JP2007208779A - Digital orthogonal detector - Google Patents

Digital orthogonal detector Download PDF

Info

Publication number
JP2007208779A
JP2007208779A JP2006026691A JP2006026691A JP2007208779A JP 2007208779 A JP2007208779 A JP 2007208779A JP 2006026691 A JP2006026691 A JP 2006026691A JP 2006026691 A JP2006026691 A JP 2006026691A JP 2007208779 A JP2007208779 A JP 2007208779A
Authority
JP
Japan
Prior art keywords
signal
phase component
sampling
digital
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006026691A
Other languages
Japanese (ja)
Inventor
Koji Yomoto
宏二 四本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2006026691A priority Critical patent/JP2007208779A/en
Publication of JP2007208779A publication Critical patent/JP2007208779A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simplify the configuration of a digital orthogonal detector, and to improve its gain also. <P>SOLUTION: The detector comprises an alternative distributing means (6) for inputting a digital IF signal sequence, whose sampling frequency is 8 times of a chip rate, and whose central frequency is four times of the sampling frequency and for distributing to two signal sequences alternately by each sampling, and an alternate inversion means (7, 8) for inputting the distributed signal sequence and for setting one side as I-phase component and the other side as a Q-phase component, after performing code inversion, alternately for each sampling about each signal sequence. The detector further outputs as a baseband the complex signal, grouped with the I-phase component and the Q-phase component from which one sampling time is shifted. As a result, gain is improved by 3 dB, by making a double wave always perform the same phase addition, and deterioration in the gain, caused by the deviation from synchronization point of sampling timing, can be prevented. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、変調信号を受信して、その同相成分(I相成分)と直交成分(Q相成分)をデジタル信号処理によって得るデジタル直交検波器に関する。   The present invention relates to a digital quadrature detector that receives a modulated signal and obtains its in-phase component (I-phase component) and quadrature component (Q-phase component) by digital signal processing.

図6は従来のアナログ直交検波器の構成図である。RF帯の信号を、IF帯、BB帯と順次周波数変換し、2つに分岐する。そして分岐されたBB帯信号を、90度位相が異なる同一周波数の2つの局部信号(それぞれsin波、cos波と呼ぶ)とそれぞれミキシングする。この際発生する2倍波成分は、後段のLPF(Low
Pass Filter)により除去された後、I相、Q相からなる直交検波信号(複素信号)として出力される。入力信号と局部信号の周波数関係がずれると、帯域拡大につながり歪の原因になる。また、QPSKなどI相、Q相を用いる変調方式の場合、局部信号のsin波、cos波間の位相ずれやレベルずれは、いずれも歪の原因になり、I/QバランスやIQ直交度補正、DCオフセット補正などが必要になる。
FIG. 6 is a block diagram of a conventional analog quadrature detector. The RF band signal is sequentially frequency-converted into an IF band and a BB band and branched into two. Then, the branched BB band signal is mixed with two local signals (referred to as a sine wave and a cos wave, respectively) having the same frequency but 90 degrees out of phase. The second harmonic component generated at this time is the LPF (Low
After being removed by the Pass Filter), it is output as a quadrature detection signal (complex signal) consisting of I-phase and Q-phase. If the frequency relationship between the input signal and the local signal is deviated, the band is expanded and distortion is caused. In addition, in the case of a modulation method using I-phase and Q-phase such as QPSK, the phase shift and level shift between the sin wave and cos wave of the local signal both cause distortion, and I / Q balance and IQ orthogonality correction, DC offset correction is required.

図7は従来のデジタル直交検波器の構成図であり、IF帯をアンダーサンプリングするIF帯サンプリング方式を示してある。この場合、局部信号との乗算は必然的にデジタル処理で実行されるが、sin波、cos波を大規模なテーブルを用いて配給するか、もしくは単純な+1、-1のみで配給する周期となるように設計するなどの違いはあるものの、アナログ直交検波と同じ原理であるために2倍波が発生し、後段のデジタルLPFにより除去する手順を踏む。デジタル直交検波では、同期ずれや、I相Q相のレベルずれは発生しない。 FIG. 7 is a block diagram of a conventional digital quadrature detector, showing an IF band sampling method for undersampling the IF band. In this case, multiplication with the local signal is inevitably performed by digital processing, but the sine wave and cos wave are distributed using a large-scale table, or a simple +1, -1 distribution cycle. However, because the principle is the same as that of the analog quadrature detection, a double wave is generated, and a procedure for removing it by the subsequent digital LPF is taken. In digital quadrature detection, no synchronization shift or I-phase / Q-phase level shift occurs.

