JP2007207393A - Method for manufacturing glass substrate for magnetic disk, glass substrate for magnetic disk, and method for manufacturing magnetic disk - Google Patents

Method for manufacturing glass substrate for magnetic disk, glass substrate for magnetic disk, and method for manufacturing magnetic disk Download PDF

Info

Publication number
JP2007207393A
JP2007207393A JP2006028244A JP2006028244A JP2007207393A JP 2007207393 A JP2007207393 A JP 2007207393A JP 2006028244 A JP2006028244 A JP 2006028244A JP 2006028244 A JP2006028244 A JP 2006028244A JP 2007207393 A JP2007207393 A JP 2007207393A
Authority
JP
Japan
Prior art keywords
glass substrate
polishing
magnetic disk
magnetic
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006028244A
Other languages
Japanese (ja)
Inventor
Hiroshi Tsuchiya
弘 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2006028244A priority Critical patent/JP2007207393A/en
Publication of JP2007207393A publication Critical patent/JP2007207393A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To appropriately remove a foreign matter from a polishing solution, which is to be a problem in a glass substrate for a magnetic disk. <P>SOLUTION: A method for manufacturing the glass substrate for the magnetic disk includes: a substrate preparing process for preparing the glass substrate; and a substrate polishing process for mirror polishing the glass substrate. The glass substrate is polished, while circulating the polishing solution through a magnet filter 106 in the substrate polishing process. The magnet filter impresses a magnetic field in the polishing solution, which is at least 5,000 gauss or more in magnetic flux density. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、磁気ディスク用ガラス基板の製造方法、磁気ディスク用ガラス基板、及び磁気ディスクの製造方法に関する。   The present invention relates to a method for manufacturing a glass substrate for a magnetic disk, a glass substrate for a magnetic disk, and a method for manufacturing a magnetic disk.

近年、磁気ディスク用の基板としてガラス基板が用いられている。また、磁気ヘッドの方も高密度記録化に伴って、薄膜ヘッドから、磁気抵抗型ヘッド(MRヘッド)、大型磁気抵抗型ヘッド(GMRヘッド)へと推移してきている。従って、ガラス基板を用いた磁気記録媒体を磁気抵抗型ヘッドで再生することが、これからの大きな潮流となると考えられる。   In recent years, glass substrates have been used as substrates for magnetic disks. Also, the magnetic head has been changed from a thin film head to a magnetoresistive head (MR head) and a large magnetoresistive head (GMR head) as the recording density is increased. Therefore, it is considered that reproducing a magnetic recording medium using a glass substrate with a magnetoresistive head will be a major trend in the future.

磁気ディスク用の基板としてガラス基板を用いた場合、ガラス基板上にパーティクルが存在すると、磁気ディスクの表面に凸部が形成され、サーマル・アスペリティ(Thermal Asperity)の原因となる場合がある。そのため、従来、サーマル・アスペリティの防止を目的として、ガラス基板の内周端面及び/又は外周端面を研磨する方法が知られている(例えば、特許文献1、2参照。)。
特開平11−221742号公報 特開2000−185927号公報
When a glass substrate is used as a magnetic disk substrate, if particles are present on the glass substrate, a convex portion is formed on the surface of the magnetic disk, which may cause thermal asperity. Therefore, conventionally, for the purpose of preventing thermal asperity, a method of polishing an inner peripheral end surface and / or an outer peripheral end surface of a glass substrate is known (for example, see Patent Documents 1 and 2).
JP-A-11-221742 JP 2000-185927 A

ガラス基板の研磨は、例えば、研磨ブラシ又は研磨パッドを用いて、被研磨部位に研磨液を供給しつつ行われる。ガラス基板の製造コストの低減や、廃液量の低減のためには、研磨液を、循環ポンプ等を用いて循環利用するのが好ましい。   The polishing of the glass substrate is performed while supplying the polishing liquid to the portion to be polished using, for example, a polishing brush or a polishing pad. In order to reduce the manufacturing cost of the glass substrate and the amount of waste liquid, it is preferable to circulate the polishing liquid using a circulation pump or the like.

ここで、ガラス基板の研磨を行う雰囲気中には、例えば研磨機等から発生した粉塵等の異物が含まれている。そのため、研磨液を循環利用する場合、研磨液に含まれる異物が徐々に増加するおそれがある。そのため、研磨液を循環利用する場合、雰囲気中から研磨液に混入する異物を取り除く必要がある。また、サーマル・アスペリティの原因となるパーティクルの発生を抑えるためには、研磨液に含まれる研磨砥粒と同程度以下の大きさの異物を取り除く必要がある。研磨液中の異物を取り除く方法としては、例えば濾過フィルタを用いる方法等が考えられる。   Here, the atmosphere in which the glass substrate is polished contains foreign matter such as dust generated from a polishing machine or the like. For this reason, when the polishing liquid is circulated and used, there is a possibility that foreign substances contained in the polishing liquid gradually increase. Therefore, when circulating the polishing liquid, it is necessary to remove foreign matters mixed in the polishing liquid from the atmosphere. Further, in order to suppress the generation of particles that cause thermal asperity, it is necessary to remove foreign matters having a size equal to or smaller than that of the abrasive grains contained in the polishing liquid. As a method for removing foreign substances in the polishing liquid, for example, a method using a filtration filter or the like can be considered.

しかし、このような大きさの異物を濾過フィルタを用いて除去しようとすると、研磨砥粒も濾過フィルタに捕集されることとなる。研磨砥粒が捕集されると、研磨砥粒の粒度分布が乱れ、研磨の条件等が変わってしまう。また、濾過フィルタが目詰まりしてしまい、研磨液の循環も停止してしまう。そのため、従来、研磨液中の異物を適切に除去するのは困難であった。   However, when removing foreign substances having such a size using a filtration filter, the abrasive grains are also collected by the filtration filter. When the abrasive grains are collected, the particle size distribution of the abrasive grains is disturbed, and the polishing conditions and the like are changed. Further, the filter is clogged, and the circulation of the polishing liquid is stopped. Therefore, conventionally, it has been difficult to properly remove foreign substances in the polishing liquid.

本発明は、上記の課題を解決できる磁気ディスク用ガラス基板の製造方法、磁気ディスク用ガラス基板、及び磁気ディスクの製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the glass substrate for magnetic discs which can solve said subject, the glass substrate for magnetic discs, and the manufacturing method of a magnetic disc.

本願発明者は、磁気ディスク用ガラス基板においては、鉄系の異物(コンタミ)が特に問題となるという性質に着目して、循環させる研磨液中の異物を除去する方法について鋭意研究を行った。そして、鉄系の異物等の磁化し得る異物を適切に除去できれば、必ずしも研磨砥粒と同程度の大きさの異物を全て除去しなくても、十分な品質のガラス基板を製造できることを見出した。本発明は、上記鋭意研究の結果なされたものであり、以下の構成を有する。   The inventor of the present application has conducted extensive research on a method for removing foreign matter in a circulating polishing liquid, paying attention to the property that iron-based foreign matter (contamination) is particularly problematic in a magnetic disk glass substrate. And, it was found that if a foreign matter that can be magnetized such as an iron-based foreign matter can be appropriately removed, a glass substrate with sufficient quality can be manufactured without necessarily removing all foreign matters having the same size as the abrasive grains. . This invention is made | formed as a result of the said earnest research, and has the following structures.

(構成1)磁気ディスク用ガラス基板の製造方法であって、ガラス基板を準備する基板準備工程と、ガラス基板を鏡面研磨する基板研磨工程とを備え、基板研磨工程は、磁石フィルタを通して研磨液を循環させつつガラス基板を研磨する。基板研磨工程は、例えば、ガラス基板の主表面、内周端面、及び外周端面のうちの少なくとも何れかを鏡面研磨する。磁石フィルタは、例えば粒子径1μm以上、より好ましくは、0.5μm以上、更に好ましくは0.2μm以上の磁化し得る異物を除去する。   (Configuration 1) A method for manufacturing a glass substrate for a magnetic disk, comprising: a substrate preparation step for preparing a glass substrate; and a substrate polishing step for mirror polishing the glass substrate, wherein the substrate polishing step passes a polishing liquid through a magnet filter. The glass substrate is polished while circulating. In the substrate polishing step, for example, at least one of the main surface, the inner peripheral end surface, and the outer peripheral end surface of the glass substrate is mirror-polished. The magnet filter removes foreign matter that can be magnetized, for example, having a particle diameter of 1 μm or more, more preferably 0.5 μm or more, and even more preferably 0.2 μm or more.

このようにすれば、例えば鉄系の異物等の、磁気ディスク用ガラス基板において特に問題となる磁化し得る異物を選択的かつ効率的に除去できる。また、非磁性の研磨砥粒は捕集されないため、研磨液中の研磨砥粒の粒度分布が乱れることもない。更には、研磨砥粒と同程度の大きさの異物を濾過により除去する必要がないため、濾過フィルタの目詰まり等の問題も生じない。そのため、研磨液中の異物を適切に除去できる。また、これにより、サーマル・アスペリティの原因となるパーティクルの発生を適切に抑えることができる。更には、研磨液を適切に循環させることができるため、磁気ディスク用ガラス基板の製造コストを低減できる。また、研磨液を循環利用することにより、廃液処理の負担を低減できる。   In this way, it is possible to selectively and efficiently remove, for example, a foreign matter that can be magnetized, which is a particular problem in a glass substrate for magnetic disks, such as an iron-based foreign matter. Further, since non-magnetic abrasive grains are not collected, the particle size distribution of the abrasive grains in the polishing liquid is not disturbed. Furthermore, since it is not necessary to remove foreign matters having the same size as the abrasive grains by filtration, problems such as clogging of the filtration filter do not occur. Therefore, foreign matters in the polishing liquid can be removed appropriately. This also makes it possible to appropriately suppress the generation of particles that cause thermal asperity. Furthermore, since the polishing liquid can be circulated appropriately, the manufacturing cost of the magnetic disk glass substrate can be reduced. Moreover, the burden of waste liquid treatment can be reduced by circulatingly using the polishing liquid.

