JP2007204834A - Heat treatment method for gear member and device therefor - Google Patents

Heat treatment method for gear member and device therefor Download PDF

Info

Publication number
JP2007204834A
JP2007204834A JP2006027425A JP2006027425A JP2007204834A JP 2007204834 A JP2007204834 A JP 2007204834A JP 2006027425 A JP2006027425 A JP 2006027425A JP 2006027425 A JP2006027425 A JP 2006027425A JP 2007204834 A JP2007204834 A JP 2007204834A
Authority
JP
Japan
Prior art keywords
gear member
cooling
inner ring
tooth portion
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006027425A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Yamamoto
光宏 山本
Shinichi Sekido
慎一 関戸
Tomohiro Nagata
智大 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2006027425A priority Critical patent/JP2007204834A/en
Publication of JP2007204834A publication Critical patent/JP2007204834A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat treatment method for a gear member and a device therefor where self-annealing treatment is performed by utilizing a part of the heat applied to a gear member upon quenching, thus energy saving is attained, and the simplification of equipment or the like can be realized. <P>SOLUTION: Each gear part 11b in an inner ring 11 is arranged so as to face a high frequency inductor 24 in the heat treatment device over the whole circumference. In this state, high frequency electric current is fed to the high frequency inductor 24 from the outside, and each gear part 11B in the inner ring 11 is collectively heated to a set temperature. Thereafter, cooling water is fed from the side of a passage member 26 in a state where the high frequency inductor 24 is stopped, thus each gear part 11B in a high temperature state is collectively cooled to a prescribed cooling temperature. Then, at the time when each gear part 11B reaches the prescribed cooling temperature, the feed of the cooling water is immediately stopped, thus remaining heat is secured on the side of the ring body 11A in the inner ring 11, and, by utilizing the remaining heat at this time, each gear part 11B in the inner ring 11 is self-tempered. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば動力伝達用の歯車、旋回輪の内輪または外輪等のように耐摩耗性や耐衝撃性が要求される歯車部材に対して焼入れ、焼戻し処理を施すのに好適に用いられる歯車部材の熱処理方法及びその装置に関する。   The present invention is a gear suitably used for quenching and tempering gear members that require wear resistance and impact resistance, such as a power transmission gear, an inner ring or an outer ring of a turning wheel, and the like. The present invention relates to a member heat treatment method and apparatus.

一般に、建設機械等の機械部品に使用される歯車部材は、例えば鍛造、切削等の機械加工手段を用いて所定の歯車形状に成形した後に、複数の歯部に対して通常は焼入れ、焼戻し等の熱処理を施し、それぞれの歯部に適正な硬度や剛性を与えることにより完成品とされる。   In general, gear members used for machine parts such as construction machines are usually hardened, tempered, etc. for a plurality of tooth portions after being formed into a predetermined gear shape using a machining means such as forging and cutting. The finished product is made by giving the appropriate hardness and rigidity to each tooth part.

特に、歯車部材は、各歯部の表面(歯面)側において耐衝撃性、耐ピッチング性、耐摩耗性が要求され、内部側ではある程度の靱性が必要なことから、高周波焼入れという熱処理を施すことが知られている。そして、歯車部材に対する焼入れ処理を行った後には、焼入れ温度よりも十分に低い温度(例えば、200〜250℃の温度)で焼戻し処理を行うことにより、歯車部材の内部応力を緩和するようにしている(例えば、特許文献1参照)。   In particular, the gear member is required to have impact resistance, pitting resistance, and wear resistance on the surface (tooth surface) side of each tooth portion, and requires a certain degree of toughness on the inner side. It is known. And after performing the quenching process with respect to the gear member, the internal stress of the gear member is relieved by performing a tempering process at a temperature sufficiently lower than the quenching temperature (for example, a temperature of 200 to 250 ° C.). (For example, refer to Patent Document 1).

即ち、焼入れ処理後の歯車部材は、硬度や剛性を高くすることができるが、急冷による組織変態(マルテンサイト変態)のために残留応力が生じ、靭性に劣るという欠点を持っている。そこで、焼入れ後の歯車部材に対して焼戻し処理を行うことにより内部応力を緩和させ、靭性を与えるものである。   That is, the gear member after the quenching treatment can be increased in hardness and rigidity, but has a drawback that residual stress is generated due to a structural transformation (martensitic transformation) due to rapid cooling, resulting in poor toughness. Therefore, the tempering process is performed on the gear member after quenching to relieve internal stress and toughness.

また、自動車用エンジンのカムシャフト等を金型鋳造法により鋳物(鋳造品)として製作する場合に、金型から鋳造品を離型させたときの内部温度(鋳造時の熱)を利用して、鋳造品に対する自己焼戻しを含む熱処理を行うようにした金型鋳造品の熱処理方法は知られている(例えば、特許文献2参照)。   In addition, when manufacturing camshafts of automobile engines as castings (castings) by the mold casting method, the internal temperature (heat during casting) when the casts are released from the molds is used. In addition, a heat treatment method for a die casting product in which heat treatment including self-tempering is performed on the cast product is known (see, for example, Patent Document 2).

特開2000−282145号公報JP 2000-282145 A 特開平11−350030号公報JP-A-11-350030

ところで、上述した従来技術(特許文献1)では、焼入れ処理と焼戻し処理とを同一の高周波誘導子で行うことにより、熱処理装置全体の簡略化、省スペース化等を図るようにしている。しかし、この場合でも、同一の高周波誘導子を焼入れ工程と焼戻し工程とで一方向と他方向とに往復させるため、高周波誘導子の移動(往復動)に余分な時間と労力を費やすという問題がある。   By the way, in the above-described conventional technique (Patent Document 1), the quenching process and the tempering process are performed with the same high-frequency inductor, thereby simplifying the entire heat treatment apparatus and saving space. However, even in this case, since the same high frequency inductor is reciprocated in one direction and the other direction in the quenching process and the tempering process, there is a problem that extra time and labor are spent on the movement (reciprocation) of the high frequency inductor. is there.

そして、焼戻し工程では、前記高周波誘導子に給電を行って所定の焼戻し温度まで歯車部材を再度加熱するために、これによってエネルギ消費量が余分に増大し、省エネルギ化を実現することができない。また、焼入れ工程でも歯車部材を高い温度に加熱した後に、冷却媒体を用いて十分に低い温度まで急速冷却を行うため、このときの冷却エネルギも余分に消費されるという問題がある。   In the tempering step, the gear member is heated again to a predetermined tempering temperature by supplying power to the high-frequency inductor, so that the energy consumption is excessively increased and energy saving cannot be realized. Further, in the quenching process, after the gear member is heated to a high temperature, rapid cooling is performed to a sufficiently low temperature using a cooling medium, so that there is a problem that extra cooling energy is consumed.

一方、他の従来技術(特許文献2)では、金型から鋳造品を離型させたときの内部温度(鋳造時の熱)を利用して、鋳造品に対する自己焼戻しを行う構成であるため、鋳造品に対する焼戻し工程(処理)を効率化することができ、エネルギ消費量を低減し、省エネルギ化を実現できるという利点がある。   On the other hand, in the other prior art (Patent Document 2), the internal temperature (heat at the time of casting) when the cast product is released from the mold is used for self-tempering the cast product. There is an advantage that the tempering process (processing) for the cast product can be made efficient, energy consumption can be reduced, and energy saving can be realized.

しかし、この場合の自己焼戻し処理は、金型内に溶湯を注入したときの熱(鋳造時の熱)を利用するものであり、製品の硬度や剛性を高くするための焼入れ処理を予め行うものではない。このため、鍛造、切削等の機械加工手段を用いて所定の歯車形状に成形した歯車部品に対して、焼入れ、焼戻し処理を行う場合とは技術背景が異なるものである。   However, the self-tempering process in this case uses heat generated when the molten metal is poured into the mold (heat during casting), and performs a quenching process in advance to increase the hardness and rigidity of the product. is not. For this reason, the technical background is different from the case where a gear part molded into a predetermined gear shape using a machining means such as forging and cutting is subjected to quenching and tempering.

また、金型を用いる鋳造品の素材としては、例えば炭素の含有量が2〜3%以上の鋳鉄材料を用いるために、耐摩耗性や耐衝撃性等が要求される歯車部材には適さないものである。そして、このような歯車部材の素材としては、例えば炭素の含有量が0.8%未満である亜共析鋼を用いて形成する場合が多い。   In addition, as a material of a cast product using a mold, for example, a cast iron material having a carbon content of 2 to 3% or more is used, so that it is not suitable for a gear member that requires wear resistance, impact resistance, or the like. Is. And as a raw material of such a gear member, for example, it is often formed using hypoeutectoid steel having a carbon content of less than 0.8%.

本発明は上述した従来技術の問題に鑑みなされたもので、本発明の目的は、焼入れ時に歯車部材に加えた入熱の一部を利用して自己焼戻し処理を行うことにより、歯車部材に対する熱処理工程全体を効率的に行うことができ、省エネルギ化を図り、設備の簡素化等を実現することができるようにした歯車部材の熱処理方法及びその装置を提供することにある。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to perform heat treatment on the gear member by performing a self-tempering process using a part of heat input applied to the gear member during quenching. An object of the present invention is to provide a gear member heat treatment method and apparatus capable of efficiently performing the entire process, saving energy, and simplifying equipment.

上述した課題を解決するため、本発明は、複数の歯部を有する歯車部材を機械加工によって成形した後に、前記各歯部に対して焼入れ、焼戻しを行う歯車部材の熱処理方法に適用される。   In order to solve the above-described problems, the present invention is applied to a gear member heat treatment method in which a gear member having a plurality of tooth portions is formed by machining, and then the respective tooth portions are quenched and tempered.

そして、請求項1の発明が採用する熱処理方法の特徴は、前記歯車部材の各歯部を焼入れするため予め決められた設定温度まで前記各歯部を一括して加熱する加熱工程と、前記設定温度まで加熱された歯車部材の各歯部を外部から冷却媒体により急速に冷却する冷却工程と、前記各歯部が所定の冷却温度に達し前記歯車部材の母材側に残熱がある段階で前記冷却媒体による冷却を停止し、前記母材側の残熱を利用して各歯部に対する焼戻しを行う自己焼戻し工程とからなるものである。   And the feature of the heat treatment method adopted by the invention of claim 1 is that a heating step of heating each tooth portion collectively to a preset temperature for quenching each tooth portion of the gear member, and the setting A cooling process in which each tooth portion of the gear member heated to a temperature is rapidly cooled by a cooling medium from the outside, and each tooth portion reaches a predetermined cooling temperature and there is residual heat on the base material side of the gear member. It comprises a self-tempering step in which cooling by the cooling medium is stopped and tempering is performed on each tooth portion using residual heat on the base material side.

また、請求項2の発明によると、前記歯車部材は、炭素の含有量が0.8%未満である亜共析鋼を用いて形成されるものである。   According to a second aspect of the present invention, the gear member is formed using hypoeutectoid steel having a carbon content of less than 0.8%.

また、請求項3の発明によると、前記歯車部材は、旋回式建設機械の旋回輪を構成し内周側または外周側に前記複数の歯部が一体形成された内輪または外輪として用いるものである。   According to a third aspect of the present invention, the gear member is used as an inner ring or an outer ring that constitutes a swivel wheel of a swivel construction machine and in which the plurality of tooth portions are integrally formed on the inner peripheral side or the outer peripheral side. .

また、請求項4の発明によると、前記加熱工程での設定温度は、オーステナイト化変態点(A)以上の温度であり、前記所定の冷却温度は、マルテンサイト変態終了点(Mf)以下の温度に設定している。 According to the invention of claim 4, the set temperature in the heating step is a temperature equal to or higher than the austenitization transformation point (A 3 ), and the predetermined cooling temperature is equal to or lower than the martensitic transformation end point (Mf). The temperature is set.

また、請求項5の発明によると、前記自己焼戻し工程では、前記歯車部材全体を180〜280℃の温度に保つようにしている。   According to the invention of claim 5, in the self-tempering step, the entire gear member is maintained at a temperature of 180 to 280 ° C.

一方、請求項6の発明は、複数の歯部を有する歯車部材を機械加工によって成形した後に、前記各歯部に対して焼入れ、焼戻しを行う歯車部材の熱処理装置であって、前記歯車部材の各歯部に対向して配置され外部から給電されることにより該各歯部を一括して加熱する高周波誘導子と、該高周波誘導子に対する給電を停止した状態で外部から供給される冷却媒体により前記各歯部を一括して冷却する冷却手段とを備え、前記歯車部材には、前記各歯部を除いた母材側を外側から覆い、前記冷却媒体が母材側に付着するのを防ぐ遮蔽部材を設けてなる構成としている。   On the other hand, the invention of claim 6 is a gear member heat treatment apparatus for performing quenching and tempering on each tooth portion after forming a gear member having a plurality of tooth portions by machining. A high-frequency inductor that is disposed opposite to each tooth part and is heated from the outside by supplying power from the outside, and a cooling medium supplied from the outside in a state where power supply to the high-frequency inductor is stopped Cooling means for collectively cooling the tooth portions, and the gear member covers the base material side excluding the tooth portions from the outside to prevent the cooling medium from adhering to the base material side. The shielding member is provided.

上述の如く、請求項1に記載の発明によれば、歯車部材を機械加工によって成形した後に行う焼入れ処理は、前記歯車部材の各歯部を予め決められた焼入れ用の設定温度まで一括して加熱する加熱工程と、前記設定温度まで加熱された歯車部材の各歯部を外部から冷却媒体により急速に冷却する冷却工程とにより行い、その後の自己焼戻し工程は、前記各歯部が所定の冷却温度に達し前記歯車部材の母材側に残熱がある段階で前記冷却媒体による冷却を即座に停止しつつ、前記母材側の残熱を利用することによって、前記各歯部に対する焼戻しを行うようにしている。このため、従来技術のように、高周波誘導子に給電を行って所定の焼戻し温度まで歯車部材を再度加熱する必要がなくなり、焼戻しの過程で余分なエネルギ消費を抑えることができ、省エネルギ化を実現することができる。   As described above, according to the first aspect of the present invention, the quenching process performed after the gear member is formed by machining is performed at a time until each tooth portion of the gear member is set to a predetermined set temperature for quenching. The heating step for heating and the cooling step for rapidly cooling each tooth portion of the gear member heated to the set temperature from the outside by a cooling medium are performed. Tempering is performed on each tooth by using the residual heat on the base material side while immediately stopping the cooling by the cooling medium when the temperature reaches the temperature and there is residual heat on the base material side of the gear member. I am doing so. For this reason, unlike the prior art, there is no need to feed the high-frequency inductor and reheat the gear member to a predetermined tempering temperature, which can suppress excessive energy consumption during the tempering process, thereby saving energy. Can be realized.

従って、機械加工後の歯車部材に対して行う焼入れ処理(加熱工程)で歯車部材に加えた入熱の一部を、母材側の残熱として利用することにより、歯車部材の各歯部を自己焼戻しすることができ、焼戻し処理のために余分なエネルギ消費をなくすことができる。また、歯車部材に対する焼入れ処理の段階でも、加熱工程後に行う冷却工程において、各歯部が所定の冷却温度に達すると、冷却媒体の供給を即座に停止して歯車部材の母材側に残熱を確保するため、このときに冷却エネルギが余分に消費されるのを抑えることができ、歯車部材に対する熱処理工程全体を効率的に行うことができると共に、省エネルギ化を実現でき、設備の簡素化等も図ることができる。   Therefore, by utilizing a part of the heat input applied to the gear member in the quenching process (heating step) performed on the gear member after machining, each tooth portion of the gear member is used as residual heat on the base material side. It can self-temper and eliminates the extra energy consumption for the tempering process. Further, even in the stage of quenching treatment for the gear member, when each tooth portion reaches a predetermined cooling temperature in the cooling process performed after the heating process, the supply of the cooling medium is immediately stopped and the residual heat is supplied to the base material side of the gear member. Therefore, it is possible to suppress excessive consumption of cooling energy at this time, to efficiently perform the entire heat treatment process for the gear member, to realize energy saving, and to simplify the equipment. Etc. can also be aimed at.

また、請求項2に記載の発明は、炭素の含有量が0.8%未満である亜共析鋼を用いて歯車部材を形成するので、例えば鋳物材料(鋳造品)等に比較して機械的強度、剛性等を高めることができ、熱処理を行った状態では歯車部材の歯部に対して耐摩耗性や耐衝撃性等を与えることができる。   In the invention according to claim 2, since the gear member is formed using hypoeutectoid steel having a carbon content of less than 0.8%, for example, compared with a casting material (cast product) or the like, The mechanical strength, rigidity, and the like can be increased, and wear resistance, impact resistance, and the like can be imparted to the teeth of the gear member in a state where heat treatment is performed.

また、請求項3に記載の発明は、旋回式建設機械の旋回輪を構成する内輪、外輪のうち、その内周側または外周側に複数の歯部が一体形成されたものを、熱処理対象の歯車部材として用いることができ、旋回輪の歯車部分に要求される耐摩耗性や耐衝撃性等を、自己焼戻し工程を含む熱処理によって良好に確保することができる。   Further, the invention according to claim 3 is a heat treatment target of an inner ring and an outer ring constituting a turning wheel of a turning construction machine, in which a plurality of tooth portions are integrally formed on the inner peripheral side or the outer peripheral side. It can be used as a gear member, and the wear resistance, impact resistance, etc. required for the gear portion of the swivel ring can be satisfactorily ensured by heat treatment including a self-tempering step.

また、請求項4に記載の発明は、加熱工程での設定温度を、オーステナイト化変態点(A)以上の温度とし、冷却工程での冷却温度は、マルテンサイト変態終了点(Mf)以下の温度に設定することにより、加熱工程で歯車部材に加えた入熱の一部を母材側の残熱として有効に利用することができ、歯車部材の各歯部を効率的に自己焼戻しすることができる。 In the invention according to claim 4, the set temperature in the heating step is set to a temperature equal to or higher than the austenitization transformation point (A 3 ), and the cooling temperature in the cooling step is equal to or lower than the martensitic transformation end point (Mf). By setting the temperature, part of the heat input applied to the gear member in the heating process can be effectively used as the residual heat on the base material side, and each tooth portion of the gear member can be efficiently self-tempered. Can do.

また、請求項5に記載の発明では、自己焼戻し工程で歯車部材全体を180〜280℃の温度に保つことができ、歯車部材の各歯部に対する焼戻し処理を効率的に行うことができる。   In the invention according to claim 5, the entire gear member can be maintained at a temperature of 180 to 280 ° C. in the self-tempering step, and the tempering process for each tooth portion of the gear member can be efficiently performed.

一方、請求項6に記載の発明では、例えば鍛造、切削等の機械加工手段を用いて所定の歯車形状に成形した歯車部品の各歯部に対し、全周にわたって対向するように高周波誘導子を配置した状態で、該高周波誘導子に外部から高周波電流を給電することにより、歯車部材の各歯部を焼入れ用の設定温度まで一括して加熱することができ、その後は高周波誘導子に対する給電を停止した状態で冷却手段に外部から冷却媒体を供給することにより、高温状態の各歯部を所定の冷却温度まで一括して冷却することができる。そして、各歯部が所定の冷却温度に達したときに冷却媒体の供給を即座に停止することにより、歯車部材の母材側に残熱を確保することができ、このときの残熱を利用して歯車部材の各歯部を自己焼戻しすることができる。   On the other hand, in the invention described in claim 6, for example, a high frequency inductor is provided so as to face each tooth part of a gear part formed into a predetermined gear shape by using a machining means such as forging and cutting. In a state of being arranged, by supplying a high-frequency current to the high-frequency inductor from the outside, each tooth portion of the gear member can be heated up to a set temperature for quenching, and thereafter the power supply to the high-frequency inductor is supplied. By supplying a cooling medium from the outside to the cooling means in a stopped state, each tooth portion in a high temperature state can be collectively cooled to a predetermined cooling temperature. And when each tooth part reaches a predetermined cooling temperature, the supply of the cooling medium is immediately stopped, so that the residual heat can be secured on the base material side of the gear member, and the residual heat at this time is utilized. Thus, each tooth portion of the gear member can be self-tempered.

また、歯車部材の各歯部を除いた母材側を遮蔽部材で外側から覆うことにより、冷却手段からの冷却媒体が歯車部材の母材側に付着するのを防ぐ構成としているので、冷却媒体を歯車部材の各歯部に集中的に供給して効率的に急冷でき、歯車部材の母材側には遮蔽部材により十分な残熱を確保することができる。これにより、歯車部材に対する熱処理工程全体を効率的に行うことができ、省エネルギ化等を図ることができる。   Further, since the base material side excluding each tooth portion of the gear member is covered from the outside with a shielding member, the cooling medium from the cooling means is prevented from adhering to the base material side of the gear member. Can be intensively supplied to each tooth portion of the gear member for efficient quenching, and sufficient residual heat can be ensured on the base material side of the gear member by the shielding member. Thereby, the whole heat treatment process with respect to the gear member can be efficiently performed, and energy saving or the like can be achieved.

以下、本発明の実施の形態で採用した歯車部材の熱処理装置を添付図面に従って詳細に説明する。   Hereinafter, a gear member heat treatment apparatus employed in an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

ここで、図1ないし図6は本発明の第1の実施の形態を示し、本実施の形態の形態では、旋回式建設機械の旋回輪を構成する内輪と外輪のうち、内輪を歯車部材として用いる場合を例に挙げて説明する。   Here, FIG. 1 thru | or FIG. 6 shows the 1st Embodiment of this invention, and in this embodiment, an inner ring is used as a gear member among the inner ring | wheel and outer ring | wheel which comprise the turning ring | wheel of a turning type construction machine. The case where it is used will be described as an example.

図中、1は旋回式建設機械としての油圧ショベルで、この油圧ショベル1は、図1に示すように自走可能なクローラ式の下部走行体2と、該下部走行体2上に後述の旋回輪10を介して旋回可能に搭載された上部旋回体3と、後述の作業装置8とにより大略構成されている。そして、下部走行体2は、後述の旋回輪10が搭載されるトラックフレーム2A等を備えている。   In the figure, reference numeral 1 denotes a hydraulic excavator as a swivel construction machine. The hydraulic excavator 1 includes a crawler type lower traveling body 2 capable of self-propelling as shown in FIG. The upper revolving body 3 mounted so as to be able to swivel via the wheel 10 and a work device 8 described later are roughly configured. The lower traveling body 2 includes a track frame 2A on which a later-described turning wheel 10 is mounted.

4は上部旋回体3のフレームを構成する旋回フレームで、この旋回フレーム4は、その前側に後述の作業装置8が俯仰動可能に取付けられ、後側には後述のカウンタウエイト6が取付けられている。   Reference numeral 4 denotes a revolving frame that constitutes the frame of the upper revolving structure 3. The revolving frame 4 has a working device 8 (described later) attached to its front side so that it can be raised and lowered, and a counterweight 6 (described later) attached to its rear side. Yes.

5は旋回フレーム4の前部左側に配設された運転室を構成するキャブで、該キャブ5内には、オペレータが着席または着座する運転席、操作レバー、操作ペダル(いずれも図示せず)等が配設されている。   Reference numeral 5 denotes a cab that constitutes a driver's cab disposed on the left side of the front portion of the revolving frame 4, and a driver's seat on which the operator is seated or seated, an operating lever, and an operating pedal (all not shown). Etc. are arranged.

6は旋回フレーム4の後端側に設けられたカウンタウエイトで、該カウンタウエイト6は、旋回フレーム4の後端側に着脱可能に搭載され、前側の作業装置8に対して上部旋回体3全体の重量バランスをとるものである。また、カウンタウエイト6の前側には、エンジン(図示せず)等を収容する後述の建屋カバー7が設けられている。   6 is a counterweight provided on the rear end side of the revolving frame 4. The counterweight 6 is detachably mounted on the rear end side of the revolving frame 4, and the entire upper revolving unit 3 with respect to the front working device 8. The weight balance is taken. In addition, a building cover 7 (described later) that houses an engine (not shown) or the like is provided on the front side of the counterweight 6.

7はキャブ5とカウンタウエイト6との間に位置して旋回フレーム4上に立設された建屋カバーで、該建屋カバー7は、例えば薄い鋼板からなる複数枚の金属パネル等を用いて形成され、内部にエンジン等を収容する機械室(図示せず)を画成するものである。   Reference numeral 7 denotes a building cover which is positioned between the cab 5 and the counterweight 6 and is erected on the revolving frame 4. The building cover 7 is formed by using a plurality of metal panels made of, for example, thin steel plates. A machine room (not shown) in which an engine and the like are housed is defined.

8は上部旋回体3の前部に俯仰動可能に設けられた作業装置で、該作業装置8は、その先端側に設けた作業具としてのバケット9により、例えば土砂等の掘削作業を行うものである。   8 is a working device provided at the front portion of the upper swing body 3 so as to be able to move up and down. The working device 8 performs excavation work such as earth and sand with a bucket 9 as a working tool provided on the tip side thereof. It is.

10は下部走行体2と上部旋回体3との間に設けられた旋回輪で、この旋回輪10は、図2に示すように歯車部材としての内輪11と、該内輪11の外周側に複数の鋼球12(転動子)を介して回転可能に設けられた外輪13とにより構成されている。そして、旋回輪10の外輪13は、上部旋回体3の旋回フレーム4にボルト14等により固着されている。また、内輪11は下部走行体2のトラックフレーム2Aにボルト15等を用いて固着されている。   Reference numeral 10 denotes a turning wheel provided between the lower traveling body 2 and the upper turning body 3. The turning wheel 10 includes an inner ring 11 as a gear member and a plurality of outer rings on the outer side of the inner ring 11 as shown in FIG. And an outer ring 13 rotatably provided through a steel ball 12 (roller). The outer ring 13 of the turning wheel 10 is fixed to the turning frame 4 of the upper turning body 3 with bolts 14 or the like. The inner ring 11 is fixed to the track frame 2A of the lower traveling body 2 using bolts 15 or the like.

ここで、旋回輪10の内輪11は、炭素の含有量が0.8%未満である亜共析鋼のうち、例えば機械構造用炭素鋼(S48C)等を用いて、図2〜図4に示す如くリングギヤ(内歯車)として形成されるものである。   Here, the inner ring 11 of the turning wheel 10 includes, for example, carbon steel for mechanical structure (S48C) among hypoeutectoid steel having a carbon content of less than 0.8%. As shown, it is formed as a ring gear (internal gear).

そして、旋回輪10の内輪11は、歯車部材の母材となるリング体11Aと、該リング体11Aの内周側に一体形成され全周にわたる歯列からなる複数の歯部11Bと、リング体11Aの外周側に形成され旋回輪10の鋼球12が収容される略半円形状のボール収容溝11C等とにより構成されている。   The inner ring 11 of the turning wheel 10 includes a ring body 11A that is a base material of the gear member, a plurality of tooth portions 11B that are integrally formed on the inner peripheral side of the ring body 11A, and that are formed of teeth that extend over the entire circumference, and a ring body. It is formed of a substantially semicircular ball housing groove 11C formed on the outer peripheral side of 11A and housing the steel ball 12 of the swivel wheel 10.

また、内輪11には、図3に示すように上,下両側の端面11D,11Eのうち、トラックフレーム2A上に重ね合せて配置される端面11E側にねじ穴11Fが形成され、該ねじ穴11Fには、図2に示す前記ボルト15が螺着されるものである。   Further, as shown in FIG. 3, the inner ring 11 is formed with a screw hole 11F on the end surface 11E side of the upper and lower end surfaces 11D and 11E that are arranged on the track frame 2A. The bolt 15 shown in FIG. 2 is screwed to 11F.

16は旋回フレーム4上に設けられた旋回用の減速機で、この減速機16は、旋回用の油圧モータ(図示せず)により回転駆動され、その回転出力をピニオン17に伝達する。そして、ピニオン17は、内輪11の歯部11Bに噛合し、減速機16側からの回転出力を内輪11に伝える。これにより、上部旋回体3の旋回フレーム4は、下部走行体2のトラックフレーム2A上で旋回輪10を通じて旋回駆動されるものである。   Reference numeral 16 denotes a turning speed reducer provided on the turning frame 4. The speed reducer 16 is rotationally driven by a turning hydraulic motor (not shown) and transmits the rotation output to the pinion 17. Then, the pinion 17 meshes with the tooth portion 11 </ b> B of the inner ring 11 and transmits the rotation output from the reduction gear 16 side to the inner ring 11. Thereby, the turning frame 4 of the upper turning body 3 is driven to turn through the turning wheel 10 on the track frame 2A of the lower traveling body 2.

次に、21は内輪11の各歯部11Bに対して焼入れ、焼戻し処理を行うための熱処理装置で、該熱処理装置21は、図4、図5に示すように上,下の環状プレート22,23と、該環状プレート22,23間に挟持して設けられた後述の高周波誘導子24、冷却水の通路部材26とから大略構成されている。   Next, 21 is a heat treatment apparatus for quenching and tempering each tooth part 11B of the inner ring 11, and the heat treatment apparatus 21 includes upper and lower annular plates 22, as shown in FIGS. 23, a high-frequency inductor 24 (described later) provided between the annular plates 22 and 23, and a cooling water passage member 26.

そして、環状プレート22,23は、電気絶縁性を有する剛性材料により環状の板体として形成され、熱処理装置21のケーシングを構成するものである。また、環状プレート22,23のうち、例えば上側に位置する環状プレート22には、その中心側に貫通穴22A(図4参照)が形成され、後述の通路部材26には、この貫通穴22A内に挿通される配管(図示せず)等を通じて外部から冷却水が供給される。   The annular plates 22 and 23 are formed as an annular plate body from a rigid material having electrical insulation, and constitute a casing of the heat treatment apparatus 21. Further, of the annular plates 22 and 23, for example, the annular plate 22 located on the upper side is formed with a through hole 22A (see FIG. 4) on the center side thereof, and the passage member 26 described later has an inside of the through hole 22A. Cooling water is supplied from the outside through a pipe (not shown) or the like inserted through the pipe.

24は内輪11の各歯部11Bを一括して加熱する高周波誘導子で、該高周波誘導子24は、図4、図5に示す如く内輪11の各歯部11Bと径方向内側で全周にわたって対向する環状体として形成され、その上,下両面側は、絶縁体からなる環状プレート22,23により覆われている。そして、高周波誘導子24は、その全周にわたって延びる高周波コイル(図示せず)等を内蔵し、外部の高周波発生装置(図示せず)から高周波電力が給電されることにより、内輪11の各歯部11Bを全周にわたり一括して誘導加熱するものである。   Reference numeral 24 denotes a high-frequency inductor that collectively heats each tooth portion 11B of the inner ring 11, and the high-frequency inductor 24 extends over the entire circumference radially inward of each tooth portion 11B of the inner ring 11 as shown in FIGS. It is formed as an opposing annular body, and its upper and lower both sides are covered with annular plates 22 and 23 made of an insulator. The high-frequency inductor 24 incorporates a high-frequency coil (not shown) extending over the entire circumference thereof, and is fed with high-frequency power from an external high-frequency generator (not shown), whereby each tooth of the inner ring 11 is fed. The part 11B is induction-heated all over the circumference.

また、高周波誘導子24には、図5に示す如く多数の噴射孔25,25,…が設けられ、これらの噴射孔25は、高周波誘導子24の高さ(上,下)方向と周方向とに互いに離間して配設されている。そして、各噴射孔25は、後述の通路部材26と共に冷却手段を構成し、内輪11の各歯部11Bに向けて後述の冷却水を噴射供給するものである。   Further, as shown in FIG. 5, the high-frequency inductor 24 is provided with a large number of injection holes 25, 25,..., And these injection holes 25 are arranged in the height (upper and lower) direction and the circumferential direction of the high-frequency inductor 24. Are spaced apart from each other. And each injection hole 25 comprises a cooling means with the below-mentioned channel | path member 26, and supplies the below-mentioned cooling water toward each tooth | gear part 11B of the inner ring | wheel 11 by injection.

26は高周波誘導子24と共に環状プレート22,23間に挟持して設けられた冷却手段としての通路部材で、該通路部材26は、図4、図5に示す如くリング状をなす高周波誘導子24の径方向内側に位置し、その内周面に衝合して設けられた環状体として形成されている。そして、通路部材26内には、その全周にわたって延びる環状通路27と、一側が該環状通路27に連通し他側が高周波誘導子24の各噴射孔25に連通する多数の通液路28,28,…とが形成されている。   Reference numeral 26 denotes a passage member serving as a cooling means sandwiched between the annular plates 22 and 23 together with the high-frequency inductor 24. The passage member 26 is a ring-shaped high-frequency inductor 24 as shown in FIGS. It is formed as an annular body that is located on the inner side in the radial direction and is provided in contact with the inner peripheral surface thereof. In the passage member 26, an annular passage 27 extending over the entire circumference, and a number of liquid passages 28, 28 with one side communicating with the annular passage 27 and the other side communicating with the injection holes 25 of the high-frequency inductor 24. , ... are formed.

ここで、通路部材26の環状通路27は、環状プレート22,23の外部に配置された冷却媒体の供給源(図示せず)に前記配管等を介して接続され、この配管は、例えば貫通穴22A(図4参照)等を通じて環状プレート22,23間に導入されている。そして、通路部材26の環状通路27は、前記配管を介して供給される冷却媒体としての冷却水を多数の通液路28から高周波誘導子24の各噴射孔25に供給しつつ、これらの噴射孔25から内輪11の各歯部11Bに向けて噴出させる。   Here, the annular passage 27 of the passage member 26 is connected to a cooling medium supply source (not shown) disposed outside the annular plates 22 and 23 via the pipe or the like. It is introduced between the annular plates 22 and 23 through 22A (see FIG. 4). The annular passage 27 of the passage member 26 supplies cooling water as a cooling medium supplied through the piping to the injection holes 25 of the high-frequency inductor 24 from a large number of liquid passages 28, while It ejects from the hole 25 toward each tooth part 11B of the inner ring 11.

これにより、高周波誘導子24で一括して加熱された内輪11の各歯部11Bは、各噴射孔25からの冷却水により一括して急速に冷却される。そして、内輪11の各歯部11Bは、図6中に実線で示す特性線29の如く焼入れ処理されるものである。   Thereby, each tooth part 11B of the inner ring 11 heated at once by the high frequency inductor 24 is rapidly cooled by the cooling water from each injection hole 25 at once. Each tooth portion 11B of the inner ring 11 is subjected to quenching treatment as indicated by a characteristic line 29 shown by a solid line in FIG.

本実施の形態による内輪11の熱処理装置21は上述の如き構成を有するもので、次に、その熱処理方法について説明する。   The heat treatment apparatus 21 for the inner ring 11 according to the present embodiment has the above-described configuration. Next, the heat treatment method will be described.

まず、旋回輪10の内輪11を、炭素含有量が0.8%未満である亜共析鋼のうち、例えば機械構造用炭素鋼(S48C)等を用いてリングギヤとして形成し、内輪11(リング体11A)の内周側には、例えば鍛造、切削等の機械加工手段を用いて多数の歯部11B,11B,…を全周にわたり成形加工する。   First, the inner ring 11 of the turning wheel 10 is formed as a ring gear using, for example, carbon steel for mechanical structure (S48C) among hypoeutectoid steel having a carbon content of less than 0.8%, and the inner ring 11 (ring On the inner peripheral side of the body 11A), a large number of tooth portions 11B, 11B,... Are formed over the entire periphery by using machining means such as forging and cutting.

そして、この状態で図4、図5に示す如く内輪11を熱処理装置21に対して位置決めし、内輪11の歯部11B,11B,…を、熱処理装置21の高周波誘導子24と全周にわたって対面(対向)するように配置する。また、内輪11には温度センサ(図示せず)等を近接または接触させて配置し、各歯部11Bの温度変化を監視(モニタ)する。   4 and 5, the inner ring 11 is positioned with respect to the heat treatment device 21, and the teeth 11B, 11B,... Of the inner ring 11 face the high frequency inductor 24 of the heat treatment device 21 over the entire circumference. Arrange them so that they face each other. Further, a temperature sensor (not shown) or the like is disposed on or in contact with the inner ring 11 to monitor (monitor) the temperature change of each tooth portion 11B.

次に、この状態で高周波誘導子24の高周波コイル(図示せず)に外部から高周波電力を給電し、炭素鋼からなる内輪11の各歯部11Bを誘導加熱によって径方向内側から全周にわたり一括して加熱する(加熱工程)。   Next, in this state, high-frequency power is supplied from the outside to a high-frequency coil (not shown) of the high-frequency inductor 24, and each tooth portion 11B of the inner ring 11 made of carbon steel is collectively fed from the radially inner side to the entire circumference by induction heating. And heating (heating process).

これにより、内輪11の各歯部11Bは、図6中に実線で示す特性線29の如く室温状態から予め決められた焼入れのための設定温度T1、即ちオーステナイト化変態点(A)以上の温度T1(例えば、900℃を越える温度)まで加熱される。この加熱工程に要する時間は、図6に示すように約65〜75秒程度である。 As a result, each tooth portion 11B of the inner ring 11 is equal to or higher than the set temperature T1 for quenching predetermined from the room temperature state, that is, the austenitization transformation point (A 3 ) or more as indicated by a solid line in FIG. It is heated to a temperature T1 (for example, a temperature exceeding 900 ° C.). The time required for this heating step is about 65 to 75 seconds as shown in FIG.

そして、各歯部11Bが設定温度T1まで加熱された段階では、高周波誘導子24への給電を即座に停止し、外部から通路部材26の環状通路27に向けて冷却水を供給する。これにより、通路部材26の各通液路28、高周波誘導子24の各噴射孔25から各歯部11Bの歯面に向けて冷却媒体である冷却水を噴出させる(冷却工程)。   And in the stage where each tooth | gear part 11B was heated to preset temperature T1, the electric power feeding to the high frequency inductor 24 is stopped immediately, and cooling water is supplied toward the annular channel | path 27 of the channel | path member 26 from the exterior. Thereby, the cooling water which is a cooling medium is ejected toward each tooth surface of each tooth | gear part 11B from each liquid flow path 28 of the channel | path member 26, and each injection hole 25 of the high frequency inductor 24 (cooling process).

これにより、高周波誘導子24で加熱された内輪11の各歯部11Bを冷却水により一括して急速に冷却し、全ての歯部11Bをマルテンサイト変態終了点(Mf)以下の冷却温度T2(例えば、50〜100℃程度の所定温度)まで急冷する。この冷却工程に要する時間は、図6に示す如く約25秒程度である。   Thereby, each tooth | gear part 11B of the inner ring | wheel 11 heated with the high frequency inductor 24 is rapidly cooled collectively with cooling water, and all the tooth | gear parts 11B are cooled temperature T2 below the martensitic transformation end point (Mf) ( For example, it is rapidly cooled to a predetermined temperature of about 50 to 100 ° C. The time required for this cooling step is about 25 seconds as shown in FIG.

なお、機械構造用炭素鋼(S48C)を用いた内輪11は、例えば約760℃がオーステナイト化変態点(A)となり、マルテンサイト変態開始点(Ms)は約360℃であり、マルテンサイト変態終了点(Mf)は、例えば約240℃となるものである。 The inner ring 11 made of carbon steel for mechanical structure (S48C) has an austenitization transformation point (A 3 ) of about 760 ° C. and a martensite transformation start point (Ms) of about 360 ° C., and the martensite transformation. The end point (Mf) is about 240 ° C., for example.

次に、内輪11の各歯部11Bが所定の冷却温度T2に達し、内輪11のリング体11A(母材)側に残熱がある段階で冷却水による冷却を即座に停止する。そして、リング体11A側の残熱を利用しつつ、内輪11を大気中で放冷することによって、各歯部11Bに対する焼戻しを行う(自己焼戻し工程)。   Next, each tooth part 11B of the inner ring 11 reaches a predetermined cooling temperature T2, and cooling with the cooling water is immediately stopped when there is residual heat on the ring body 11A (base material) side of the inner ring 11. And it tempers with respect to each tooth | gear part 11B by allowing the inner ring | wheel 11 to cool in air | atmosphere, utilizing the residual heat by the side of the ring body 11A (self-tempering process).

この場合、内輪11の母材となるリング体11Aには、図6中に一点鎖線で示す特性線30のように、加熱工程で内輪11に加えた入熱の一部が母材側の残熱となって残り、リング体11A側は冷却工程の終了時にも、例えばマルテンサイト変態終了点(Mf)以上の温度状態にある。   In this case, a part of the heat input applied to the inner ring 11 in the heating process is left on the base material side in the ring body 11A as a base material of the inner ring 11 as shown by a characteristic line 30 shown by a one-dot chain line in FIG. It remains as heat, and the ring body 11A side is in a temperature state equal to or higher than the martensitic transformation end point (Mf), for example, even at the end of the cooling step.

そこで、図6に示す自己焼戻し工程では、リング体11A側の残熱を利用して内輪11の各歯部11Bを徐々に温度上昇させ、例えば図6に示す140〜150秒の時点では、歯部11Bを温度T3(例えば、180℃程度)まで昇温できるものである。   Therefore, in the self-tempering step shown in FIG. 6, the temperature of each tooth portion 11B of the inner ring 11 is gradually increased using the residual heat on the ring body 11A side, and, for example, at 140 to 150 seconds shown in FIG. The part 11B can be heated to a temperature T3 (for example, about 180 ° C.).

このように自己焼戻し工程では、内輪11を大気中で放冷することにより、内輪11全体をマルテンサイト変態終了点(Mf)の前,後となる温度、例えば180〜280℃の温度に保つことができ、内輪11の各歯部11Bに対する焼戻し処理を大気による放冷のみで行うことができる。   As described above, in the self-tempering step, the inner ring 11 is allowed to cool in the atmosphere, so that the entire inner ring 11 is maintained at a temperature before and after the martensite transformation end point (Mf), for example, a temperature of 180 to 280 ° C. The tempering process for each tooth portion 11B of the inner ring 11 can be performed only by cooling in the atmosphere.

かくして、本実施の形態によれば、内輪11の内周側に多数の歯部11Bを機械加工によって成形した後に行う焼入れ処理を、内輪11の各歯部11Bを予め決められた焼入れ用の設定温度T1まで一括して加熱する加熱工程と、設定温度T1まで加熱された内輪11の各歯部11Bを外部から冷却水によって急速に冷却する冷却工程とにより行う。   Thus, according to the present embodiment, the quenching process performed after forming a large number of tooth portions 11B on the inner peripheral side of the inner ring 11 by machining, the predetermined quenching settings for each tooth portion 11B of the inner ring 11 are performed. It is performed by a heating process that heats to a temperature T1 at once and a cooling process that rapidly cools each tooth portion 11B of the inner ring 11 that has been heated to a set temperature T1 with cooling water from the outside.

そして、その後の自己焼戻し工程は、各歯部11Bが所定の冷却温度T2に達し内輪11のリング体11A側に残熱がある段階で、冷却水による冷却を即座に停止しつつ、リング体11A側の残熱を利用することによって、各歯部11Bに対する焼戻しを行うようにしている。   Then, in the subsequent self-tempering step, each tooth portion 11B reaches a predetermined cooling temperature T2 and there is residual heat on the ring body 11A side of the inner ring 11, while immediately stopping the cooling with the cooling water, the ring body 11A By using the residual heat on the side, tempering for each tooth portion 11B is performed.

このため、従来技術で述べたように、焼戻し工程の段階において高周波誘導子を駆動(所定の焼戻し温度まで内輪11を再度加熱)する必要がなくなり、焼戻し工程での余分なエネルギ消費を抑えることができ、省エネルギ化を実現することができる。   For this reason, as described in the prior art, it is not necessary to drive the high-frequency inductor at the stage of the tempering process (heating the inner ring 11 again up to a predetermined tempering temperature), thereby suppressing excessive energy consumption in the tempering process. And energy saving can be realized.

即ち、機械加工後の内輪11に対して行う焼入れ処理(加熱工程)で内輪11に加えた入熱の一部を、リング体11A(母材)側の残熱として利用することにより、内輪11の各歯部11Bを自己焼戻しすることができ、焼戻し処理に要する余分なエネルギ消費をなくすことができる。   That is, by using a part of the heat input applied to the inner ring 11 in the quenching process (heating process) performed on the inner ring 11 after machining as the residual heat on the ring body 11A (base material) side, the inner ring 11 is used. Each tooth portion 11B can be self-tempered, and unnecessary energy consumption required for the tempering process can be eliminated.

また、内輪11に対する焼入れ処理の段階でも、加熱工程後に行う冷却工程において、各歯部11Bが所定の冷却温度T2に達すると、冷却水の供給を即座に停止して内輪11のリング体11A側に残熱を確保するため、このときに冷却エネルギが余分に消費されるのを抑えることができ、内輪11に対する熱処理工程全体を効率的に行うことができると共に、省エネルギ化を実現でき、設備の簡素化等も図ることができる。   Even in the quenching process for the inner ring 11, when each tooth portion 11B reaches a predetermined cooling temperature T2 in the cooling process performed after the heating process, the supply of the cooling water is immediately stopped and the ring body 11A side of the inner ring 11 is stopped. Therefore, it is possible to prevent excessive cooling energy from being consumed at this time, to efficiently perform the entire heat treatment process for the inner ring 11, and to realize energy saving. It is possible to simplify the process.

また、本実施の形態にあっては、熱処理対象の歯車部材である内輪11を、炭素の含有量が0.8%未満である亜共析鋼のうち、例えば機械構造用炭素鋼(S48C)等を用いて形成しているので、炭素の含有量が2〜3%以上となる鋳物材料等に比較して機械的強度、剛性等を高めることができ、熱処理を行った状態では内輪11の歯部11Bに対して耐摩耗性、耐衝撃性等を十分に付与することができる。   In the present embodiment, the inner ring 11 that is a gear member to be heat-treated is, for example, carbon steel for mechanical structure (S48C) among hypoeutectoid steels having a carbon content of less than 0.8%. Therefore, mechanical strength, rigidity, etc. can be increased as compared with a casting material having a carbon content of 2 to 3% or more. Abrasion resistance, impact resistance and the like can be sufficiently imparted to the tooth portion 11B.

そして、油圧ショベル1の旋回輪10を構成する内輪11、外輪13のうち、その内周側に複数の歯部11Bが一体形成された内輪11を、熱処理対象の歯車部材として用いることができ、旋回輪10の歯車部分に要求される耐摩耗性や耐衝撃性等を、前述の自己焼戻し工程を含む熱処理によって良好に確保することができる。   And among the inner ring 11 and the outer ring 13 constituting the turning wheel 10 of the excavator 1, the inner ring 11 in which a plurality of tooth portions 11B are integrally formed on the inner peripheral side can be used as a gear member to be heat-treated. The wear resistance, impact resistance, and the like required for the gear portion of the swivel wheel 10 can be satisfactorily ensured by heat treatment including the above-described self-tempering step.

また、加熱工程での設定温度T1を、オーステナイト化変態点(A)以上の温度とし、冷却工程での冷却温度T2は、マルテンサイト変態終了点(Mf)以下の温度に設定することにより、加熱工程で内輪11に加えた入熱の一部をリング体11A側の残熱として有効に利用することができ、内輪11の各歯部11Bを効率的に自己焼戻しすることができる。また、自己焼戻し工程では、内輪11全体を180〜280℃の温度に保つことができ、内輪11の各歯部11Bに対する焼戻し処理を、空気中での放冷のみで効率的に行うことができる。 Further, by setting the set temperature T1 in the heating step to a temperature equal to or higher than the austenitization transformation point (A 3 ), and the cooling temperature T2 in the cooling step to a temperature lower than the martensite transformation end point (Mf), Part of the heat input applied to the inner ring 11 in the heating process can be effectively used as the residual heat on the ring body 11A side, and each tooth portion 11B of the inner ring 11 can be efficiently self-tempered. Further, in the self-tempering step, the entire inner ring 11 can be maintained at a temperature of 180 to 280 ° C., and the tempering process for each tooth portion 11B of the inner ring 11 can be efficiently performed only by cooling in the air. .

次に、図7は本発明の第2の実施の形態を示し、本実施の形態では前述した第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。   Next, FIG. 7 shows a second embodiment of the present invention. In this embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted. And

しかし、本実施の形態の特徴は、内輪11の母材側となるリング体11Aを上側から遮蔽部材31で覆うことにより、各噴射孔25から歯部11Bに向けて噴射される冷却水の一部が内輪11のリング体11A側に付着するのを防ぐ構成としたことにある。   However, the feature of the present embodiment is that one of the cooling water sprayed from each spray hole 25 toward the tooth portion 11B by covering the ring body 11A on the base material side of the inner ring 11 with the shielding member 31 from above. This is to prevent the portion from adhering to the ring body 11 </ b> A side of the inner ring 11.

ここで、遮蔽部材31は、熱伝導性の低い材料(例えば、セラミックス材料、合成樹脂材料等)を用いた環状平板体として形成され、内輪11の上側となる端面11Dを上方から覆っている。この場合、遮蔽部材31は、内輪11の各歯部11Bを覆うことはなく、内輪11の端面11Dのうちリング体11Aの上面に当接状態で配置されている。   Here, the shielding member 31 is formed as an annular flat plate using a material having low thermal conductivity (for example, a ceramic material, a synthetic resin material, etc.), and covers the end surface 11D on the upper side of the inner ring 11 from above. In this case, the shielding member 31 does not cover each tooth portion 11 </ b> B of the inner ring 11, and is disposed in contact with the upper surface of the ring body 11 </ b> A of the end surface 11 </ b> D of the inner ring 11.

そして、遮蔽部材31は、熱処理装置21の各噴射孔25から噴射された冷却水が内輪11の歯部11Bに付着するのは許すものの、このときの冷却水の一部が上向きに噴上げてくるときには、冷却水の流れを図7中に点線で示す矢示W1方向へと遮蔽部材31の上側に導くことにより、内輪11のリング体11A側に冷却水が付着するのを防ぐものである。   The shielding member 31 allows the cooling water injected from each injection hole 25 of the heat treatment device 21 to adhere to the tooth portion 11B of the inner ring 11, but a part of the cooling water at this time is sprayed upward. When coming, the cooling water is prevented from adhering to the ring body 11A side of the inner ring 11 by guiding the flow of the cooling water to the upper side of the shielding member 31 in the direction of the arrow W1 indicated by the dotted line in FIG. .

また、熱処理装置21の各噴射孔25から噴射された冷却水のうち、内輪11の歯部11Bと高周波誘導子24との間から下方へと噴出す冷却水は、図7中に点線で示す矢示W2方向へと自然落下するので、このときの冷却水がリング体11Aの下面側に付着することはない。このため、リング体11Aの下面(端面11E)側には、遮蔽部材等を特別に設ける必要はないものである。   Further, among the cooling water sprayed from the respective injection holes 25 of the heat treatment apparatus 21, the cooling water sprayed downward from between the tooth portion 11B of the inner ring 11 and the high frequency inductor 24 is indicated by a dotted line in FIG. Since it naturally falls in the direction of the arrow W2, the cooling water at this time does not adhere to the lower surface side of the ring body 11A. For this reason, it is not necessary to provide a shielding member or the like on the lower surface (end surface 11E) side of the ring body 11A.

かくして、このように構成される本実施の形態でも、内輪11の歯部11Bに熱処理を施すときに、前記第1の実施の形態とほぼ同様に焼入れ、焼戻し処理を行うことにより、第1の実施の形態とほぼ同様の作用効果を得ることができる。しかし、本実施の形態では、内輪11のリング体11Aを上側から遮蔽部材31で覆う構成としている。   Thus, even in the present embodiment configured as described above, when the heat treatment is performed on the tooth portion 11B of the inner ring 11, the first quenching and tempering processes are performed in the same manner as in the first embodiment. It is possible to obtain substantially the same operational effects as in the embodiment. However, in the present embodiment, the ring body 11A of the inner ring 11 is covered with the shielding member 31 from the upper side.

このため、内輪11の歯部11Bに対する焼入れ処理の冷却工程では、熱処理装置21の各噴射孔25から歯部11Bに向けて噴射される冷却水の一部が内輪11のリング体11A側に付着するのを防止でき、冷却水を内輪11の各歯部11Bに集中的に供給して各歯部11Bを効率的に急冷することができる。   For this reason, in the cooling process of the quenching process with respect to the tooth part 11B of the inner ring 11, a part of the cooling water injected from the respective injection holes 25 of the heat treatment device 21 toward the tooth part 11B adheres to the ring body 11A side of the inner ring 11. Therefore, the cooling water can be intensively supplied to each tooth portion 11B of the inner ring 11 to efficiently cool each tooth portion 11B.

この結果、内輪11の母材(リング体11A)側には、遮蔽部材31により十分な残熱を確保することができるので、第1の実施の形態に比較しても内輪11に対する熱処理工程全体を、より一層効率的に行うことができ、省エネルギ化等を図ることができる。   As a result, since sufficient residual heat can be secured by the shielding member 31 on the base material (ring body 11A) side of the inner ring 11, the entire heat treatment process for the inner ring 11 is also possible as compared with the first embodiment. Can be performed more efficiently, and energy saving can be achieved.

次に、図8は本発明の第3の実施の形態を示し、本実施の形態では前述した第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。   Next, FIG. 8 shows a third embodiment of the present invention. In this embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted. And

しかし、本実施の形態の特徴は、内輪11の母材側となるリング体11Aを上側から遮蔽部材41で覆うと共に、該遮蔽部材41上には冷却空気を矢示a方向に噴射して供給する送風器42を設ける構成としたことにある。   However, the present embodiment is characterized in that the ring body 11A on the base material side of the inner ring 11 is covered with the shielding member 41 from above, and cooling air is injected onto the shielding member 41 in the direction of arrow a and supplied. In this configuration, the blower 42 is provided.

ここで、遮蔽部材41は、前記第2の実施の形態で述べた遮蔽部材31とほぼ同様に形成され、内輪11の上側となる端面11Dを上方から覆うものである。また、送風器42は、通路部材26等と共に冷却手段を構成し、例えば空気タンク等の圧気源(図示せず)から空気導管43を通じて供給される冷却空気を矢示a方向に噴出させる。   Here, the shielding member 41 is formed in substantially the same manner as the shielding member 31 described in the second embodiment, and covers the end surface 11D on the upper side of the inner ring 11 from above. The blower 42 constitutes a cooling means together with the passage member 26 and the like, and jets cooling air supplied from a pressurized air source (not shown) such as an air tank through the air conduit 43 in the direction of arrow a.

この場合、熱処理装置21の各噴射孔25から噴射された冷却水のうち、内輪11の歯部11Bと高周波誘導子24との間から下方へと噴出す冷却水は、図8中に点線で示す矢示W2方向へと自然落下する。一方、内輪11の歯部11Bと高周波誘導子24との間から上方に噴上げる冷却水(図8中に点線で示す矢印W3の方向に流れる冷却水)は、送風器42から矢示a方向に噴出する冷却空気と遮蔽部材41とにより、その流れ方向が制限され、内輪11のリング体11A側に冷却水が付着することはなくなる。   In this case, among the cooling water sprayed from the respective injection holes 25 of the heat treatment apparatus 21, the cooling water sprayed downward from between the tooth portion 11B of the inner ring 11 and the high frequency inductor 24 is indicated by a dotted line in FIG. Naturally falls in the direction indicated by the arrow W2. On the other hand, the cooling water sprayed upward from between the tooth portion 11B of the inner ring 11 and the high frequency inductor 24 (cooling water flowing in the direction of the arrow W3 indicated by the dotted line in FIG. 8) is sent from the blower 42 in the direction indicated by the arrow a. The flow direction is limited by the cooling air that is jetted out and the shielding member 41, and the cooling water does not adhere to the ring body 11 </ b> A side of the inner ring 11.

そして、このときの冷却水は、その大部分が内輪11の歯部11Bと高周波誘導子24との間から下方へと図8中の矢示W2方向に自然落下するようになる。また、送風器42から噴出した冷却空気は、遮蔽部材41で覆われていない内輪11の各歯部11Bを空気流によって上側から冷却する。そして、内輪11の端面11Dのうち遮蔽部材41で覆われたリング体11Aの上面には、送風器42からの冷却空気が接触(付着)することはなく、リング体11A側には加熱工程における残熱を確保することができる。   And most of the cooling water at this time comes to fall spontaneously in the direction of arrow W2 in FIG. 8 from between the tooth portion 11B of the inner ring 11 and the high frequency inductor 24 downward. Moreover, the cooling air which ejected from the air blower 42 cools each tooth | gear part 11B of the inner ring | wheel 11 which is not covered with the shielding member 41 from an upper side with an air flow. And the cooling air from the air blower 42 does not contact (adhere) to the upper surface of the ring body 11A covered with the shielding member 41 in the end surface 11D of the inner ring 11, and the ring body 11A side is not subjected to the heating process. Residual heat can be secured.

かくして、このように構成される本実施の形態でも、内輪11の歯部11Bに熱処理を施すときに、前記第1の実施の形態とほぼ同様に焼入れ、焼戻し処理を行うことにより、第1の実施の形態とほぼ同様の作用効果を得ることができる。しかし、本実施の形態では、内輪11のリング体11Aを上側から遮蔽部材41で覆うと共に、該遮蔽部材41上には冷却空気を噴射して供給する送風器42を設ける構成としている。   Thus, even in the present embodiment configured as described above, when the heat treatment is performed on the tooth portion 11B of the inner ring 11, the first quenching and tempering processes are performed in the same manner as in the first embodiment. It is possible to obtain substantially the same operational effects as in the embodiment. However, in the present embodiment, the ring body 11A of the inner ring 11 is covered with the shielding member 41 from above, and the blower 42 is provided on the shielding member 41 to inject and supply cooling air.

このため、内輪11の歯部11Bに対する焼入れ処理の冷却工程では、熱処理装置21の各噴射孔25から歯部11Bに向けて噴射される冷却水と、送風器42からの冷却空気とによって内輪11の各歯部11Bをより確実に急冷することができる。また、このときの冷却水、冷却空気が内輪11のリング体11A側に付着、接触するのを遮蔽部材41により防ぐことができ、冷却水と冷却空気を内輪11の各歯部11Bに集中的に供給することができる。   For this reason, in the cooling process of the quenching process for the tooth portion 11B of the inner ring 11, the inner ring 11 is formed by the cooling water sprayed from the respective injection holes 25 of the heat treatment device 21 toward the tooth portion 11B and the cooling air from the blower 42. Each tooth part 11B can be cooled more reliably. Further, the shielding member 41 can prevent the cooling water and cooling air from adhering to and coming into contact with the ring body 11A side of the inner ring 11 at this time, and the cooling water and the cooling air are concentrated on each tooth portion 11B of the inner ring 11. Can be supplied to.

この結果、内輪11の母材(リング体11A)側には、遮蔽部材31により十分な残熱を確保することができるので、第1の実施の形態に比較しても内輪11に対する熱処理工程全体を、より一層効率的に行うことができ、省エネルギ化等を図ることができる。   As a result, since sufficient residual heat can be secured by the shielding member 31 on the base material (ring body 11A) side of the inner ring 11, the entire heat treatment process for the inner ring 11 is also possible as compared with the first embodiment. Can be performed more efficiently, and energy saving can be achieved.

なお、前記各実施の形態では、熱処理対象の歯車部材として旋回輪10の内輪11を用いる場合を例に挙げて説明した。しかし、本発明はこれに限るものではなく、例えば図9に示す変形例のように、歯車部材の母材となる環状のリング体51Aと、該リング体51Aの外周側に全周にわたって形成された多数の歯部51B,51B,…とからなる旋回輪の外輪51を、熱処理対象の歯車部材として用いる構成としてもよい。   In each of the above-described embodiments, the case where the inner ring 11 of the turning wheel 10 is used as the gear member to be heat-treated has been described as an example. However, the present invention is not limited to this. For example, as in the modification shown in FIG. 9, an annular ring body 51 </ b> A that is a base material of the gear member and an outer peripheral side of the ring body 51 </ b> A are formed over the entire circumference. Alternatively, the outer ring 51 of the turning wheel composed of a large number of tooth portions 51B, 51B,... May be used as a gear member to be heat-treated.

また、熱処理対象の歯車部材としては、例えば図2に示したピニオン17を用いてもよく、減速機16に用いる遊星歯車減速機構の太陽歯車、内歯車(リングギヤ)、遊星歯車等を熱処理対象としてもよい。また、熱処理対象の歯車部材としては、これ以外に動力伝達用の外歯車、内歯車等、各種の歯車部材を用いてもよいものである。   Further, as the gear member to be heat-treated, for example, the pinion 17 shown in FIG. 2 may be used, and the sun gear, the internal gear (ring gear), the planetary gear, etc. of the planetary gear reduction mechanism used in the speed reducer 16 are to be heat-treated. Also good. As the gear member to be heat-treated, various gear members such as an external gear and an internal gear for power transmission may be used.

また、前記第1の実施の形態では、高周波誘導子24を環状体として形成し、内輪11の各歯部11Bと径方向内側で全周にわたって対向配置する場合を例に挙げて説明した。しかし、本発明はこれに限るものではなく、環状体から高周波誘導子24の外周側には、例えば各歯部11Bの歯面を周方向の両側から挟むように複数(多数)の凹凸部を形成し、これらの凹凸部によって高周波誘導子24の誘導加熱性能をより一層高める構成としてもよいものである。そして、この点は、第2,第3の実施の形態等についても同様である。   Moreover, in the said 1st Embodiment, the high frequency inductor 24 was formed as a cyclic | annular body, and it demonstrated and demonstrated as an example the case where it arrange | positions opposing each tooth | gear part 11B of the inner ring | wheel 11 over the perimeter over radial direction. However, the present invention is not limited to this, and a plurality of (many) uneven portions are provided on the outer peripheral side of the high-frequency inductor 24 from the annular body so as to sandwich the tooth surface of each tooth portion 11B from both sides in the circumferential direction, for example. It is good also as a structure which forms and raises the induction heating performance of the high frequency inductor 24 further by these uneven | corrugated | grooved parts. This also applies to the second and third embodiments.

本発明の第1の実施の形態による旋回輪を備えた油圧ショベルを示す外観図である。1 is an external view showing a hydraulic excavator provided with a turning wheel according to a first embodiment of the present invention. 図1中の旋回輪を旋回用の減速機等と共に示す縦断面図である。It is a longitudinal cross-sectional view which shows the turning wheel in FIG. 1 with the reduction gear for turning, etc. 図2中の内輪を単体として示す拡大断面図である。It is an expanded sectional view which shows the inner ring in FIG. 2 as a single body. 第1の実施の形態による熱処理装置を内輪の内周側に対向配置した状態を示す平面図である。It is a top view which shows the state which has arrange | positioned the heat processing apparatus by 1st Embodiment facing the inner peripheral side of an inner ring | wheel. 内輪の内周側に対向配置した熱処理装置を図4中の矢示V−V方向からみた拡大断面図である。It is the expanded sectional view which looked at the heat processing apparatus arrange | positioned facing the inner peripheral side of an inner ring | wheel from the arrow VV direction in FIG. 旋回輪の内輪を焼入れ、焼戻し処理するときの温度特性を示す特性線図である。It is a characteristic diagram which shows the temperature characteristic when hardening and tempering the inner ring | wheel of a turning wheel. 第2の実施の形態による熱処理装置を示す図5と同様位置での拡大段面図である。It is an enlarged step surface figure in the same position as FIG. 5 which shows the heat processing apparatus by 2nd Embodiment. 第3の実施の形態による熱処理装置を示す図5と同様位置での拡大段面図である。It is an enlarged step view in the same position as FIG. 5 which shows the heat processing apparatus by 3rd Embodiment. 本発明の変形例による旋回輪の外輪を示す平面図である。It is a top view which shows the outer ring | wheel of the turning wheel by the modification of this invention.

符号の説明Explanation of symbols

1 油圧ショベル(旋回式建設機械)
2 下部走行体
3 上部旋回体
4 旋回フレーム
10 旋回輪
11 内輪(歯車部材)
11A,51A リング体(母材)
11B,51B 歯部
12 鋼球(転動子)
13 外輪
16 旋回用の減速機
17 ピニオン
21 熱処理装置
22,23 環状プレート(絶縁体)
24 高周波誘導子
25 噴射孔
26 通路部材(冷却手段)
31,41 遮蔽部材
42 送風器(冷却手段)
51 外輪(歯車部材)
T1 焼入れ用の設定温度
T2 所定の冷却温度
1 Hydraulic excavator (swivel construction machine)
2 Lower traveling body 3 Upper revolving body 4 Turning frame 10 Turning wheel 11 Inner ring (gear member)
11A, 51A Ring body (base material)
11B, 51B Tooth part 12 Steel ball (roller)
13 Outer ring 16 Reducer for turning 17 Pinion 21 Heat treatment device 22, 23 Annular plate (insulator)
24 High-frequency inductor 25 Injection hole 26 Passage member (cooling means)
31, 41 Shielding member 42 Blower (cooling means)
51 Outer ring (gear member)
T1 Set temperature for quenching T2 Predetermined cooling temperature

Claims (6)

複数の歯部を有する歯車部材を機械加工によって成形した後に、前記各歯部に対して焼入れ、焼戻しを行う歯車部材の熱処理方法であって、
前記歯車部材の各歯部を焼入れするため予め決められた設定温度まで前記各歯部を一括して加熱する加熱工程と、
前記設定温度まで加熱された歯車部材の各歯部を外部から冷却媒体により急速に冷却する冷却工程と、
前記各歯部が所定の冷却温度に達し前記歯車部材の母材側に残熱がある段階で前記冷却媒体による冷却を停止し、前記母材側の残熱を利用して各歯部に対する焼戻しを行う自己焼戻し工程とからなる歯車部材の熱処理方法。
After forming a gear member having a plurality of tooth portions by machining, the gear member is heat-treated by quenching and tempering each tooth portion,
A heating step of heating each tooth portion at once to a predetermined set temperature in order to quench each tooth portion of the gear member;
A cooling step of rapidly cooling each tooth portion of the gear member heated to the set temperature from the outside by a cooling medium;
When each tooth portion reaches a predetermined cooling temperature and there is residual heat on the base material side of the gear member, cooling by the cooling medium is stopped, and tempering on each tooth portion is performed using the residual heat on the base material side. A heat treatment method for a gear member comprising a self-tempering step.
前記歯車部材は、炭素の含有量が0.8%未満である亜共析鋼を用いて形成してなる請求項1に記載の歯車部材の熱処理方法。   The gear member heat treatment method according to claim 1, wherein the gear member is formed using hypoeutectoid steel having a carbon content of less than 0.8%. 前記歯車部材は、旋回式建設機械の旋回輪を構成し内周側または外周側に前記複数の歯部が一体形成された内輪または外輪である請求項1または2に記載の歯車部材の熱処理方法。   3. The method for heat-treating a gear member according to claim 1, wherein the gear member is an inner ring or an outer ring that constitutes a swivel wheel of a swivel type construction machine and in which the plurality of tooth portions are integrally formed on an inner peripheral side or an outer peripheral side. . 前記加熱工程での設定温度は、オーステナイト化変態点(A)以上の温度であり、前記所定の冷却温度は、マルテンサイト変態終了点(Mf)以下の温度に設定してなる請求項1,2または3に記載の歯車部材の熱処理方法。 The set temperature in the heating step is a temperature equal to or higher than the austenitization transformation point (A 3 ), and the predetermined cooling temperature is set to a temperature equal to or lower than the martensitic transformation end point (Mf). The heat processing method of the gear member of 2 or 3. 前記自己焼戻し工程では、前記歯車部材全体を180〜280℃の温度に保ってなる請求項1,2,3または4に記載の歯車部材の熱処理方法。   The gear member heat treatment method according to claim 1, 2, 3, or 4, wherein in the self-tempering step, the entire gear member is maintained at a temperature of 180 to 280 ° C. 複数の歯部を有する歯車部材を機械加工によって成形した後に、前記各歯部に対して焼入れ、焼戻しを行う歯車部材の熱処理装置であって、
前記歯車部材の各歯部に対向して配置され外部から給電されることにより該各歯部を一括して加熱する高周波誘導体と、
該高周波誘導体に対する給電を停止した状態で外部から供給される冷却媒体により前記各歯部を一括して冷却する冷却手段とを備え、
前記歯車部材には、前記各歯部を除いた母材側を外側から覆い、前記冷却媒体が母材側に付着するのを防ぐ遮蔽部材を設けてなる歯車部材の熱処理装置。
A gear member heat treatment apparatus that performs hardening and tempering on each tooth portion after forming a gear member having a plurality of tooth portions by machining,
A high-frequency derivative that heats each tooth portion in a batch by being arranged opposite to each tooth portion of the gear member and fed from outside;
Cooling means for collectively cooling each tooth portion with a cooling medium supplied from the outside in a state where power supply to the high-frequency derivative is stopped,
An apparatus for heat-treating a gear member, wherein the gear member is provided with a shielding member that covers the base material side excluding the tooth portions from the outside and prevents the cooling medium from adhering to the base material side.
JP2006027425A 2006-02-03 2006-02-03 Heat treatment method for gear member and device therefor Pending JP2007204834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006027425A JP2007204834A (en) 2006-02-03 2006-02-03 Heat treatment method for gear member and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006027425A JP2007204834A (en) 2006-02-03 2006-02-03 Heat treatment method for gear member and device therefor

Publications (1)

Publication Number Publication Date
JP2007204834A true JP2007204834A (en) 2007-08-16

Family

ID=38484550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006027425A Pending JP2007204834A (en) 2006-02-03 2006-02-03 Heat treatment method for gear member and device therefor

Country Status (1)

Country Link
JP (1) JP2007204834A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010238A (en) * 2013-06-26 2015-01-19 高周波熱錬株式会社 Heat treatment method
CN108977637A (en) * 2018-08-20 2018-12-11 广州市机电工业研究所 A kind of straight bevel gear surface induction hardening method and its application
CN113755675A (en) * 2021-07-20 2021-12-07 宁国市华丰耐磨材料有限公司 High-chromium grinding ball stage quenching heat treatment air cooling device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010238A (en) * 2013-06-26 2015-01-19 高周波熱錬株式会社 Heat treatment method
CN108977637A (en) * 2018-08-20 2018-12-11 广州市机电工业研究所 A kind of straight bevel gear surface induction hardening method and its application
CN108977637B (en) * 2018-08-20 2023-10-13 广州市广智机电工业研究所有限公司 Surface induction quenching method for straight bevel gear and application thereof
CN113755675A (en) * 2021-07-20 2021-12-07 宁国市华丰耐磨材料有限公司 High-chromium grinding ball stage quenching heat treatment air cooling device

Similar Documents

Publication Publication Date Title
US7827842B2 (en) Hot forging facility
JPH1068023A (en) Heat treatment of bush and device therefor
JP4674932B2 (en) Crawler belt bush, manufacturing method and manufacturing apparatus thereof
CN110343994B (en) Carburizing and quenching micro-distortion control method for flywheel gear ring
CN106282777B (en) One kind inlays bainite-martensite Multiphase Steel wear-resistant liner and preparation method thereof
KR101104662B1 (en) Method of cooling hot forged part, apparatus therefor, and process for producing hot forged part
JP2007204834A (en) Heat treatment method for gear member and device therefor
JP2000282145A (en) Method for hardening and tempering gear member and apparatus therefor
CN100335208C (en) Methods and apparatus for heat treatment and sand removal for castings
WO2016002421A1 (en) Heat treatment system and heat treatment method
US6270595B1 (en) Bushing for crawler belt and method of manufacture
JP5756745B2 (en) Quenching method and quenching apparatus
CN1172760C (en) Heat treatment and sand removal for castings
JP3699773B2 (en) Induction hardening method
JP3897434B2 (en) Crawler belt bushing and manufacturing method thereof
JPH0819469B2 (en) Heat treatment method for cylindrical wear resistant parts
JP3162608B2 (en) Hot rolled gear and manufacturing method thereof
CN105274299A (en) Process for producing a component made of heat-treated cast iron
CN200974854Y (en) Heat treatment device for steel wheel products
JPH11350030A (en) Method for heat treatment of die cast article
JP2000073121A (en) Crawler bush, its hardening method and hardening device
US20010050121A1 (en) Bushing for crawler belt and method of manufacture
JPH1161264A (en) Crawler bush and its manufacture
JP2008253998A (en) Method for manufacturing hot-forged product
JPH09235620A (en) Induction hardening method