直交検波された信号を復調(デマッピング)する際は、復調に最も適したサンプルタイミングつまりアイパターンが最も開くサンプルタイミング(以後同期点と呼ぶ)を採用することが望ましい。
図4は、従来の直交検波器における同期点のタイミング誤差と利得の劣化の関係を示す図である。同期点がサンプルタイミングからずれるに従い、直交検波信号の利得は減少する。I相とQ相は当然同一タイミングであるので、I相、Q相はタイミング誤差の影響を同様に受ける。直交検波信号の利得劣化は、I相、Q相の利得劣化の和であり、32/256チップ(4倍オーバサンプル時の0.5サンプル)ずれたときには0.34dBの劣化となる。
When demodulating (demapping) a signal subjected to quadrature detection, it is desirable to employ a sample timing most suitable for demodulation, that is, a sample timing at which the eye pattern is most opened (hereinafter referred to as a synchronization point).
FIG. 4 is a diagram showing a relationship between a synchronization point timing error and gain deterioration in a conventional quadrature detector. As the synchronization point deviates from the sample timing, the gain of the quadrature detection signal decreases. Since the I and Q phases are naturally at the same timing, the I and Q phases are similarly affected by the timing error. The gain deterioration of the quadrature detection signal is the sum of the gain deterioration of the I-phase and the Q-phase. When 32/256 chips (0.5 samples at 4 times oversampling) are shifted, the deterioration is 0.34 dB.

しかし、サンプルタイミングの誤差を小さくするためにサンプルレートを高くすると信号処理量が増えるので、サンプルタイミングは処理量とのトレードオフで決定される。
例えばCDMA(Code Division Multiple Access)受信機では、直交検波時のサンプルレートをチップレートの2倍(例えば8倍)とし、処理量を減らすために直交検波後にサンプルレートを例えば1/2にダウンサンプルすることが多い。
However, if the sample rate is increased in order to reduce the error in sample timing, the amount of signal processing increases, so the sample timing is determined by a trade-off with the amount of processing.
For example, in a Code Division Multiple Access (CDMA) receiver, the sample rate at the time of quadrature detection is 2n times (for example, eight times) the chip rate, and the sample rate is reduced to, for example, ½ after quadrature detection to reduce the processing amount. I often sample.

上記のほか、従来技術として受信信号の搬送波周波数の4n(n=整数)倍のクロックを用いてデジタル直交検波するものが知られる(例えば、特許文献1参照。)。 In addition to the above, there is known a conventional technique that performs digital quadrature detection using a clock 4n (n = integer) times the carrier frequency of the received signal (see, for example, Patent Document 1).

特開平9−83588号公報JP-A-9-83588

しかしながら従来のデジタル直交検波器では、アナログ方式をそのままデジタル化すると、受信信号のエネルギーの半分を2倍波に持っていかれたり、サンプルタイミングの誤差の影響をうけたりして、性能を十分に発揮できないという問題があった。 However, with the conventional digital quadrature detector, if the analog method is digitized as it is, half of the energy of the received signal is taken to the double wave, or the influence of the error of the sample timing is exerted and the performance is fully demonstrated. There was a problem that I could not.

本発明は上記実情に鑑みて為されたもので、構成が簡易で、利得の劣化の少ないデジタル直交検波器を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a digital quadrature detector having a simple configuration and little gain deterioration.