尚、この磁気ディスク用ガラス基板は、例えば、2.5インチ径、又は1.8インチ径、1インチ径等の2.5インチ径未満の磁気ディスク用ガラス基板である。このような小径の磁気ディスク用ガラス基板においては、より小さな異物が問題になる。しかし、構成1のようにすれば、研磨液中の異物を適切に除去できる。そのため、サーマル・アスペリティの原因となるパーティクルの発生を適切に抑えることができる。   The magnetic disk glass substrate is, for example, a magnetic disk glass substrate having a diameter of less than 2.5 inches, such as 2.5 inches, 1.8 inches, or 1 inch. In such a small-diameter glass substrate for a magnetic disk, smaller foreign matter becomes a problem. However, with the configuration 1, foreign matters in the polishing liquid can be appropriately removed. For this reason, generation of particles that cause thermal asperity can be appropriately suppressed.

また、この磁気ディスク用ガラス基板は、例えば、携帯端末等(例えば携帯音楽プレーヤ、ノートパソコン等)の使用時に衝撃を受けやすい用途に用いられる磁気ディスク用ガラス基板であってよい。この磁気ディスク用ガラス基板は、例えば磁気抵抗型ヘッド(MRヘッド)、大型磁気記録型ヘッド(GMRヘッド)用の磁気ディスク用ガラス基板であってよい。また、垂直磁気記録ディスク用の磁気ディスク用ガラス基板であってよい。この磁気ディスク用ガラス基板は、例えば、回転数5400rpm以上の磁気ディスク用ガラス基板であってよい。   Further, the magnetic disk glass substrate may be a magnetic disk glass substrate that is used in applications that are susceptible to impact when a portable terminal or the like (for example, a portable music player or a notebook computer) is used. The glass substrate for a magnetic disk may be a glass substrate for a magnetic disk for a magnetoresistive head (MR head) or a large magnetic recording head (GMR head), for example. Further, it may be a glass substrate for a magnetic disk for a perpendicular magnetic recording disk. The glass substrate for magnetic disk may be, for example, a glass substrate for magnetic disk having a rotational speed of 5400 rpm or more.

(構成2)磁石フィルタは、研磨液に、磁束密度で少なくとも5000ガウス以上の磁場を印加する。このようにすれば、磁化し得る異物を適切に除去できる。磁石フィルタが研磨液に印加する磁場は、好ましくは7000ガウス以上、更に好ましくは9000ガウス以上である。   (Configuration 2) The magnet filter applies a magnetic field having a magnetic flux density of at least 5000 gauss or more to the polishing liquid. In this way, foreign substances that can be magnetized can be removed appropriately. The magnetic field applied by the magnet filter to the polishing liquid is preferably 7000 gauss or more, more preferably 9000 gauss or more.

磁石フィルタに利用される磁石としては、永久磁石であっても、電磁石であってもよい。永久磁石を用いると、外部電源が必要ないので、簡便である。また、永久磁石であれば、高い磁場を創生できるので好ましい。永久磁石としては、希土類元素を含む永久磁石が特に好ましい。希土類系磁石は高い磁場を創生できるからである。希土類元素を含む永久磁石としては、サマリウム磁右(SmCo化合物磁石、例えばSmCo化合物磁石)や、ネオジウム磁石(NdFeB化合物磁石、例えばNdFe14B化合物磁石)が好適である。取り分け高い磁場を創生できるネオジウム磁石を選択することが特に好ましい。 The magnet used for the magnet filter may be a permanent magnet or an electromagnet. Use of a permanent magnet is convenient because an external power source is not required. A permanent magnet is preferable because a high magnetic field can be created. As the permanent magnet, a permanent magnet containing a rare earth element is particularly preferable. This is because rare earth magnets can create a high magnetic field. As a permanent magnet containing a rare earth element, a samarium magnetic right (SmCo compound magnet, eg, SmCo 5 compound magnet) or a neodymium magnet (NdFeB compound magnet, eg, Nd 2 Fe 14 B compound magnet) is suitable. It is particularly preferable to select a neodymium magnet that can create a particularly high magnetic field.

(構成3)研磨液は、平均粒径が0.01〜1.5μmの研磨砥粒を含み、基板研磨工程は、研磨砥粒よりも大きなパーティクルを捕集する濾過フィルタを更に通して研磨液を循環させる。   (Configuration 3) The polishing liquid contains polishing abrasive grains having an average particle diameter of 0.01 to 1.5 μm, and the substrate polishing step further passes through a filtration filter that collects particles larger than the polishing abrasive grains. Circulate.

このようにすれば、非磁性の異物も適切に除去できる。また、磁気ディスク用ガラス基板において特に問題となる磁化し得る異物が磁石フィルタにより除去されるため、研磨砥粒の平均粒径と比べて目開きが十分に大きな濾過フィルタを用いることができる。そのため、このようにすれば、濾過フィルタの目詰まりを防ぐことができる。また、研磨砥粒の粒度分布を乱すこともない。   In this way, non-magnetic foreign matter can be appropriately removed. In addition, since a magnetized filter removes a magnetizable foreign substance that is a particular problem in the glass substrate for magnetic disks, a filtration filter having a sufficiently large opening compared with the average particle diameter of the abrasive grains can be used. Therefore, if it does in this way, clogging of a filtration filter can be prevented. Further, the particle size distribution of the abrasive grains is not disturbed.

(構成4)基板研磨工程で鏡面研磨されたガラス基板を化学強化する化学強化工程を更に備える。鉄系の異物等が存在する場合に、化学強化工程を行うと、ガラス基板への異物の付着が促進される。そのため、化学強化工程を行う場合、鉄系の異物の存在が特に問題となる。しかし、構成4のようにすれば、化学強化工程の前に鉄系の異物等を適切に除去できる。また、これにより、適切に化学強化工程を行うことができる。   (Configuration 4) The method further includes a chemical strengthening step of chemically strengthening the glass substrate that has been mirror-polished in the substrate polishing step. If a chemical strengthening step is performed when iron-based foreign matter or the like is present, adhesion of the foreign matter to the glass substrate is promoted. Therefore, when performing a chemical strengthening process, presence of an iron-type foreign material becomes a problem especially. However, if it is made like the structure 4, an iron-type foreign material etc. can be removed appropriately before a chemical strengthening process. Thereby, a chemical strengthening process can be performed appropriately.

(構成5)構成1から4の何れかに記載の磁気ディスク用ガラス基板の製造方法で製造されたことを特徴とする磁気ディスク用ガラス基板。このようにすれば、構成1から4と同様の効果を得ることができる。   (Structure 5) A magnetic disk glass substrate manufactured by the method for manufacturing a magnetic disk glass substrate according to any one of Structures 1 to 4. In this way, the same effects as those of configurations 1 to 4 can be obtained.

(構成6)構成5に記載の磁気ディスク用ガラス基板上に少なくとも磁気記録層を形成することを特徴とする磁気ディスクの製造方法。このようにすれば、構成5と同様の効果を得ることができる。   (Structure 6) A method of manufacturing a magnetic disk, wherein at least a magnetic recording layer is formed on the magnetic disk glass substrate according to Structure 5. In this way, the same effect as in configuration 5 can be obtained.

本発明によれば、磁気ディスク用ガラス基板において問題となる異物を、研磨液から適切に除去できる。   According to the present invention, foreign matters that are problematic in the magnetic disk glass substrate can be appropriately removed from the polishing liquid.

以下、本発明に係る実施形態を、図面を参照しながら説明する。
図1は、本発明の一実施形態に係る磁気ディスク用ガラス基板の製造方法で使用される研磨システム100の構成の一例を示す。研磨システム100は、研磨液を循環させつつガラス基板の鏡面研磨を行う研磨システムであり、タンク102、ポンプ104、磁石フィルタ106、及び研磨機108を備える。
Hereinafter, embodiments according to the present invention will be described with reference to the drawings.
FIG. 1 shows an example of a configuration of a polishing system 100 used in a method for manufacturing a glass substrate for a magnetic disk according to an embodiment of the present invention. The polishing system 100 is a polishing system that performs mirror polishing of a glass substrate while circulating a polishing liquid, and includes a tank 102, a pump 104, a magnet filter 106, and a polishing machine 108.

タンク102は、研磨機108の下流に設けられており、研磨に用いられた研磨液を研磨機108から受け取り、貯蔵する。ポンプ104は、タンク102と磁石フィルタ106との間に設けられており、タンク102から研磨液を汲み上げて、磁石フィルタ106に供給する。   The tank 102 is provided downstream of the polishing machine 108 and receives and stores the polishing liquid used for polishing from the polishing machine 108. The pump 104 is provided between the tank 102 and the magnet filter 106, and pumps the polishing liquid from the tank 102 and supplies it to the magnet filter 106.

磁石フィルタ106は、ポンプ104と研磨機108との間に設けられており、ポンプ104を介してタンク102から受け取る研磨液の異物を除去して、研磨機108に供給する。磁石フィルタ106は、濾過フィルタの機能を更に有してもよい。この場合、濾過フィルタの目開きは、研磨液に含まれる研磨砥粒の平均粒径より大きくするのが好ましい。例えば、研磨砥粒の平均粒径が0.01〜1.5μmの場合、濾過フィルタの目開きは、例えば2〜50μmである。このように構成すれば、研磨砥粒の粒度分布を乱すことなく、非磁性の異物を適切に除去できる。尚、研磨システム100は、磁石フィルタ106とは別に、濾過フィルタを更に備えてもよい。この場合、濾過フィルタは、例えば、磁石フィルタ106と研磨機108との間に設けられる。   The magnet filter 106 is provided between the pump 104 and the polishing machine 108, removes foreign matter from the polishing liquid received from the tank 102 via the pump 104, and supplies it to the polishing machine 108. The magnet filter 106 may further have a function of a filtration filter. In this case, it is preferable that the opening of the filtration filter is larger than the average particle diameter of the abrasive grains contained in the polishing liquid. For example, when the average particle diameter of the abrasive grains is 0.01 to 1.5 μm, the opening of the filtration filter is, for example, 2 to 50 μm. If comprised in this way, a nonmagnetic foreign material can be removed appropriately, without disturbing the particle size distribution of an abrasive grain. In addition, the polishing system 100 may further include a filtration filter in addition to the magnet filter 106. In this case, the filtration filter is provided between the magnet filter 106 and the polishing machine 108, for example.

研磨機108は、磁石フィルタ106から受け取る研磨液を用いて、ガラス基板の研磨を行う。研磨機108は、例えば、このガラス基板の主表面、外周端面、又は内周端面を鏡面研磨する。これにより、研磨システム100は、磁石フィルタ106を通して研磨液を循環させつつガラス基板を研磨する。   The polishing machine 108 polishes the glass substrate using the polishing liquid received from the magnet filter 106. For example, the polishing machine 108 performs mirror polishing of the main surface, outer peripheral end surface, or inner peripheral end surface of the glass substrate. As a result, the polishing system 100 polishes the glass substrate while circulating the polishing liquid through the magnet filter 106.

ここで、本例において、磁気ディスク用ガラス基板は、基板準備工程、内周端面研磨工程、外周端面研磨工程、主表面研磨工程、及び化学強化工程を経て製造される。内周端面研磨工程、外周端面研磨工程、主表面研磨工程は、基板研磨工程の一例である。また、内周端面研磨工程、外周端面研磨工程、主表面研磨工程のそれぞれは、例えば、研磨を行う部分に応じた構成の研磨機108を備える研磨システム100を用いて、ガラス基板の鏡面研磨を行う。以下、上記の各工程について更に詳しく説明する。   Here, in this example, the glass substrate for magnetic disks is manufactured through a substrate preparation step, an inner peripheral end surface polishing step, an outer peripheral end surface polishing step, a main surface polishing step, and a chemical strengthening step. The inner peripheral end surface polishing step, the outer peripheral end surface polishing step, and the main surface polishing step are examples of the substrate polishing step. In addition, each of the inner peripheral end surface polishing step, the outer peripheral end surface polishing step, and the main surface polishing step performs, for example, mirror polishing of a glass substrate using a polishing system 100 including a polishing machine 108 configured according to a portion to be polished. Do. Hereinafter, the above steps will be described in more detail.

基板準備工程は、中心部に円孔を有する円板状のガラス基板を準備する工程である。基板準備工程は、例えば、研削及び所定の粗さへのラッピング加工がなされたガラス基板を準備する。   The substrate preparation step is a step of preparing a disk-shaped glass substrate having a circular hole in the center. In the substrate preparation step, for example, a glass substrate that has been ground and lapped to a predetermined roughness is prepared.

内周端面研磨工程は、ガラス基板の内周端面を鏡面研磨する工程であり、内周端面を、例えば、算術平均表面粗さRaで0.5μm以下である鏡面に研磨する。また、内周端面研磨工程は、内周端面を、例えば、最大高さRmaxで5μm以下である鏡面に研磨する。   The inner peripheral end surface polishing step is a step of mirror polishing the inner peripheral end surface of the glass substrate, and the inner peripheral end surface is polished to, for example, a mirror surface having an arithmetic average surface roughness Ra of 0.5 μm or less. In the inner peripheral end surface polishing step, the inner peripheral end surface is polished to a mirror surface having a maximum height Rmax of 5 μm or less, for example.

外周端面研磨工程は、ガラス基板の外周端面を鏡面研磨する工程であり、外周端面を、例えば、算術平均表面粗さRaで0.5μm以下である鏡面に研磨する。また、外周端面研磨工程は、外周端面を、例えば、最大高さRmaxで5μm以下である鏡面に研磨する。   The outer peripheral end surface polishing step is a step of mirror polishing the outer peripheral end surface of the glass substrate, and the outer peripheral end surface is polished to, for example, a mirror surface having an arithmetic average surface roughness Ra of 0.5 μm or less. In the outer peripheral end surface polishing step, the outer peripheral end surface is polished to a mirror surface having a maximum height Rmax of 5 μm or less, for example.

主表面研磨工程は、ガラス基板の主表面を鏡面研磨する工程であり、主表面を、例えば、算術平均表面粗さRaで0.5nm以下(例えば0.1〜0.5nm)、より好ましくは0.4nm以下、更に好ましくは0.3nm以下である鏡面に研磨する。また、主表面研磨工程は、主表面を、例えば、最大高さRmaxで5nm以下(例えば1〜5nm)、より好ましくは4nm以下、更に好ましくは3nm以下である鏡面に研磨する。   The main surface polishing step is a step of mirror polishing the main surface of the glass substrate, and the main surface is, for example, 0.5 nm or less (for example, 0.1 to 0.5 nm) in terms of arithmetic average surface roughness Ra, more preferably Polishing to a mirror surface of 0.4 nm or less, more preferably 0.3 nm or less. In the main surface polishing step, for example, the main surface is polished to a mirror surface having a maximum height Rmax of 5 nm or less (for example, 1 to 5 nm), more preferably 4 nm or less, and further preferably 3 nm or less.

化学強化工程は、ガラス基板を化学強化する工程である。化学強化工程は、例えば、ガラス基板を化学強化処理液に接触させることにより、ガラス基板の中に含まれる一部のイオンを、そのイオンより大きなイオン径の処理液中のイオンに置換することによりガラス基板を強化する。   The chemical strengthening step is a step of chemically strengthening the glass substrate. In the chemical strengthening step, for example, by bringing the glass substrate into contact with the chemical strengthening treatment liquid, by replacing some ions contained in the glass substrate with ions in the treatment liquid having an ion diameter larger than that ion. Strengthen the glass substrate.

以上の工程を経て、ガラス基板は完成する。そして、完成したガラス基板は、磁気ディスクの製造に用いられる。磁気ディスクの製造工程においては、ガラス基板上に少なくとも磁気記録層が形成される。   The glass substrate is completed through the above steps. The completed glass substrate is used for manufacturing a magnetic disk. In the magnetic disk manufacturing process, at least a magnetic recording layer is formed on a glass substrate.

図2は、磁石フィルタ106の構成の一例を示す。磁石フィルタ106は、クランプ206、筐体202、及びインサート部204を備える。クランプ206は、インサート部204を筐体202に固定するための部材である。   FIG. 2 shows an example of the configuration of the magnet filter 106. The magnetic filter 106 includes a clamp 206, a housing 202, and an insert portion 204. The clamp 206 is a member for fixing the insert portion 204 to the housing 202.

筐体202は、研磨液を内部に通す円筒状体であり、研磨液をポンプ104から受け取る入口302と、研磨機108に研磨液を供給する出口304とを有する。筐体202の下端は、内部に研磨液が溜まるように、下面により塞がれている。また、筐体202の上端は、インサート部204を挿入するために、開口している。また、本例において、出口304は、入口302よりも上方に設けられている。   The housing 202 is a cylindrical body that allows the polishing liquid to pass through, and has an inlet 302 that receives the polishing liquid from the pump 104 and an outlet 304 that supplies the polishing liquid to the polishing machine 108. The lower end of the housing 202 is closed by the lower surface so that the polishing liquid is accumulated inside. Further, the upper end of the housing 202 is opened to insert the insert portion 204. In this example, the outlet 304 is provided above the inlet 302.

インサート部204は、蓋部308及び磁石部306を有する。蓋部308は、筐体202の上端の開口を塞ぐ部分である。磁石部306は、筐体202の内部に挿入される部分であり、蓋部308の下面から筐体202の下端方向へ棒状に延伸する。本例において、磁石部306は、ネオジウム(NdFe14B)磁石を用いて磁場を発生する。磁石部306は、例えば、棒状のネオジウム磁石と、このネオジウム磁石を内部に収容する金属円筒とで構成される。 The insert part 204 has a lid part 308 and a magnet part 306. The lid 308 is a part that closes the opening at the upper end of the housing 202. The magnet portion 306 is a portion inserted into the housing 202 and extends in a bar shape from the lower surface of the lid portion 308 toward the lower end of the housing 202. In this example, the magnet unit 306 generates a magnetic field using a neodymium (Nd 2 Fe 14 B) magnet. The magnet part 306 is comprised by the rod-shaped neodymium magnet and the metal cylinder which accommodates this neodymium magnet inside, for example.

ここで、磁石フィルタ106の各部のサイズ、及び磁場の強さについて更に詳しく説明する。本例において、磁石フィルタ106の高さh1は、例えば250〜400mm、筐体202の高さh2は、例えば200〜350mm、インサート部204の挿入高さh3は、例えば150〜250mmである。尚、インサート部204の挿入高さh3とは、例えば、インサート部204の下端から出口304の中心軸までの距離である。   Here, the size of each part of the magnetic filter 106 and the strength of the magnetic field will be described in more detail. In this example, the height h1 of the magnet filter 106 is, for example, 250 to 400 mm, the height h2 of the housing 202 is, for example, 200 to 350 mm, and the insertion height h3 of the insert portion 204 is, for example, 150 to 250 mm. Note that the insertion height h3 of the insert portion 204 is, for example, the distance from the lower end of the insert portion 204 to the central axis of the outlet 304.

また、筐体202の直径は、外径で例えば30〜70mm、磁石部306の直径は、外径で例えば15〜40mm、入口302及び出口304の直径は、内径で例えば10〜30mmである。   Further, the housing 202 has an outer diameter of, for example, 30 to 70 mm, the magnet portion 306 has an outer diameter of, for example, 15 to 40 mm, and the inlet 302 and the outlet 304 have an inner diameter of, for example, 10 to 30 mm.

また、磁石フィルタ106は、研磨液に、磁束密度で5000ガウス以上の磁場を印加する。磁石フィルタ106が印可する磁場は、より好ましくは、7000ガウス以上、更に好ましくは、9000ガウス以上である。磁石フィルタ106が印可する磁場とは、例えば、磁石部306が発生する磁場のうち、磁石フィルタ106において最も磁場が弱い領域を通過する研磨液が受ける磁場であり、例えば、筐体202の表面における残留磁束密度である。以上のように構成すれば、研磨システム100(図1参照)において循環する研磨液から、例えば粒子径0.2μm以上の、鉄系の異物等の磁化し得る異物を適切に除去できる。   Further, the magnet filter 106 applies a magnetic field of 5000 gauss or more in magnetic flux density to the polishing liquid. The magnetic field applied by the magnet filter 106 is more preferably 7000 gauss or more, and still more preferably 9000 gauss or more. The magnetic field applied by the magnet filter 106 is, for example, the magnetic field received by the polishing liquid that passes through the region where the magnetic field is weakest in the magnet filter 106 among the magnetic fields generated by the magnet unit 306. It is the residual magnetic flux density. If comprised as mentioned above, the foreign material which can be magnetized, such as an iron-type foreign material with a particle diameter of 0.2 micrometer or more, can be removed appropriately from the polishing liquid circulated in the polishing system 100 (see FIG. 1).

以下、本発明を、実施例及び比較例を用いて更に詳しく説明する。
(実施例1)
以下の工程を経て、実施例1に係るガラス基板を製造した。
(1)基板準備工程
以下の工程により、円孔を有するガラス基板を準備した。最初に、ダウンドロー法で形成したシートガラスから、研削砥石で直径66mmφ、厚さ1.1mmの円盤状にそれぞれ切り出したアルミノシリケイトガラスからなるガラス基板を、比較的粗いダイヤモンド砥石で研削加工して、直径65mm(2.5インチ)φ、厚さ0.6mmに成形した。この場合、ダウンドロー法の代わりに、溶融ガラスを、上型、下型、胴型を用いてダイレクト・プレスして、円盤状のガラス基板を得てもよい。アルミノシリケイトガラスとしては、モル%表示で、SiOを57〜74%、ZrOを0〜2.8%、Alを3〜15%、LiOを7〜16%、NaOを4〜14%を主成分として含有する化学強化用ガラスを使用した。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
Example 1
The glass substrate which concerns on Example 1 was manufactured through the following processes.
(1) Substrate preparation step A glass substrate having a circular hole was prepared by the following steps. First, a glass substrate made of aluminosilicate glass cut into a disk shape having a diameter of 66 mmφ and a thickness of 1.1 mm from a sheet glass formed by the downdraw method is ground with a relatively rough diamond grindstone. , 65 mm (2.5 inch) diameter, and 0.6 mm thick. In this case, instead of the downdraw method, the molten glass may be directly pressed using an upper mold, a lower mold, and a body mold to obtain a disk-shaped glass substrate. As the aluminosilicate glass, SiO 2 is 57 to 74%, ZrO 2 is 0 to 2.8%, Al 2 O 3 is 3 to 15%, LiO 2 is 7 to 16%, Na 2 O in mol%. The glass for chemical strengthening which contains 4-14% as a main component was used.

次いで、ガラス基板に砂掛け加工を施した。この砂掛け工程は、寸法精度及び形状精度の向上を目的としている。砂掛け加工は、ラッピング装置を用いて行い、砥粒の粒度を#400として行った。詳しくは、粒度#400のアルミナ砥粒を用い、荷重Lを100kg程度に設定して、内転ギアと外転ギアを回転させることによって、キャリア内に収納したガラス基板の両面を面精度0〜1μm、表面粗さ(Rmax)(JIS B 0601で測定)6μm程度にラッピングした。   Subsequently, the glass substrate was sanded. This sanding step is intended to improve dimensional accuracy and shape accuracy. The sanding process was performed using a lapping apparatus, and the grain size of the abrasive grains was # 400. Specifically, by using alumina abrasive grains having a particle size of # 400, the load L is set to about 100 kg, and the inner rotation gear and the outer rotation gear are rotated, so that both surfaces of the glass substrate housed in the carrier have surface accuracy of 0 to 0. Wrapping to about 1 μm and surface roughness (Rmax) (measured by JIS B 0601) of about 6 μm.

次に、円筒状の砥石を用いてガラス基板の中心部に円孔(直径20mmφ)を開けるとともに、外周端面及び内周端面に所定の面取り加工を施した。このときのガラス基板の内外周端面の表面粗さは、Rmaxで14μm程度であった。   Next, a circular hole (diameter 20 mmφ) was opened in the center of the glass substrate using a cylindrical grindstone, and predetermined chamfering was performed on the outer peripheral end face and the inner peripheral end face. The surface roughness of the inner and outer peripheral end faces of the glass substrate at this time was about 14 μm in Rmax.

(2)内周端面研磨工程
図1を用いて説明したのと同様の研磨システムにより、ガラス基板の内周端面を鏡面研磨した。内周端面研磨工程で用いた研磨機では、回転ブラシをガラス基板の円孔に挿入して、円孔内に研磨液を供給しつつ回転ブラシを回転させた。研磨液としては、酸化セリウム研磨砥粒を含む研磨液を用いた。
(2) Inner peripheral end face polishing step The inner peripheral end face of the glass substrate was mirror-polished by the same polishing system as described with reference to FIG. In the polishing machine used in the inner peripheral end face polishing step, the rotating brush was inserted into the circular hole of the glass substrate, and the rotating brush was rotated while supplying the polishing liquid into the circular hole. As the polishing liquid, a polishing liquid containing cerium oxide abrasive grains was used.

(3)外周端面研磨工程
図1を用いて説明したのと同様の研磨システムにより、ガラス基板の外周端面を鏡面研磨した。外周端面研磨工程で用いた研磨機では、回転ブラシをガラス基板の外周端面に接触させて、外周端面に研磨液を供給しつつ回転ブラシを回転させた。研磨液としては、酸化セリウム研磨砥粒を含む研磨液を用いた。
(3) Outer peripheral end surface polishing step The outer peripheral end surface of the glass substrate was mirror-polished by the same polishing system as described with reference to FIG. In the polishing machine used in the outer peripheral end surface polishing step, the rotary brush was brought into contact with the outer peripheral end surface of the glass substrate, and the rotating brush was rotated while supplying the polishing liquid to the outer peripheral end surface. As the polishing liquid, a polishing liquid containing cerium oxide abrasive grains was used.

(4)主表面研磨工程
以下の第一研磨工程及び第二研磨工程を行った。この第一研磨工程は、砂掛け工程で残留した傷や歪みの除去を目的とするものであり、研磨機として、上定盤と下定盤との間にガラス基板を挟んで研磨を行う研磨機を用いた。詳しくは、ポリシャ(研磨パッド、研磨布)として硬質ポリシャを用い、以下の研磨条件で第一研磨工程を実施した。
研磨液:酸化セリウム+水
荷重:300g/cm(L=238kg)
研磨時間:15分
除去量:30μm
下定盤回転数:40rpm
上定盤回転数:35rpm
内ギア回転数:14rpm
外ギア回転数:29rpm
(4) Main surface polishing step The following first polishing step and second polishing step were performed. This first polishing process is intended to remove scratches and distortions remaining in the sanding process, and as a polishing machine, a polishing machine that holds a glass substrate between an upper surface plate and a lower surface plate Was used. Specifically, a hard polisher was used as the polisher (polishing pad, polishing cloth), and the first polishing step was performed under the following polishing conditions.
Polishing liquid: cerium oxide + water load: 300 g / cm 2 (L = 238 kg)
Polishing time: 15 minutes Removal amount: 30 μm
Lower platen rotation speed: 40rpm
Upper platen rotation speed: 35rpm
Inner gear speed: 14rpm
Outer gear speed: 29rpm

また、上記第一研磨工程を終えたガラス基板を、中性洗剤、純水、純水、IPA(イソプロピルアルコール)、IPA(蒸気乾燥)の各洗浄槽に順次浸漬して、洗浄した。   Moreover, the glass substrate which finished the said 1st grinding | polishing process was immersed in each washing | cleaning tank of neutral detergent, a pure water, a pure water, IPA (isopropyl alcohol), and IPA (steam drying) sequentially, and was wash | cleaned.

次に、第一研磨工程で使用した研磨機を用い、ポリシャを硬質ポリシャから軟質ポリシャに替えて、第二研磨工程を実施した。研磨条件は、酸化セリウム研磨砥粒と水を含む研磨液を用い、荷重を100g/cm、研磨時間を5分、除去量を5μmとしたこと以外は、第一研磨工程と同様とした。また、上記第二研磨工程を終えたガラス基板を、中性洗剤、中性洗剤、純水、純水、IPA(イソプロピルアルコール)、IPA(蒸気乾燥)の各洗浄槽に順次浸漬して、洗浄した。尚、各洗浄槽には超音波を印加した。 Next, using the polishing machine used in the first polishing process, the polisher was changed from a hard polisher to a soft polisher, and a second polishing process was performed. The polishing conditions were the same as those in the first polishing step, except that a polishing liquid containing cerium oxide polishing grains and water was used, the load was 100 g / cm 2 , the polishing time was 5 minutes, and the removal amount was 5 μm. Moreover, the glass substrate which finished the said 2nd grinding | polishing process is immersed in each washing tank of a neutral detergent, a neutral detergent, a pure water, a pure water, IPA (isopropyl alcohol), and IPA (steam drying) sequentially, and is wash | cleaned. did. An ultrasonic wave was applied to each cleaning tank.

(5)化学強化工程
次に、ガラス基板に化学強化を施した。化学強化は、硝酸カリウム(60%)と硝酸ナトリウム(40%)を混合した化学強化溶液を用意し、この化学強化溶液を400℃に加熱し、300℃に予熱された洗浄済みのガラス基板を約3時間浸漬して行った。この浸漬の際に、ガラス基板の表面全体が化学強化されるようにするため、複数のガラス基板が端面で保持されるようにホルダーに収納した状態で行った。
(5) Chemical strengthening process Next, the glass substrate was chemically strengthened. For chemical strengthening, a chemical strengthening solution prepared by mixing potassium nitrate (60%) and sodium nitrate (40%) is prepared, and the chemically strengthened solution is heated to 400 ° C., and the cleaned glass substrate preheated to 300 ° C. is reduced to about It was immersed for 3 hours. In this immersion, in order to chemically strengthen the entire surface of the glass substrate, the plurality of glass substrates were stored in a holder so as to be held by the end surfaces.

このように、化学強化溶液に浸漬処理することによって、ガラス基板表層のリチウムイオン、ナトリウムイオンは、化学強化溶液中のナトリウムイオン、カリウムイオンにそれぞれ置換されガラス基板は強化される。ガラス基板の表層に形成された圧縮応力層の厚さは、約100〜200μmであった。   Thus, by immersing in the chemical strengthening solution, the lithium ions and sodium ions on the surface of the glass substrate are replaced with sodium ions and potassium ions in the chemical strengthening solution, respectively, and the glass substrate is strengthened. The thickness of the compressive stress layer formed on the surface layer of the glass substrate was about 100 to 200 μm.

また、上記化学強化を終えたガラス基板を、20℃の水槽に浸漬して急冷し約10分間維持した。上記急冷を終えたガラス基板を、約40℃に加熱した濃硫酸に浸漬して洗浄を行った。更に上記硫酸洗浄を終えたガラス基板を、純水、純水、IPA(イソプロピルアルコール)、IPA(蒸気乾燥)の各洗浄槽に順次浸漬して、洗浄した。尚、各洗浄槽には超音波を印加した。   Moreover, the glass substrate which finished the said chemical strengthening was immersed in a 20 degreeC water tank, rapidly cooled, and maintained for about 10 minutes. The glass substrate after the rapid cooling was washed by immersing it in concentrated sulfuric acid heated to about 40 ° C. Further, the glass substrate that had been subjected to the sulfuric acid cleaning was immersed in each cleaning bath of pure water, pure water, IPA (isopropyl alcohol), and IPA (steam drying) in order and cleaned. An ultrasonic wave was applied to each cleaning tank.

ここで、内周端面研磨工程、外周端面研磨工程、及び主表面研磨工程において、研磨液は、平均粒径が0.5〜1.5μmの研磨砥粒を含むものを用いた。この実施例では、鏡面研磨工程である、内周端面研磨工程、外周端面研磨工程、及び主表面研磨工程において、研磨砥粒を含む研磨液に対して磁場を印加することにより、研磨液に含有される磁化し得る異物の除去処理を行った。この実施例では、全ての研磨工程において、本発明になる異物除去処理を行ったが、少なくとも1つの研磨工程において、本発明になる異物除去処理を施しても効果が得られる。少なくともガラス基板の最終研磨工程において、本発明による異物除去処理を実施することが好ましい。   Here, in the inner peripheral end surface polishing step, the outer peripheral end surface polishing step, and the main surface polishing step, a polishing liquid containing polishing abrasive grains having an average particle size of 0.5 to 1.5 μm was used. In this embodiment, in the inner surface end surface polishing step, the outer surface end surface polishing step, and the main surface polishing step, which are mirror polishing steps, contained in the polishing liquid by applying a magnetic field to the polishing liquid containing the abrasive grains. The removal process of the foreign material which can be magnetized was performed. In this embodiment, the foreign matter removing process according to the present invention is performed in all polishing steps. However, the effect can be obtained even if the foreign matter removing process according to the present invention is performed in at least one polishing step. It is preferable to carry out the foreign matter removal treatment according to the present invention at least in the final polishing step of the glass substrate.

磁石部には、ネオジウム磁石を用いた。この磁石による、筐体の表面における残留磁束密度は、9000ガウスであった。尚、筐体はステンレスで形成した。   A neodymium magnet was used for the magnet part. The residual magnetic flux density on the surface of the casing by this magnet was 9000 gauss. The casing was made of stainless steel.

(比較例1)
内周端面研磨工程、外周端面研磨工程、及び主表面研磨工程において磁石フィルタを用いなかったこと以外は実施例1と同様にして、比較例1に係るガラス基板を製造した。
(Comparative Example 1)
A glass substrate according to Comparative Example 1 was manufactured in the same manner as in Example 1 except that the magnet filter was not used in the inner peripheral end surface polishing step, the outer peripheral end surface polishing step, and the main surface polishing step.

(評価)
研磨液中に含まれる磁化し得る異物の推移を調査する手段として、研磨液中に含まれる鉄(Fe)元素の推移をモニタした。鉄及びその化合物は代表的な磁性物質であり、Fe元素を指標としてモニタすることで、研磨液中に含まれる磁化し得る物質の量の推移をモニタできるからである。具体的には、ガラス基板に供給される研磨液の一定量を抜き取り、乾燥させてから、元素分析を行い、Fe元素の質量を分析する。尚、研磨液に主成分として含まれる研磨砥粒である酸化セリウムは非磁性物質である。
(Evaluation)
As a means for investigating the transition of magnetizable foreign matter contained in the polishing liquid, the transition of iron (Fe) element contained in the polishing liquid was monitored. This is because iron and its compounds are typical magnetic substances, and the transition of the amount of the substance that can be magnetized contained in the polishing liquid can be monitored by monitoring using the Fe element as an index. Specifically, a certain amount of polishing liquid supplied to the glass substrate is extracted and dried, and then elemental analysis is performed to analyze the mass of Fe element. Incidentally, cerium oxide which is a polishing abrasive contained as a main component in the polishing liquid is a non-magnetic substance.


表1は、研磨液1kgに含まれるFe元素の質量を、磁場曝露前と磁場曝露後で比較したものである。研磨液を磁場曝露処理することにより、研磨液に含まれるFe及びFe化合物を、Fe元素量で、1060mgから737mgに低減することができた。百分率では30質量%低減することができた。研磨液に磁場曝露処理することにより、異物除去処理作用が働き、研磨液を清浄化処理できていることが分かった。

Table 1 compares the mass of Fe element contained in 1 kg of polishing liquid before and after exposure to a magnetic field. By subjecting the polishing liquid to a magnetic field exposure treatment, the Fe and Fe compounds contained in the polishing liquid could be reduced from 1060 mg to 737 mg in terms of the amount of Fe element. The percentage could be reduced by 30% by mass. It was found that by subjecting the polishing liquid to a magnetic field exposure treatment, the foreign matter removal processing action worked and the polishing liquid could be cleaned.

次に、前記した実施例1において、ガラス基板に供給されている研磨液に含有されているFe元素の質量を調査した。結果、何れの研磨工程においても、研磨液1kg当りに含まれるFe元素の量は、900mg以下であった。取り分け、最終の研磨工程である第二研磨工程においては、800mg以下となるように磁石フィルタを制御した。   Next, in the above-described Example 1, the mass of Fe element contained in the polishing liquid supplied to the glass substrate was investigated. As a result, in any polishing process, the amount of Fe element contained per 1 kg of the polishing liquid was 900 mg or less. In particular, in the second polishing step, which is the final polishing step, the magnet filter was controlled to be 800 mg or less.

比較例1においてガラス基板に供給されている研磨液に含有されるFe元素の質量を調査した。結果、何れの研磨工程においても、研磨液1kg当りに含まれるFe元素の量は、1000mg以上であった。最終研磨工程である第二研磨工程においては、1100mgのFe元素を検出した。   In Comparative Example 1, the mass of Fe element contained in the polishing liquid supplied to the glass substrate was investigated. As a result, in any polishing step, the amount of Fe element contained per 1 kg of the polishing liquid was 1000 mg or more. In the second polishing step, which is the final polishing step, 1100 mg of Fe element was detected.

次に、実施例1、比較例1で得られたガラス基板の検査を行った。実施例1のガラス基板を検査すると、表面状態は鏡面であり、均一な表面に仕上がっていた。主表面の表面粗さはRaで0.4nmであった。またRmaxは4nmであった。   Next, the glass substrate obtained in Example 1 and Comparative Example 1 was inspected. When the glass substrate of Example 1 was inspected, the surface state was a mirror surface, and it was finished to a uniform surface. The surface roughness of the main surface was 0.4 nm in Ra. Rmax was 4 nm.

比較例1のガラス基板を検査すると、微小な異物が発見された。この異物を分析すると、Feを主成分とし、一部若干量のCrを含有するものもあった。分析結果から磁性を有するステンレス合金であると判断された。これら異物が付着しているので、ガラス基板の表面粗さは実施例1よりも大きかった。   When the glass substrate of Comparative Example 1 was inspected, minute foreign matters were found. When this foreign material was analyzed, there were some containing Fe as a main component and some amount of Cr. From the analysis results, it was judged to be a stainless steel alloy having magnetism. Since these foreign substances were adhered, the surface roughness of the glass substrate was larger than that of Example 1.

次に、実施例1、比較例1で得られたガラス基板の表面に下地層、磁性層、保護層、潤滑層を順次成膜して、磁気ディスクを製造した。具体的には、第1下地層としてCrTi層、第2下地層としてAlRu層、第3下地層としてCrMo層、磁性層としてCoCrPtB磁性層、保護層として水素化炭素層、潤滑層としてパーフルオロポリエーテル化合物層を成膜した。得られた磁気ディスクをハードディスクドライブに搭載し、記録再生試験を実施した。磁気ヘッドとして、浮上量が7nmであるものを用いた。再生素子は、磁気抵抗効果を利用した再生素子である。具体的にはTMR素子(トンネル磁気抵抗効果素子)を搭載する磁気ヘッドを利用した。磁気抵抗効果を利用した再生素子としては、TMRに限らず、GMR素子、AMR素子を用いてもよい。   Next, an underlayer, a magnetic layer, a protective layer, and a lubricating layer were sequentially formed on the surface of the glass substrate obtained in Example 1 and Comparative Example 1 to manufacture a magnetic disk. Specifically, the CrTi layer as the first underlayer, the AlRu layer as the second underlayer, the CrMo layer as the third underlayer, the CoCrPtB magnetic layer as the magnetic layer, the hydrogenated carbon layer as the protective layer, and the perfluoropoly layer as the lubricating layer An ether compound layer was formed. The obtained magnetic disk was mounted on a hard disk drive, and a recording / reproduction test was conducted. A magnetic head having a flying height of 7 nm was used. The reproducing element is a reproducing element using a magnetoresistive effect. Specifically, a magnetic head equipped with a TMR element (tunnel magnetoresistive effect element) was used. The reproducing element using the magnetoresistive effect is not limited to the TMR, and a GMR element or an AMR element may be used.

結果、実施例1のガラス基板を利用した磁気ディスクからは、エラー信号は検出されず、正常な記録再生動作を行うことが確認された。他方で、比較例1のガラス基板を利用した磁気ディスクからは、エラー信号として、サーマルアスペリティ信号が検出された。エラー信号の検出箇所を分析すると、Fe系の異物が検出された、尚、この例では再生素子としてTMR素子を搭載する磁気ヘッドを用いた。TMR素子は再生感度に優れるからである。しかし、サーマルアスペリティ信号も生じやすいという傾向にある。従って、本発明によるガラス基板は、取り分けTMR再生素子で再生される磁気ディスク用のガラス基板の製造方法として特に好適である。   As a result, no error signal was detected from the magnetic disk using the glass substrate of Example 1, and it was confirmed that a normal recording / reproducing operation was performed. On the other hand, a thermal asperity signal was detected as an error signal from the magnetic disk using the glass substrate of Comparative Example 1. When the error signal detection location was analyzed, Fe-based foreign matter was detected. In this example, a magnetic head equipped with a TMR element was used as a reproducing element. This is because the TMR element has excellent reproduction sensitivity. However, thermal asperity signals tend to be generated. Therefore, the glass substrate according to the present invention is particularly suitable as a method for producing a glass substrate for a magnetic disk that is reproduced by a TMR reproducing element.

以上、本発明を実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。上記実施形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.

本発明には以下の発明の構成も含まれる。
(構成A−1)
ガラス基板の表面に研磨液を供給し、前記ガラス基板の表面を研磨する処理を含む磁気ディスク用ガラス基板の製造方法であって、
前記研磨処理に際して、予め、前記研磨液を磁場曝露処理することを特徴とする磁気ディスク用ガラス基板の製造方法。
(構成A−2)
前記研磨液は、非磁性の研磨砥粒を含むものであることを特徴とする、構成A−1に記載の磁気ディスク用ガラス基板の製造方法。
(構成A−3)
前記磁場曝露処理により、前記研磨液の中に含まれる、磁化し得る異物を選択的に除去することを特徴とする、構成A−1又は構成A−2に記載の磁気ディスク用ガラス基板の製造方法。
(構成A−4)
前記研磨処理は、ガラス基板の表面に研磨液を供給し、ガラス基板と研磨用具とを接触させ、前記研磨用具と前記ガラス基板とを相対的に移動させる処理であることを特徴とする、構成A−1ないし構成A−3の何れか1に記載の磁気ディスク用ガラス基板の製造方法。
(構成A−5)
前記研磨用具は、研磨パッド、研磨ブラシ、研磨テープの中から選択される少なくとも1の手段であることを特徴とする、構成A−1ないし構成A−4の何れか1に記載の磁気ディスク用ガラス基板の製造方法。
(構成A−6)
前記研磨処理により、ガラス基板の表面は鏡面に研磨されることを特徴とする、構成A−1ないしA−5の何れか1に記載の磁気ディスク用ガラス基板の製造方法。
(構成A−7)
前記研磨処理により、ガラス基板の表面に、表面粗さがRaで0.5nm以下である所望の均一な表面が創生されることを特徴とする構成A−1ないしA−6の何れか1に記載の磁気ディスク用ガラス基板の製造方法。
(構成A−8)
構成A−1ないし構成A−7の何れか1に記載の磁気ディスク用ガラス基板の製造方法であって、7nm以下の浮上量である磁気ヘッドで記録再生される磁気ディスク対応の磁気ディスク用ガラス基板の製造方法。
The present invention includes the following configurations.
(Configuration A-1)
A method for producing a glass substrate for a magnetic disk, comprising a step of supplying a polishing liquid to the surface of a glass substrate and polishing the surface of the glass substrate,
A method of manufacturing a glass substrate for a magnetic disk, wherein the polishing liquid is subjected to a magnetic field exposure process in advance during the polishing process.
(Configuration A-2)
The method for producing a glass substrate for a magnetic disk according to Configuration A-1, wherein the polishing liquid contains non-magnetic abrasive grains.
(Configuration A-3)
The magnetic disk glass substrate according to Configuration A-1 or Configuration A-2, wherein the magnetic field exposure treatment selectively removes magnetizable foreign matter contained in the polishing liquid. Method.
(Configuration A-4)
The polishing process is a process of supplying a polishing liquid to the surface of a glass substrate, bringing the glass substrate and a polishing tool into contact with each other, and moving the polishing tool and the glass substrate relatively. A method for producing a glass substrate for a magnetic disk according to any one of A-1 to A-3.
(Configuration A-5)
The magnetic disk according to any one of configurations A-1 to A-4, wherein the polishing tool is at least one means selected from a polishing pad, a polishing brush, and a polishing tape. A method for producing a glass substrate.
(Configuration A-6)
The method for producing a glass substrate for a magnetic disk according to any one of configurations A-1 to A-5, wherein the surface of the glass substrate is polished to a mirror surface by the polishing treatment.
(Configuration A-7)
Any one of configurations A-1 to A-6, wherein the polishing process creates a desired uniform surface having a surface roughness Ra of 0.5 nm or less on the surface of the glass substrate. The manufacturing method of the glass substrate for magnetic discs as described in any one of.
(Configuration A-8)
A method for manufacturing a glass substrate for a magnetic disk according to any one of Configuration A-1 to Configuration A-7, wherein the magnetic disk glass is adapted to be recorded and reproduced by a magnetic head having a flying height of 7 nm or less. A method for manufacturing a substrate.

(構成B−1)
複数の研磨処理により所望の表面が創生される磁気ディスク用ガラス基板の製造方法であって、
前記複数の研磨処理の少なくとも1の処理は、
ガラス基板の表面に研磨液を供給し、前記ガラス基板の表面を研磨する処理を含む磁気ディスク用ガラス基板の研磨処理であって、この研磨処理に際して、予め、前記研磨液を磁場曝露処理することを特徴とする磁気ディスク用ガラス基板の製造方法。
(構成B−2)
前記研磨液は、非磁性の研磨砥粒を含むものであることを特徴とする、構成B−1に記載の磁気ディスク用ガラス基板の製造方法。
(構成B−3)
前記磁場曝露処理により、前記研磨液の中に含まれる、磁化し得る異物を選択的に除去することを特徴とする、構成B−1又は構成B−2に記載の磁気ディスク用ガラス基板の製造方法。
(構成B−4)
前記研磨処理は、ガラス基板の表面に研磨液を供給し、ガラス基板と研磨用具とを接触させ、前記研磨用具と前記ガラス基板とを相対的に移動させる処理であることを特徴とする、構成B−1ないし構成B−3の何れか1に記載の磁気ディスク用ガラス基板の製造方法。
(構成B−5)
前記研磨用具は、研磨パッド、研磨ブラシ、研磨テープの中から選択される少なくとも1の手段であることを特徴とする、構成B−1ないし構成B−4の何れか1に記載の磁気ディスク用ガラス基板の製造方法。
(構成B−6)
前記研磨処理により、ガラス基板の表面は鏡面に研磨されることを特徴とする、構成B−1ないしB−5の何れか1に記載の磁気ディスク用ガラス基板の製造方法。
(構成B−7)
前記研磨処理により、ガラス基板の表面に、表面粗さがRaで0.5nm以下である所望の均一な表面が創生されることを特徴とする構成B−1ないしB−6の何れか1に記載の磁気ディスク用ガラス基板の製造方法。
(構成B−8)
構成B−1ないし構成B−7の何れか1に記載の磁気ディスク用ガラス基板の製造方法であって、7nm以下の浮上量である磁気ヘッドで記録再生される磁気ディスク対応の磁気ディスク用ガラス基板の製造方法。
(Configuration B-1)
A method for producing a glass substrate for a magnetic disk in which a desired surface is created by a plurality of polishing processes,
At least one of the plurality of polishing processes is:
A polishing process for a glass substrate for a magnetic disk including a process of supplying a polishing liquid to the surface of the glass substrate and polishing the surface of the glass substrate, and in this polishing process, the polishing liquid is subjected to a magnetic field exposure process in advance. A method for producing a glass substrate for a magnetic disk.
(Configuration B-2)
The method for producing a glass substrate for a magnetic disk according to Configuration B-1, wherein the polishing liquid contains non-magnetic abrasive grains.
(Configuration B-3)
Manufacture of a magnetic disk glass substrate according to Configuration B-1 or Configuration B-2, wherein magnetized foreign matter contained in the polishing liquid is selectively removed by the magnetic field exposure treatment. Method.
(Configuration B-4)
The polishing process is a process of supplying a polishing liquid to the surface of a glass substrate, bringing the glass substrate and a polishing tool into contact with each other, and moving the polishing tool and the glass substrate relatively. The manufacturing method of the glass substrate for magnetic discs in any one of B-1 thru | or composition B-3.
(Configuration B-5)
The magnetic disk according to any one of configurations B-1 to B-4, wherein the polishing tool is at least one means selected from a polishing pad, a polishing brush, and a polishing tape. A method for producing a glass substrate.
(Configuration B-6)
The method of manufacturing a glass substrate for a magnetic disk according to any one of configurations B-1 to B-5, wherein the surface of the glass substrate is polished to a mirror surface by the polishing treatment.
(Configuration B-7)
Any one of configurations B-1 to B-6, wherein the polishing process creates a desired uniform surface having a surface roughness Ra of 0.5 nm or less on the surface of the glass substrate. The manufacturing method of the glass substrate for magnetic discs as described in any one of.
(Configuration B-8)
A method of manufacturing a glass substrate for a magnetic disk according to any one of Configuration B-1 to Configuration B-7, wherein the magnetic disk glass is compatible with a magnetic disk recorded and reproduced by a magnetic head having a flying height of 7 nm or less. A method for manufacturing a substrate.

