JP2007205346A - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP2007205346A
JP2007205346A JP2006056921A JP2006056921A JP2007205346A JP 2007205346 A JP2007205346 A JP 2007205346A JP 2006056921 A JP2006056921 A JP 2006056921A JP 2006056921 A JP2006056921 A JP 2006056921A JP 2007205346 A JP2007205346 A JP 2007205346A
Authority
JP
Japan
Prior art keywords
exhaust
intake
cylinder
rotary cylinder
pulley
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006056921A
Other languages
Japanese (ja)
Inventor
Tsutomu Hagiwara
務 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006056921A priority Critical patent/JP2007205346A/en
Publication of JP2007205346A publication Critical patent/JP2007205346A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal combustion engine in which the sucking action and discharging action are performed by rotating cylindrical bodies with cutout parts, sucking and discharging are efficiently promoted by changing the shapes of a cylinder and a piston, the changing angles of the rotating cylindrical bodies with the cutout parts are changed to provide high-speed rotation. <P>SOLUTION: The sucking action of the internal combustion engine is performed by rotating the rotating cylindrical body 1 for sucking with the rotating cylindrical body cutout part 3 and the rotating cylindrical body 4 for discharging with the rotating cylindrical body cutout part 6 together with a crankshaft 16. The wall surface of a cylinder liner 10a and the side surface of the piston 11 are formed in square shapes to efficiently promote the sucking action and the discharge action. A conversion angle is advanced by moving a synchronous pulley 14 to advance the suction start timing of the cutout part 3 of the rotating cylindrical body 1 for sucking for high-speed rotation. Also, to delay the exhaust termination timing of the cutout part 6 of the rotating cylindrical body 4 for discharging, the conversion angle is delayed by moving a synchronous pulley 15 for producing an overlapping phenomenon. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は一般的に化石燃料または植物性アルコール燃料を主体として燃焼させて得た動力を利用した内燃機関で、自動車、船舶、オートバイ、農耕用、土木建設、列車、発電等に使用されている動力源、その他の内燃機関に関する。  The present invention is an internal combustion engine that uses power obtained by burning mainly fossil fuel or vegetable alcohol fuel, and is used in automobiles, ships, motorcycles, agriculture, civil engineering construction, trains, power generation, etc. The present invention relates to a power source and other internal combustion engines.

従来の内燃機関を自動車用に例をあげれば、混合気(燃料または空気)の吸気作用及び排気ガスの排気作用はそれぞれの弁の開閉とそれを構成する動弁系によるものである。また高性能化や高速回転を得るために多量の混合気(燃料または空気)を吸入する必要から弁座の面積を大きくし弁の数を増やす構造になっている。そのことは同時にそれに付随する多くの動弁系の機構をより複雑にし、それらの細部にわたる部品の数量、形状、品質の改良等の複雑さは計り知れない。さらにシリンダーの複数化に伴って動弁系の構造は電子機器等の取り入れで益々その煩雑さは増大し限界にきていると言える。そのことは内燃機関の重量の増加、容積の増大を招き経済的にも不利である。それと共に動弁系の製造行程をみると設計から製品完成までの複雑多岐にわたる部品数の量の多さ、高度な技術と熟練による鋳造、研磨、組み立てに要する経費、時間的損失は大きなもがある。  Taking an example of a conventional internal combustion engine for an automobile, the intake action of the air-fuel mixture (fuel or air) and the exhaust action of the exhaust gas are based on the opening and closing of the respective valves and the valve operating system constituting them. Further, in order to obtain high performance and high speed rotation, it is necessary to suck a large amount of air-fuel mixture (fuel or air), so that the area of the valve seat is increased and the number of valves is increased. This simultaneously complicates many of the valve train mechanisms that accompany it, and the complexity of improving the quantity, shape, quality, etc. of the parts over those details is immeasurable. Furthermore, it can be said that as the number of cylinders is increased, the structure of the valve train system is becoming more and more complicated due to the incorporation of electronic devices. This leads to an increase in the weight and volume of the internal combustion engine, which is economically disadvantageous. At the same time, when looking at the manufacturing process of the valve system, the amount of parts, ranging from design to product completion, is large, and the costs and time loss required for casting, polishing and assembly by advanced technology and skill are significant. is there.

近年、自動車の高速化が進むにしたがって内燃機関の高性能化、経済性、加えて環境に悪影響をおよばさないことが要求され、それに伴って内燃機関の心臓部ともいわれる動弁系の改良が最も重要になっている。特に吸気弁、排気弁の確実な弁開閉なくしては効果は期待できない。不確実な弁開閉は過剰な混合気(燃料または空気)の吸入による未燃焼ガスの不規則な発火や排気ガスの残留などは効率性、経済性の悪さに加え、環境への悪影響などを起こす要因にもなる。現在の内燃機関において重要な位置を占める動弁系は、それに付随するカムやスプリング等の駆動形態、作動方法、また形状や材質等は今なお研究改良が行われている。  In recent years, as the speed of automobiles has increased, it has been required that the internal combustion engine has higher performance, economy, and in addition to not adversely affecting the environment. Most important. In particular, the effect cannot be expected without the reliable opening and closing of the intake and exhaust valves. Uncertain valve opening / closing causes irregular combustion of unburned gas due to intake of excess air-fuel mixture (fuel or air) and residual exhaust gas cause adverse effects on the environment in addition to poor efficiency and economy. It becomes a factor. The valve system that occupies an important position in the present internal combustion engine is still being researched and improved on the drive mode, operation method, shape, material, and the like of the cam and spring associated therewith.

内燃機関における弁機構には、それに付随する部分にスプリング機構がある。弁の着座力を確実に保つために無くてはならない部分であり、高速回転が要求される現時点ではスプリングの形状、材質共最良の状態でなくてはならない。高速回転になるとスプリング自体が弁の動きに追従できなくなり、一旦閉じた弁が再び飛び上がる現象を起こしたり、スプリング自体が暴れる不正運動を起こす。それらを防止するためにその構造は複雑になっている。  In a valve mechanism in an internal combustion engine, a spring mechanism is provided in an accompanying part thereof. This is an indispensable part for maintaining the seating force of the valve, and at the present time when high speed rotation is required, the spring must be in the best shape and material. If it rotates at high speed, the spring itself cannot follow the movement of the valve, causing a phenomenon that the valve that has once closed jumps up again, or causing an illegal movement in which the spring itself violates. The structure is complicated to prevent them.

前述したように内燃機関の高性能化に伴い高速回転をうるために混合気(燃料または空気)の大量の吸入が必要で、それには弁座の面積を大きくすることと同時に弁のリフト量を大きくとることが必要である。しかし圧縮時におけるピストン上面の空間はごく限られた容積量であるため制約がある。また弁を大きくすることによって混合気は多量に吸入される反面、弁は重くなり高速回転時の追従性が悪くなる。そこでスプリングの強度を増したりカムの揚程曲線を緩くしたりすることで追従性を少しでも良くする方向にもっていく。このような問題解決に現在多く用いられているのが弁の複数化で、弁の数が多くなればカムの数も多くなり一本のカム軸に対して多数のカムを取り付けるようになった。シリンダーの数が多くなればそれだけカムの数も増加し複雑な動弁系の構造になり鋳造での工法も困難になっている。  As described above, in order to obtain high-speed rotation as the internal combustion engine increases in performance, a large amount of air-fuel mixture (fuel or air) needs to be sucked in. This is achieved by increasing the valve seat area and simultaneously increasing the valve lift. It is necessary to take large. However, the space on the upper surface of the piston at the time of compression is limited because it has a very limited volume. In addition, by enlarging the valve, a large amount of air-fuel mixture is sucked, but the valve becomes heavier and the followability at high speed rotation becomes worse. Therefore, by increasing the strength of the spring or loosening the lift curve of the cam, the tracking performance will be improved as much as possible. A number of valves are currently used in many ways to solve such problems. As the number of valves increases, the number of cams increases, and many cams are attached to one camshaft. . As the number of cylinders increases, the number of cams increases accordingly, resulting in a complicated valve system structure, making casting difficult.

従来の内燃機関におけるカムとスプリングのもつ機構の重要性は弁運動に直接影響をおよぼす。カム面は高速度かつ高面圧で摺動するので表面は材質的に摩耗の少ない耐久性のあるとことと同時に、他と接する部品への衝撃性の少ないことが必要で高度な信頼性のある製品が求められる。またスプリング機構においてはカムの揚程曲線に沿ってリフト量を如何に確実に維持できるかが問題で、カムの形状、スプリング機構など、どれをとってみても課題は多い。  The importance of the cam and spring mechanism in the conventional internal combustion engine directly affects the valve motion. Since the cam surface slides at a high speed and high surface pressure, the surface must be durable with little wear, and at the same time, it must have a low level of impact on the parts that come into contact with other parts. A product is required. In the spring mechanism, there is a problem of how to reliably maintain the lift amount along the lift curve of the cam, and there are many problems regardless of the shape of the cam or the spring mechanism.

従来の内燃機関の高速回転を行う方法の一つに吸入弁の開き初めを早め、排気弁の閉じ終わりを遅くするオーバーラップ(弁が同時に開いている時期)効果を行う方法がある。その効果を十分に発揮させるのに高速用カムを必要に応じて切り換える可変機構を備えたものやその他いくつかの方法が現在実施されているが、いずれも構造そのものが非常に複雑で電子機器等の取り入れなどで高度な技術を必要としている。また製造過程においても多くの異なった部品を多数製造することと組み立てに複雑な要素が加わるという困難さがある。  One of the conventional methods for performing high-speed rotation of an internal combustion engine is a method for effecting an overlap (a time when the valves are simultaneously open) effecting that the opening of the intake valve is advanced earlier and the closing end of the exhaust valve is delayed. In order to make full use of this effect, a variable mechanism that switches the high-speed cam as necessary and several other methods are currently being implemented. Advanced technology is required by adopting. Also in the manufacturing process, there are difficulties in manufacturing many different parts and adding complex elements to the assembly.

特開平10−280922 特開平11−6408号広報 特開2001−123087号広報 特開2001−152818号広報 特開2001−173416号広報 特開2004−92632号広報なお、本願発明に関連する公知技術のうち非特許文献については未確認である。JP 10-280922 JP 11-6408 PR JP 2001-123087 PR JP 2001-152818 PR JP 2001-173416 PR JP 2004-92632 PR Of these, non-patent literature has not been confirmed.