サンプリング周波数がチップレートの8倍、中心周波数がサンプリング周波数の4倍であるデジタルIF信号系列を入力し、サンプル毎に交互に2つの信号系列に分配する交互分配手段と、
前記分配された信号系列を入力し、それぞれの信号系列をサンプル毎に交互に符号反転し、一方をI相成分、他方をQ相成分とする交互反転手段とを備え、
1サンプル時間のずれた前記I相成分とQ相成分とを組にした複素信号を、ベースバンド信号としてチップレートの4倍のサンプリング周波数で出力することを特徴とするデジタル直交検波器。
An alternating distribution means for inputting a digital IF signal sequence having a sampling frequency of 8 times the chip rate and a center frequency of 4 times the sampling frequency, and alternately distributing two digital signal sequences for each sample;
The distributed signal sequence is input, and each signal sequence is alternately inverted for each sample, and includes an alternating inversion means having one as an I-phase component and the other as a Q-phase component,
A digital quadrature detector characterized in that a complex signal in which the I-phase component and Q-phase component shifted by one sample time are output as a baseband signal at a sampling frequency four times the chip rate.

本発明によれば、デジタル直交検波をLPFを必須としない簡易な構成にて実現でき、利得を向上でき、更にサンプリングポイントの同期点からのずれに対して耐性を持たせることができる。 According to the present invention, digital quadrature detection can be realized with a simple configuration that does not require an LPF, gain can be improved, and resistance to a deviation of a sampling point from a synchronization point can be provided.

以下実施例を通じて、図面を参照しながら説明するが、実施例で説明する構成の全ての組み合わせが本発明に必須であるとは限らない。また各実施例の特徴の任意の組み合わせや、引用した従来技術との組み合わせも本発明に含まれうる。 Hereinafter, the embodiments will be described with reference to the drawings. However, all combinations of configurations described in the embodiments are not necessarily essential to the present invention. In addition, any combination of the features of the embodiments and combinations with the cited prior art can be included in the present invention.

本例では、1キャリアのW−CDMA信号をIF帯でアンダーサンプリングし、8倍オーバーサンプリングのベースバンド(BB)信号を得るものを説明するが、受信方式は問わない。
本実施例を概説すると、IF信号にはI相成分とQ相成分が共に含まれているが、それらは直交関係にあり、位相と周期のとり方により、どちらかがゼロになりもう片方が最大になるタイミングが存在する。すなわち、8倍オーバーサンプリングのデータは、交互にI成分のみ、Q成分のみが含まれている状態として取り出すことができる。これを行うのが、本実施例の交互分配機能である。分配されたそれぞれの信号は交互に位相が反転しているので、位相を合わせるために反転するのが交互反転機能である。
In this example, a description will be given of a case in which a 1-carrier W-CDMA signal is undersampled in the IF band to obtain an 8-times oversampling baseband (BB) signal, but the reception method is not limited.
When this example is outlined, the IF signal includes both the I-phase component and the Q-phase component, but they are in a quadrature relationship, and one of them becomes zero depending on how the phase and period are taken, and the other is the maximum. There is a timing to become. That is, 8-times oversampling data can be extracted in a state where only the I component and only the Q component are included. This is performed by the alternate distribution function of this embodiment. Since the phases of the distributed signals are alternately inverted, the inversion function is used to invert the signals in order to match the phases.

図1は、本実施例1のデジタル直交検波器の構成図である。まず図1を参照して本例の構成を説明する。
BPF(Band Pass filter)1は、アンテナなどで受電したRF帯信号を入力し、受信しようとする変調信号を含む周波数帯を通過させて出力する。
ミキサ2は、BPF1から出力されたRF帯信号と、局部発振信号とを混合して、IF帯に周波数変換された信号を出力する。
BPF3は、ミキサ2における混合により生じた信号のうち、所望の1キャリアに対する周波数のみを通過させて出力する。
FIG. 1 is a configuration diagram of the digital quadrature detector according to the first embodiment. First, the configuration of this example will be described with reference to FIG.
A BPF (Band Pass filter) 1 inputs an RF band signal received by an antenna or the like, and passes and outputs a frequency band including a modulation signal to be received.
The mixer 2 mixes the RF band signal output from the BPF 1 and the local oscillation signal, and outputs a signal frequency-converted to the IF band.
The BPF 3 passes and outputs only the frequency for a desired one of the signals generated by the mixing in the mixer 2.

ADC(Analog to Digital Converter)4は、BPF3から出力されたIF信号を標本化および量子化し、デジタルIF信号として出力する。ADC4のサンプルレートfsはW−CDMAのチップレートfc(3.84MHz)の8倍である30.72MHzであり、更にBPF3が選別したIF信号のUSB(Upper Side Band)中心周波数fIFUもしくはLSB(Upper Side Band)中心周波数fIFLに対して、
IFU=m・fs (式1)
若しくは
IFL=(m+1/2)・fs (式2)
を満たす。
An ADC (Analog to Digital Converter) 4 samples and quantizes the IF signal output from the BPF 3 and outputs the sampled signal as a digital IF signal. The ADC 4 sample rate f s is 30.72 MHz, which is eight times the W-CDMA chip rate f c (3.84 MHz), and further the USB (Upper Side Band) center frequency f IFU or LSB (IFB) of the IF signal selected by the BPF 3. Upper Side Band) For center frequency f IFL
f IFU = m · f s (Formula 1)
Or, f IFL = (m + 1/2) · f s (Formula 2)
Meet.

DDC(Digital Down Convert)5は、ADC4が8倍オーバサンプル以外のサンプルレートでA/D変換するときにのみ必要となるものであって、ADC4から出力されたデジタルIF信号のサンプルレートを、8倍オーバサンプルレート(30.72MHz)に変換する。以下、DDC5を備えないことを前提に説明する。
セレクタ6は、ADC4から出力されたデジタルIF信号を、サンプル毎に交互に振り分けて出力する。つまり、図2に示すように、ADC4の出力系列を(a)とすると、(b)と(c)の2つの系列に振り分ける。
The DDC (Digital Down Convert) 5 is necessary only when the ADC 4 performs A / D conversion at a sample rate other than 8 times oversampling, and the sample rate of the digital IF signal output from the ADC 4 is 8 Convert to double oversample rate (30.72MHz). The following description is based on the assumption that the DDC 5 is not provided.
The selector 6 alternately distributes and outputs the digital IF signal output from the ADC 4 for each sample. That is, as shown in FIG. 2, when the output sequence of the ADC 4 is (a), the output sequence is divided into two sequences (b) and (c).

乗算器7は、セレクタ6により振り分けられた2つの系列の一方に、-1と+1を交互に乗算し、I相成分として出力する。
乗算器8は、セレクタ6により振り分けられた2つの系列の他方に、-1と+1を交互に乗算し、Q相成分として出力する。
セレクタ6が交互分配機能を実現し、乗算器7、8が交互反転機能を実現し、これらにより直交検波が達成される。乗算器7と8はそれぞれ、信号の符号を交互に反転するものであり、単なる符号反転器でよい。
The multiplier 7 alternately multiplies −1 and +1 by one of the two sequences distributed by the selector 6 and outputs the result as an I-phase component.
The multiplier 8 alternately multiplies −1 and +1 by the other of the two sequences distributed by the selector 6 and outputs the result as a Q-phase component.
The selector 6 implements an alternating distribution function, and the multipliers 7 and 8 implement an alternating inversion function, thereby achieving quadrature detection. Each of the multipliers 7 and 8 inverts the sign of the signal alternately, and may be a simple sign inverter.

乗算器7と8の関係は、A/D変換する元のIF信号がUSBかLSBかにより異なる。通常、BB信号にはUSBを用いるので、IF信号がUSBの場合は、直交検波後のデータは、図2の(d)のように表される。一方、もとのIF信号がLSBの場合は、図2の(e)のように直交側の位相が反転する。 The relationship between the multipliers 7 and 8 differs depending on whether the original IF signal to be A / D converted is USB or LSB. Since USB is normally used for the BB signal, when the IF signal is USB, the data after quadrature detection is expressed as shown in (d) of FIG. On the other hand, when the original IF signal is LSB, the phase on the orthogonal side is inverted as shown in FIG.

直交検波後の複素信号データは、I成分、Q成分それぞれが4倍オーバーサンプリングになる。I成分とQ成分は1サンプル時間毎に交互に得られ、同一時刻の両成分を得ることはできないが、互いに1サンプル時間のずれた1つのI成分と1つのQ成分を組にして、同一時刻の直交検波信号として4倍オーバーサンプリングで出力する。 In the complex signal data after quadrature detection, each of the I component and the Q component is four times oversampling. I component and Q component are obtained alternately every sample time, and it is not possible to obtain both components at the same time, but the same I component and one Q component that are shifted by one sample time from each other are the same Output as quadrature oversampling as a quadrature detection signal of time.

本例の直交検波器では、完全なI/Q分離が可能となるが、I成分とQ成分の間でタイミングが1/8チップ(1サンプル)ずれていることになる。本例ではこのズレにより、サンプリングポイントの同期点からのずれに対する耐性を得ている。 In the quadrature detector of this example, complete I / Q separation is possible, but the timing is shifted by 1/8 chip (one sample) between the I component and the Q component. In this example, tolerance for the deviation of the sampling point from the synchronization point is obtained by this deviation.

図5は、本実施例1の直交検波器における同期点のタイミング誤差と利得の関係を示す図である。本図及び図4では、利得の曲線をサインカーブで近似して示してある。従来と同じ4倍オーバーサンプリングにおいて、利得の劣化の平均値は変わらないものの、最大値が0.34dBから0.17dBに減少している。これによりタイミング誤差に起因する復調誤りを軽減することができる。 FIG. 5 is a diagram illustrating the relationship between the timing error at the synchronization point and the gain in the quadrature detector according to the first embodiment. In this figure and FIG. 4, the gain curve is approximated by a sine curve. In the same 4 times oversampling as before, the average value of gain degradation does not change, but the maximum value decreases from 0.34 dB to 0.17 dB. As a result, demodulation errors due to timing errors can be reduced.

なおこのズレは、I/Q直交度のずれに似た歪を発生させることが懸念される。しかしアナログ直交変調器におけるI/Q直交度のずれはサンプルタイミングに無関係な一定方向のずれであるのに対し、本例のズレは、サンプルが8倍オーバサンプリングにおける偶数番目か奇数番目かにより正負に発生しその平均値が0である。そのため、RAKE合成を行うCDMA受信機であればそのズレの影響を更に抑えることができる。 There is a concern that this deviation may cause distortion similar to the deviation of the I / Q orthogonality. However, the deviation of the I / Q orthogonality in the analog quadrature modulator is a deviation in a fixed direction independent of the sample timing, whereas the deviation in this example is positive or negative depending on whether the sample is an even number or an odd number in 8-times oversampling. The average value is 0. Therefore, the influence of the deviation can be further suppressed if the CDMA receiver performs RAKE combining.

次に、ADC4におけるIF帯アンダーサンプリングを説明する。
図3は、IF帯アンダーサンプリングを説明するスペクトル図である。IF信号の帯域幅は、サンプリング定理におけるナイキスト周波数よりも小さくなるように帯域制限されており、本例ではWCDMA信号の1キャリアを想定し5MHz程度とする。スペクトルは、ADC4のサンプルレート(fs=30.72MHz)の周波数間隔で、イメージ成分が繰り返される。従って、fsよりも高い周波数のIF信号をA/D変換しても、BB帯と同程度の中心周波数fIFを持つ信号として取り出すことができる。
Next, IF band undersampling in the ADC 4 will be described.
FIG. 3 is a spectrum diagram illustrating IF band undersampling. The bandwidth of the IF signal is limited so as to be smaller than the Nyquist frequency in the sampling theorem. In this example, one carrier of the WCDMA signal is assumed to be about 5 MHz. In the spectrum, image components are repeated at a frequency interval of the ADC 4 sample rate (f s = 30.72 MHz). Therefore, even if an IF signal having a frequency higher than f s is A / D converted, it can be extracted as a signal having a center frequency f IF comparable to that of the BB band.

元のIF信号にUSBを用いた場合、中心周波数(キャリア周波数)が(式1)を満たす222.72MHのIF信号を用いると、サンプリングにより中心周波数fIF=7.68MHzのIF信号が得られる。また、元のIF信号にLSBを用いた場合、(式2)を満たす238.08MHzのIF信号を用いると、やはりfIF=7.68MHzのIF信号が得られる。 When USB is used for the original IF signal, if an IF signal having a center frequency (carrier frequency) of 222.72 MHz satisfying (Equation 1) is used, an IF signal having a center frequency f IF = 7.68 MHz is obtained by sampling. Further, when LSB is used for the original IF signal, if an IF signal of 238.08 MHz satisfying (Equation 2) is used, an IF signal of f IF = 7.68 MHz is also obtained.

次に、本実施例が2倍波成分を利用できる原理を説明する。
従来の通常の直交検波では、IF信号と局部信号の周波数の和の周波数成分(周波数がほぼ2倍となるので、以後2倍波成分と呼ぶ)が発生し、それはLPF(Low Pass Filter)を用いて除去していた。本例では、2倍波成分を除去せず直交検波を達成する。ここで、記号を次のように定義する。
変調(拡散)信号: a + jb = exp(jφ)
直交変調角周波数: ω
初期位相: Δ
Next, the principle that the present embodiment can use the second harmonic component will be described.
In the conventional normal quadrature detection, a frequency component of the sum of the frequency of the IF signal and the local signal (because the frequency is almost doubled, henceforth referred to as a double wave component) is generated, which is an LPF (Low Pass Filter). Used to remove. In this example, quadrature detection is achieved without removing the second harmonic component. Here, the symbols are defined as follows.
Modulated (spread) signal: a + jb = exp (jφ)
Quadrature modulation angular frequency: ω
Initial phase: Δ

このとき、直交変調後の信号は次のようになる。
Re[(a+jb)exp(jωt)] = {a・cos(ωt+Δ)−b・sin(ωt+Δ)} (式3)
ただし、Re[]は実数部を示す。ωは、サンプリングされたデジタルIF信号の中心周波数fIFに対応し、BB信号はこのωがゼロの信号であるから、直接BB信号へ直交検波すると、直交検波後の複素信号は次のようになる。
{a・cos(ωt+Δ)−b・sin(ωt+Δ)}exp(-jωt)
= (1/2)exp(jΔ)exp(jφ)+(1/2)exp(-j(2ωt+Δ)exp(-jφ) (式4)
At this time, the signal after quadrature modulation is as follows.
Re [(a + jb) exp (jωt)] = {a · cos (ωt + Δ) −b · sin (ωt + Δ)} (Formula 3)
However, Re [] indicates a real part. Since ω corresponds to the center frequency f IF of the sampled digital IF signal, and the BB signal is a signal in which ω is zero, when the quadrature detection is performed directly on the BB signal, the complex signal after the quadrature detection is as follows: Become.
{a ・ cos (ωt + Δ) −b ・ sin (ωt + Δ)} exp (-jωt)
= (1/2) exp (jΔ) exp (jφ) + (1/2) exp (-j (2ωt + Δ) exp (-jφ) (Formula 4)

ここで、求める周波数成分をx、2倍波成分をyとすると、それぞれ次のようになる。
x= (1/2)exp(jΔ)exp(jφ)
Re[x]= (1/2)cos(φ+Δ)
Im[x]=-(1/2)sin(φ+Δ)
Here, when the frequency component to be obtained is x and the second harmonic component is y, the following is obtained.
x = (1/2) exp (jΔ) exp (jφ)
Re [x] = (1/2) cos (φ + Δ)
Im [x] =-(1/2) sin (φ + Δ)

y = (1/2)exp(-jΔ)exp(-jφ)exp(-j2ω)
Re[y]= (1/2)cos(2ωt+φ+Δ)
Im[y]=-(1/2)sin(2ωt+φ+Δ)
y = (1/2) exp (-jΔ) exp (-jφ) exp (-j2ω)
Re [y] = (1/2) cos (2ωt + φ + Δ)
Im [y] =-(1/2) sin (2ωt + φ + Δ)

抽出タイミングを局部信号exp(-jωt)に対してπ/2の奇数倍ごとに採る、例えばfs=(2/π)ωでサンプリングすることで、以下の式が成り立つ。
ωt=nπのとき
Re[y]= Re[x]
Im[y]=-Im[x]
ωt=(n+0.5)πのとき
Re[y]=-Re[x]
Im[y]= Im[x]
Taking the extraction timing at every odd multiple of π / 2 with respect to the local signal exp (−jωt), for example, sampling at f s = (2 / π) ω, the following equation is established.
When ωt = nπ
Re [y] = Re [x]
Im [y] =-Im [x]
When ωt = (n + 0.5) π
Re [y] =-Re [x]
Im [y] = Im [x]

すなわち、従来LPFで切り捨てていた2倍波成分を、本例では求める周波数成分と常に同相合成して有効に取り出せるため、LPFが不要となるだけでなく、利得を3dB向上させることができる。
ω=nπのとき
直交検波I相データ:2×Re[x]= cos(φ+Δ) (式5)
ω=(n+0.5)πのとき
直交検波Q相データ:2×Im[x]=-sin(φ+Δ) (式6)
That is, since the second harmonic component that has been discarded by the conventional LPF can always be effectively in-phase synthesized with the frequency component to be obtained in this example, the LPF is not required, and the gain can be improved by 3 dB.
Quadrature detection I phase data when ω = nπ: 2 × Re [x] = cos (φ + Δ) (Formula 5)
Quadrature detection Q phase data when ω = (n + 0.5) π: 2 × Im [x] = − sin (φ + Δ) (Formula 6)

(式5)(式6)のように直交検波できるのは、fs=(2/π)ω=4fIFのときのみである(その他のfIF=(n/2+1/4)fsは、イメージ周波数である。)。また、fs=2nc(nは1以上の整数)に選ぶのが通常であるところ、fsが4fc以下では直交検波によりサンプリングレートが半分になったときに、帯域制限やパス分離などの信号処理が十分に行えなくなるので、fs=8fcつまり8倍オーバサンプリングが処理量の上で最も好適となる。 (Formula 5) The quadrature detection as shown in (Formula 6) is possible only when f s = (2 / π) ω = 4f IF (the other f IF = (n / 2 + 1/4) f s is , Image frequency.) In addition, when (the n 1 or more integer) f s = 2 n f c to choose to usually, when the sampling rate is halved by quadrature detection in f s is less 4f c, band limitation and paths since the signal processing such as separation can not be performed sufficiently, f s = 8f c clogging 8 times oversampling is most suitable in the processing amount.

本実施例に拠れば、完全なI/QバランスやDC成分が発生しないデジタル直交検波の利点はそのままに、2倍波へのエネルギー損失を防ぐことで、通常の方式より3dB利得を向上できる。なお、2倍波の除去を目的とするLPFは不要であるが存在しても問題はない。また、A/D変換後のIFもしくはBB信号に対しロールオフフィルタリングを施すデジタルフィルタを設けても良い。 According to this embodiment, the advantage of digital quadrature detection that does not generate a perfect I / Q balance or DC component is maintained, and 3 dB gain can be improved over the normal method by preventing energy loss to the second harmonic. An LPF for the purpose of removing the second harmonic is not necessary, but there is no problem even if it exists. Further, a digital filter that performs roll-off filtering on the A / D converted IF or BB signal may be provided.

実施例1の直交検波器の構成図Configuration diagram of quadrature detector of embodiment 1 実施例1の直交検波器の動作タイミング図Operation timing chart of the quadrature detector according to the first embodiment. ADC4のIF帯アンダーサンプリングを説明する図The figure explaining IF band undersampling of ADC4 実施例1の直交検波器におけるタイミング誤差と利得との関係を示す図The figure which shows the relationship between the timing error and gain in the quadrature detector of Example 1. 従来の直交検波器におけるタイミング誤差と利得の関係を示す図The figure which shows the relationship between the timing error and the gain in the conventional quadrature detector 従来のアナログ直交検波器の構成図Configuration of conventional analog quadrature detector 従来のデジタル直交検波器の構成図Configuration of conventional digital quadrature detector

符号の説明Explanation of symbols

1、3…BPF、 2…ミキサ、 4…ADC、 5…DDC、 6…セレクタ、
7,8…乗算器
1, 3 ... BPF, 2 ... Mixer, 4 ... ADC, 5 ... DDC, 6 ... Selector,
7,8 ... multiplier

Claims (1)

サンプリング周波数がチップレートの8倍、中心周波数がサンプリング周波数の4倍であるデジタル信号系列を入力し、サンプル毎に交互に2つの信号系列に分配する交互分配手段と、
前記分配された信号系列を入力し、それぞれの信号系列をサンプル毎に交互に符号反転し、一方をI相成分、他方をQ相成分とする交互反転手段とを備え、
1サンプル時間のずれた前記I相成分とQ相成分とを組にした複素信号を、ベースバンド信号としてチップレートの4倍のサンプリング周波数で出力することを特徴とするデジタル直交検波器。
An alternating distribution means for inputting a digital signal sequence having a sampling frequency of 8 times the chip rate and a center frequency of 4 times the sampling frequency and distributing the digital signal sequence alternately to two signal sequences for each sample;
The distributed signal sequence is input, and each signal sequence is alternately inverted for each sample, and includes an alternating inversion means having one as an I-phase component and the other as a Q-phase component,
A digital quadrature detector characterized in that a complex signal in which the I-phase component and Q-phase component shifted by one sample time are output as a baseband signal at a sampling frequency four times the chip rate.
JP2006026691A 2006-02-03 2006-02-03 Digital orthogonal detector Pending JP2007208779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006026691A JP2007208779A (en) 2006-02-03 2006-02-03 Digital orthogonal detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006026691A JP2007208779A (en) 2006-02-03 2006-02-03 Digital orthogonal detector

Publications (1)

Publication Number Publication Date
JP2007208779A true JP2007208779A (en) 2007-08-16

Family

ID=38487811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006026691A Pending JP2007208779A (en) 2006-02-03 2006-02-03 Digital orthogonal detector

Country Status (1)

Country Link
JP (1) JP2007208779A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5556662B2 (en) * 2008-09-16 2014-07-23 日本電気株式会社 Data numerical value conversion processing method and receiver using data numerical value conversion processing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5556662B2 (en) * 2008-09-16 2014-07-23 日本電気株式会社 Data numerical value conversion processing method and receiver using data numerical value conversion processing

Similar Documents

Publication Publication Date Title
CA2007149C (en) Homodyne down-converter with digital hilbert transform filtering
US9270390B2 (en) Frequency and phase offset compensation of modulated signals with symbol timing recovery
JP6506975B2 (en) Direct conversion receiver
US20070140382A1 (en) Bandpass sampling receiver and the sampling method
US7492838B2 (en) Apparatus for compensating for phase mismatch in QPSK demodulator
KR100441196B1 (en) Apparatus for continuous phase quadrature amplitude modulation and demodulation
AU2777000A (en) Frequency shifting circuit and method
JP2007208779A (en) Digital orthogonal detector
JP4214635B2 (en) Digital radio equipment
US7277501B2 (en) Data receiving device
US6661851B1 (en) Bi-directional vector rotator
US7457375B2 (en) Timing extractor, timing extraction method, and demodulator having the timing extractor
JPH06205064A (en) Orthogonal detector
JP2000036846A (en) Digital modulator
JP4463063B2 (en) Demodulation circuit and demodulation method
JP2004274288A (en) Quadrature modulator
US7519141B2 (en) Method for converting a real signal into a complex signal
JP3643109B2 (en) Data receiving device
JP2005303846A (en) Digital demodulator
JPH10210092A (en) Phase detection circuit
JP3923354B2 (en) Automatic tracking antenna device
JPH066397A (en) Delay detector
JP2004282478A (en) Demodulator
JP3960692B2 (en) Digital quadrature modulator
JP2008079242A (en) Quadrature demodulator and method for quadrature demodulation