signal processing method and signal processing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276268A (en) * 2008-05-16 2009-11-26 Anritsu Corp Signal processing method and signal processing apparatus

Also Published As

Publication number Publication date
JP4324594B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
US5477199A (en) Digital quadrature amplitude and vestigial sideband modulation decoding method and apparatus
US8442474B2 (en) Method and apparatus for imbalance-free FM demodulation in direct conversion radio receivers
JP2006081045A (en) Quadrature detector, quadrature demodulator using same, and sampling quadrature demodulator
JP4583196B2 (en) Communication device
JP2009206556A (en) Transmitter
KR20060081191A (en) Apparatus for compensating phase mismatch in a quadrature phase shift keying demodulator
JP6031144B2 (en) Synchronous demodulation electronics for phase modulated signals
JP4324594B2 (en) Digital modulation signal demodulator
US8102959B2 (en) Digital audio processing system and method
Don A low-cost software-defined telemetry receiver
EP1051006A2 (en) Method and system for carrier recovery of a suppressed carrier modulated signal
JP4324595B2 (en) Digital modulation signal demodulator
KR20200015784A (en) Circuits and Systems for Wideband Orthogonal Signal Generation
WO2013162444A2 (en) An arrangement and a method for carrier signal recovery
JP4749259B2 (en) Receiver
JPH10276166A (en) Afc circuit
JP2696948B2 (en) Carrier recovery circuit
JP2008022187A5 (en)
JP2010239273A (en) Modulation signal detection device
KR100499513B1 (en) Apparatus for recovering carrier in vsb receiver
KR100548234B1 (en) Digital symbol timing recovery device
KR20160026339A (en) Low Power Wideband Non-Coherent BPSK Demodulator to Align the Phase of Sideband Comparators, using 1st Order Sideband Filters with Phase 180 Degree Alignment
JP2602437B2 (en) Noise suppression device in receiver
KR20040006661A (en) Timing recovery Apparatus
JP2010109719A (en) Demodulation device, and modulation and demodulation system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees