JP2007204888A - Molten liquid crystal-forming polyester conjugate fiber - Google Patents

Molten liquid crystal-forming polyester conjugate fiber Download PDF

Info

Publication number
JP2007204888A
JP2007204888A JP2006026638A JP2006026638A JP2007204888A JP 2007204888 A JP2007204888 A JP 2007204888A JP 2006026638 A JP2006026638 A JP 2006026638A JP 2006026638 A JP2006026638 A JP 2006026638A JP 2007204888 A JP2007204888 A JP 2007204888A
Authority
JP
Japan
Prior art keywords
liquid crystal
molten liquid
forming polyester
fiber
thermoplastic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006026638A
Other languages
Japanese (ja)
Other versions
JP4892999B2 (en
Inventor
Hiroshi Katsuta
大士 勝田
Tsuyoshi Shibata
剛志 柴田
Yuhei Maeda
裕平 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006026638A priority Critical patent/JP4892999B2/en
Publication of JP2007204888A publication Critical patent/JP2007204888A/en
Application granted granted Critical
Publication of JP4892999B2 publication Critical patent/JP4892999B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Woven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molten liquid crystal-forming polyester conjugate fiber having a high strength and a high elasticity and also excellent in friction durability and flexing durability. <P>SOLUTION: This conjugate fiber constituted with a molten liquid crystal-forming polyester and flexible thermoplastic polymer is provided by having 40 to 90 wt.% conjugating ratio of the molten liquid crystal-forming polyester, constituting the component for forming the surface layer of the conjugate fiber with a mixture of the molten liquid crystal-forming polyester and the flexible thermoplastic polymer and also satisfying TB>TA+10°C by taking the melting point of the molten liquid crystal-forming polyester as TA and the melting point of the flexible thermoplastic polymer as TB. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は高強度及び高弾性率を有し、かつ摩擦耐久性、屈曲耐久性に優れた溶融液晶形成性ポリエステル複合繊維に関するものである。   The present invention relates to a melted liquid crystal forming polyester composite fiber having high strength and high elastic modulus and excellent in friction durability and bending durability.

溶融液晶形成性ポリエステル繊維は、剛直な分子鎖が繊維軸方向に高度に配向していることから、汎用繊維に比べ著しく高い強度及び弾性率を有し、さらに融点近傍で熱処理を行うことにより、溶融液晶形成性ポリエステルの重合度を繊維形状のまま高めて性能を更に向上させることができる。   The molten liquid crystal forming polyester fiber has a significantly high strength and elastic modulus compared to general-purpose fibers because the rigid molecular chains are highly oriented in the fiber axis direction, and further by performing heat treatment near the melting point, The degree of polymerization of the molten liquid crystal-forming polyester can be increased in the form of a fiber to further improve the performance.

この熱処理の際、溶融液晶形成性ポリエステルはより完成性の高い結晶を形成し融点自体を高温にシフトできるため、ポリエステルの種類と熱処理条件によっては、原料の融点を50℃程度上回る融点まで熱処理でき、結果的に重合反応を促進させて高い強度を発現させることができる。   During this heat treatment, the molten liquid crystal forming polyester forms a more complete crystal and the melting point itself can be shifted to a higher temperature. Therefore, depending on the type of polyester and the heat treatment conditions, it can be heat treated to a melting point that exceeds the melting point of the raw material by about 50 ° C. As a result, the polymerization reaction can be promoted to develop high strength.

しかしながら、繊維横断面方向には弱い分子間力しか働かないため、摩擦耐久性の低い構造となってしまうことが知られている。また、屈曲によりキンクバンドが発生し易く、かつそれが局在化する傾向があることから屈曲耐久性の低いものであった。   However, it is known that only a weak intermolecular force acts in the fiber cross-sectional direction, resulting in a structure with low friction durability. Further, since kink bands are easily generated by bending and tend to localize, the bending durability is low.

これらの欠点を改善する目的で、芯成分が溶融液晶形成性ポリエステル、鞘成分が配向結晶化しているポリエチレンナフタレート等の屈曲性高分子からなる芯鞘型の複合繊維が提案されている(特許文献1参照)。また、界面剥離が起こり難く、摩擦耐久性を改良した芯鞘型の複合繊維として、芯成分が溶融液晶形成性ポリエステル、鞘成分が屈曲性熱可塑性高分子からなる海成分と溶融液晶形成性ポリエステルからなる島成分で構成される芯鞘型の複合繊維(特許文献2参照)や、芯成分が溶融液晶形成性ポリエステル、鞘成分がポリシクロヘキサンジメタノールテレフタレートからなる芯鞘型の複合繊維(特許文献3参照)が提案されている。   In order to remedy these drawbacks, a core-sheath type composite fiber composed of a flexible polymer such as polyethylene naphthalate in which the core component is a melt liquid crystal forming polyester and the sheath component is oriented and crystallized has been proposed (patent) Reference 1). In addition, as a core-sheath type composite fiber with improved interfacial peeling and improved friction durability, the core component is a molten liquid crystal-forming polyester, and the sheath component is a sea component composed of a flexible thermoplastic polymer and a molten liquid crystal-forming polyester. A core-sheath type composite fiber composed of an island component (see Patent Document 2), a core-sheath type composite fiber composed of a melt liquid crystal forming polyester as a core component and polycyclohexanedimethanol terephthalate as a core component (Patent Document) 3) has been proposed.

このように、芯成分を改良した複合構造とすることにより、摩擦耐久性、屈曲耐久性が改良されるのは事実であるが、パッケージ形状で熱処理を行う際に、屈曲性熱可塑性ポリマーとして一般的に用いられるポリエチレンナフタレートやポリフェニレンスルフィド等は融点が溶融液晶形成性ポリエステルよりも低いか同等であるため、重合度を高める熱処理の温度に上限があり溶融液晶形成性ポリエステルの潜在的な強度レベルを発現させることが困難であり、逆に溶融液晶形成性ポリエステルの融点近傍で熱処理を行うと、繊維表面が融着し隣の糸との接点に凹凸ができ、摩擦耐久性、屈曲耐久性が低下するという問題を有している。また、熱処理温度が制限され高強度及び高弾性率を達成することができない。   In this way, it is a fact that friction durability and bending durability are improved by making a composite structure with an improved core component. However, when heat treatment is performed in a package shape, it is generally used as a flexible thermoplastic polymer. Polyethylene naphthalate, polyphenylene sulfide, etc. used commonly have lower or equivalent melting points than molten liquid crystal forming polyesters, so there is an upper limit on the temperature of heat treatment to increase the degree of polymerization, and the potential strength level of molten liquid crystal forming polyesters On the contrary, if heat treatment is performed near the melting point of the melt-forming liquid crystal forming polyester, the fiber surface is fused and irregularities are formed at the contact point with the adjacent yarn, resulting in friction durability and bending durability. It has the problem of being lowered. In addition, the heat treatment temperature is limited, and high strength and high elastic modulus cannot be achieved.

さらに、島成分を溶融液晶形成性ポリエステル、海成分をポリフェニレンスルフィド等の屈曲性熱可塑性樹脂とし、島成分を繊維横断面全体に分散させることで界面剥離を抑制した海島型の複合繊維や(特許文献4参照)、溶融液晶形成性ポリエステルを芯成分とし、鞘成分を芯成分より高融点のポリマーとすることにより溶融液晶形成性ポリエステルの重合度を短時間で向上させる技術等が提案されている(特許文献5参照)。
特開平04−272226号公報(請求項1) 特開平08−260249号公報(請求項1) 特開2002−317334号公報(請求項1) 特開2003−239137号公報(請求項4) 特開平06−057534号公報(請求項1)
Furthermore, the island component is a melted liquid crystal forming polyester, the sea component is a flexible thermoplastic resin such as polyphenylene sulfide, and the island component is dispersed throughout the cross section of the fiber to suppress interfacial delamination (patent Reference 4), a technique for improving the degree of polymerization of molten liquid crystal forming polyester in a short time by using molten liquid crystal forming polyester as a core component and a sheath component as a polymer having a melting point higher than that of the core component has been proposed. (See Patent Document 5).
Japanese Patent Laid-Open No. 04-272226 (Claim 1) Japanese Patent Laid-Open No. 08-260249 (Claim 1) JP 2002-317334 A (Claim 1) JP 2003-239137 A (Claim 4) Japanese Patent Laid-Open No. 06-057534 (Claim 1)

前述のとおり、鞘成分を改良した複合構造とすることにより、摩擦耐久性、屈曲耐久性が改良されるのは事実である。しかしながら、パッケージ形状で熱処理を行う際に、屈曲性熱可塑性ポリマーとして一般的に用いられるポリエチレンナフタレートやポリフェニレンスルフィド等は融点が溶融液晶形成性ポリエステルよりも低いか同等であるため、溶融液晶形成性ポリエステルの融点近傍で熱処理を行うと、繊維表面が融着してしまい隣の糸との接点に凹凸ができ、この凹凸を起点としてフィブリルが生じてしまい、摩擦耐久性や屈曲耐久性が低下するという問題を有している。また、熱処理温度が制限され、高強度及び高弾性率を達成することができない。   As described above, it is a fact that friction durability and bending durability are improved by using a composite structure with an improved sheath component. However, when heat treatment is performed in a package shape, polyethylene naphthalate, polyphenylene sulfide, etc., which are generally used as flexible thermoplastic polymers, have a melting point lower than or equal to that of molten liquid crystal forming polyester. When heat treatment is performed in the vicinity of the melting point of polyester, the fiber surface is fused and irregularities are formed at the contact point with the adjacent yarn, and fibrils are generated starting from the irregularities, resulting in reduced friction durability and bending durability. Has the problem. In addition, the heat treatment temperature is limited, and high strength and high elastic modulus cannot be achieved.

本発明の課題は、溶融液晶形成性ポリエステルと屈曲性熱可塑性ポリマーとから構成される複合繊維であって、該溶融液晶性形成性ポリエステルの複合比率が40〜90重量%であり、該複合繊維の表層を形成する成分が該溶融液晶形成性ポリエステルと該屈曲性熱可塑性ポリマーの混合物から構成され、かつ該溶融液晶形成性ポリエステルの融点をTA、該屈曲性熱可塑性ポリマーの融点をTBとしたとき、TB>TA+10℃を満たすことを特徴とする複合繊維により達成される。   An object of the present invention is a composite fiber composed of a molten liquid crystal forming polyester and a flexible thermoplastic polymer, wherein the composite ratio of the molten liquid crystal forming polyester is 40 to 90% by weight, and the composite fiber The component forming the surface layer is composed of a mixture of the molten liquid crystal forming polyester and the flexible thermoplastic polymer, the melting point of the molten liquid crystal forming polyester is TA, and the melting point of the flexible thermoplastic polymer is TB. Sometimes achieved by a composite fiber characterized by satisfying TB> TA + 10 ° C.

本発明は、これまで問題となっていた屈曲性熱可塑性ポリマーの熱処理時の軟化、溶融を回避することが可能となり、高強度、高弾性率を達成しつつ、摩擦耐久性、屈曲耐久性に優れる繊維、およびその繊維を用いたスクリーン紗用などのモノフィラメントを提供することができたものである。   The present invention makes it possible to avoid softening and melting during heat treatment of a flexible thermoplastic polymer, which has been a problem until now, while achieving high strength and high elastic modulus while improving friction durability and bending durability. It has been possible to provide excellent fibers and monofilaments for screen bags using the fibers.

本発明に用いられる溶融液晶形成性ポリエステルとは、加熱して溶融した際に光学異方性(液晶性)を呈するポリエステルを指す。溶融液晶形成性ポリエステルからなる試料をホットステージにのせ、窒素雰囲気下で昇温加熱し、偏光顕微鏡で試料の透過光を観察することにより認定できる。   The molten liquid crystal forming polyester used in the present invention refers to a polyester that exhibits optical anisotropy (liquid crystallinity) when heated and melted. It can be identified by placing a sample made of molten liquid crystal forming polyester on a hot stage, heating and heating in a nitrogen atmosphere, and observing the transmitted light of the sample with a polarizing microscope.

溶融液晶形成性ポリエステルとしては、例えば(a)芳香族オキシカルボン酸の重合物、(b)芳香族ジカルボン酸と芳香族ジオール、脂肪族ジオールの重合物、(c)(a)と(b)の共重合物等が挙げられる。また、溶融液晶形成性ポリエステルの重合処方は従来公知の方法を用いることができる。   Examples of the melt liquid crystal forming polyester include (a) a polymer of aromatic oxycarboxylic acid, (b) a polymer of aromatic dicarboxylic acid and aromatic diol, and aliphatic diol, (c) (a) and (b). And the like. Moreover, a conventionally well-known method can be used for the polymerization prescription of molten liquid crystal forming polyester.

ここで、芳香族オキシカルボン酸としては、ヒドロキシ安息香酸、ヒドロキシナフトエ酸等、またはこれらのアルキル、アルコキシ、ハロゲン置換体等が挙げられる。   Here, examples of the aromatic oxycarboxylic acid include hydroxybenzoic acid, hydroxynaphthoic acid, and the like, or alkyl, alkoxy, halogen-substituted products thereof and the like.

芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、ジフェニルジカルボン酸、ナフタレンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルエタンジカルボン酸等、またはこれらのアルキル、アルコキシ、ハロゲン置換体等が挙げられる。芳香族ジオールとしては、ハイドロキノン、レゾルシン、ジヒドロキシビフェニル、ナフタレンジオール等、またはこれらのアルキル、アルコキシ、ハロゲン置換体等が挙げられる。脂肪族ジオールとしては、エチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコール等が挙げられる。   Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, diphenyldicarboxylic acid, naphthalene dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenoxyethanedicarboxylic acid, diphenylethanedicarboxylic acid, and the like, or alkyl, alkoxy, and halogen substituted products thereof. It is done. Examples of the aromatic diol include hydroquinone, resorcin, dihydroxybiphenyl, naphthalene diol, and the like, or alkyl, alkoxy, and halogen substituted products thereof. Examples of the aliphatic diol include ethylene glycol, propylene glycol, butanediol, neopentyl glycol and the like.

さらに、上記構成単位の組成比率としては、芳香族オキシカルボン酸単位が全体の30〜100mol%であることが好ましく、50mol%以上であることがより好ましい。芳香族ジカルボン酸、芳香族ジオール及び脂肪族ジオールは、組成中に含まれなくても良いが、含む場合は各々50mol%以下であることが好ましく、30mol%以下であることがより好ましい。また、芳香族ジカルボン酸の含有比率と芳香族ジオール、脂肪族ジオールの含有比率は、5mol%以下で一致していることが好ましい。   Furthermore, as a composition ratio of the said structural unit, it is preferable that an aromatic oxycarboxylic acid unit is 30-100 mol% of the whole, and it is more preferable that it is 50 mol% or more. The aromatic dicarboxylic acid, aromatic diol, and aliphatic diol may not be included in the composition, but when included, each is preferably 50 mol% or less, more preferably 30 mol% or less. Further, it is preferable that the content ratio of the aromatic dicarboxylic acid and the content ratio of the aromatic diol and the aliphatic diol coincide with each other at 5 mol% or less.

本発明に用いられる屈曲性熱可塑性ポリマーは、溶融液晶形成性を示さない熱可塑性ポリマーを言う。この屈曲性熱可塑性ポリマーとしては、例えばポリエステル、ポリアミド、ポリオレフィンやポリスチレンなどのビニル系重合体、ポリカーボネート、ポリイミド、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、脂肪族ポリケトン、半芳香族ポリエステルアミド、ポリエステルエーテルケトン、フッ素樹脂等が挙げられる。本発明の屈曲性熱可塑性ポリマーは20モル%、より好ましくは10モル%以下の割合で他の共重合成分を含むものであっても良い。   The flexible thermoplastic polymer used in the present invention refers to a thermoplastic polymer that does not exhibit melt liquid crystal forming properties. Examples of the flexible thermoplastic polymer include vinyl polymers such as polyester, polyamide, polyolefin, and polystyrene, polycarbonate, polyimide, polyphenylene sulfide, polyphenylene oxide, polysulfone, polyether ketone, polyether ether ketone, aliphatic polyketone, semi-polymer, and the like. Aromatic polyester amide, polyester ether ketone, fluororesin and the like can be mentioned. The flexible thermoplastic polymer of the present invention may contain other copolymer components in a proportion of 20 mol%, more preferably 10 mol% or less.

本発明に用いられる溶融液晶形成性ポリエステルおよび屈曲性熱可塑性ポリマーには、本発明の効果を損なわない範囲内で、各種金属酸化物、カオリン、シリカ等の無機物、着色剤、艶消剤、難燃剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤、結晶核剤、蛍光増白剤、末端基封止剤等の添加剤を少量含有していても良い。   The molten liquid crystal forming polyester and the flexible thermoplastic polymer used in the present invention include various metal oxides, inorganic substances such as kaolin and silica, colorants, matting agents, difficulty, and the like within the range not impairing the effects of the present invention. A small amount of additives such as a flame retardant, an antioxidant, an ultraviolet absorber, an infrared absorber, a crystal nucleating agent, a fluorescent brightener, and a terminal group blocking agent may be contained.

本発明の複合繊維は、前記する溶融液晶形成性ポリエステルと屈曲性熱可塑性ポリマーが、単繊維の内部で複合された繊維であり、該複合繊維の少なくとも表層を形成する成分は該溶融液晶形成性ポリエステルと該屈曲性熱可塑性ポリマーの混合物から構成されている。好適には、溶融液晶形成性ポリエステルと屈曲性熱可塑性ポリマーとが繊維横断面の全断面にわたり均一に混合された構造を形成する複合繊維、横断面内で溶融液晶形成性ポリエステルの混合割合(以後、「LCP比率」と呼ぶ)の異なる複数の成分からなる複合繊維であって、少なくとも芯鞘複合繊維の鞘成分、乃至は海島複合繊維の海成分などの繊維の表層を占める表層成分が、該溶融液晶形成性ポリエステルと該屈曲性熱可塑性ポリマーの混合物から構成されている複合繊維が挙げられる。この場合、芯成分、乃至は海成分などの表層成分以外の複合成分のLCP比率は、表層成分のLCP比率より高いことが高強度、高弾性率繊維が得られるために好ましい。   The composite fiber of the present invention is a fiber in which the above-mentioned molten liquid crystal forming polyester and a flexible thermoplastic polymer are combined inside a single fiber, and the component forming at least the surface layer of the composite fiber is the molten liquid crystal forming property. It is composed of a mixture of polyester and the flexible thermoplastic polymer. Preferably, a composite fiber that forms a structure in which a molten liquid crystal-forming polyester and a flexible thermoplastic polymer are uniformly mixed over the entire cross section of the fiber cross section, and a mixing ratio of the molten liquid crystal forming polyester in the cross section (hereinafter referred to as “mixing ratio”) , Referred to as “LCP ratio”), and a surface layer component occupying the surface layer of the fiber, such as at least the sheath component of the core-sheath composite fiber or the sea component of the sea-island composite fiber, The composite fiber comprised from the mixture of molten liquid crystal-forming polyester and this flexible thermoplastic polymer is mentioned. In this case, the LCP ratio of the composite component other than the surface layer component such as the core component or the sea component is preferably higher than the LCP ratio of the surface layer component because a high strength and high elastic modulus fiber can be obtained.