(構成C−1)
ガラス基板の表面に研磨液を供給し、前記ガラス基板の表面を研磨する処理を含む磁気ディスク用ガラス基板の製造方法であって、
前記ガラス基板に供給される研磨液に含まれるFe元素の質量は、研磨液1kg当り900mg以下であることを特徴とする磁気ディスク用ガラス基板の製造方法。
(構成C−2)
ガラス基板の表面に研磨液を供給し、前記ガラス基板の表面を研磨する処理を含む磁気ディスク用ガラス基板の製造方法であって、
前記研磨処理に際して、予め、前記研磨液を清浄化処理することにより、前記ガラス基板に供給される研磨液に含まれるFe元素の質量を、研磨液1kg当り900mg以下とすることを特徴とする磁気ディスク用ガラス基板の製造方法。
(構成C−3)
前記研磨液は、非磁性の研磨砥粒を含むものであることを特徴とする、構成C−1又はC−2に記載の磁気ディスク用ガラス基板の製造方法。
(構成C−4)
前記研磨処理は、ガラス基板の表面に研磨液を供給し、ガラス基板と研磨用具とを接触させ、前記研磨用具と前記ガラス基板とを相対的に移動させる処理であることを特徴とする、構成C−1ないし構成C−3の何れか1に記載の磁気ディスク用ガラス基板の製造方法。
(構成C−5)
前記研磨用具は、研磨パッド、研磨ブラシ、研磨テープの中から選択される少なくとも1の手段であることを特徴とする、構成C−1ないし構成C−4の何れか1に記載の磁気ディスク用ガラス基板の製造方法、
(構成C−6)
前記研磨処理により、ガラス基板の表面は鏡面に研磨されることを特徴とする、構成C−1ないしC−5の何れか1に記載の磁気ディスク用ガラス基板の製造方法。
(構成C−7)
前記研磨処理により、ガラス基板の表面に、表面粗さがRaで0.5nm以下である所望の均一な表面が創生されることを特徴とする構成C−1ないしC−6の何れか1に記載の磁気ディスク用ガラス基板の製造方法。
(構成C−8)
構成C−1ないし構成C−7の何れか1に記載の磁気ディスク用ガラス基板の製造方法であって、7nm以下の浮上量である磁気ヘッドで記録再生される磁気ディスク対応の磁気ディスク用ガラス基板の製造方法。
(Configuration C-1)
A method for producing a glass substrate for a magnetic disk, comprising a step of supplying a polishing liquid to the surface of a glass substrate and polishing the surface of the glass substrate,
The mass of Fe element contained in the polishing liquid supplied to the glass substrate is 900 mg or less per 1 kg of the polishing liquid.
(Configuration C-2)
A method for producing a glass substrate for a magnetic disk, comprising a step of supplying a polishing liquid to the surface of a glass substrate and polishing the surface of the glass substrate,
In the polishing process, the polishing liquid is cleaned in advance so that the mass of Fe element contained in the polishing liquid supplied to the glass substrate is 900 mg or less per 1 kg of the polishing liquid. A method for producing a glass substrate for a disk.
(Configuration C-3)
The method for producing a glass substrate for a magnetic disk according to Configuration C-1 or C-2, wherein the polishing liquid contains non-magnetic abrasive grains.
(Configuration C-4)
The polishing process is a process of supplying a polishing liquid to the surface of a glass substrate, bringing the glass substrate and a polishing tool into contact with each other, and moving the polishing tool and the glass substrate relatively. The method for producing a glass substrate for a magnetic disk according to any one of C-1 to C-3.
(Configuration C-5)
The magnetic disk according to any one of Configurations C-1 to C-4, wherein the polishing tool is at least one means selected from a polishing pad, a polishing brush, and a polishing tape Glass substrate manufacturing method,
(Configuration C-6)
The method of manufacturing a glass substrate for a magnetic disk according to any one of configurations C-1 to C-5, wherein the surface of the glass substrate is polished to a mirror surface by the polishing treatment.
(Configuration C-7)
Any one of configurations C-1 to C-6, wherein a desired uniform surface having a surface roughness Ra of 0.5 nm or less is created on the surface of the glass substrate by the polishing treatment. The manufacturing method of the glass substrate for magnetic discs as described in any one of.
(Configuration C-8)
A method of manufacturing a glass substrate for a magnetic disk according to any one of Configuration C-1 to Configuration C-7, wherein the magnetic disk glass is adapted to be recorded and reproduced by a magnetic head having a flying height of 7 nm or less. A method for manufacturing a substrate.

本発明は、例えば、磁気ディスク用ガラス基板の製造方法、磁気ディスク用ガラス基板、及び磁気ディスクの製造方法に好適に用いることができる。   The present invention can be suitably used for, for example, a method for manufacturing a magnetic disk glass substrate, a magnetic disk glass substrate, and a magnetic disk manufacturing method.

本発明の一実施形態に係る磁気ディスク用ガラス基板の製造方法で使用される研磨システム100の構成の一例を示す図である。It is a figure which shows an example of a structure of the grinding | polishing system 100 used with the manufacturing method of the glass substrate for magnetic discs concerning one Embodiment of this invention. 磁石フィルタ106の構成の一例を示す図である。3 is a diagram illustrating an example of a configuration of a magnet filter 106. FIG.

符号の説明Explanation of symbols

100・・・研磨システム、102・・・タンク、104・・・ポンプ、106・・・磁石フィルタ、108・・・研磨機、202・・・筐体、204・・・インサート部、206・・・クランプ、302・・・入口、304・・・出口、306・・・磁石部、308・・・蓋部
DESCRIPTION OF SYMBOLS 100 ... Polishing system, 102 ... Tank, 104 ... Pump, 106 ... Magnet filter, 108 ... Polishing machine, 202 ... Housing, 204 ... Insert part, 206 ...・ Clamp 302 ... Inlet 304 ... Exit 306 ... Magnet part 308 ... Lid part

Claims (6)

磁気ディスク用ガラス基板の製造方法であって、
ガラス基板を準備する基板準備工程と、
前記ガラス基板を鏡面研磨する基板研磨工程と
を備え、
前記基板研磨工程は、磁石フィルタを通して研磨液を循環させつつ前記ガラス基板を研磨することを特徴とする磁気ディスク用ガラス基板の製造方法。
A method of manufacturing a glass substrate for a magnetic disk,
A substrate preparation step of preparing a glass substrate;
A substrate polishing step for mirror polishing the glass substrate,
The method of manufacturing a glass substrate for a magnetic disk, wherein the substrate polishing step comprises polishing the glass substrate while circulating a polishing liquid through a magnet filter.
前記磁石フィルタは、前記研磨液に、磁束密度で少なくとも5000ガウス以上の磁場を印加することを特徴とする請求項1に記載の磁気ディスク用ガラス基板の製造方法。   2. The method of manufacturing a glass substrate for a magnetic disk according to claim 1, wherein the magnet filter applies a magnetic field having a magnetic flux density of at least 5000 gauss or more to the polishing liquid. 前記研磨液は、平均粒径が0.01〜1.5μmの研磨砥粒を含み、
前記基板研磨工程は、前記研磨砥粒よりも大きなパーティクルを捕集する濾過フィルタを更に通して前記研磨液を循環させることを特徴とする請求項1又は2に記載の磁気ディスク用ガラス基板の製造方法。
The polishing liquid contains abrasive grains having an average particle size of 0.01 to 1.5 μm,
3. The manufacturing method of a glass substrate for a magnetic disk according to claim 1, wherein in the substrate polishing step, the polishing liquid is circulated through a filtration filter that collects particles larger than the abrasive grains. Method.
前記基板研磨工程で鏡面研磨された前記ガラス基板を化学強化する化学強化工程を更に備えることを特徴とする請求項1から3の何れかに記載の磁気ディスク用ガラス基板の製造方法。   4. The method of manufacturing a glass substrate for a magnetic disk according to claim 1, further comprising a chemical strengthening step of chemically strengthening the glass substrate that has been mirror-polished in the substrate polishing step. 請求項1から4の何れかに記載の磁気ディスク用ガラス基板の製造方法で製造されたことを特徴とする磁気ディスク用ガラス基板。   A glass substrate for a magnetic disk produced by the method for producing a glass substrate for a magnetic disk according to claim 1. 請求項5に記載の磁気ディスク用ガラス基板上に少なくとも磁気記録層を形成することを特徴とする磁気ディスクの製造方法。
A method for producing a magnetic disk, comprising forming at least a magnetic recording layer on the glass substrate for a magnetic disk according to claim 5.
JP2006028244A 2006-02-06 2006-02-06 Method for manufacturing glass substrate for magnetic disk, glass substrate for magnetic disk, and method for manufacturing magnetic disk Pending JP2007207393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006028244A JP2007207393A (en) 2006-02-06 2006-02-06 Method for manufacturing glass substrate for magnetic disk, glass substrate for magnetic disk, and method for manufacturing magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006028244A JP2007207393A (en) 2006-02-06 2006-02-06 Method for manufacturing glass substrate for magnetic disk, glass substrate for magnetic disk, and method for manufacturing magnetic disk

Publications (1)

Publication Number Publication Date
JP2007207393A true JP2007207393A (en) 2007-08-16

Family

ID=38486700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006028244A Pending JP2007207393A (en) 2006-02-06 2006-02-06 Method for manufacturing glass substrate for magnetic disk, glass substrate for magnetic disk, and method for manufacturing magnetic disk

Country Status (1)

Country Link
JP (1) JP2007207393A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011045950A (en) * 2009-08-26 2011-03-10 Asahi Glass Co Ltd Working device for glass substrate, method of working glass substrate, glass substrate for magnetic disk or glass substrate for photomask manufactured by the method, and method of repeatedly working glass substrate

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306174A (en) * 1988-06-02 1989-12-11 Sony Corp Polishing device for substrate of magnetic disk
JPH0382154U (en) * 1989-12-13 1991-08-21
JPH04341312A (en) * 1991-05-17 1992-11-27 Toyobo Co Ltd Magnetic filter
JPH0592363A (en) * 1991-02-20 1993-04-16 Hitachi Ltd Duplex simultaneous polishing method for base and its device, polishing method for magnetic disc base using above device and manufacture of magnetic disc and magnetic disc
JPH06254315A (en) * 1993-03-05 1994-09-13 Harurou Funato Liquid cleaner
JPH08257321A (en) * 1995-03-27 1996-10-08 Mitsubishi Materials Corp Magnet filter and filter apparatus
JPH10194786A (en) * 1996-12-30 1998-07-28 Hoya Corp Production of glass substrate for information recording medium, and production of information recording medium
JPH1119872A (en) * 1997-07-02 1999-01-26 Fujimi Inkooporeetetsudo:Kk Recycling method and device for circulating used composition of wrapping device
JPH11277394A (en) * 1998-03-25 1999-10-12 Dowa Mining Co Ltd Wire saw and chip removing mechanism
JP2000203888A (en) * 1998-12-28 2000-07-25 Hoya Corp Production of glass substrate for information recording medium, production of information recording medium, production of glass substrate for magnetic disc and production of magnetic disc
JP2000254543A (en) * 1999-03-12 2000-09-19 Mikura Bussan Kk Method for regeneration treatment of silicon carbide abrasive and abrasive
JP2002292565A (en) * 2001-03-29 2002-10-08 Niki Glass Co Ltd Magnetic separating system of polishing/cutting work liquid waste using abrasive material
JP2002371267A (en) * 2001-06-15 2002-12-26 Mitsui Mining & Smelting Co Ltd Method for manufacturing cerium-containing abrasive particle and cerium-containing abrasive particle
JP2003227000A (en) * 2002-02-05 2003-08-15 Tokushu Giken Kk Implement for removing iron powder in chrome plating solution, device for removing iron powder and method of removing iron powder
JP2004199846A (en) * 2002-10-23 2004-07-15 Nippon Sheet Glass Co Ltd Glass substrate for magnetic recording medium, and its manufacturing method
JP2004259402A (en) * 2003-02-27 2004-09-16 Hoya Corp Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2006007417A (en) * 1999-12-28 2006-01-12 Hoya Corp Manufacturing method for information recording medium substrate and manufacturing method for information recording medium

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306174A (en) * 1988-06-02 1989-12-11 Sony Corp Polishing device for substrate of magnetic disk
JPH0382154U (en) * 1989-12-13 1991-08-21
JPH0592363A (en) * 1991-02-20 1993-04-16 Hitachi Ltd Duplex simultaneous polishing method for base and its device, polishing method for magnetic disc base using above device and manufacture of magnetic disc and magnetic disc
JPH04341312A (en) * 1991-05-17 1992-11-27 Toyobo Co Ltd Magnetic filter
JPH06254315A (en) * 1993-03-05 1994-09-13 Harurou Funato Liquid cleaner
JPH08257321A (en) * 1995-03-27 1996-10-08 Mitsubishi Materials Corp Magnet filter and filter apparatus
JPH10194786A (en) * 1996-12-30 1998-07-28 Hoya Corp Production of glass substrate for information recording medium, and production of information recording medium
JPH1119872A (en) * 1997-07-02 1999-01-26 Fujimi Inkooporeetetsudo:Kk Recycling method and device for circulating used composition of wrapping device
JPH11277394A (en) * 1998-03-25 1999-10-12 Dowa Mining Co Ltd Wire saw and chip removing mechanism
JP2000203888A (en) * 1998-12-28 2000-07-25 Hoya Corp Production of glass substrate for information recording medium, production of information recording medium, production of glass substrate for magnetic disc and production of magnetic disc
JP2000254543A (en) * 1999-03-12 2000-09-19 Mikura Bussan Kk Method for regeneration treatment of silicon carbide abrasive and abrasive
JP2006007417A (en) * 1999-12-28 2006-01-12 Hoya Corp Manufacturing method for information recording medium substrate and manufacturing method for information recording medium
JP2002292565A (en) * 2001-03-29 2002-10-08 Niki Glass Co Ltd Magnetic separating system of polishing/cutting work liquid waste using abrasive material
JP2002371267A (en) * 2001-06-15 2002-12-26 Mitsui Mining & Smelting Co Ltd Method for manufacturing cerium-containing abrasive particle and cerium-containing abrasive particle
JP2003227000A (en) * 2002-02-05 2003-08-15 Tokushu Giken Kk Implement for removing iron powder in chrome plating solution, device for removing iron powder and method of removing iron powder
JP2004199846A (en) * 2002-10-23 2004-07-15 Nippon Sheet Glass Co Ltd Glass substrate for magnetic recording medium, and its manufacturing method
JP2004259402A (en) * 2003-02-27 2004-09-16 Hoya Corp Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011045950A (en) * 2009-08-26 2011-03-10 Asahi Glass Co Ltd Working device for glass substrate, method of working glass substrate, glass substrate for magnetic disk or glass substrate for photomask manufactured by the method, and method of repeatedly working glass substrate

Similar Documents

Publication Publication Date Title
US7175511B2 (en) Method of manufacturing substrate for magnetic disk, apparatus for manufacturing substrate for magnetic disk, and method of manufacturing magnetic disk
CN102501153B (en) Polish brush, finishing method, the manufacture method of burnishing device and glass substrate for disc
US8827769B2 (en) Method of producing substrate for magnetic recording media
JP5586293B2 (en) Method for manufacturing substrate for magnetic recording medium
CN102473424A (en) Manufacturing method for glass substrates for magnetic disks
JP5037975B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
CN102473423B (en) The manufacture method of glass substrate for disc
CN103035256B (en) Method of manufacturing a glass substrate for a magnetic disk and method of manufacturing a magnetic disk
JP2005050501A (en) Method and device for manufacturing substrate for magnetic disk, and method of manufacturing magnetic disk
JP2007207393A (en) Method for manufacturing glass substrate for magnetic disk, glass substrate for magnetic disk, and method for manufacturing magnetic disk
JP5371667B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
WO2014148421A1 (en) Method for producing glass substrate for information recording medium
US8938990B2 (en) Method for producing glass substrate for information storage medium, and information storage medium
CN102945676B (en) Glass substrate used for magnetic recording medium and magnetic recording medium
JP6423935B2 (en) Manufacturing method of glass substrate for information recording medium and polishing brush
JP2007245265A (en) Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
JP2006099944A (en) Manufacturing methods of substrate for magnetic disk and of magnetic disk
JP2010108598A (en) Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and magnetic disk
JP2006099943A (en) Manufacturing methods of substrate for magnetic disk and of magnetic disk
JP2005285276A (en) Manufacturing method of glass substrate for magnetic disk, manufacturing method of magnetic disk and magnetic disk
JPH10194786A (en) Production of glass substrate for information recording medium, and production of information recording medium
WO2012133374A1 (en) Method for producing magnetic-disk glass substrate
CN104798132B (en) The manufacturing method of HDD glass substrate and its manufacturing method and information recording carrier
JP2011086371A (en) Manufacturing method of glass substrate for magnetic disk
WO2012042725A1 (en) Glass substrate for information recording medium, manufacturing method for same, information recording medium, and information disc device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091211

A131 Notification of reasons for refusal

Effective date: 20100302

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20100430

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20100825

Free format text: JAPANESE INTERMEDIATE CODE: A02