上述のごとく、従来技術に係わる内燃機関は、加工技術の高度化、電子技術の進歩、素材の開発等によって改善と発達が成し遂げられてはいるが、機械が本来持つべき簡素化の理念からは程遠く、ますます複雑さを増し製造技術面からみても限界にきているといわざるをえない。具体的には自動車に例をとると、道路の広範囲な整備による陸路利用の運送量の増大、観光地への移動、日常生活での常用的活用等各種自動車が個人の足としてまた経済効率の要として無くてはならない存在になっている。そのような自動車においては当然ながら内燃機関の高性能化、経済性、環境への配慮等が求められ、多くのメーカーでは技術の総力をあげて取り組んでいる。より高度な安全な安心して日常生活に利用できる乗り物として、これ以上の製品はないと自負するところまで到達している。しかしながら研究や技術の努力と成果によって造りあげられたにもかかわらず、多種多様の部品が複雑に絡み合うといった構造的な問題を持つ内燃機関になっているのが実情である。  As described above, the internal combustion engine related to the prior art has been improved and developed by the advancement of processing technology, advancement of electronic technology, development of materials, etc., but from the principle of simplification that the machine should have originally It's far from far away, and it's becoming increasingly complex and it's at the limit of manufacturing technology. Specifically, taking automobiles as an example, various automobiles can be used as individual feet and economically efficient, such as increasing the amount of transportation by land due to extensive road construction, moving to sightseeing spots, and regular use in daily life. In short, it is an indispensable existence. In such automobiles, naturally, high performance of the internal combustion engine, economic efficiency, consideration for the environment, etc. are required, and many manufacturers are making efforts with the full power of technology. As a vehicle that can be used in everyday life with a higher level of safety and security, it has reached the point where it is proud that there are no more products. However, despite the efforts and results of research and technology, the actual situation is that the internal combustion engine has a structural problem in which a wide variety of components are intertwined in a complex manner.

弁の開閉という一見単純に思える構造にしても、内燃機関の高性能化が求められ高速回転を得るためには弁のリフト量を多くしなければならず、そのためにカム山をより高くしたり、弁を開けておく時期を長くしたり、またカム自体の形を変えたりする。これは弁の追従性を悪くするばかりではなく騒音の問題やカム自体の耐久性にも問題が生ずる。また内燃機関のシリンダーの気筒数を増やせば当然ながらカムの数も比例して増加し、容積、重量共に大きくなる。現時点ではミリ単位で小型化、軽量化に努力が重ねられているがこれは逆行といわざるをえない。またシリンダーの気筒数が増加すると一本のカム軸に多くのカムを取り付ける必要から、それぞれのカムを弁の開閉時期差に回転角を合わせて鋳造しなければならない工法も困難を極めている。  Even with a seemingly simple structure of opening and closing the valve, high performance of the internal combustion engine is required, and in order to obtain high speed rotation, the lift amount of the valve must be increased. , Make the valve open longer, or change the shape of the cam itself. This not only deteriorates the followability of the valve, but also causes problems of noise and durability of the cam itself. Further, if the number of cylinders of the internal combustion engine is increased, the number of cams naturally increases in proportion, and both volume and weight increase. At present, efforts are being made to reduce the size and weight in millimeters, but this is a retrograde. In addition, as the number of cylinders increases, a large number of cams need to be attached to one camshaft. Therefore, the construction method in which each cam must be cast according to the rotation angle of the valve opening / closing timing is extremely difficult.

弁を開閉させる機構で大きな要素を占めている部分にスプリング機構がある。弁を吸気口、排気口に密着させるためにはスプリングの強度が弁の強度や重さにみあう必要がある。スプリングの強度を強くすると大きい開弁力を要し弁頭部とカムとの接触部分の摩耗が激しくなる。これは動弁機構全体の鋼性を大きくすることになり経済性、軽量化等の観点からは不利である。また鋼性を高めた弁やスプリングは高速回転になるとカムのリフト量に追従できずに予想外の運動をしカムが暴れだす。これを防止するのに弁自体の軽量化と共に動弁系の軽量化、あるいはスプリングの強度を大きくすること、つまりスプリングの固有振動数を高めるためにスプリング定数を大きくしたものに変えるか、異なった定数をもったスプリングを二重にして共振現象を防ぐという複雑な方法をとっている。  A spring mechanism is a part that occupies a large element in a mechanism for opening and closing a valve. In order to bring the valve into close contact with the intake and exhaust ports, the strength of the spring needs to match the strength and weight of the valve. When the strength of the spring is increased, a large valve opening force is required, and wear of the contact portion between the valve head and the cam becomes severe. This increases the steel properties of the entire valve mechanism, which is disadvantageous from the viewpoints of economy and weight reduction. In addition, valves and springs with improved steel properties cannot follow the lift amount of the cam when it rotates at high speed, causing unexpected movement and cam rampage. In order to prevent this, the weight of the valve system is reduced along with the weight of the valve itself, or the spring strength is increased, that is, the spring constant is increased in order to increase the natural frequency of the spring, or different. A complicated method is adopted in which a spring having a constant is doubled to prevent a resonance phenomenon.

従来の内燃機関の高性能化に伴い高速回転を行う他の方法として、点火時期の制御と同時に弁の吸気作用、排気作用の時期を制御することで効果を得ている。これは内燃機関そのものの性格付けになっている。そこで従来実用化されている弁の吸気及び排気の効率をよくする方法の一つとして、カムシャフトの先端に油圧による位相切替え機構を設け制御することで吸気弁と排気弁を同時に開いている期間(オーバーラップ)を長くとることで効率をよくしている。しかしこれらの機構は非常に複雑で、電子機器等の技術によるところが多く今後の課題でもある。  As another method of performing high-speed rotation with the improvement in performance of a conventional internal combustion engine, an effect is obtained by controlling the timing of the intake and exhaust operations of the valve simultaneously with the control of the ignition timing. This is the character of the internal combustion engine itself. Therefore, as one of the methods for improving the intake and exhaust efficiency of the valves that have been put into practical use in the past, the intake valve and the exhaust valve are simultaneously opened by controlling the hydraulic phase switching mechanism at the tip of the camshaft. Efficiency is improved by taking longer (overlap). However, these mechanisms are very complex and depend on technologies such as electronic equipment, which is a problem for the future.

弁機構(ピストンバルブによる往復運動)に代わる混合気(燃料または空気)の吸入作用及び排気ガスの排気作用を行う方法として、ロータリーバルブ式の内燃機関が公知されているが、そのいずれを検討してもロータリーバルブそのものの構造が煩雑であったり、吸気作用及び排気作用の機構が量産するには非常に複雑化していたり、また吸気口及び排気口の位置(配管を含めて)が内燃機関の小型化には制約があったり、多量の吸気、排気には開口部が狭小であったりして問題点が多い。  A rotary valve type internal combustion engine is known as a method of performing an intake action of an air-fuel mixture (fuel or air) and an exhaust action of exhaust gas instead of a valve mechanism (reciprocating motion by a piston valve). However, the structure of the rotary valve itself is complicated, the intake and exhaust mechanisms are very complicated for mass production, and the positions of the intake and exhaust ports (including piping) are There are many problems such as restrictions on miniaturization and a narrow opening for a large amount of intake and exhaust.

本発明は、このようないくつかの問題点に鑑みて成されたものであり、その目的は機械本来が持ち得る、同じ性能であれば簡素な構造であるべきで、混合気(燃料または空気)の吸気作用及び排気ガスの排気作用を行うのに切欠部を有する回転円筒体を設置し、さらにそれぞれの回転円筒体の主軸に吸気作用及び排気作用を同期させるプーリーを固設し、クランク主軸に伝動させて行う。このことで現在の内燃機関に用いられている複雑な動弁機構を全て不要としたり、公知されている複雑な構造をもつロータリーバルブ式を簡素化したものである。また本発明は別に設置した自動制御装置(図示、説明共省略)を備えた変換角制御プーリーによって、吸気用回転円筒体及び排気用回転円筒体の変換角を容易に変化させ内燃機関の高性能化を得ることができるようにした。このことは部品数の少量化複雑な機構の簡略化に重点を置き、軽量小型にすることで製造行程の簡素化、経費の削減を目的としたことにある。  The present invention has been made in view of several problems as described above. The object of the present invention should be a simple structure as long as it has the same performance that the machine itself can have. In order to perform the intake action and the exhaust action of the exhaust gas, a rotating cylinder having a notch is installed, and a pulley for synchronizing the intake action and the exhaust action is fixed to the main spindle of each rotary cylinder, and the crank spindle To do. This eliminates the need for all of the complicated valve mechanisms used in current internal combustion engines, and simplifies the rotary valve type having a known complicated structure. In addition, the present invention can easily change the conversion angle of the intake rotary cylinder and the exhaust rotary cylinder by a conversion angle control pulley provided with an automatic control device (not shown and not shown) separately installed. I was able to get This aims to simplify the manufacturing process and reduce costs by focusing on simplifying complicated mechanisms by reducing the number of parts and making it light and compact.

課題を解決するため手段Means to solve the problem

上述の目的を達成する本発明の内燃機関は、切欠部を有する吸気用回転円筒体及び排気用回転円筒体を、燃焼室を中央にして吸気口及び排気口とを分離するように設置し気密を保持するように接触回転させる。さらにそれぞれの回転円筒体に同期用プーリーを固設しクランク主軸プーリーに伝動装置を連結媒体として伝動回転させることで吸気作用及び排気作用を行うものである。またそれぞれの回転円筒体の切欠部は、回転円筒体の円形面に対して傾斜切欠の縁を扇形状にすること、即ち切り取った形はかまぼこ状の立体形で回転円筒体はこのかまぼこ状の立体形がはぎ取られた形になり、混合気(燃料または空気)の吸入作用及び排気ガスの排気作用を効率よく容易にする効果が得られることを特徴とする。  The internal combustion engine of the present invention that achieves the above-mentioned object is provided with an intake rotary cylinder and an exhaust rotary cylinder having a cut-out portion installed so as to separate the intake port and the exhaust port from the combustion chamber as the center. Rotate the contact to hold. Further, a synchronizing pulley is fixed to each rotating cylindrical body, and a crankshaft pulley is rotated by transmission using a transmission device as a coupling medium to perform intake and exhaust operations. In addition, the notch of each rotating cylinder has a fan-shaped edge of the inclined notch with respect to the circular surface of the rotating cylinder, that is, the cut shape is a semi-cylindrical shape, and the rotating cylinder is this semi-cylindrical shape. The three-dimensional shape is stripped and an effect of efficiently and easily facilitating the intake action of the air-fuel mixture (fuel or air) and the exhaust action of the exhaust gas is obtained.

さらにシリンダーライナー上部、ピストン上面の形状は共に四角形にすることで、それぞれの回転円筒体の切欠部を有する回転面に対して接触面が平行になり広くとれ、常時開放されているので混合気(燃料または空気)の吸入作用及び排気ガスの排気作用が短時間に大量になされるようにしたことを特徴とする。  Furthermore, the cylinder liner upper part and the piston upper face are both rectangular, so that the contact surface is parallel to the rotating surface having the cutout part of each rotating cylindrical body and wide, and is always open. Fuel or air) and exhaust gas exhaust action are performed in a large amount in a short time.

上述の内燃機関の高性能化の一例として高速回転を行う方法があるが、これには回転円筒体の変換転角を変化させることで混合気(燃料または空気)の吸入開始時期を早めたり排気ガスの排気時期を遅らせたりするオーバーラップ現象を起こさせ高速回転を得る。この方法は吸気用回転円筒体及び排気用回転円筒体に吸気作用及び排気作用を同期させるための同期プーリーをそれぞれの回転円筒体の同軸上に固設し、クランク主軸プーリーとベルト(またはチェーン)によって同期回転させると同時に、吸気用同期プーリー及び排気用同期プーリーの間に小型の変換角制御プーリーを設置し、自動制御装置(図示、説明共省略)を用いて上下に移動させ、ベルト(またはチェーン)の張りの強弱を操作することで、それぞれの回転円筒体の変換角を同時にまたは個別に制御(作動変換角)させることで高速回転あるいは低速回転を行うことを特徴とする。  As an example of improving the performance of the above-mentioned internal combustion engine, there is a method of performing high-speed rotation. This is accomplished by changing the conversion turning angle of the rotating cylindrical body to advance the intake start timing of the air-fuel mixture (fuel or air) or exhaust the exhaust gas. Overlap phenomenon that delays the exhaust timing of gas is caused and high speed rotation is obtained. In this method, a synchronous pulley for synchronizing the intake action and the exhaust action to the rotary cylinder for intake and the rotary cylinder for exhaust is fixed on the same axis of each rotary cylinder, and the crankshaft pulley and belt (or chain) are fixed. At the same time, a small conversion angle control pulley is installed between the intake synchronous pulley and the exhaust synchronous pulley, and is moved up and down using an automatic control device (not shown or described), and the belt (or It is characterized in that high-speed rotation or low-speed rotation is performed by controlling the conversion angle of each rotating cylinder simultaneously or individually (operation conversion angle) by manipulating the strength of the chain).

発明の効果The invention's effect

以上説明したように本発明によれば、内燃機関の混合気(燃料または空気)の吸入作用及び排気ガスの排気作用を行うのに、シリンダーライナー上部に吸気口及び排気口を燃焼室を中央にして対応させて設置し、そのシリンダーライナー上部と吸気口及び排気口に気密を保持しながら接触回転する切欠部を有する吸気用回転円筒体及び排気用回転円筒体の同軸上に、吸気用同期プーリー及び排気用同期プーリーを固設し、クランク主軸プーリーに伝動装置を連結媒体として伝動回転させ吸気作用及び排気作用を行うようにしたもので現在の内燃機関に用いられている弁を含む動弁系機構を全て不要にできる。またシリンダーライナー上部及びピストン上面を角型にしたことで、吸気用回転円筒体及び排気用回転円筒体の切欠部がシリンダーライナー上部及びピストン上面に平行に接することになり混合気(燃料または空気)の吸入作用及び排気ガスの排気作用が効率よく容易になりシリンダー間のピッチも狭くすることができる。従って内燃機関の小型化、軽量化が可能でありさらに吸気用回転円筒体及び排気用回転円筒体を同期させる同期プーリーのそれぞれの間に、吸気用回転円筒体及び排気用回転円筒体の変換角を制御(作動変換角)させる自動制御装置(図示、説明共省略)を内蔵した変換角制御プーリーを新たに設置し、その変換角制御プーリーを移動させることで高速回転、低速回転が容易にできる。従って現に実用化されている油圧による位相切替え機構をもつ動弁系を全て不要にすることが出来る。この内燃機関を最も広範囲に量産されている自動車等に利用されれば、大幅な製造経費削減、製造期間の短縮になる。また軽量、小型化が進み環境改善等にも極めて有効である。  As described above, according to the present invention, in order to perform the intake action of the air-fuel mixture (fuel or air) and the exhaust action of the exhaust gas of the internal combustion engine, the intake port and the exhaust port are located at the center of the cylinder liner and the combustion chamber is in the center. The intake synchronous cylinder and the exhaust synchronous cylinder on the same axis as the intake rotary cylinder and the exhaust rotary cylinder having a notch that rotates in contact with the upper part of the cylinder liner and the air intake and exhaust ports while maintaining airtightness. And an exhaust synchronous pulley, and a crank main shaft pulley that is driven to rotate with a transmission device as a connecting medium to perform intake and exhaust operations, including a valve that is currently used in an internal combustion engine All mechanisms can be made unnecessary. In addition, by making the upper part of the cylinder liner and the upper surface of the piston square, the cutout portions of the rotary cylinder for intake and the rotary cylinder for exhaust are in contact with the upper part of the cylinder liner and the upper surface of the piston in parallel (fuel or air). The intake action and the exhaust action of the exhaust gas are facilitated efficiently, and the pitch between the cylinders can be narrowed. Therefore, the internal combustion engine can be reduced in size and weight, and the conversion angle of the intake rotary cylinder and the exhaust rotary cylinder is between the synchronous pulley that synchronizes the intake rotary cylinder and the exhaust rotary cylinder. High speed rotation and low speed rotation can be facilitated by newly installing a conversion angle control pulley with a built-in automatic control device (illustration and explanation omitted) that controls the movement (operation conversion angle) and moving the conversion angle control pulley . Therefore, it is possible to eliminate all valve systems having a hydraulic phase switching mechanism that is currently in practical use. If this internal combustion engine is used in automobiles and the like that are mass-produced in the widest range, the manufacturing cost can be greatly reduced and the manufacturing period can be shortened. In addition, it is extremely effective in improving the environment as light weight and downsizing.

以下、本発明の実施の形態を図面に基づき詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1〜5は本発明の第1の実施の形態に係わり、図1はその内部透視概略図、図2はそのシリンダーヘッド中央部分の縦正面断面図、図3はそのシリンダーヘッド中央部分の横上面断面図、図4はそのシリンダーブロック上部及びピストン上面を一部分切断した横上面断面図、図5(1)はその吸気用回転円筒体の切欠部に残留した未燃焼混合気再利用のシリンダーヘッド中央部分の縦側面断面図、図5(2)はその吸気用回転円筒体の切欠部に残留した未燃焼混合気再利用のシリンダーヘッド中央部分の縦正面断面図、図6はその混合気(燃料または空気)の吸入作用から排気ガスの排気作用までを順次示したもので、図6(1)はその混合気(燃料または空気)の吸入作用図、6(2)はその点火爆発作用図、図6(3)はその爆発膨張作用図、図6(4)はその排気ガスの排気作用図、図7はその自動制御装置(図示、説明共省略)を備えた同期プーリーとテンショナープーリーの位置関係と作用を順次示した図で、図7(1)はその通常回転時のそれぞれのプーリーの位置関係と行程作用を、7(2)はその高速回転時のそれぞれのプーリーの位置関係と行程作用を示した図である。  1 to 5 relate to a first embodiment of the present invention, FIG. 1 is a schematic perspective view thereof, FIG. 2 is a longitudinal front sectional view of a central portion of the cylinder head, and FIG. 3 is a horizontal view of the central portion of the cylinder head. 4 is a cross-sectional top view of the cylinder block and the top surface of the piston, and FIG. 5 (1) is a cylinder head for reusing the unburned mixture remaining in the notch of the rotary cylinder for intake air. FIG. 5 (2) is a vertical front sectional view of the central portion of the cylinder head for reusing the unburned mixture remaining in the cutout portion of the intake rotary cylinder, and FIG. FIG. 6 (1) is a diagram of the intake action of the mixture (fuel or air), and FIG. 6 (2) is a diagram of its ignition / explosion action. Fig. 6 (3) shows the explosion Fig. 6 (4) is an exhaust action diagram of the exhaust gas, and Fig. 7 is a diagram sequentially showing the positional relationship and action of the synchronous pulley and the tensioner pulley provided with the automatic control device (illustration and explanation omitted). 7 (1) shows the positional relationship and stroke action of each pulley during its normal rotation, and 7 (2) shows the positional relationship and stroke action of each pulley during its high-speed rotation.

図1に示すように、混合気吸気用回転円筒体1の吸気用回転円筒体主軸2には吸気用同期プーリー14を、排気ガス排気用回転円筒体4の排気用回転円筒体主軸5には排気用同期プーリー15が固設され、歯付きベルト17(またはチェーン)でクランク主軸プーリー16によって連動され同期回転する。また吸気用同期プーリー14及び排気用同期プーリー15はクランク主軸プーリー16の2回転に対してそれぞれ1回転の比率で回転する。  As shown in FIG. 1, an intake synchronous pulley 14 is provided on the intake rotary cylinder main shaft 2 of the mixed-air intake rotary cylinder 1, and an exhaust rotary cylinder main shaft 5 of the exhaust gas exhaust rotary cylinder 4 is provided on the exhaust gas exhaust rotary cylinder 4. An exhaust synchronous pulley 15 is fixed, and is rotated synchronously with a crank main shaft pulley 16 by a toothed belt 17 (or chain). The intake synchronous pulley 14 and the exhaust synchronous pulley 15 rotate at a ratio of one rotation with respect to two rotations of the crank main shaft pulley 16.

吸気用回転円筒体1の吸気用回転円筒体切欠部3の切欠開始部位と切欠終了部位との円弧部分の間隔は、吸気用回転円筒体1の切欠部を有する円形面の円周に対して概略4分の1の間隔とし、これは4ストローク内燃機関の1ストロークの値に等しくなる。また排気用回転円筒体4の排気用回転円筒体切欠部6についても同様な間隔になる。  The distance between the arc portions of the notch start portion and the notch end portion of the intake rotary cylinder cutout 3 of the intake rotary cylinder 1 is relative to the circumference of the circular surface having the cutout portion of the intake rotary cylinder 1. The interval is approximately one quarter, which is equal to the value of one stroke of a four stroke internal combustion engine. Further, the exhaust rotary cylinder cutout portion 6 of the exhaust rotary cylinder 4 has a similar interval.

図1、図2に示すように、本内燃機関は吸気用回転円筒体切欠部3を有する混合気吸入用回転円筒体1はシリンダーヘッド9の吸気側に内接しながら回転するとともに、シリンダーヘッド9の吸気側内壁にはガス漏れ、潤滑油漏れを防止する為にシリンダーヘッド吸気側窓付きアペックスシール9a及びシリンダーヘッド吸気側アペックスシール9bが取り付けられ、それらに接しながら回転する。またシリンダーライナー10aの上部に取り付けたシリンダーブロック吸気側アペックスシール10bにも同様に接しながら回転する。さらに前記同様に排気用回転円筒体切欠部6を有する排気ガス排気用回転円筒体4はシリンダーヘッド9の排気側に内接しながら回転するとともに、シリンダーヘッド排気側アペックスシール9c及びシリンダーヘッド排気側窓付きアペックスシール9dに接しながら回転する。またシリンダーライナー10aの上部に取り付けたシリンダーブロック排気側アペックスシール10cにも接しながら回転する。  As shown in FIGS. 1 and 2, in the internal combustion engine, the air-fuel mixture intake rotary cylinder 1 having the intake rotary cylinder cutout 3 rotates while inscribed in the intake side of the cylinder head 9, and the cylinder head 9. In order to prevent gas leakage and lubricating oil leakage, an apex seal 9a with a cylinder head intake side window and a cylinder head intake side apex seal 9b are attached to the inner wall of the intake side and rotate while contacting them. The cylinder block 10a also rotates in contact with the cylinder block intake side apex seal 10b attached to the upper portion of the cylinder liner 10a. Further, similarly to the above, the exhaust gas exhaust rotary cylinder 4 having the exhaust rotary cylinder cutout 6 rotates while being inscribed in the exhaust side of the cylinder head 9, and the cylinder head exhaust apex seal 9c and the cylinder head exhaust side window. It rotates while touching the attached apex seal 9d. Moreover, it rotates while contacting the cylinder block exhaust side apex seal 10c attached to the upper part of the cylinder liner 10a.

図1、図7に示すように、吸気用同期プーリー14と排気用同期プーリー15の間に吸気用変換角制御プーリー18を吸気用同期プーリー14側に、また排気用変換角制御プーリー19を排気用同期プーリー15側に、それぞれ上下に自在に移動できるように設置し、シリンダーヘッド9に内蔵された自動制御装置(図示、詳細共省略)に連動させ、吸気用同期プーリー14の同軸上に固設された吸気用回転円筒体1の変換角を変化(作動変換角を進める)させる。同様な作動方法で排気用回転円筒体4の変換角を変化(作動変換角を遅らせる)させ高速回転を行う。  As shown in FIGS. 1 and 7, an intake conversion angle control pulley 18 is disposed between the intake synchronous pulley 14 and the exhaust synchronous pulley 15, and an exhaust conversion angle control pulley 19 is exhausted between the intake synchronous pulley 14 and the exhaust synchronous angle control pulley 19. It is installed on the synchronous pulley 15 side so that it can freely move up and down, and is linked to the automatic control device (not shown and details omitted) built in the cylinder head 9 so that it is fixed on the same axis as the synchronous pulley 14 for intake. The conversion angle of the provided rotary rotating cylinder 1 is changed (the operation conversion angle is advanced). The conversion angle of the exhaust rotating cylindrical body 4 is changed (the operation conversion angle is delayed) by the same operation method to perform high-speed rotation.

図1、図7(1)〜(2)に示すように、吸気用変換角制御プーリー18と排気用変換角制御プーリー19をシリンダーヘッド9に内蔵された自動制御装置(図示、説明共省略)により上下移動させ、歯付きベルト17の張り具合の強弱の操作を行い、図7(2)に示すように吸気用変換角制御プーリー18を上に移動させた時、歯付きベルト17が緩み、同時に吸気用回転円筒体1の変換角が+α度(作動変換角)だけ回転方向(矢印方向で反時計方向)に変化(作動変換角を進める)する。同様に排気用変換角制御プーリー19を上に移動させると排気用回転円筒体4の変換角が−α度(作動変換角)だけ回転方向(矢印方向で時計方向)に変化(作動変換角を遅らせる)する。またこの張り具合を常に緩みなく一定に保つために吸気側テンショナープーリー20を吸気用同期回転プーリー14側に、同様に排気側テンショナープーリー21を排気用同期回転プーリー15側に設置しシリンダーヘッド9に内蔵された前記自動制御装置(図示、説明共省略)で操作する。  As shown in FIGS. 1 and 7 (1) to (2), an automatic control device in which an intake conversion angle control pulley 18 and an exhaust conversion angle control pulley 19 are built in a cylinder head 9 (not shown and described) The toothed belt 17 is loosened when the intake conversion angle control pulley 18 is moved upward as shown in FIG. 7 (2). At the same time, the conversion angle of the intake rotary cylinder 1 changes in the rotation direction (counterclockwise in the direction of the arrow) by + α degrees (operation conversion angle) (the operation conversion angle is advanced). Similarly, when the exhaust conversion angle control pulley 19 is moved upward, the conversion angle of the exhaust rotary cylinder 4 changes in the rotational direction (clockwise in the direction of the arrow) by −α degrees (operation conversion angle). To delay). Further, in order to keep this tension constantly constant without loosening, the intake side tensioner pulley 20 is installed on the intake synchronous rotation pulley 14 side, and the exhaust side tensioner pulley 21 is installed on the exhaust synchronous rotation pulley 15 side. It operates with the built-in automatic control device (illustration and explanation are omitted).

図1、図2、図4は、本発明の第3の実施の形態に係わるピストン11、シリンダーブロック10の上部分、シリンダーヘッド9のそれぞれの構造を示した図1は内部透視概略図、図2は中央部の縦正面断面図、図3は上面を部分切断した横上面断面図である。図2、図4に示すようにシリンダーライナー10aの上部は上面から見た場合角型になり、混合気吸入口7の開口部は長方形となる。従って混合気吸入用回転円筒体1の吸気用回転円筒体切欠部3は混合気吸入口7の開口部と平行に向き合う形になる。また排気ガス排気口8も同様に長方形になるので排気用回転円筒体4が排気用回転円筒体切欠部6に平行に向き合う形になる。従ってピストン11の上面は角型になる。  1, 2, and 4 show the structures of the piston 11, the upper portion of the cylinder block 10, and the cylinder head 9 according to the third embodiment of the present invention. FIG. 2 is a longitudinal front sectional view of the central portion, and FIG. 3 is a lateral top sectional view in which the upper surface is partially cut. As shown in FIGS. 2 and 4, the upper part of the cylinder liner 10 a is rectangular when viewed from above, and the opening of the air-fuel mixture inlet 7 is rectangular. Accordingly, the intake rotary cylinder cutout 3 of the mixture intake rotary cylinder 1 faces the opening of the mixture intake port 7 in parallel. Similarly, the exhaust gas exhaust port 8 is also rectangular, so that the exhaust rotary cylinder 4 faces the exhaust rotary cylinder cutout 6 in parallel. Therefore, the upper surface of the piston 11 is square.

図1〜図3、図5(1)に示すように、吸気用回転円筒体1はシリンダーヘッド9に内接しながら高速で擦動回転をするため両端に吸気用凸状フランジ1bを備えた吸気用回転円筒体円形面1aで挟むような構造にし、混合気の漏れと潤滑油の漏出を防ぐと共に左右の振動を防止する作用もある。同様に排気用回転円筒体4にも両端に排気用凸状フランジ4bを備えた排気用回転円筒体円形面4aで挟むような構造とし排気ガスの漏れと潤滑油の漏出を防止する。  As shown in FIG. 1 to FIG. 3 and FIG. 5 (1), the intake rotating cylinder 1 is provided with an intake convex flange 1 b at both ends in order to rotate at high speed while inscribed in the cylinder head 9. The structure is sandwiched between the circular surfaces 1a of the rotating cylinder for use, and has an effect of preventing the leakage of the air-fuel mixture and the lubricating oil and the vibration of the left and right. Similarly, the exhaust rotary cylinder 4 is structured so as to be sandwiched between exhaust rotary cylindrical bodies 4a provided with exhaust convex flanges 4b at both ends to prevent exhaust gas leakage and lubricating oil leakage.

図2に示すように、吸気用回転円筒体主軸2の矢印(反時計方向)は、その回転方向を示している。排気用回転円筒体主軸5の矢印(反時計方向)も同様に回転方向を示している。吸気用回転円筒体1には高温になるのを防ぐため中空にして吸気用回転円筒体冷却層1cを設け放熱効果を得ている。同様に排気用回転円筒体4についても排気用回転円筒体冷却層4cを設ける。さらに一例として中空にした吸気用回転円筒体冷却層1c、排気用回転円筒体4cの中にナトリウムを封入して熱負荷を少なくする。  As shown in FIG. 2, the arrow (counterclockwise direction) of the intake rotating cylinder main shaft 2 indicates the direction of rotation. The arrow (counterclockwise direction) of the exhaust rotary cylinder main shaft 5 also indicates the rotation direction. In order to prevent the intake rotary cylinder 1 from becoming hot, the intake rotary cylinder cooling layer 1c is hollowed to obtain a heat radiation effect. Similarly, the exhaust rotary cylinder 4 is also provided with an exhaust rotary cylinder cooling layer 4c. Furthermore, as an example, sodium is enclosed in the hollowed rotating cylindrical body cooling layer 1c and the rotating exhaust cylindrical body 4c that are made hollow to reduce the thermal load.

前記複数設けられたそれぞれの冷却層の中空部分をくりぬいた重量は、回転円筒体の重心に対して削除された切欠部と同等の重量であって、回転円筒体の重心に対して均一な重量配分になり回転円筒体が高速で回転した場合不規則な振動を発生しないようにバランスをとる。  The weight obtained by hollowing out the hollow portion of each of the plurality of cooling layers is the same weight as the notched portion deleted with respect to the center of gravity of the rotating cylinder, and is a uniform weight with respect to the center of gravity of the rotating cylinder. When the rotating cylinder rotates at a high speed, balance is taken so as not to generate irregular vibrations.

図1〜図3、図5に示すように、リンダーヘッド9の内壁は吸気用回転円筒体1及び排気用回転円筒体4が内接しながら高速で摺動回転するため摩擦熱で高温になる。それを緩和するのにシリンダーヘッド9の内壁に内接しながら回転する吸気用回転円筒体1の吸気用回転円筒体切欠部3を有する回転面、及び排気用回転円筒体4の排気用回転円筒体切欠部6を有する回転面にクロスハッチ(細かい条痕)を設けて潤滑油の保持と冷却を行う。  As shown in FIGS. 1 to 3 and 5, the inner wall of the Linder head 9 becomes high temperature due to frictional heat because the intake rotary cylinder 1 and the exhaust rotary cylinder 4 slide and rotate at high speed while being inscribed. In order to alleviate this, a rotating surface having an intake rotating cylinder cutout 3 of the intake rotating cylinder 1 rotating while inscribed in the inner wall of the cylinder head 9 and an exhaust rotating cylinder of the exhaust rotating cylinder 4 are provided. A cross hatch (fine streak) is provided on the rotating surface having the notch 6 to hold and cool the lubricating oil.

図1、図3、図5に示すように、吸気用回転円筒体1の両端に固設した吸気用凸状フランジ1bを備えた吸気用回転円筒体円形面1a、及び排気用回転円筒体4の両端に固設した排気用凸状フランジ4bを備えた排気用回転円筒体円形面4aには、それぞれにクロスハッチを行い潤滑と冷却を確保する。  As shown in FIGS. 1, 3, and 5, an intake rotary cylinder circular surface 1 a provided with intake convex flanges 1 b fixed at both ends of the intake rotary cylinder 1, and an exhaust rotary cylinder 4. The exhaust rotary cylinder circular surface 4a provided with the exhaust convex flanges 4b fixed at both ends of each is cross-hatched to ensure lubrication and cooling.

図2、図3、図5に示すように、シリンダーブロック10にはシリンダーブロックウオータージャケット10dを、シリンダーヘッド9にはシリンダーヘッドウオータージャケット9eを数か所設け流水を行い冷却効果を得る。  As shown in FIGS. 2, 3 and 5, the cylinder block 10 is provided with a cylinder block water jacket 10d, and the cylinder head 9 is provided with several cylinder head water jackets 9e to obtain a cooling effect.

図2に示すように、吸気用回転円筒体1が摺動回転するシリンダーライナー10aの上面には混合気(燃料または空気)が逆流したり外部への漏れるのを防止したりするため特殊加工されたシリンダーブロック吸気側アペックスシール10bを、また排気用回転円筒体4が摺動回転するシリンダーライナー10aの上面にはシリンダーブロック排気側アペックスシール10cを、シリンダーヘッド9には同様にシリンダーヘッド吸気側窓付きアペックスシール9aを吸気口7側に、シリンダーヘッド吸気側アペックスシール9bを燃焼室25側に、またシリンダーヘッド排気側アペックスシール9cを排気口8側に、シリンダーヘッド排気側窓付きアペックスシール9dを燃焼室25側にそれぞれ取り付け気密の保持と過度に付着した潤滑油を掻き落とす役目を果たしている。  As shown in FIG. 2, the upper surface of the cylinder liner 10a on which the rotary cylinder for intake 1 slides is specially processed to prevent the air-fuel mixture (fuel or air) from flowing back or leaking to the outside. The cylinder block intake side apex seal 10b, the cylinder block exhaust side apex seal 10c on the upper surface of the cylinder liner 10a on which the exhaust rotary cylinder 4 slides and rotates, and the cylinder head 9 similarly have a cylinder head intake side window. With an apex seal 9a on the intake port 7 side, an apex seal 9b on the cylinder head intake side on the combustion chamber 25 side, an apex seal 9c on the exhaust side of the cylinder head on the exhaust port 8 side, and an apex seal 9d with an exhaust side window on the cylinder head Lubricating oil attached to the combustion chamber 25 side and kept airtight and excessively adhered It plays the role of scraping off.

図2、図5(1)〜図5(2)に示すように、吸気用回転円筒体1に外接するシリンダーヘッド9の上部には混合気再利用圧縮空気圧入口22と混合気再利用圧縮空気圧出口23を有し混合気再利用圧縮空気圧入口22から圧入された圧縮空気は吸気用円筒回転体1の吸気用回転円筒体切欠部3の通路を通り混合気再利用圧縮空気圧出口23から圧出され、吸気管へ戻され再び混合気として再利用される。このことは吸気作用時点で混合気(燃料または空気)が吸気用回転円筒体切欠部3に未燃焼混合気として残り、高温によって不測の爆発を起こすことが考えられるので事前に除去しておくことが必要である。それと同時に吸気用回転円筒体切欠部3には圧縮空気が急速に圧入、圧出すので冷却効果がある。  As shown in FIGS. 2, 5 (1) to 5 (2), an air-fuel mixture reuse compression air pressure inlet 22 and an air-fuel mixture reuse compression air pressure are provided at the upper part of the cylinder head 9 circumscribing the intake rotary cylinder 1. Compressed air having an outlet 23 and press-fitted from the mixture reuse compressed air pressure inlet 22 passes through the passage of the intake rotary cylinder cutout 3 of the intake cylinder rotator 1 and is compressed from the mixture reuse compressed air outlet 23. Then, it is returned to the intake pipe and reused again as an air-fuel mixture. This is because air-fuel mixture (fuel or air) remains as an unburned air-fuel mixture in the intake rotary cylinder notch 3 at the time of intake action, and an unexpected explosion may occur due to high temperatures. is required. At the same time, there is a cooling effect because compressed air is rapidly pressed into and out of the intake rotary cylinder cutout 3.

また前記と同様に、排気用回転円筒体4の排気用回転円筒体切欠部6の排気系統は吸気系統に比較すると高温になり、残留ガスの不測の爆発を誘発することが考えられる。一例として前記の未燃焼混合気と同様な方法で残留ガスを除去することが望ましい。排気用回転円筒体切欠部6も圧縮空気の圧入、圧出によって冷却効果を得る。  Similarly to the above, the exhaust system of the exhaust rotary cylinder notch 6 of the exhaust rotary cylinder 4 becomes hot compared to the intake system, and it is conceivable that an unexpected explosion of residual gas is induced. As an example, it is desirable to remove residual gas by the same method as that for the unburned mixture. The exhaust rotary cylinder cutout 6 also has a cooling effect by press-fitting and extruding compressed air.

図1〜図2、図4に示すように、一例としてピストン11は正方形にしたもので混合気(燃料又は空気)の吸入口7の開口部は長方形になりピストン11の上面の一辺と平行になるように取り付けられる。従ってピストンピン12は吸入口7に平行になる。また排気作用を行う排気口8の開口部についても長方形になり、前記同様ピストンピン12に平行になるように取り付けられる。  As shown in FIG. 1 to FIG. 2 and FIG. 4, as an example, the piston 11 has a square shape, and the opening of the intake port 7 for the air-fuel mixture (fuel or air) is rectangular and parallel to one side of the upper surface of the piston 11. It is attached to become. Therefore, the piston pin 12 is parallel to the suction port 7. Further, the opening of the exhaust port 8 that performs the exhaust action is also rectangular and is attached in parallel to the piston pin 12 as described above.

一例として、正方形にしたピストン11の上面の一辺の長さは真円のピストン上面の直径に対して表面積が同一であれば、約11%強の比率で縮小できる。このことは内燃機関の小型、軽量化が可能であり製造経費も削減できる。また多気筒の内燃機関の場合では上記ピストン11を利用したシリンダーブロック10の容積を考えた時、クランク主軸の同軸上方向に連続して製造でき、シリンダーライナー10aのピッチも前記の割合で縮小され小型化軽量化が可能で有効である。  As an example, the length of one side of the upper surface of the square piston 11 can be reduced by a ratio of about 11% if the surface area is the same as the diameter of the upper surface of the piston. This makes it possible to reduce the size and weight of the internal combustion engine and to reduce manufacturing costs. In the case of a multi-cylinder internal combustion engine, when the volume of the cylinder block 10 using the piston 11 is considered, the cylinder block 10 can be manufactured continuously in the same axial direction of the crank main shaft, and the pitch of the cylinder liner 10a is reduced at the above ratio. Miniaturization and weight reduction are possible and effective.

図1〜図2、図4に示すように、ピストン11の上面を正方形にすることで、そのピストン11の周囲側面は平面になりシリンダーライナー10aの壁面も平面になる。またピストンピン12と平行して取り付けられるピストン11の相対する二つの側面はシリンダーライナー10aの壁面に対して面積を広くとることができる。これは摺動面が平面になることでシール性がよくなりガス漏れを減らし壁圧を均一にし発熱を減少させる効果がある。しかしその反面摩擦抵抗による損失が大きくなる。この摩擦損失を小さくするためにピストンピン12に対して直角となるピストン11の相対する二つの側面は、当たり面積に対する壁圧摩擦が少ないのでスカート部分を短くできる。  As shown in FIG. 1 to FIG. 2 and FIG. 4, by making the upper surface of the piston 11 square, the peripheral side surface of the piston 11 becomes flat and the wall surface of the cylinder liner 10 a also becomes flat. Further, two opposing side surfaces of the piston 11 attached in parallel with the piston pin 12 can have a larger area than the wall surface of the cylinder liner 10a. This is because the sliding surface is flat, sealing performance is improved, gas leakage is reduced, wall pressure is made uniform, and heat generation is reduced. However, the loss due to the frictional resistance increases. In order to reduce the friction loss, the two opposite side surfaces of the piston 11 which are perpendicular to the piston pin 12 can reduce the skirt portion because the wall pressure friction with respect to the contact area is small.

図1、図4に示すように、シリンダーライナー10aの壁面の四隅は、摺動抵抗による極端な摩耗と発熱を少なくするため丸みを持たせる。それに合わせピストン11の周囲側面の四隅も同様に丸みを持たせた形にする。またシリンダーライナー10aの壁面及びピストン11の側面には潤滑油保持と冷却のための条痕を無数設ける。  As shown in FIGS. 1 and 4, the four corners of the wall surface of the cylinder liner 10a are rounded to reduce extreme wear and heat generation due to sliding resistance. Accordingly, the four corners of the peripheral side surface of the piston 11 are similarly rounded. In addition, countless striations for retaining and cooling the lubricating oil are provided on the wall surface of the cylinder liner 10a and the side surface of the piston 11.

図2、図5(2)に示すように、シリンダーヘッド9に取り付けられているシリンダーヘッド吸気用窓付きアペックスシール9aは、断面をくさび型にし、吸気用回転円筒体1が有する吸気用回転円筒体切欠部3に面した回転面の回転方向に対して傾斜部分を設け、滑らかな接触ができるようにした。また回転面に保持されている潤滑と冷却のための潤滑油を断面をくさび型にしたシリンダーヘッド吸気側窓付きアペックスシール9aの中に多くの窓穴を設け、その窓穴から余分な潤滑油を掻き落としシリンダーヘッド9に設けたオイル回集穴26から逃がしオイル回集バンに戻してやる。また同様に排気用回転円筒体4が有する排気用回転円筒体切欠部6に面した回転面には、潤滑と冷却のための潤滑油が保持されている。その潤滑油を掻き落としオイル回集バンに戻すため、シリンダーヘッド排気側窓付きアペックスシール9dの断面をくさび型にして多くの窓穴を設け、掻き落とした潤滑油を逃がすオイル回集穴26をシリンダーヘッド9に設置してオイル回集バンに戻す。  As shown in FIGS. 2 and 5 (2), the apex seal 9a with the cylinder head intake window attached to the cylinder head 9 has a wedge-shaped cross section, and the intake rotary cylinder 1 included in the intake rotary cylinder 1 An inclined portion is provided with respect to the rotation direction of the rotation surface facing the body cutout portion 3 so that smooth contact can be made. In addition, a lot of window holes are provided in the apex seal 9a with a cylinder head intake side window having a wedge-shaped cross section of lubricating oil for cooling and cooling held on the rotating surface, and extra lubricating oil is provided from the window holes. Is removed from the oil collecting hole 26 provided in the cylinder head 9 and returned to the oil collecting van. Similarly, lubricating oil for lubrication and cooling is held on the rotating surface of the rotating exhaust cylinder 4 facing the exhaust rotating cylinder cutout 6. In order to scrape off the lubricating oil and return it to the oil collecting van, the cylinder head exhaust side window apex seal 9d has a wedge-shaped cross section to provide many window holes, and an oil collecting hole 26 for releasing the scraped lubricating oil is provided. Install in cylinder head 9 and return to oil collection van.

図2、図5(2)に示すように、燃焼室25に直接関係するシリンダーヘッド吸気側アペックスシール9b、シリンダーヘッド排気側アペックスシールシール9d、シリンダーブロック吸気側アペックスシール10b、シリンダーブロック排気側アペックスシール10cには吸気用回転円筒体1の吸気用回転円筒体切欠部3を有する回転面に常時定圧で接するように板状スプリング27を装着し混合気(燃料または空気)あるいは排気ガスの逆流を防止している。また同時に燃料の爆発、膨張時による衝撃波や圧力の外部への影響を防ぐものである。  As shown in FIGS. 2 and 5 (2), the cylinder head intake side apex seal 9b, the cylinder head exhaust side apex seal seal 9d, the cylinder block intake side apex seal 10b, and the cylinder block exhaust side apex directly related to the combustion chamber 25 are provided. A plate spring 27 is attached to the seal 10c so as to be in constant pressure contact with the rotation surface of the intake rotary cylinder 1 having the intake rotary cylinder cutout 3 so that a backflow of the air-fuel mixture (fuel or air) or the exhaust gas flows. It is preventing. At the same time, it prevents shock waves and pressure from being affected by the explosion and expansion of the fuel.

一例として、吸気用回転円筒体1に固設された吸気用同期プーリー14とクランク主軸プーリー16に同期回転させるための伝動装置に、歯付きベルト17(またはチェーン)で駆動し、確実な同期を得る。その際、常に歯付きベルト17(またはチェーン)には理想に近い張りをもたせることでトラブルを未然に防いだりストレスを与えないために、吸気用変換角制御プーリー18は歯付きベルト17(またはチェーン)を挟み込むように反対側に補助プーリーを設置し、さらに排気用変換角制御プーリー19には前記同様に歯付きベルト17(またはチェーン)を挟みこむように反対側に補助プーリーを設置し、吸気用変換角制御プーリー18及び排気用変換角制御プーリー19と一体になってプーリーからの脱落、横揺れ、緩みを防止する。  As an example, a transmission device for synchronously rotating the intake synchronous pulley 14 and the crankshaft pulley 16 fixed to the intake rotary cylinder 1 is driven by a toothed belt 17 (or a chain) for reliable synchronization. obtain. At this time, the intake conversion angle control pulley 18 is always provided with the toothed belt 17 (or chain) so that the toothed belt 17 (or chain) is always tensioned close to ideal so as to prevent troubles and prevent stress. ) Is installed on the opposite side so as to pinch, and the exhaust conversion angle control pulley 19 is also provided with an auxiliary pulley on the opposite side so as to sandwich the toothed belt 17 (or chain) as described above. It is integrated with the conversion angle control pulley 18 and the exhaust conversion angle control pulley 19 to prevent the pulley from falling off, rolling, and loosening.

前記同様に吸気側テンショナープーリー20及び排気側テンショナープーリー21にも歯付きベルト17(またはチェーン)を挟み込むように補助プーリーを設置することで更にプーリーからの脱落、横揺れ、緩みを確実に防止できる。  Similarly to the above, by installing an auxiliary pulley so that the toothed belt 17 (or chain) is sandwiched between the intake side tensioner pulley 20 and the exhaust side tensioner pulley 21 as well, it is possible to reliably prevent the pulley from falling off, rolling, and loosening. .

さらに歯付きベルト17を使用する場合、吸気用同期プーリー14及び排気用同期プーリー15、クランク主軸プーリー16、吸気用変換角制御プーリー18及び排気用変換角同期プーリー19、吸気側テンショナープーリー20及び排気側テンショナープーリー21をつば付きにして、歯付きベルト17がプーリーからの脱落、横揺れを防止する。
気ガスの排気作用の行程図で、混合気(燃料または空気)の吸気開始時期の吸気用回転円筒体1の吸気用回転円筒体切欠部3及び排気用回転円筒体4の排気用回転円筒体切欠部6吸気口7及び排気口8、それにピストン11の位置関係と共にそれぞれの作用行程を示したもので、図6(1)はピストン11が押し下げられて吸気用回転円筒体切欠部3が開き初め、吸気口7と開通し吸気が開始され、同時に排気用回転円筒体切欠部6が排気口8と遮断され排気終了時期を示している。図6(2)はピストン11が上死点にあり混合気(燃料または空気)の圧縮行程が終わり、点火プラグ24によって点火爆発の状態を示したもので、吸気用回転円筒体切欠部3及び排気用回転円筒体切欠部6は完全に吸気口7及び排気口8に閉ざされている。図6(3)は爆発膨張が終了し、ピストン11も下死点にあり、吸気用回転円筒体切欠部3は未だ吸気口7に閉ざされた状態だが、排気用回転円筒体切欠部6は排気口8に対して開き初め直前であることを示す。図6(4)はピストン11が押し上げられつつあり、膨張終了後の排気行程を示している。吸気用回転円筒体切欠部3はピストン11が上死点到達までは吸気口7との開通はなく吸気は開始されない。排気用回転円筒体切欠部6は既に排気口8に対して開いていて排気が開始されている状態を示している。
Further, when the toothed belt 17 is used, the intake synchronous pulley 14 and the exhaust synchronous pulley 15, the crank main shaft pulley 16, the intake conversion angle control pulley 18, the exhaust conversion angle synchronous pulley 19, the intake side tensioner pulley 20, and the exhaust The side tensioner pulley 21 is fitted with a collar to prevent the toothed belt 17 from falling off the roll and rolling.
FIG. 3 is a process chart of the exhaust action of the gas gas, and the exhaust rotary cylinder of the intake rotary cylinder 1 and the exhaust rotary cylinder 4 of the intake rotary cylinder 1 and the exhaust rotary cylinder 4 at the intake start timing of the air-fuel mixture (fuel or air). FIG. 6 (1) shows the operation process of the cutout portion 6 along with the positional relationship between the intake port 7 and the exhaust port 8 and the piston 11, and FIG. 6 (1) shows that the piston 11 is pushed down and the intake rotary cylinder cutout portion 3 opens. Initially, the intake port 7 and the open intake are started, and at the same time, the exhaust rotary cylindrical cutout 6 is cut off from the exhaust port 8 to indicate the exhaust end timing. FIG. 6 (2) shows the state of ignition explosion by the ignition plug 24 when the piston 11 is at the top dead center and the compression stroke of the air-fuel mixture (fuel or air) is finished, and the intake rotary cylinder cutout 3 and The exhaust rotary cylinder cutout 6 is completely closed to the intake port 7 and the exhaust port 8. In FIG. 6 (3), the explosion and expansion are finished, the piston 11 is also at the bottom dead center, and the intake rotary cylinder notch 3 is still closed by the intake port 7. However, the exhaust rotary cylinder notch 6 is It indicates that it is immediately before opening to the exhaust port 8. FIG. 6 (4) shows the exhaust stroke after the end of expansion when the piston 11 is being pushed up. The intake rotary cylinder cutout 3 is not opened with the intake port 7 until the piston 11 reaches the top dead center, and intake is not started. The exhaust rotary cylinder notch 6 is already open with respect to the exhaust port 8 and the exhaust is started.

図7は本発明の第4の実施の形態に係わる歯付きベルト17(またはチェーン)、クランク主軸プーリー16、吸気用同期プーリー14及び排気用同期プーリー15、吸気用変換角制御プーリー18及び排気用変換角制御プーリー19、吸気側テンショナープーリー20及び排気側テンショナープーリー21の位置関係と、吸気用変換角制御プーリー18及び排気用変換角制御プーリー19の上下移動によって吸気用同期プーリー14及び排気用同期プーリー15の変換角がどのように変化(作動変換角)するのかを示した作用行程図で、図7(1)は通常の回転速度の状態を示していて、ピストン11は上死点にあり吸気用回転円筒体切欠部3は吸気口7と開通直前で、排気用回転円筒体切欠部6は排気口8との閉じ終わりを示している。また吸気用同期プーリー14及び排気用同期プーリー15は歯付きベルト17を押し下げている状態で、吸気側テンショナープーリー20及び排気側テンショナープーリー21に接する側の歯付きベルト17には緩みはない。図7(2)は高速回転時の状態を示していて、ピストン11は上死点にあって吸気用変換角制御プーリー18及び排気用変換角制御プーリー19は同時に上方向に移動し、それに接していた歯付きベルト17が緩む。そのため吸気用同期プーリー14は歯付きベルト17が緩んだ分の+α度(作動変換角)だけ制御角が進み、吸気用同期プーリー14と同一軸上の吸気用回転円筒体1の吸気用回転円筒体切欠部3が通常回転の位置より早く混合気の吸入を開始する。また排気用同期プーリー15は歯付きベルト17の緩んだ分−α度(作動変換角)だけ制御角が遅れる。同時に制御角は排気用同期プーリー15の回転方向とは逆方向(時計回り)になり、その分排気用同期プーリー15の同軸上にある排気用回転円筒体4の排気用回転円筒体切欠部6は通常回転の位置より遅れて閉じることになり、制御角が進んだ吸気用回転円筒体1の吸気用回転円筒体切欠部3と、制御角が遅れた排気用回転円筒体4の排気用回転円筒体切欠部6は±α度(作動変換角)分の時期が同時に開いていることになり、いわゆるオーバーラップ(吸気と排気が重なり合う)現象を生じさせ高速回転を得る。この時吸気側テンショナープーリー20及び排気側テンショナープーリー21はシリンダーヘッド9に内蔵された自動制御装置(図示、説明共省略)によってクランク主軸の垂直線上の中心部に移動させ歯付きベルト17の緩みをなくす。  FIG. 7 shows a toothed belt 17 (or chain), crank main shaft pulley 16, intake synchronous pulley 14 and exhaust synchronous pulley 15, intake conversion angle control pulley 18 and exhaust exhaust according to a fourth embodiment of the present invention. The intake synchronous pulley 14 and the exhaust synchronization are determined by the positional relationship of the conversion angle control pulley 19, the intake side tensioner pulley 20 and the exhaust side tensioner pulley 21, and the vertical movement of the intake conversion angle control pulley 18 and the exhaust conversion angle control pulley 19. FIG. 7 (1) shows a normal rotational speed state, and shows that the piston 11 is at the top dead center, showing how the conversion angle of the pulley 15 changes (operation conversion angle). The intake rotary cylinder notch 3 is immediately before opening the intake port 7, and the exhaust rotary cylinder notch 6 indicates the closing end of the exhaust port 8. The intake synchronous pulley 14 and the exhaust synchronous pulley 15 are in a state where the toothed belt 17 is pushed down, and the toothed belt 17 on the side in contact with the intake side tensioner pulley 20 and the exhaust side tensioner pulley 21 is not loosened. FIG. 7 (2) shows a state during high-speed rotation. The piston 11 is at the top dead center, and the intake conversion angle control pulley 18 and the exhaust conversion angle control pulley 19 simultaneously move upward and come into contact therewith. The toothed belt 17 that has been loosened is loosened. Therefore, the intake synchronous pulley 14 has a control angle advanced by + α degrees (operation conversion angle) corresponding to the loosened toothed belt 17, and the intake rotary cylinder 1 of the intake rotary cylinder 1 on the same axis as the intake synchronous pulley 14. The body notch 3 starts to suck the air-fuel mixture earlier than the normal rotation position. Further, the exhaust synchronous pulley 15 is delayed in control angle by -α degrees (operation conversion angle) corresponding to the looseness of the toothed belt 17. At the same time, the control angle is in the opposite direction (clockwise) to the rotation direction of the exhaust synchronous pulley 15, and the exhaust rotary cylinder cutout 6 of the exhaust rotary cylinder 4 that is coaxial with the exhaust synchronous pulley 15. Is closed later than the normal rotation position, and the exhaust rotary cylinder 4 of the intake rotary cylinder 1 with the advanced control angle and the exhaust rotary of the exhaust rotary cylinder 4 with the delayed control angle. The cylindrical cutout 6 is opened at the same time for ± α degrees (operational conversion angle), so that a so-called overlap (intake and exhaust overlap) phenomenon occurs and high speed rotation is obtained. At this time, the intake side tensioner pulley 20 and the exhaust side tensioner pulley 21 are moved to the central part on the vertical line of the crank main shaft by an automatic control device (not shown and explanation is omitted) built in the cylinder head 9 to loosen the toothed belt 17. lose.

図7に示した吸気用変換角制御プーリー18及び排気用変換角制御プーリー19は、それぞれ単独で移動させることもでき、その場合吸気用変換角制御プーリー18のみを上方向に移動させた時は、吸気用同期プーリー14のみが歯付きベルト17の緩みによって+α度(作動変換角)だけ制御角が進み、吸気用同期プーリー14と同軸上の吸気用回転円筒体1の吸気用回転円筒体切欠部3が通常回転の位置より早く混合気の吸入を開始する。その場合、排気用回転円筒体4の排気用回転円筒体切欠部6は通常回転の状態になっている。また排気用変換角制御プーリー19のみを上方向に移動させた時は排気用同期プーリー15が歯付きベルト17の緩みによって−α度(作動変換角)だけ制御角が遅れ、排気用回転円筒体4の排気用回転円筒体切欠部6が通常回転より遅く閉じることになる。この場合、吸気用回転円筒体1の吸気用回転円筒体切欠部3は通常回転の状態になっている。いずれも±α度(作動変換角)の操作によって回転速度を変化させる。  The intake conversion angle control pulley 18 and the exhaust conversion angle control pulley 19 shown in FIG. 7 can be moved independently. In this case, when only the intake conversion angle control pulley 18 is moved upward, Only the intake synchronous pulley 14 has its control angle advanced by + α degrees (operational conversion angle) due to the loosening of the toothed belt 17, and the intake rotary cylinder notch of the intake rotary cylinder 1 coaxial with the intake synchronous pulley 14 is cut out. The unit 3 starts to suck the air-fuel mixture earlier than the normal rotation position. In this case, the exhaust rotary cylinder cutout 6 of the exhaust rotary cylinder 4 is in a normal rotation state. When only the exhaust conversion angle control pulley 19 is moved upward, the exhaust synchronous pulley 15 is delayed in control angle by -α degrees (operation conversion angle) due to the looseness of the toothed belt 17, and the exhaust rotary cylinder Thus, the exhaust rotary cylinder cutout 6 is closed later than the normal rotation. In this case, the intake rotary cylinder cutout 3 of the intake rotary cylinder 1 is in a normal rotation state. In either case, the rotational speed is changed by an operation of ± α degrees (operation conversion angle).

図3、図5(1)に示すように、吸気用回転円筒体1に固設する吸気用回転円筒体主軸2及び排気用回転円筒体4に固設する排気用回転円筒体主軸5には、混合気(燃料または空気)の爆発、膨張等による衝撃波や圧力に耐えられ、しかも高速で滑らかに回転する吸気用回転円筒体軸受1d及び排気用回転円筒体軸受け4dが必要である。これはピストン11が受ける圧力と同等で、衝撃波、圧力等によってそれぞれの主軸が長期間の使用時に摩耗が生じ、シリンダーライナー10aと吸気用回転円筒体1の吸気用回転円筒体切欠部3及び排気用回転円筒体4の排気用回転円筒体切欠部6を有する接触面に隙間が発生するようなことがないよう強固なころがり軸受けを設置することが望ましい。また軸受けには潤滑と冷却のための潤滑油を循環させる。  As shown in FIGS. 3 and 5 (1), the intake rotary cylinder main shaft 2 fixed to the intake rotary cylinder 1 and the exhaust rotary cylinder main shaft 5 fixed to the exhaust rotary cylinder 4 include In addition, an intake rotary cylinder bearing 1d and an exhaust rotary cylinder bearing 4d that can withstand shock waves and pressures caused by explosion, expansion, etc. of the air-fuel mixture (fuel or air) and rotate smoothly at high speed are required. This is equivalent to the pressure received by the piston 11, and the respective spindles are worn by long-term use due to shock waves, pressures, etc., and the cylinder liner 10 a and the intake rotary cylinder cutout 3 of the intake rotary cylinder 1 and the exhaust gas are exhausted. It is desirable to install a strong rolling bearing so that no gap is generated on the contact surface of the rotary cylinder 4 for exhaust having the exhaust rotary cylinder cutout 6. The bearing is circulated with lubricating oil for lubrication and cooling.

一例として、吸気用変換角制御プーリー18及び排気用変換角制御プーリー19は吸気用同期用プーリー14及び排気用同期プーリー15の間に設置されているが、吸気用変換角制御プーリー18を吸気用同期プーリー14とクランク主軸プーリー16の間に、また排気用変換角制御プーリー19を排気用同期プーリー15とクランク主軸プーリー16の間に取り付ける。このことによって吸気用変換角制御プーリー18及び排気用変換角制御プーリー19を同時に、または個別にクランク主軸の垂直中心方向に移動させると、歯付きベルト17が引っ張られて吸気用同期プーリー14が+α度(作動変換角)だけ制御角が進む。さらに排気用同期プーリー15は−α度(作動変換角)だけ制御角が遅れる。このような作動によって吸気用回転円筒体1の吸気用回転円筒体切欠部3及び排気用回転円筒体4の排気用回転円筒体切欠部6の変換角を制御する。この場合、吸気側テンショナープーリー20と排気側テンショナープーリー21は吸気用同期プーリー14と排気用同期プーリー15の間に設置し、歯付きベルト17の張り具合をシリンダーヘッド9に内蔵された自動制御装置(図示、説明共省略)によって上方向に移動させ制御する。  As an example, the intake conversion angle control pulley 18 and the exhaust conversion angle control pulley 19 are installed between the intake synchronization pulley 14 and the exhaust synchronization pulley 15, but the intake conversion angle control pulley 18 is used for intake. An exhaust conversion angle control pulley 19 is attached between the synchronous pulley 14 and the crank main shaft pulley 16, and between the exhaust synchronous pulley 15 and the crank main shaft pulley 16. As a result, when the intake conversion angle control pulley 18 and the exhaust conversion angle control pulley 19 are moved simultaneously or individually in the vertical center direction of the crank main shaft, the toothed belt 17 is pulled and the intake synchronous pulley 14 becomes + α. The control angle advances by a degree (operation conversion angle). Further, the control angle of the exhaust synchronous pulley 15 is delayed by -α degrees (operation conversion angle). By such an operation, the conversion angles of the intake rotary cylinder notch 3 of the intake rotary cylinder 1 and the exhaust rotary cylinder notch 6 of the exhaust rotary cylinder 4 are controlled. In this case, the intake side tensioner pulley 20 and the exhaust side tensioner pulley 21 are installed between the intake synchronous pulley 14 and the exhaust synchronous pulley 15, and the automatic control device in which the tension of the toothed belt 17 is built in the cylinder head 9. (The illustration and explanation are omitted.)

以上、本発明の実施の形態及び実施例を説明したが、本発明の範囲はこれに限定されるものではない。例えば、吸気用回転円筒体1の吸気用回転円筒体切欠部3及び排気用回転円筒体4の排気用回転円筒体切欠部6のそれぞれの切欠部の個数を2か所に増設することで回転円筒体の回転数を2分の1から4分の1に減らすこと、回転方向を逆にすること、同期回転させる伝動系に歯車を使用すること、吸気用変換角制御プーリー18及び排気用変換角制御プーリー19はどちらか一個に減らして制御すること、シリンダーライナー10aの上部分の形を長方形や楕円形にすること、それに伴ってピストン11の上面を長方形や楕円形にするなどはその状況に応じて適宜選択されるものである。  As mentioned above, although embodiment and the Example of this invention were described, the scope of the present invention is not limited to this. For example, the number of the notch portions of the intake rotary cylinder notch portion 3 of the intake rotary cylinder 1 and the exhaust rotary cylinder notch portion 6 of the exhaust rotary cylinder 4 can be increased by increasing the number of notches in two places. Reducing the number of revolutions of the cylinder from one-half to one-fourth, reversing the direction of rotation, using gears in the transmission system for synchronous rotation, the intake conversion angle control pulley 18 and the exhaust conversion The angle control pulley 19 is controlled to be reduced to either one, the shape of the upper part of the cylinder liner 10a is made rectangular or elliptical, and the upper surface of the piston 11 is made rectangular or elliptical accordingly. Is appropriately selected depending on the situation.

本発明は内燃機関を動力として有用な自動車、オートバイ、車両一般、船舶、建設用機械器具、農耕用機械器具、発電等に広く用いることが可能で、これらを製造、販売する産業分野で利用することができる。  INDUSTRIAL APPLICABILITY The present invention can be widely used for automobiles, motorcycles, vehicles in general, ships, construction machinery and equipment, agricultural machinery and equipment, power generation, etc., which are useful as a power source for internal combustion engines, and are used in the industrial field in which these are manufactured and sold. be able to.

本発明の第1の実施の形態に係わる内燃機関の内部透視概略図である。1 is an internal perspective schematic diagram of an internal combustion engine according to a first embodiment of the present invention. 図1の内燃機関のシリンダーヘッド中央部分の縦正面断面図である。FIG. 2 is a longitudinal front sectional view of a central portion of a cylinder head of the internal combustion engine of FIG. 1. 図2の内燃機関のシリンダーヘッド中央部分の横上面断面図である。FIG. 3 is a cross-sectional side view of the center portion of the cylinder head of the internal combustion engine of FIG. 2. 図2の内燃機関のシリンダーブロック上部及びピストン上面の一部切断した横上面断面図である。FIG. 3 is a cross-sectional side view of the internal combustion engine of FIG. 図2の内燃機関の吸気用回転円筒体の中央部分の縦側面断面図及び縦正面断面図である。 図5(1)はその未燃焼混合気の再利用を示した吸気用回転円筒体中央部分の縦側面断面図である。 図5(2)はその未燃焼混合気の再利用を示した吸気用回転円筒体中央部分の縦正面断面図である。FIG. 3 is a longitudinal side sectional view and a longitudinal front sectional view of a central portion of an intake rotary cylinder of the internal combustion engine of FIG. 2. FIG. 5 (1) is a longitudinal sectional view of the central portion of the intake rotating cylinder showing the reuse of the unburned mixture. FIG. 5 (2) is a longitudinal front sectional view of the central portion of the intake rotary cylinder showing the reuse of the unburned mixture. 図1の内燃機関の4ストローク機関における吸気行程から排気行程までを順次示した説明図である。 図6(1)はその混合気(燃料または空気)の吸気行程図である。 図6(2)はその混合気(燃料または空気)の圧縮終了後の点火、爆発行程図である。 図6(3)はその爆発、膨張行程図である。 図6(4)はその排気ガスの排気行程図である。FIG. 2 is an explanatory diagram sequentially showing from an intake stroke to an exhaust stroke in the four-stroke engine of the internal combustion engine of FIG. 1. FIG. 6A is an intake stroke diagram of the air-fuel mixture (fuel or air). FIG. 6B is an ignition / explosion stroke diagram after completion of compression of the air-fuel mixture (fuel or air). FIG. 6 (3) is an explosion and expansion stroke diagram. FIG. 6 (4) is an exhaust stroke diagram of the exhaust gas. 本発明の第4の実施の形態に係わる内燃機関の吸気用回転円筒体1及び排気用回転円筒体4の制御角の変化(作動変換角)を示した説明図である。 図7(1)はその通常回転時におけるそれぞれの位置と作用行程を示した説明図である。 図7(2)はその高速回転時におけるそれぞれの位置と作用行程を示した説明図である。It is explanatory drawing which showed the change (operation conversion angle) of the control angle of the rotary cylinder 1 for intake and the rotary cylinder 4 for exhaust of the internal combustion engine concerning the 4th Embodiment of this invention. FIG. 7 (1) is an explanatory view showing each position and operation stroke during the normal rotation. FIG. 7 (2) is an explanatory diagram showing the respective positions and action strokes during the high speed rotation.

符号の説明Explanation of symbols

1 吸気用回転円筒体
1a 吸気用回転円筒体円形面
1b 吸気用円形面凸型フランジ (フランジ=つば、輪ぶち)
1c 吸気用回転円筒体冷却層
1d 吸気用回転円筒体軸受け
2 吸気用回転円筒体主軸
3 吸気用回転円筒体切欠部
4 排気用回転円筒体
4a 排気用回転円筒体円形面
4b 排気用円形面凸型フランジ
4c 排気用回転円筒体冷却層
4d 排気用回転円筒体軸受け
5 排気用回転円筒体主軸
6 排気用回転円筒体切欠部
9 シリンダーヘッド
9a シリンダーヘッド吸気側窓付きアペックスシール(アペックス=頂点、頂上)9b シリンダーヘッド吸気側アペックスシール
9c シリンダーヘッド排気側アペックスシール
9d シリンダーヘッド排気側窓付きアペックスシール
9e シリンダーヘッドウオータージャケット
10 シリンダーブロック
10a シリンダーライナー
10b シリンダーブロック吸気側アペックスシール
10c シリンダーブロック排気側アペックスシール
10d シリンダーブロックウオータージャケット
11 ピストン
12 ピストンピン
13 コンロッド
14 吸気用同期プーリー
15 排気用同期プーリー
16 クランク主軸プーリー
17 歯付きベルト
18 吸気用変換角制御プーリー
19 排気用変換角制御プーリー
20 吸気側テンショナープーリー (テンショナー=緩み止め)
21 排気側テンショナープーリー
22 混合気再利用圧縮空気圧入口
23 混合気再利用圧縮空気圧出口
24 点火プラグ
25 燃焼室
26 オイル回集穴
27 板状スプリング
+α 制御角を作動変換角内に進めた角度
−α 制御角を作動変換角内に遅らせた角度
1 Intake rotary cylinder 1a Intake rotary cylinder circular surface 1b Intake circular surface convex flange
1c Intake rotary cylinder cooling layer 1d Intake rotary cylinder bearing 2 Intake rotary cylinder main shaft 3 Intake rotary cylinder notch 4 Exhaust rotary cylinder 4a Exhaust rotary cylinder circular surface 4b Exhaust circular surface convex Die Flange 4c Exhaust Rotating Cylinder Cooling Layer 4d Exhaust Rotating Cylindrical Bearing 5 Exhaust Rotating Cylindrical Main Shaft 6 Exhaust Rotating Cylindrical Notch 9 Cylinder Head 9a Cylinder Head Intake Side Window Apex Seal (Apex = Vertex, Top) 9b Cylinder head intake side apex seal 9c Cylinder head exhaust side apex seal 9d Cylinder head exhaust side apex seal 9e Cylinder head water jacket 10 Cylinder block 10a Cylinder liner 10b Cylinder block intake side apex seal 10c Cylinder block exhaust Apex seal 10d Cylinder block water jacket 11 Piston 12 Piston pin 13 Connecting rod 14 Intake synchronous pulley 15 Exhaust synchronization pulley 16 Crank spindle pulley 17 Toothed belt 18 Intake conversion angle control pulley 19 Exhaust conversion angle control pulley 20 Intake side tensioner Pulley (tensioner = locking)
21 Exhaust side tensioner pulley 22 Mixture reuse compression air pressure inlet 23 Mixture reuse compression air pressure outlet 24 Spark plug 25 Combustion chamber 26 Oil collecting hole 27 Plate spring + α Angle of control angle advanced within the operation conversion angle -α The angle by which the control angle is delayed within the operating conversion angle

Claims (4)

混合気(燃料または空気)の吸気作用及び排気ガスの排気作用を行うのに、切欠部を有した回転する吸気用円筒体及び排気用円筒体を、クランク主軸に伝動装置を連結媒体として同期回転させ、切欠部を有したそれぞれの回転円筒体をシリンダー上面の吸気口及び排気口とを燃焼室を中央にして分離する形で設置すると同時に、吸気口及び排気口の開口部に直接接触回転するように取り付けられた内燃機関であって、さらに伝動装置のある部分に移動可能な作動変換角制御プーリーを設置し、吸気用回転円筒体及び排気用回転円筒体の変換角を制御することで高速回転を得ることを特徴とする内燃機関。  In order to perform the intake action of the air-fuel mixture (fuel or air) and the exhaust action of the exhaust gas, the rotating intake cylinder and the exhaust cylinder having a notch are rotated synchronously with the transmission device as a connecting medium on the crankshaft. The rotary cylinders having notches are installed in such a manner that the intake port and the exhaust port on the upper surface of the cylinder are separated from each other with the combustion chamber at the center, and at the same time, the rotary cylinders are in direct contact with and rotated at the openings of the intake port and the exhaust port. The internal combustion engine is installed in such a manner that a movable conversion angle control pulley that can be moved to a certain part of the transmission device is installed, and the conversion angles of the intake rotary cylinder and the exhaust rotary cylinder are controlled to achieve high speed. An internal combustion engine characterized by obtaining rotation. 前記混合気(燃料または空気)の吸入作用を及び排気ガスの排気作用を行う回転円筒体の切欠部は、その回転円筒体両側面の円形面に対して傾斜切欠の縁を扇形状とし、切欠部の立体形は概ねかまぼこ状になり、回転円筒体はかまぼこ状の立体形を切り取った構造体になることを特徴とする請求項1記載の内燃機関。  The notch of the rotating cylinder that performs the intake of the air-fuel mixture (fuel or air) and the exhaust of exhaust gas has fan-shaped edges of the inclined notches with respect to the circular surfaces on both sides of the rotating cylinder. 2. The internal combustion engine according to claim 1, wherein the three-dimensional shape of the part is generally a semi-cylindrical shape, and the rotary cylinder is a structure obtained by cutting the semi-cylindrical shape. そのシリンダー上面は四角形とし、従ってピストン上面も四角形となる。またシリンダー上面の四角形とした一対の対辺部分には吸気口及び排気口を隣接させ、さらにピストンピンに平行になるように取り付けられ、その対辺部分には燃焼室を中央に吸気口及び排気口を対応させて設置し、混合気(燃料または空気)の吸入作用及び排気ガスの排気作用を行うことを特徴とする請求項1記載の内燃機関。  The upper surface of the cylinder is rectangular, and therefore the upper surface of the piston is also rectangular. In addition, a pair of opposite sides of the upper surface of the cylinder, which are adjacent to each other, have an intake port and an exhaust port adjacent to each other, and are attached so as to be parallel to the piston pin. 2. The internal combustion engine according to claim 1, wherein the internal combustion engine is installed correspondingly and performs an intake action of an air-fuel mixture (fuel or air) and an exhaust action of exhaust gas. 吸気用回転円筒体の同軸上に吸気用同期プーリーを固設し、同様に排気用回転円筒体の同軸上に排気用同期プーリーを固設し、クランク主軸プーリーに同期回転させ吸気作用及び排気作用を行う。さらに吸気用同期プーリー側に吸気用作動変換角制御プーリーを、同様に排気用同期プーリー側に排気用作動変換角制御プーリーを設置し、それぞれの作動変換角制御プーリーを同時に、あるいは個別に内蔵された制御装置(図示、説明共省略)で作動(上下左右に移動)させ、ベルト(またはチェーン、他の伝動装置)の張りの強弱を操作することで、その作動変換角を制御させ高速回転を得ることを特徴とする請求項1記載の内燃機関。  A synchronous pulley for intake is fixed on the same axis of the rotary cylinder for intake, and a synchronous pulley for exhaust is fixed on the same axis of the rotary cylinder for exhaust. I do. In addition, an intake operation conversion angle control pulley is installed on the intake synchronous pulley side, and an exhaust operation conversion angle control pulley is installed on the exhaust synchronous pulley side. Each operation conversion angle control pulley is built in simultaneously or individually. The control device (not shown and explanation is omitted) is operated (moved up and down, left and right), and the tension of the belt (or chain, other transmission device) is operated to control the operation conversion angle and to rotate at high speed. The internal combustion engine according to claim 1, wherein the internal combustion engine is obtained.
JP2006056921A 2006-02-03 2006-02-03 Internal combustion engine Pending JP2007205346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006056921A JP2007205346A (en) 2006-02-03 2006-02-03 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006056921A JP2007205346A (en) 2006-02-03 2006-02-03 Internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007205346A true JP2007205346A (en) 2007-08-16

Family

ID=38485009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006056921A Pending JP2007205346A (en) 2006-02-03 2006-02-03 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007205346A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068613A (en) * 2007-09-13 2009-04-02 Keeper Co Ltd Oil seal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068613A (en) * 2007-09-13 2009-04-02 Keeper Co Ltd Oil seal

Similar Documents

Publication Publication Date Title
WO2013047878A1 (en) Opposed-piston engine
JP2004278536A (en) Reciprocating internal combustion engine, its operation method, and stroke function adjusting apparatus of filling exchange valve
JPH05503129A (en) internal combustion engine
CA2999493C (en) Internal combustion engine cylinder head with tubular apparatus for intake and exhaust
RU2407899C1 (en) Rotary piston ice
KR20140005206A (en) Rotary heat engine
JP6364689B2 (en) Internal combustion engine
US10975764B2 (en) Opposed-piston internal combustion engine
JP4260743B2 (en) Fluid pressure valve actuator for reciprocating engine
JP2008516142A (en) V-twin structure having an assembly in the field of rotating machinery
JP2007205346A (en) Internal combustion engine
JP2007009777A (en) Intake/exhaust structure of internal combustion engine
CN105019971A (en) Centrifugal force-to-rotating force conversion mechanism
NL2011947C2 (en) Combustion engine comprising a cylinder.
US20080017162A1 (en) Surface treated compression ring and method of manufacture
JPH0733776B2 (en) Rotary internal combustion engine
KR20020044171A (en) Z-engine
JP7426997B2 (en) Transfer mechanism for split cycle engines
US9322274B2 (en) Rotary piston internal combustion engine
CN103233789A (en) Multi-mode two-stroke atkinson cycle internal-combustion engine with fully overhead valve
RU2426897C2 (en) Rotary-piston internal combustion engine
US20160326874A1 (en) Internal combustion engine
CN105003315A (en) Coaxial centrifugal rotating mechanism
JPH02252909A (en) Opposed piston rotary type sleeve valve internal combustion engine
RU2129214C1 (en) Head for cylinder block of internal combustion engine with valveless timing gear