均一に混合された複合繊維は比較的低コストで製造できるメリットがあり、LCP比率の異なる成分からなる複合繊維は、強度、弾性率、摩擦耐久性や屈曲耐久性をより向上することができるメリットを有する。   Uniformly mixed composite fibers have the advantage that they can be manufactured at a relatively low cost, and composite fibers composed of components with different LCP ratios can further improve strength, elastic modulus, friction durability, and bending durability. Have

混合された構造は繊維の横断面を観察することにより確認することができ、通常、混合状態は島部である分散層と海部である連続層とで構成された海島状態となっているが、まれに両成分が分散層と連続層をもつ海海構造となる場合もある。本発明では、少なくとも表層を形成する成分において、分散層が溶融液晶形成性ポリエステル、連続層が屈曲性熱可塑性ポリマーで構成されることが好ましく、複合繊維の全横断面において分散層が溶融液晶形成性ポリエステル、連続層が屈曲性熱可塑性ポリマーで構成されることがより好ましい。これにより、後述するように分散層である溶融液晶形成性ポリエステル本来の高度な力学的特性が発現されると同時に、連続層である屈曲性熱可塑性ポリマーが繊維表面に配置されることで摩擦耐久性、屈曲耐久性を著しく改善することができる。   The mixed structure can be confirmed by observing the cross section of the fiber, usually the mixed state is a sea island state composed of a dispersed layer that is an island part and a continuous layer that is a sea part. In rare cases, both components have a sea-sea structure with a dispersed layer and a continuous layer. In the present invention, at least in the component that forms the surface layer, it is preferable that the dispersion layer is composed of a melt liquid crystal forming polyester and the continuous layer is composed of a flexible thermoplastic polymer, and the dispersion layer forms a melt liquid crystal in the entire cross section of the composite fiber. More preferably, the conductive polyester and the continuous layer are composed of a flexible thermoplastic polymer. As a result, the inherent high mechanical properties of the molten liquid crystal forming polyester, which is a dispersion layer, are exhibited as described later, and at the same time, a flexible thermoplastic polymer, which is a continuous layer, is placed on the fiber surface for friction durability. And bending durability can be remarkably improved.

この意味では、本発明の複合繊維の繊維横断面において、繊維外周長に対する繊維表面に露出した屈曲性熱可塑性ポリマーの弧長の総和は60%以上であることが好ましい。これにより、溶融液晶形成性ポリエステルの繊維表面への露出が少なくなり、摩擦や屈曲によるフィブリル化を防止することができる。この目的のために繊維横断面における繊維外周長に対する繊維表面に露出した屈曲性熱可塑性ポリマーの弧長の総和は、より好ましくは80%以上である。   In this sense, in the fiber cross section of the composite fiber of the present invention, the total arc length of the flexible thermoplastic polymer exposed on the fiber surface with respect to the fiber outer peripheral length is preferably 60% or more. Thereby, the exposure of the molten liquid crystal forming polyester to the fiber surface is reduced, and fibrillation due to friction and bending can be prevented. For this purpose, the total arc length of the flexible thermoplastic polymer exposed on the fiber surface with respect to the fiber outer peripheral length in the fiber cross section is more preferably 80% or more.

本発明の複合繊維を構成する溶融液晶形成性ポリエステルの複合比率は40〜90重量%である。40重量%未満では本発明の目的である高強度、高弾性率の繊維を得ることは困難であり、90重量%を越えると屈曲性熱可塑性ポリマーのもつ摩擦耐久性、屈曲耐久性の特徴を発現しにくくなる。この比率は、複合繊維の目標性能により上記の範囲内で変えても良い。例えばスクリーン紗用モノフィラメント等のように高強度及び高弾性率を必要とする場合は、溶融液晶形成性ポリエステルが50〜90重量%の範囲にあることが好ましく、更に好ましくは60〜85重量%である。   The composite ratio of the molten liquid crystal forming polyester constituting the composite fiber of the present invention is 40 to 90% by weight. If it is less than 40% by weight, it is difficult to obtain the fiber of high strength and high elastic modulus, which is the object of the present invention. If it exceeds 90% by weight, the characteristics of friction durability and bending durability of the flexible thermoplastic polymer can be obtained. It becomes difficult to express. This ratio may be changed within the above range depending on the target performance of the conjugate fiber. For example, when high strength and high elastic modulus are required, such as a screen filament monofilament, the molten liquid crystal forming polyester is preferably in the range of 50 to 90% by weight, more preferably 60 to 85% by weight. is there.

一方、本発明の複合繊維を構成する屈曲性熱可塑性ポリマーの混合重量割合は10〜60重量%であることが好ましい。10重量%以上とすることにより、摩擦耐久性、屈曲耐久性の特徴を十分に発現させることができ、また溶融液晶形成性ポリエステルが潜在的にもつ高強度、高弾性率を顕在化させることが困難となる。   On the other hand, the mixing weight ratio of the flexible thermoplastic polymer constituting the conjugate fiber of the present invention is preferably 10 to 60% by weight. By setting the content to 10% by weight or more, the characteristics of friction durability and bending durability can be fully expressed, and the high strength and high elastic modulus that the melted liquid crystal forming polyester potentially has can be realized. It becomes difficult.

本発明の複合繊維は、構成成分である溶融液晶形成性ポリエステルの融点をTA、屈曲性熱可塑性ポリマーの融点をTBとしたとき、TB>TA+10℃を満たすことが必要である。この融点は複合繊維の融点を測定することによって求められるものである。これにより、屈曲性熱可塑性ポリマーを溶融させることなく溶融液晶形成性ポリエステルを熱処理して重合度を高め、高強度及び高弾性率化を図ることができる。溶融液晶形成性ポリマーの強度、弾性率を向上させるために熱処理を施す場合、合理的な時間で重合反応を行おうとすると、熱処理温度は高いほど望ましい。一方、熱処理温度を高めるにしたがって溶融液晶形成性ポリマーの融点は高温に移動するので、より高温で熱処理することが可能となり重合度をさらに向上させることができる。このような処理が可能となったことにより、本発明の複合繊維はパッケージ形状で熱処理した際の繊維表面の変形や融着が著しく改善され、繊維表面の凹凸に起因する摩擦耐久性や屈曲耐久性の低下を、より一層抑制することができる。この目的のためには、TB>TA+20℃を満たすものであることが好ましい。   The composite fiber of the present invention needs to satisfy TB> TA + 10 ° C., where TA is the melting point of the molten liquid crystal forming polyester, which is a constituent component, and TB is the melting point of the flexible thermoplastic polymer. This melting point is determined by measuring the melting point of the composite fiber. As a result, the molten liquid crystal-forming polyester can be heat-treated without melting the flexible thermoplastic polymer to increase the degree of polymerization, thereby achieving high strength and high elastic modulus. When heat treatment is performed in order to improve the strength and elastic modulus of the molten liquid crystal forming polymer, the higher the heat treatment temperature is, the more desirable it is to carry out the polymerization reaction in a reasonable time. On the other hand, as the heat treatment temperature is increased, the melting point of the molten liquid crystal forming polymer moves to a higher temperature, so that the heat treatment can be performed at a higher temperature, and the degree of polymerization can be further improved. By making such a treatment possible, the composite fiber of the present invention is significantly improved in deformation and fusion of the fiber surface when heat-treated in the form of a package, and friction durability and bending durability caused by unevenness of the fiber surface. The fall of property can be further suppressed. For this purpose, it is preferable that TB> TA + 20 ° C.

このような融点範囲とし、かつ溶融紡糸のし易さや耐熱性の面で、溶融液晶形成性ポリエステルの融点TAは220〜360℃の範囲のものが好ましく、280〜350℃であることがより好ましく、310〜340℃であることがさらに好ましい。   The melting point TA of the molten liquid crystal forming polyester is preferably in the range of 220 to 360 ° C, more preferably 280 to 350 ° C, in such a melting point range and in terms of heat-spinning and heat resistance. More preferably, it is 310-340 degreeC.

また、屈曲性熱可塑性ポリマーの融点が上記条件を満たすものであれば種類は限定しないが、優れた耐熱性、耐薬品性、機械的特性を有することから、ポリエーテルエーテルケトンを用いることが好ましい。   Further, the type is not limited as long as the melting point of the flexible thermoplastic polymer satisfies the above conditions, but it is preferable to use polyether ether ketone because it has excellent heat resistance, chemical resistance, and mechanical properties. .

なお、本発明における複合繊維の融点は、実施例に記載した測定方法により分析できる。ピークは、溶融液晶形成性ポリエステルと、屈曲性熱可塑性ポリマーの二つが見られ、それぞれ単独成分での融点を測定することにより同定できる。不明瞭な場合には、複合されている各成分を同定した後、溶媒等を用いて一方の成分のみを除去し他方の成分の融点を測定する方法等により同定する。   In addition, melting | fusing point of the composite fiber in this invention can be analyzed with the measuring method described in the Example. Two peaks, a melted liquid crystal forming polyester and a flexible thermoplastic polymer, are observed, and each peak can be identified by measuring the melting point of each single component. If it is unclear, after identifying each compound component, it is identified by a method of removing only one component using a solvent or the like and measuring the melting point of the other component.

本発明の複合繊維の製造方法の一例を以下に示す。   An example of the manufacturing method of the composite fiber of this invention is shown below.

前述した複合構造となるように、公知の混合装置、紡糸装置などを用いて溶融紡糸することにより紡糸繊維を得ることができる。この繊維は、紡糸しただけで既に十分な強度及び弾性率を有しているが、通常、熱処理によって重合度を高めて性能を向上させる。   A spun fiber can be obtained by melt spinning using a known mixing device, spinning device or the like so as to obtain the above-described composite structure. This fiber already has sufficient strength and elastic modulus after being spun, but usually the degree of polymerization is increased by heat treatment to improve performance.

熱処理は不活性ガス雰囲気中や、空気の如き酸素含有の活性ガス雰囲気中または減圧下で行うことが可能である。繊維の劣化を防ぐためには、不活性ガス雰囲気中で処理を行なうことが好ましい。さらに、熱処理雰囲気は露点が−40℃以下の低湿気体が好ましい。熱処理条件としては、初期温度を室温〜溶融液晶形成性ポリエステルの原料の融点(TA’)−50℃とし、そこからTA’−40℃〜屈曲性熱可塑性ポリマーの原料の融点(TB’)まで順次昇温していく温度パターンで行うことが好ましい。また、熱処理時間は目的性能により数分から数十時間行われる。   The heat treatment can be performed in an inert gas atmosphere, an active gas atmosphere containing oxygen such as air, or under reduced pressure. In order to prevent deterioration of the fiber, it is preferable to perform the treatment in an inert gas atmosphere. Furthermore, the heat treatment atmosphere is preferably a low-humidity gas having a dew point of −40 ° C. or less. As the heat treatment conditions, the initial temperature is from room temperature to the melting point (TA ′) − 50 ° C. of the raw material of the melt liquid crystal forming polyester, and then from TA′−40 ° C. to the melting point (TB ′) of the raw material of the flexible thermoplastic polymer. It is preferable to carry out with a temperature pattern in which the temperature is raised sequentially. The heat treatment time is from several minutes to several tens of hours depending on the target performance.

熱処理における熱の供給は、気体等の媒体を用いる方法、加熱板、赤外線ヒーター等による輻射熱を利用する方法、熱ローラー、熱プレート等に接触させて行う方法、高周波等を利用した内部加熱方法が使用できる。また、熱処理は目的により緊張下あるいは無緊張下で行い、形状はパッケージ、カセ状、トウ状(例えば、金属網等にのせて行う)、あるいはローラー間で連続的に処理することも可能である。特にパッケージ形状は長繊維の熱処理に適しており、ローラー間での連続処理と比較して長時間、高温で処理を行うことができ、更に低コストである。繊維の形態はフィラメント状あるいはカットファイバー状いずれも可能である。   The heat supply in the heat treatment includes a method using a medium such as a gas, a method using radiant heat from a heating plate, an infrared heater, etc., a method in contact with a heat roller, a heat plate, etc., an internal heating method using high frequency, etc. Can be used. Further, the heat treatment is performed under tension or non-tension depending on the purpose, and the shape can be processed in a package, crushed shape, tow shape (for example, placed on a metal net or the like), or continuously between rollers. . In particular, the package shape is suitable for heat treatment of long fibers, and can be processed at a high temperature for a long time as compared with continuous processing between rollers, and the cost is further reduced. The form of the fiber can be either filament or cut fiber.

本発明の複合繊維は、マルチフィラメント、モノフィラメント、ステープルファイバー、カットファイバーなど任意の形態でよい。また、織物、編物、不織布、組み紐などの繊維構造物として利用することができる。本発明のような高強度、高弾性率でかつ摩擦耐久性、屈曲耐久性に優れる繊維であるため、モノフィラメントとして好適である。   The composite fiber of the present invention may be in any form such as multifilament, monofilament, staple fiber, cut fiber. Moreover, it can utilize as fiber structures, such as a textile fabric, a knitted fabric, a nonwoven fabric, and a braid. Since it is a fiber having high strength, high elastic modulus, excellent friction durability and bending durability as in the present invention, it is suitable as a monofilament.

本発明におけるモノフィラメントは、従来のポリエチレンテレフタレート繊維等を使用したスクリーン用途に適用することができる。本発明におけるスクリーン紗とは、セラミック、ガラス、織物、CD/DVD表面等へのグラフィック印刷や電子回路基盤印刷等に用いるスクリーンのことであり、その製造方法は従来公知の方法を用いることができる。本発明における複合繊維は優れた強度、弾性率及び寸法安定性を持つことから、特に高密度スクリーンや大型基盤への適用が好ましい。この場合、平均繊維径としては、5〜100μmが好ましく、より好ましくは10〜50μmであり、断面は円形であることが好ましい。 本発明の効果を損なわない範囲で他の繊維と混用したスクリーンとしてもかまわない。   The monofilament in the present invention can be applied to screen applications using conventional polyethylene terephthalate fibers or the like. The screen ridge in the present invention is a screen used for graphic printing or electronic circuit board printing on ceramic, glass, woven fabric, CD / DVD surface, etc., and a conventionally known method can be used as its production method. . Since the conjugate fiber in the present invention has excellent strength, elastic modulus and dimensional stability, it is particularly preferable to apply it to a high-density screen or a large substrate. In this case, the average fiber diameter is preferably 5 to 100 μm, more preferably 10 to 50 μm, and the cross section is preferably circular. A screen mixed with other fibers may be used as long as the effects of the present invention are not impaired.

それ以外に本発明の複合繊維は、一般産業用資材、建築材料、スポーツ用途、防塵衣、ゴム補強資材、電気材料、音響資材等の分野で用いられ、特に、織物の形態での使用に適するものである。これらの用途に対して、本複合繊維の好適な繊度範囲は、マルチフィラメントとして10〜10000dtex、あるいは単糸として0.1〜100dtexである。   In addition, the composite fiber of the present invention is used in the fields of general industrial materials, building materials, sports applications, dustproof clothing, rubber reinforcing materials, electrical materials, acoustic materials, etc., and is particularly suitable for use in the form of textiles. Is. For these applications, the preferred fineness range of the composite fiber is 10 to 10000 dtex as a multifilament, or 0.1 to 100 dtex as a single yarn.

次に、具体的実施例により本発明を更に詳細に説明するが、本発明はこれにより何ら限定されるものではない。なお、実施例で挙げられている物性の測定方法を以下に示す。   Next, the present invention will be described in more detail with reference to specific examples, but the present invention is not limited thereto. In addition, the measuring method of the physical property quoted in the Example is shown below.

A.融点
示差走査熱量計(パーキンエルマー社製DSC2920型)にて、昇温速度16℃/minの条件で観察される吸熱ピークのピーク温度を測定する。
A. Melting | fusing point The peak temperature of the endothermic peak observed on the conditions of the temperature increase rate of 16 degrees C / min is measured with a differential scanning calorimeter (DSC2920 type | mold by Perkin-Elmer).

B.強伸度、弾性率
試料長100mm、引張速度50mm/minとしたこと以外はJIS L1013に準じ、オリエンテック社製テンシロンUCT−100を用いて測定する。
B. High elongation, elastic modulus Measured using Tensilon UCT-100 manufactured by Orientec, according to JIS L1013, except that the sample length is 100 mm and the tensile speed is 50 mm / min.

C.繊維の横断面観察
繊維サンプルを常法によりエポキシ包埋し、ウルトラミクロトームで切片を採取し、日立製作所製透過型電子顕微鏡H−800で観察した。
C. Cross-sectional observation of fiber A fiber sample was embedded in an epoxy by a conventional method, a section was collected with an ultramicrotome, and observed with a transmission electron microscope H-800 manufactured by Hitachi.

D.摩擦耐久性評価
φ3mmの梨地の金属棒に接触角100°で糸(熱処理糸)をかけ、3.0cN/dtexの荷重をつるし、ストローク長30mm、速度100回/minで往復運動を与え、毛羽、剥離、フィブリルが発生するまでのストローク回数を測定する。
D. Friction durability evaluation Threaded (heat treated yarn) at a contact angle of 100 ° on a 3 mm satin metal bar, suspended at a load of 3.0 cN / dtex, given a reciprocating motion at a stroke length of 30 mm and a speed of 100 times / min. Measure the number of strokes until peeling, fibrils occur.

E.解舒性
解舒速度100m/minにて、ほぼ抵抗無く解舒できたものを○、軽い融着があり、局所的に抵抗があったが解舒できたものを△、この速度では融着がひどく糸切れが発生し解舒できなかったものを×とする。
E. Unraveling When the unraveling speed is 100 m / min, it can be solved with almost no resistance. ○, there is a light fusion, there is a local resistance but the unraveling is △, at this speed, the fusion is Is marked with x if the thread breakage occurred and could not be unraveled.

実施例1〜5
溶融液晶形成性ポリエステルとして、p−ヒドロキシ安息香酸単位が全体の60mol%、4,4´−ジヒドロキシビフェニル単位が20mol%、テレフタル酸単位が10mol%、イソフタル酸単位が10mol%から構成された融点314℃の溶融液晶形成性ポリエステル(以下、LCP1と呼ぶ)、屈曲性熱可塑性ポリマーとしてビクトレックス社製ポリエーテルエーテルケトン樹脂PEEK90G(融点344℃。以下、PEEKと呼ぶ)を用いた。ペレット状にて、LCP1とPEEKを重量比60/40の比率で混合した後、エクストルーダーにて溶融・混練し、ノズル径0.30mm、ノズル長0.65mm、10ホールの口金を用いて、紡糸温度370℃にて6g/minで吐出した。吐出された糸を大気中にて固化させ、該固化糸一本のみを速度600m/minで巻取り、10dtexのモノフィラメントを得た。この紡糸原糸を、窒素ガス雰囲気中で初期温度240℃で3時間、次に4℃/hrで最終到達温度310℃まで昇温し、さらに10時間熱処理を行なった。熱処理はパッケージ形状で行ない、実施例1の複合繊維を得た。
Examples 1-5
As melted liquid crystal forming polyester, p-hydroxybenzoic acid unit is composed of 60 mol% of the whole, 4,4′-dihydroxybiphenyl unit is 20 mol%, terephthalic acid unit is 10 mol%, and isophthalic acid unit is 10 mol%. Polyester ether ketone resin PEEK90G (melting point: 344 ° C., hereinafter referred to as PEEK) manufactured by Victrex was used as a melt liquid crystal forming polyester (hereinafter referred to as LCP1) at a temperature of 0 ° C. and a flexible thermoplastic polymer. In a pellet form, LCP1 and PEEK were mixed at a weight ratio of 60/40, then melted and kneaded with an extruder, using a nozzle with a nozzle diameter of 0.30 mm, a nozzle length of 0.65 mm, and 10 holes, The yarn was discharged at a spinning temperature of 370 ° C. at 6 g / min. The discharged yarn was solidified in the atmosphere, and only one solidified yarn was wound at a speed of 600 m / min to obtain a 10 dtex monofilament. The spinning yarn was heated in a nitrogen gas atmosphere at an initial temperature of 240 ° C. for 3 hours, then at 4 ° C./hr to a final ultimate temperature of 310 ° C., and further subjected to heat treatment for 10 hours. The heat treatment was performed in the form of a package, and the conjugate fiber of Example 1 was obtained.

実施例2では、熱処理の最終到達温度を320℃とした以外、実施例1と同条件で複合繊維を得た。   In Example 2, a composite fiber was obtained under the same conditions as in Example 1 except that the final temperature for heat treatment was 320 ° C.

実施例3では、溶融液晶形成性ポリエステルとして、p−ヒドロキシ安息香酸単位が全体の73mol%、6−ヒドロキシ−2−ナフトエ酸単位が27mol%から構成された融点278℃の溶融液晶形成性ポリエステル(以下、LCP2と呼ぶ)を用い、熱処理の最終到達温度を270℃とした以外、実施例1と同条件で複合繊維を得た。   In Example 3, as the molten liquid crystal forming polyester, a molten liquid crystal forming polyester having a melting point of 278 ° C. composed of 73 mol% of p-hydroxybenzoic acid units and 27 mol% of 6-hydroxy-2-naphthoic acid units ( Hereinafter, a composite fiber was obtained under the same conditions as in Example 1 except that LCP2 was used and the final temperature of the heat treatment was 270 ° C.

実施例4では、芯鞘複合繊維用の口金を用い、芯成分にLCP1、鞘成分にLCP1とPEEKを複合重量比30/70の比率で混合したものを用い、芯と鞘を重量比70/30とし、熱処理を含めた他の条件を実施例1と同じにして複合繊維を得た。   In Example 4, a core for sheath-core composite fiber was used, LCP1 was used as the core component, and LCP1 and PEEK were mixed at a composite weight ratio of 30/70 as the sheath component. 30 and other conditions including heat treatment were the same as in Example 1 to obtain a composite fiber.

実施例5では、芯成分にLCP1とPEEKを複合重量比70/30の比率で混合したもの、鞘成分にLCP1とPEEKを複合重量比30/70の比率で混合したものを用い、その他の条件を実施例4と同条件で複合繊維を得た。   In Example 5, the core component was mixed with LCP1 and PEEK at a composite weight ratio of 70/30, and the sheath component was mixed with LCP1 and PEEK at a composite weight ratio of 30/70. Other conditions A composite fiber was obtained under the same conditions as in Example 4.

実施例1〜5に示される本発明の複合繊維の物性を表1に示す。   Table 1 shows the physical properties of the conjugate fibers of the present invention shown in Examples 1 to 5.

本発明の複合繊維は、熱処理後の繊維間融着が無く解舒性も良好であり、光学顕微鏡で観察したところ凹凸の無いものであった。また、高強度及び高弾性率を有し、かつ摩擦耐久性に優れたものであり、スクリーン紗用モノフィラメントとして優れた物性を有していた。さらに、融点を測定したところ、実施例の全水準においてTB>TA+10℃となっていることを確認した。   The conjugate fiber of the present invention had no inter-fiber fusion after heat treatment and good unwinding properties. When observed with an optical microscope, the conjugate fiber was not uneven. Moreover, it had high strength and high elastic modulus and excellent friction durability, and had excellent physical properties as a monofilament for a screen cage. Furthermore, when melting | fusing point was measured, it confirmed that it was TB> TA + 10 degreeC in all the levels of the Example.

比較例1〜4
比較例1では、屈曲性熱可塑性ポリマーを用いずにLCP1のみを用い、紡糸温度を340℃としたこと以外、実施例1と同条件で熱処理まで行い複合繊維を得た。
Comparative Examples 1-4
In Comparative Example 1, a composite fiber was obtained by performing heat treatment under the same conditions as in Example 1 except that only LCP1 was used without using a flexible thermoplastic polymer and the spinning temperature was 340 ° C.

比較例2では、溶融液晶形成性ポリエステルとしてLCP2、屈曲性熱可塑性ポリマーとして、融点267℃の2,6−ポリエチレンナフタレート(以下、PENと呼ぶ)を用いて、熱処理の最終到達温度を260℃とした以外、実施例1と同条件で熱処理糸を得た。   In Comparative Example 2, LCP2 was used as the molten liquid crystal forming polyester, 2,6-polyethylene naphthalate (hereinafter referred to as PEN) having a melting point of 267 ° C. was used as the flexible thermoplastic polymer, and the final temperature of heat treatment was 260 ° C. A heat treated yarn was obtained under the same conditions as in Example 1 except that.

比較例3では、熱処理の最終到達温度を270℃とした以外、実施例1と同条件で熱処理糸を得た。   In Comparative Example 3, a heat treated yarn was obtained under the same conditions as in Example 1 except that the final temperature of heat treatment was 270 ° C.

比較例4では、芯鞘複合繊維用の口金を用い、芯成分にLCP2、鞘成分に融点293℃のポリシクロヘキサンジメタノールテレフタレート(以下、PCTと呼ぶ)を用い、芯と鞘を重量比65/35とし、熱処理の最終到達温度を270℃とした以外、実施例1と同条件で熱処理糸を得た。   In Comparative Example 4, a core / sheath composite fiber base was used, LCP2 was used as the core component, polycyclohexanedimethanol terephthalate (hereinafter referred to as PCT) having a melting point of 293 ° C. was used as the sheath component, and the core / sheath had a weight ratio of 65 / 35, and a heat treated yarn was obtained under the same conditions as in Example 1 except that the final temperature of heat treatment was 270 ° C.

比較例1〜4に示される繊維は、熱処理後の繊維間融着があり、解舒時にフィブリルが発生した。比較例1は、高強度及び高弾性率を有するものの、繊維表面に溶融液晶形成性ポリエステルしか存在していないため、摩擦耐久性が著しく低いものであった。比較例2は、熱処理温度が不十分であるために強度及び弾性率がやや低く、繊維間融着の影響で摩擦耐久性も低いものとなった。比較例3では、解舒時に断糸トラブルが多発し、フィラメントを得ることが困難であった。比較例4では、高強度及び高弾性率を有する繊維が得られたものの、熱処理後に繊維間融着があり、解舒時に界面剥離が起こったため摩擦耐久性の低いものとなった。よって、比較例1〜4に挙げられる繊維はスクリーン紗用モノフィラメントとしては実用に供し得るものではなかった。   The fibers shown in Comparative Examples 1 to 4 had inter-fiber fusion after heat treatment, and fibrils were generated during unwinding. Although Comparative Example 1 has a high strength and a high elastic modulus, since only the melted liquid crystal forming polyester is present on the fiber surface, the friction durability is extremely low. In Comparative Example 2, since the heat treatment temperature was insufficient, the strength and elastic modulus were slightly low, and the friction durability was also low due to the effect of fusion between fibers. In Comparative Example 3, it was difficult to obtain a filament due to frequent yarn troubles during unwinding. In Comparative Example 4, although fibers having high strength and high elastic modulus were obtained, there was fusion between fibers after heat treatment, and interface peeling occurred during unraveling, resulting in low friction durability. Therefore, the fibers mentioned in Comparative Examples 1 to 4 were not practically usable as screen filament monofilaments.

Figure 2007204888
Figure 2007204888

Claims (5)

溶融液晶形成性ポリエステルと屈曲性熱可塑性ポリマーとから構成される複合繊維であって、該溶融液晶性形成性ポリエステルの複合比率が40〜90重量%であり、該複合繊維の表層を形成する成分が該溶融液晶形成性ポリエステルと該屈曲性熱可塑性ポリマーの混合物から構成され、かつ該溶融液晶形成性ポリエステルの融点をTA、該屈曲性熱可塑性ポリマーの融点をTBとしたとき、TB>TA+10℃を満たすことを特徴とする複合繊維。   A composite fiber composed of a molten liquid crystal forming polyester and a flexible thermoplastic polymer, wherein the composite ratio of the molten liquid crystal forming polyester is 40 to 90% by weight, and a component that forms a surface layer of the composite fiber Is composed of a mixture of the molten liquid crystal forming polyester and the flexible thermoplastic polymer, and when the melting point of the molten liquid crystal forming polyester is TA and the melting point of the flexible thermoplastic polymer is TB, TB> TA + 10 ° C. A composite fiber characterized by satisfying 複合繊維の横断面の表層付近において、溶融液晶形成性ポリエステルが分散層を形成し、屈曲性熱可塑性ポリマーが連続層を形成することを特徴とする請求項1記載の複合繊維。   2. The composite fiber according to claim 1, wherein the liquid crystal-forming polyester forms a dispersion layer and the flexible thermoplastic polymer forms a continuous layer in the vicinity of the surface layer of the cross section of the composite fiber. 屈曲性熱可塑性ポリマーがポリエーテルエーテルケトンであることを特徴とする請求項1または2に記載の複合繊維。   The composite fiber according to claim 1 or 2, wherein the flexible thermoplastic polymer is polyetheretherketone. 複合繊維がモノフィラメントであることを特徴とする請求項1〜3のいずれか1項に記載の複合繊維。   The composite fiber according to any one of claims 1 to 3, wherein the composite fiber is a monofilament. 請求項4記載の複合繊維からなるスクリーン紗。   A screen bottle made of the composite fiber according to claim 4.
JP2006026638A 2006-02-03 2006-02-03 Melt liquid crystal forming polyester composite fiber Expired - Fee Related JP4892999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006026638A JP4892999B2 (en) 2006-02-03 2006-02-03 Melt liquid crystal forming polyester composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006026638A JP4892999B2 (en) 2006-02-03 2006-02-03 Melt liquid crystal forming polyester composite fiber

Publications (2)

Publication Number Publication Date
JP2007204888A true JP2007204888A (en) 2007-08-16
JP4892999B2 JP4892999B2 (en) 2012-03-07

Family

ID=38484593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006026638A Expired - Fee Related JP4892999B2 (en) 2006-02-03 2006-02-03 Melt liquid crystal forming polyester composite fiber

Country Status (1)

Country Link
JP (1) JP4892999B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014125708A (en) * 2012-12-27 2014-07-07 Kuraray Co Ltd Sheath-core composite fiber having heat resistance
KR101992445B1 (en) * 2018-01-31 2019-06-25 주식회사 휴비스 Process For Producing Polyphenylene Sulfide Filament Fibers And Fibers Therefrom
JP2020521893A (en) * 2017-05-30 2020-07-27 ペルロン・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Polyketone fiber, its manufacture and use

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1178275A (en) * 1997-07-10 1999-03-23 Kuraray Co Ltd Screen gauze
JP2000239925A (en) * 1999-02-18 2000-09-05 Kuraray Co Ltd Resin-reinforcing material and composite material
JP2002043179A (en) * 2000-07-19 2002-02-08 Kuraray Co Ltd Electric double-layer capacitor
JP2003239137A (en) * 2001-12-14 2003-08-27 Toray Ind Inc Conjugated fiber
JP2004218097A (en) * 2003-01-09 2004-08-05 Toray Ind Inc Method for producing sea-island type blend fiber
JP2004284134A (en) * 2003-03-20 2004-10-14 Toray Ind Inc Screen gauze

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1178275A (en) * 1997-07-10 1999-03-23 Kuraray Co Ltd Screen gauze
JP2000239925A (en) * 1999-02-18 2000-09-05 Kuraray Co Ltd Resin-reinforcing material and composite material
JP2002043179A (en) * 2000-07-19 2002-02-08 Kuraray Co Ltd Electric double-layer capacitor
JP2003239137A (en) * 2001-12-14 2003-08-27 Toray Ind Inc Conjugated fiber
JP2004218097A (en) * 2003-01-09 2004-08-05 Toray Ind Inc Method for producing sea-island type blend fiber
JP2004284134A (en) * 2003-03-20 2004-10-14 Toray Ind Inc Screen gauze

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014125708A (en) * 2012-12-27 2014-07-07 Kuraray Co Ltd Sheath-core composite fiber having heat resistance
JP2020521893A (en) * 2017-05-30 2020-07-27 ペルロン・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Polyketone fiber, its manufacture and use
KR101992445B1 (en) * 2018-01-31 2019-06-25 주식회사 휴비스 Process For Producing Polyphenylene Sulfide Filament Fibers And Fibers Therefrom

Also Published As

Publication number Publication date
JP4892999B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
KR101412284B1 (en) Liquid crystalline polyester fiber and process for production of the same
JP6183210B2 (en) Liquid crystalline polyester multifilament
JP5286827B2 (en) Liquid crystal polyester fiber
JP4661528B2 (en) Method for producing high-strength fibers with improved wear resistance
US20160340804A1 (en) Liquid crystal polyester fiber and producing method thereof
JP5428271B2 (en) Method for producing liquid crystal polyester fiber
JP2010242246A (en) Method for producing liquid crystal polyester fiber
JP2017179647A (en) Liquid crystal polyester multifilament, manufacturing method therefor and high level processed product
JP4892999B2 (en) Melt liquid crystal forming polyester composite fiber
JP2006207085A (en) Nonwoven fabric
JP4983689B2 (en) Method for producing liquid crystal polyester fiber
JP4706438B2 (en) High strength composite fiber
JP2013133575A (en) Liquid crystal polyester multifilament for filament separation
JP2009235633A (en) Production method of liquid crystal polyester fiber
JP5187224B2 (en) Method for producing molten liquid crystalline polyester fiber
JP4802663B2 (en) Core-sheath type composite fiber
WO2020166316A1 (en) Liquid-crystal polyester multifilament, and high-level processed product comprising same
JP4826416B2 (en) Core-sheath type composite fiber
JP6121867B2 (en) Method for producing aromatic polyester fiber
JP4100176B2 (en) Manufacturing method of sea-island type blend fiber
JP2004284134A (en) Screen gauze
JP3875797B2 (en) Core-sheath type composite fiber
JP6608376B2 (en) Melt anisotropic aromatic polyester fiber and method for producing the same
JP2003239137A (en) Conjugated fiber
WO2022186157A1 (en) Core-sheath composite fiber and fiber structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

R151 Written notification of patent or utility model registration

Ref document number: 4892999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees