JP2007204360A - Composition for ceramic bonding and ceramic bonded article - Google Patents

Composition for ceramic bonding and ceramic bonded article Download PDF

Info

Publication number
JP2007204360A
JP2007204360A JP2006352020A JP2006352020A JP2007204360A JP 2007204360 A JP2007204360 A JP 2007204360A JP 2006352020 A JP2006352020 A JP 2006352020A JP 2006352020 A JP2006352020 A JP 2006352020A JP 2007204360 A JP2007204360 A JP 2007204360A
Authority
JP
Japan
Prior art keywords
ceramic
composition
hollow particles
bonding layer
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006352020A
Other languages
Japanese (ja)
Inventor
Naomichi Miyagawa
直通 宮川
Yasushi Maeno
裕史 前野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, NGK Insulators Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2006352020A priority Critical patent/JP2007204360A/en
Publication of JP2007204360A publication Critical patent/JP2007204360A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition for forming a bonding layer having a low modulus of elasticity and high thermal-shock resistance, and to provide a ceramic bonding layer formed from the composition and a ceramic bonded article having the ceramic bonding layer. <P>SOLUTION: The composition for ceramic bonding comprises 3-55% by volume of ceramic particles, 1-25% by volume of an inorganic binder, and a liquid medium, wherein the composition further contains hollow particles. In addition, the composition for ceramic bonding comprises the ceramic bonding layer formed by applying the composition to a bonding surface of a ceramic molded body and then heating the composition applied. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、セラミックス接合用組成物、および該組成物を用いて作製されるセラミックス接合層を有するセラミックス接合体に関する。   The present invention relates to a ceramic bonding composition and a ceramic bonded body having a ceramic bonding layer produced using the composition.

車両等のエンジンからの排ガスを浄化するために、DPF(ディーゼルパティキュレートフィルタ)が用いられている。このDPFには酸化物セラミックスであるコーディエライトのほか炭化ケイ素質、窒化ケイ素質等の非酸化物からなるセラミックスハニカムフィルタ(以下、フィルタと略す)が用いられる。このフィルタ内には、その使用に伴い排ガス中のすす等が堆積していくため、運転時間が長くなるにつれて堆積物が増加することに伴うフィルタの圧力損失の上昇は避けられない問題である。上昇した圧力損失を初期値に戻し、フィルタ効率を向上させる方法として、排ガス温度を高くする(例えば500℃〜1000℃)等してこのすす等を燃焼させ、再生させることが知られている。しかし、このフィルタが1つのセラミックス成形体からなる大きなサイズのフィルタであった場合、再生にともなうすす燃焼による熱応力が大きくなるため、このような高温処理が繰り返されることによる熱衝撃が起こりやすくなり、成形体中にクラックが発生し、フィルタとしての使用が不可能になるという問題があった。   A DPF (diesel particulate filter) is used to purify exhaust gas from an engine such as a vehicle. In addition to cordierite, which is an oxide ceramic, a ceramic honeycomb filter (hereinafter abbreviated as a filter) made of a non-oxide such as silicon carbide or silicon nitride is used for the DPF. Since soot in the exhaust gas accumulates in the filter as it is used, an increase in the pressure loss of the filter is unavoidable due to the increase in deposits as the operation time increases. As a method of returning the increased pressure loss to the initial value and improving the filter efficiency, it is known to burn and regenerate the soot by increasing the exhaust gas temperature (for example, 500 ° C. to 1000 ° C.). However, if this filter is a large size filter made of a single ceramic compact, thermal stress due to soot combustion increases with regeneration, and thermal shock is likely to occur due to repeated high-temperature treatment. There was a problem that cracks occurred in the molded body, making it impossible to use as a filter.

そこで、再生時の熱応力に耐えうるフィルタとして、複数のセラミックス成形体をセラミックス質の接合層を介して接合してなるセラミックス接合体が提案されている。例えば特許文献1に、このようなセラミックス接合体の一例が提案されており、このセラミックス接合体は多孔質セラミックス成形体が接合層を介して複数個接合されたものである。このとき、接合層には、上記の熱応力を緩和する特性が要求される。従来、その解決方法として特許文献2〜4に示されるように、無機繊維を組成物の中に混ぜることにより接合層の弾性率を低下させ、熱応力を緩和する方法が採られてきた。しかし、この方法で接合層の弾性率を低下させようとしても、限界があった。   Therefore, as a filter that can withstand the thermal stress during regeneration, a ceramic joined body in which a plurality of ceramic molded bodies are joined through a ceramic joining layer has been proposed. For example, Patent Document 1 proposes an example of such a ceramic joined body, in which a plurality of porous ceramic molded bodies are joined via a joining layer. At this time, the bonding layer is required to have a characteristic of relaxing the thermal stress. Conventionally, as disclosed in Patent Documents 2 to 4, as a solution to this problem, a method has been adopted in which an inorganic fiber is mixed into a composition to reduce the elastic modulus of the bonding layer and relieve thermal stress. However, there was a limit even if it was attempted to lower the elastic modulus of the bonding layer by this method.

また、上記のような接合層であっても、DPFとして使用されるような高温下に長時間さらされると、一種の焼結により接合層中に含まれるセラミックス粒子同士、あるいは該セラミックス粒子と無機繊維と間の結合が強化されてしまう。その結果、使用中に接合層の弾性率が上昇し、耐熱応力特性が低下してフィルタが破損してしまう問題がある。特に、近年では燃費向上の観点から、フィルタの圧力損失を下げる要求が強く、そのためにフィルタの高気孔率化への要求が高まっているが、気孔率の高いセラミックス成形体は弾性率が低いため、接合層が破壊する前にセラミックス成形体が破壊されてしまうおそれもあった。セラミックス成形体より弾性率が低く、かつ適切な接合強度、材料強度を有する接合層、および該接合層を形成するための組成物はこれまで見出されていなかった。   Further, even if the bonding layer is as described above, when exposed to a high temperature such as that used for DPF for a long time, the ceramic particles contained in the bonding layer by a kind of sintering, or the ceramic particles and inorganic The bond between the fibers will be strengthened. As a result, there is a problem that the elastic modulus of the bonding layer is increased during use, the heat stress characteristic is lowered, and the filter is damaged. In particular, in recent years, there has been a strong demand for lowering the pressure loss of the filter from the viewpoint of improving fuel efficiency. For this reason, there is an increasing demand for higher porosity of the filter, but ceramic molded bodies with high porosity have a low elastic modulus. There was also a possibility that the ceramic molded body was destroyed before the bonding layer was broken. A bonding layer having an elastic modulus lower than that of a ceramic molded body and having appropriate bonding strength and material strength, and a composition for forming the bonding layer have not been found so far.

さらに、複数のセラミックス成形体を接合層を介して接合したセラミックス接合体は1つのセラミックス成形体からなるフィルタと比較して熱応力耐性に優れるものの、接合層部分はフィルタ本来のろ過機能に寄与しない。したがって、このようなセラミックス接合体は1つのセラミックス成形体からなるフィルタと比較してDPF1個あたりの総質量が重いという問題があるほか、再生に時間がかかる、再生に必要なエネルギーが大きいなどの問題もあるため、近年ではDPF1個あたりに占める接合層の質量の軽量化も課題となってきている。   Furthermore, although a ceramic joined body in which a plurality of ceramic molded bodies are joined via a joining layer is superior to a filter made of one ceramic shaped body, the joined layer portion does not contribute to the filter function inherent to the filter. . Therefore, such a ceramic joined body has a problem that the total mass per DPF is heavier than a filter made of one ceramic molded body, takes time for regeneration, and requires a large amount of energy for regeneration. Since there is a problem, in recent years, the weight reduction of the mass of the bonding layer per DPF has also been an issue.

特開2002−102627号公報(特許請求の範囲)JP 2002-102627 A (Claims) 特許第3121497号公報(特許請求の範囲)Japanese Patent No. 3121497 (Claims) 特開2003−155908号公報(特許請求の範囲)JP 2003-155908 A (Claims) 特開2001−190916号公報(特許請求の範囲)JP 2001-190916 A (Claims)

本発明は、セラミックス成形体本体を接合して排ガス浄化フィルタを得るにあたり、接合層の弾性率が低く、熱衝撃に強い接合層を形成するための組成物、該組成物を用いて作製されるセラミックス接合層および該セラミックス接合層を有するセラミックス接合体を提供することを目的とする。   The present invention provides a composition for forming a joining layer having a low elastic modulus and being resistant to thermal shock when joining a ceramic molded body to obtain an exhaust gas purification filter, and is produced using the composition. An object is to provide a ceramic bonding layer and a ceramic bonded body having the ceramic bonding layer.

本発明は、以下の発明を提供するものである。
〔1〕セラミックス粒子を3〜55体積%、無機バインダーを1〜25体積%および液状媒体を含有するセラミックス接合用組成物であって、中空粒子を含むことを特徴とするセラミックス接合用組成物。
〔2〕前記中空粒子が有機質中空粒子および/または無機質中空粒子である〔1〕に記載のセラミックス接合用組成物。
〔3〕前記中空粒子の平均粒子直径が5〜300μmである〔1〕または〔2〕に記載のセラミックス接合用組成物。
〔4〕前記中空粒子の比重が0.005〜1.5である〔1〕〜〔3〕のいずれかに記載のセラミックス接合用組成物。
〔5〕前記組成物中の全固形分の総体積に対する中空粒子の合計体積が5〜90%である〔1〕〜〔4〕のいずれかに記載のセラミックス接合用組成物。
The present invention provides the following inventions.
[1] A ceramic bonding composition containing 3 to 55% by volume of ceramic particles, 1 to 25% by volume of an inorganic binder, and a liquid medium, comprising hollow particles.
[2] The ceramic bonding composition according to [1], wherein the hollow particles are organic hollow particles and / or inorganic hollow particles.
[3] The ceramic bonding composition according to [1] or [2], wherein the hollow particles have an average particle diameter of 5 to 300 μm.
[4] The ceramic bonding composition according to any one of [1] to [3], wherein the specific gravity of the hollow particles is 0.005 to 1.5.
[5] The ceramic bonding composition according to any one of [1] to [4], wherein the total volume of the hollow particles is 5 to 90% with respect to the total volume of the total solid content in the composition.

〔6〕〔1〕〜〔5〕のいずれかに記載のセラミックス接合用組成物がセラミックス成形体の接合面上に塗布された後、加熱されて形成されたセラミックス接合層を有するセラミックス接合体。
〔7〕前記セラミックス接合層の気孔率が30〜90%である〔6〕に記載のセラミックス接合体。
〔8〕前記セラミックス接合層中の気孔の全体積のうち、閉気孔の占める割合が5%以上である〔6〕または〔7〕に記載のセラミックス接合体。
[6] A ceramic joined body having a ceramic joined layer formed by applying the ceramic joining composition according to any one of [1] to [5] onto the joined surface of the ceramic molded body and then heating.
[7] The ceramic joined body according to [6], wherein the ceramic joining layer has a porosity of 30 to 90%.
[8] The ceramic joined body according to [6] or [7], wherein the ratio of the closed pores to the total pore volume in the ceramic joining layer is 5% or more.

本発明によれば、弾性率が低くかつ熱衝撃に強い接合層が得られる。よって、DPFとしての長期間の使用にも耐えうるセラミックス接合体を得る際に好適に適用できる。   According to the present invention, a bonding layer having a low elastic modulus and strong against thermal shock can be obtained. Therefore, it can be suitably applied when obtaining a ceramic joined body that can withstand long-term use as a DPF.

本発明のセラミックス接合用組成物(以下、本組成物という)は、セラミックス粒子を必須の成分として含む。セラミックス粒子は、フィルタとしての使用温度下において充分な耐熱性を有するものであれば特に限定されないが、接合するセラミックス成形体と同質の材料、あるいは類似の特性をもつ材料からなることが、熱衝撃への耐久性が高いため好ましい。具体的には、コーディエライト、チタン酸アルミニウム、ムライトを代表とするアルミニウムシリケート、リチウムアルミニウムシリケートなどの酸化物や炭化ケイ素、窒化ケイ素、窒化ホウ素などの非酸化物セラミックスが挙げられる。   The ceramic bonding composition of the present invention (hereinafter referred to as the present composition) contains ceramic particles as an essential component. The ceramic particles are not particularly limited as long as they have sufficient heat resistance at the temperature used as a filter. However, the ceramic particles may be made of the same material as the ceramic body to be joined or a material having similar characteristics. It is preferable because of its high durability. Specific examples include oxides such as cordierite, aluminum titanate, and aluminum silicate represented by mullite, lithium aluminum silicate, and non-oxide ceramics such as silicon carbide, silicon nitride, and boron nitride.

ここで、セラミックス粒子の形状は特に限定されないが、接合層の強度を保つ観点からは、略球状で、中実形状の粒子を用いることが好ましい。また、接合層の弾性率を下げる目的で、本組成物中にアルミナ−シリカ系ガラス繊維などの無機繊維や珪藻土などの燐片状の粒子をセラミックス粒子として添加してもよい。   Here, the shape of the ceramic particles is not particularly limited, but from the viewpoint of maintaining the strength of the bonding layer, it is preferable to use substantially spherical and solid particles. In addition, for the purpose of lowering the elastic modulus of the bonding layer, inorganic fibers such as alumina-silica glass fibers or flake shaped particles such as diatomaceous earth may be added to the present composition as ceramic particles.

次に、本組成物は無機バインダーを含有する。この無機バインダーは、本組成物がセラミックス成形体の接合面上に塗布、加熱されてセラミックス接合層(以下、単に接合層ともいう)となる際にセラミックス粒子同士の接着剤として働くことに加え、高温下の使用でも優れた接着性を維持できる。無機バインダーとしては、具体的にはシリカゾル、アルミナゾルなどコロイダルゾルを用いることが好ましく、その他、セピオライトなど粘土鉱物を用いてもよい。   Next, the present composition contains an inorganic binder. In addition to acting as an adhesive between ceramic particles when this composition is applied to the bonding surface of the ceramic molded body and heated to become a ceramic bonding layer (hereinafter also simply referred to as a bonding layer), Excellent adhesion can be maintained even at high temperatures. Specifically, a colloidal sol such as silica sol or alumina sol is preferably used as the inorganic binder, and a clay mineral such as sepiolite may also be used.

本組成物は、セラミックス成形体の接合面上に塗布するにあたり、流動性の組成物として使用される。流動性の組成物に調整するために、本発明においては上記セラミックス粉末、無機バインダーに加えて液状媒体を使用する。該液状媒体としては水または各種有機溶媒(ただし、セラミックス粒子および後述する中空粒子を溶解しないもの)が好適に用いられる。   The present composition is used as a fluid composition when it is applied onto the joint surface of a ceramic molded body. In order to adjust to a fluid composition, in the present invention, a liquid medium is used in addition to the ceramic powder and the inorganic binder. As the liquid medium, water or various organic solvents (however, those that do not dissolve ceramic particles and hollow particles described later) are preferably used.

本発明者らは、鋭意検討を重ねた結果、上記のセラミックス粒子と無機バインダーとを含む本組成物中に中空粒子を含有させることにより、接合層の強度特性を損なうことなく、弾性率を効果的に低減できることを見出し、本発明に至った。本来、接合層の弾性率を低下させるためには、弾性率が0である空気(空孔)を接合層中に分散させることが最も効果的であるが、空孔を定量的にかつ均一に接合層中に分散させることは難しいという問題があり、本発明では中空粒子の添加によりこの問題を解決している。また、中空粒子の添加により、該接合層を介して複数のセラミックス成形体が接合されてなる接合体(以下、単に接合体ともいう)のDPF1個あたりの総質量を軽くできるという効果も奏する。   As a result of intensive studies, the inventors have included the hollow particles in the present composition containing the ceramic particles and the inorganic binder, thereby improving the elastic modulus without impairing the strength characteristics of the bonding layer. The present invention has been found to be able to be reduced. Originally, in order to reduce the elastic modulus of the bonding layer, it is most effective to disperse air (holes) having an elastic modulus of 0 in the bonding layer. There is a problem that it is difficult to disperse in the bonding layer, and the present invention solves this problem by adding hollow particles. Further, the addition of hollow particles also has an effect of reducing the total mass per DPF of a joined body (hereinafter, also simply referred to as a joined body) in which a plurality of ceramic molded bodies are joined through the joining layer.

中空粒子としては、有機質中空粒子および/または無機質中空粒子を用いることが好ましい。有機質中空粒子を用いると、加熱により有機質中空粒子が分解し、均一に飛散するため接合層内部に空孔を定量的かつ均一に分散させることができる。一方、無機質中空粒子を用いると、中空部分をそのまま気孔として利用できるほか、加熱により無機質中空粒子の成分がガス化して接合層内部に空孔を定量的かつ均一に形成できるという利点もある。また、無機質中空粒子は、他のセラミックス粒子に対して焼結助剤的な働きをして、接合層に対して強度付与する働きを有する。そのため無機質中空粒子を用いると、接合層の接合強度を充分に保ちつつ、弾性率を低減させる効果が得られやすくなる。   As the hollow particles, organic hollow particles and / or inorganic hollow particles are preferably used. When the organic hollow particles are used, the organic hollow particles are decomposed by heating and are uniformly scattered, so that the pores can be dispersed quantitatively and uniformly inside the bonding layer. On the other hand, when the inorganic hollow particles are used, the hollow portion can be used as pores as it is, and the components of the inorganic hollow particles can be gasified by heating to form pores quantitatively and uniformly inside the bonding layer. The inorganic hollow particles have a function of imparting strength to the bonding layer by acting as a sintering aid for other ceramic particles. Therefore, when inorganic hollow particles are used, it is easy to obtain an effect of reducing the elastic modulus while sufficiently maintaining the bonding strength of the bonding layer.

有機質中空粒子の材質としては、具体的にはアクリル樹脂、アクリロニトリル樹脂、酢酸ビニル樹脂、フェノール樹脂などの一般的な有機高分子が挙げられ、熱分解後に残留分の発生しないものが好ましく用いられる。無機質中空粒子としては、使用温度域で変質を起こしたり、本組成物の他の成分と反応しないセラミックス粒子が好ましく、アルミナ−シリカ系のガラスバルーンなどが好ましく用いられる。このとき、無機質中空粒子として、セラミックス粒子同士を接着しうる無機質中空粒子を使用してもよい。   Specific examples of the material for the organic hollow particles include common organic polymers such as acrylic resin, acrylonitrile resin, vinyl acetate resin, and phenol resin, and those that do not generate a residue after thermal decomposition are preferably used. As the inorganic hollow particles, ceramic particles that do not change in the operating temperature range or react with other components of the present composition are preferable, and alumina-silica glass balloons and the like are preferably used. At this time, inorganic hollow particles capable of bonding ceramic particles may be used as the inorganic hollow particles.

このとき、中空粒子は、中空であれば外皮に相当する部分が緻密質でもよいし、多孔質でもよい。また、中空部分が閉気孔の形状で存在していることが好ましいが、開気孔および閉気孔の両方を含有していてもよい。中空粒子の外形は特に限定されないが、外形が球状であると混合時に他の粒子と均質に混じりやすく、また入手しやすい点でも好ましい。また、接合層中に形成される気孔の形状も球状となりやすいため、気孔率を高くしても強度の低下を抑制しやすいという利点もある。   At this time, if the hollow particles are hollow, the portion corresponding to the outer skin may be dense or porous. Moreover, although it is preferable that the hollow part exists in the shape of a closed pore, you may contain both an open pore and a closed pore. The outer shape of the hollow particles is not particularly limited, but it is preferable that the outer shape is spherical in that it is easily mixed with other particles at the time of mixing and is easily available. Moreover, since the shape of the pores formed in the bonding layer is likely to be spherical, there is also an advantage that a decrease in strength is easily suppressed even when the porosity is increased.

中空粒子の平均粒子直径は5〜300μmであると好ましい。平均粒子直径が5μm未満であると、中空粒子の添加により弾性率を低減させる効果が得られにくくなり、一方、平均粒子直径が300μmを超えると中空粒子の添加量が少量であっても接合層の強度が大きく低下するおそれがあるため好ましくない。より好ましくは平均粒子直径を10〜150μmの範囲とする。   The average particle diameter of the hollow particles is preferably 5 to 300 μm. When the average particle diameter is less than 5 μm, it becomes difficult to obtain the effect of reducing the elastic modulus by the addition of hollow particles. On the other hand, when the average particle diameter exceeds 300 μm, the bonding layer is used even if the amount of hollow particles added is small. This is not preferable because the strength of the steel may be greatly reduced. More preferably, the average particle diameter is in the range of 10 to 150 μm.

中空粒子の比重は0.005〜1.5であると好ましい。中空粒子の比重が0.005未満であると、中空粒子を微量添加するだけでも弾性率を大きく低減できるため効果的ではあるが、比重が軽くなるほど中空粒子の外殻の部分が薄くなるため、セラミックス粒子との混合中に中空粒子が破壊され、中空粒子の添加による効果が損なわれるおそれがあるなど、本組成物を調製する際の扱いが困難となるため好ましくない。一方、比重が1.5を超えると、中空粒子を形作る外殻の部分の厚みが相対的に厚くなる。このため、無機質中空粒子を用いた場合は、ガラス成分が増加し、焼結助剤的な働きが強くなりすぎるおそれがあるほか、外殻の部分の強度が高いため弾性率を低減させる効果が薄れるおそれがあり、好ましくない。また、有機質中空粒子を用いた場合、有機質中空粒子を大量に添加すると、本組成物の塗布後の工程において樹脂分を除去する工程が必須となり、工程が複雑になるほか、大量の樹脂成分の存在により接合層の収縮等が生じるおそれがある。より好ましい比重の範囲は、0.01〜1.0である。   The specific gravity of the hollow particles is preferably 0.005 to 1.5. If the specific gravity of the hollow particles is less than 0.005, it is effective because the elastic modulus can be greatly reduced just by adding a small amount of hollow particles, but the portion of the outer shell of the hollow particles becomes thinner as the specific gravity decreases, Since the hollow particles are destroyed during mixing with the ceramic particles and the effect of the addition of the hollow particles may be impaired, it is difficult to handle the preparation of the present composition. On the other hand, when the specific gravity exceeds 1.5, the thickness of the portion of the outer shell forming the hollow particles becomes relatively thick. For this reason, when inorganic hollow particles are used, the glass component increases, and the function as a sintering aid may become too strong, and the strength of the outer shell portion is high, which reduces the elastic modulus. There is a risk of fading, which is not preferable. In addition, when organic hollow particles are used, adding a large amount of organic hollow particles makes it necessary to remove the resin component in the step after the application of the composition, which complicates the process, and a large amount of resin components. The presence of the adhesive layer may cause shrinkage of the bonding layer. A more preferable range of specific gravity is 0.01 to 1.0.

本組成物中の中空粒子の合計体積は、セラミックス粒子、無機バインダー、その他必要に応じて添加される全固形分の総体積に対し5〜90%であると好ましい。特に好ましくは、セラミックス粒子および無機バインダーの総体積に対し5〜90%とする。ここで、中空粒子の体積とは、外皮と外皮に囲まれた全部分の体積(外皮部分の体積と中空部分の容積との和に相当)を指す。中空粒子の総体積が上記より少ないと弾性率を十分に低下させることが難しく、中空粒子の総体積が90%を超えると、接合層そのものの材料強度、接合強度の低下が避けきれなくなるおそれがある。より好ましくは10〜85%の範囲とする。   The total volume of the hollow particles in the composition is preferably 5 to 90% with respect to the total volume of the ceramic particles, the inorganic binder, and other solids added as necessary. Particularly preferably, the content is 5 to 90% with respect to the total volume of the ceramic particles and the inorganic binder. Here, the volume of the hollow particles refers to the volume of the entire portion surrounded by the outer skin and the outer skin (corresponding to the sum of the volume of the outer skin portion and the volume of the hollow portion). If the total volume of the hollow particles is less than the above, it is difficult to sufficiently reduce the elastic modulus, and if the total volume of the hollow particles exceeds 90%, the material strength and bonding strength of the bonding layer itself may be inevitably decreased. is there. More preferably, it is made into the range of 10 to 85%.

同様に、本組成物中の中空粒子の合計質量は、全固形分の合計質量に対して0.1〜50質量%であると好ましい。中空粒子の合計質量が上記より少ないと弾性率を十分に低下させることが難しく、中空粒子の合計質量が50%を超えると、接合層そのものの材料強度、接合強度の低下が避けきれなくなるおそれがある。より好ましくは0.2〜30%の範囲とする。   Similarly, the total mass of the hollow particles in the present composition is preferably 0.1 to 50% by mass with respect to the total mass of the total solid content. If the total mass of the hollow particles is less than the above, it is difficult to sufficiently reduce the elastic modulus, and if the total mass of the hollow particles exceeds 50%, the material strength and bonding strength of the bonding layer itself may be inevitably decreased. is there. More preferably, it is made into the range of 0.2 to 30%.

なお、上記セラミックス粉末、無機バインダー、中空粒子などの固形分を液状媒体に均一に分散させるために、本組成物中に分散剤や増粘剤を加えてもよい。分散剤としてはアクリル酸、メタクリル酸、マレイン酸等のカルボン酸基を有するモノマーの単独重合体や、当該重合体のカルボン酸基の部分がアンモニウム塩等の塩となっている単独重合体が挙げられる。また、カルボン酸基を有するモノマーと、カルボン酸塩基を有するモノマーや、カルボン酸塩基を有するモノマーとカルボン酸のアルキルエステル等の誘導体との共重合体も好ましい。また、増粘剤としては有機質の増粘剤(メチルセルロース、ポリエチレングリコール、ポリビニルアルコール、ポリ酢酸ビニルなど)および無機質の増粘剤(ベントナイトなど)のいずれも好適に用いられる。   In addition, in order to disperse | distribute solid content, such as said ceramic powder, an inorganic binder, and a hollow particle, to a liquid medium uniformly, you may add a dispersing agent and a thickener in this composition. Examples of the dispersant include a homopolymer of a monomer having a carboxylic acid group such as acrylic acid, methacrylic acid, and maleic acid, and a homopolymer in which a portion of the carboxylic acid group of the polymer is a salt such as an ammonium salt. It is done. A copolymer of a monomer having a carboxylic acid group and a monomer having a carboxylic acid group, or a monomer having a carboxylic acid group and a derivative such as an alkyl ester of carboxylic acid is also preferred. As the thickener, any of organic thickeners (such as methylcellulose, polyethylene glycol, polyvinyl alcohol, and polyvinyl acetate) and inorganic thickeners (such as bentonite) are preferably used.

本組成物中にはセラミックス粒子を3〜55体積%、無機バインダーを1〜25体積%および液状媒体を含有するものとする。セラミックス粒子の含有割合が3体積%未満であると、本組成物の塗布後、加熱工程において塗布層が急激に収縮してクラックが発生し、接合強度が大きく低下するおそれがあるため好ましくなく、一方、55体積%を超えるとセラミックス粉末の含有割合が多くなりすぎ、接合用組成物としての流動性を損なうおそれがあるため好ましくない。また、無機バインダーの含有割合が1体積%未満であるとセラミックス粒子同士の接着性が充分に得られないおそれがあり、一方、25体積%を超えるとフィルタが高温下にさらされた際に、接合層が強固に結合、収縮してセラミックス成形体が破壊されるおそれがある。本組成物中のセラミックス粒子の含有割合は、5〜50体積%であることがより好ましい。また、本組成物中の無機バインダーの含有割合は、3〜20体積%であることがより好ましい。   This composition contains 3 to 55% by volume of ceramic particles, 1 to 25% by volume of an inorganic binder, and a liquid medium. If the content of the ceramic particles is less than 3% by volume, the coating layer is rapidly contracted in the heating step after the application of the present composition, cracks are generated, and the bonding strength may be greatly reduced. On the other hand, if it exceeds 55% by volume, the content of the ceramic powder is excessively increased, and the fluidity of the bonding composition may be impaired, which is not preferable. Further, if the content of the inorganic binder is less than 1% by volume, the adhesiveness between the ceramic particles may not be sufficiently obtained. On the other hand, if the content exceeds 25% by volume, when the filter is exposed to a high temperature, There is a possibility that the bonding layer is firmly bonded and contracted to destroy the ceramic molded body. As for the content rate of the ceramic particle in this composition, it is more preferable that it is 5-50 volume%. Moreover, as for the content rate of the inorganic binder in this composition, it is more preferable that it is 3-20 volume%.

なお、本組成物中の液状媒体の含有割合は特に限定されないが、20〜96体積%であると好ましい。液状媒体の含有割合を20体積%以上とすることで、組成物としての流動性を確保でき、均質な接合層を形成できる。一方、96体積%以下とすることで本組成物の濃度を高くでき、本組成物の塗布、加熱からなる1回のプロセスにより所望の層厚の接合層が得られやすくなる。本組成物中の液状媒体の含有割合は、25〜70体積%であることがより好ましい。   In addition, the content rate of the liquid medium in this composition is although it does not specifically limit, It is preferable in it being 20-96 volume%. By making the content rate of a liquid medium 20 volume% or more, the fluidity | liquidity as a composition can be ensured and a uniform joining layer can be formed. On the other hand, when the content is 96% by volume or less, the concentration of the present composition can be increased, and a bonding layer having a desired layer thickness can be easily obtained by a single process including application and heating of the present composition. The content ratio of the liquid medium in the composition is more preferably 25 to 70% by volume.

上記の材料を一般的な方法で混合して本組成物とした後、例えば下記工程A〜Cを連続して行うことにより、2つのセラミックス成形体により挟持されてなるセラミックス接合層を有するセラミックス接合体を簡便な操作により得ることができる。
工程A:本組成物を、セラミックス成形体の接合面上に塗布して塗布層を得る工程。
工程B:別のセラミックス成形体を、その接合面が前記塗布層上に隣接するように積層して積層体とする工程。
工程C:該積層体を100〜800℃で加熱する工程。
After the above materials are mixed by a general method to obtain the present composition, for example, the following steps A to C are continuously performed, thereby performing ceramic bonding having a ceramic bonding layer sandwiched between two ceramic molded bodies. The body can be obtained by a simple operation.
Process A: The process of apply | coating this composition on the joint surface of a ceramic molded body, and obtaining an application layer.
Step B: A step of laminating another ceramic molded body so that the bonding surface is adjacent to the coating layer to form a laminated body.
Process C: The process of heating this laminated body at 100-800 degreeC.

上記工程Cにおける加熱温度は得られる接合体の特性に応じて所望に調整されるが、中空粒子として有機質中空粒子を用いる場合には、有機質中空粒子を構成する有機高分子の分解温度を超える温度で加熱することが好ましい。   The heating temperature in the above step C is adjusted as desired according to the properties of the obtained joined body. However, when organic hollow particles are used as the hollow particles, the temperature exceeds the decomposition temperature of the organic polymer constituting the organic hollow particles. It is preferable to heat with.

ここで、セラミックス成形体の材質としては強度、耐熱性等の観点からコーディエライト、チタン酸アルミニウム、ムライトを代表とするアルミニウムシリケート、リチウムアルミニウムシリケートなどの酸化物や炭化ケイ素、窒化ケイ素などの非酸化物セラミックスからなる群より選ばれるいずれかを主結晶としたものが好ましい。また、上記で得られた接合体は外周部を加工され、好ましくはさらに外周部側面に本組成物と同種のペーストが塗布された後、排ガス浄化フィルタとして使用されることが好ましい。   Here, as the material of the ceramic molded body, from the viewpoint of strength, heat resistance, etc., oxides such as cordierite, aluminum titanate, aluminum silicate represented by mullite, lithium aluminum silicate and the like, non-silicon carbide, silicon nitride, etc. The main crystal is preferably selected from the group consisting of oxide ceramics. In addition, the joined body obtained above is preferably used as an exhaust gas purification filter after the outer peripheral portion is processed, preferably after the same kind of paste as the present composition is applied to the side surface of the outer peripheral portion.

本発明により得られる接合層の気孔率(以下、全気孔率ともいう)は30〜90%であると好ましい。気孔率が30%未満であると弾性率を充分に低下できないおそれがあり、一方、90%を超えると接合層自体が脆くなり、フィルタ使用中に自動車の振動等によって接合部分から破壊するおそれがあるため好ましくない。より好ましい接合層の気孔率は35〜85%である。   The porosity of the bonding layer obtained by the present invention (hereinafter also referred to as total porosity) is preferably 30 to 90%. If the porosity is less than 30%, the elastic modulus may not be sufficiently lowered. On the other hand, if it exceeds 90%, the joining layer itself becomes brittle, and there is a risk of breaking from the joining portion due to vibration of the automobile or the like during use of the filter. This is not preferable. A more preferable porosity of the bonding layer is 35 to 85%.

接合層中の気孔の全体積のうち、閉気孔の占める割合(以下、閉気孔率という)が5%以上であると、接合層に応力が加わった際に応力が集中しやすい開気孔の割合が少ないため、弾性率を効果的に低減できかつ強度の低下を抑えることができるため好ましい。閉気孔率が5%未満であると、同気孔率の接合層において比較した場合、弾性率を低減させる効果は5%以上の閉気孔率を有する接合層と同程度にできるが、接合層に応力が加わった場合に開気孔に応力が集中することで、接合層が容易に破壊し、セラミックス成形体の気孔内部に接合層の材料の一部が侵入するおそれがある。閉気孔率は好ましくは10%以上であり、より好ましくは15%以上である。   The ratio of open pores where stress tends to concentrate when stress is applied to the bonding layer when the proportion of closed pores (hereinafter referred to as closed porosity) is 5% or more of the total pore volume in the bonding layer Therefore, the elastic modulus can be effectively reduced and the decrease in strength can be suppressed, which is preferable. When the closed porosity is less than 5%, the effect of reducing the elastic modulus can be comparable to that of the bonding layer having a closed porosity of 5% or more when compared with the bonding layer having the same porosity. When stress is applied, the stress is concentrated in the open pores, so that the bonding layer is easily broken, and a part of the material of the bonding layer may enter the pores of the ceramic molded body. The closed porosity is preferably 10% or more, more preferably 15% or more.

以下に実施例(例1〜12)および比較例(例13〜15)を挙げて本発明を詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to Examples (Examples 1 to 12) and Comparative Examples (Examples 13 to 15), but the present invention is not limited thereto.

[1]セラミックス接合用組成物の調製
下記の成分を表1〜3に示す割合で混合してなる混合物の体積合計(60体積%)に対し、イオン交換水を40体積%添加し、市販の混合機により混合してペースト状のセラミックス接合用組成物とした。
[1] Preparation of composition for bonding ceramics 40% by volume of ion-exchanged water is added to the total volume (60% by volume) of a mixture obtained by mixing the following components in the ratios shown in Tables 1 to 3, The mixture was mixed by a mixer to obtain a paste-like ceramic bonding composition.

なお、表1〜3における窒化ケイ素粉末、炭化ケイ素粉末、無機質中空粒子、無機繊維、無機バインダー、有機質中空粒子、増粘剤および全固形分の総体積の単位はすべて体積%である。また、表1〜3において、中空粒子含有割合とは全固形分の総体積に対する中空粒子の合計体積[体積%]および全固形分の合計質量に対する中空粒子の合計質量[質量%]をそれぞれ指す。   In Tables 1 to 3, the units of the total volume of silicon nitride powder, silicon carbide powder, inorganic hollow particles, inorganic fibers, inorganic binders, organic hollow particles, thickeners, and total solids are all volume%. In Tables 1 to 3, the hollow particle content refers to the total volume [volume%] of the hollow particles relative to the total volume of the total solid content and the total mass [% by mass] of the hollow particles relative to the total mass of the total solid content. .

窒化ケイ素粉末:比重が3.19、平均粒子直径が2μmの窒化ケイ素粉末(デンカ社製、商品名:SN−B)、
炭化ケイ素粉末:比重が3.21、平均粒子直径が2.3μmの炭化ケイ素粉末(太平洋ランダム社製、商品名:6S)、
無機質中空粒子:比重が0.6、平均粒子直径が45μmのシリカ−アルミナ系ガラス質中空球状粒子(太平洋セメント社製、商品名:SL75)、
無機繊維:比重が3.0、平均繊維径が約10μm、平均繊維長が約50μmのアルミナ−シリカ質のガラス繊維(サンゴバン・ティーエム社製、商品名:HMS)、
無機バインダー:固形分濃度40質量%のコロイダルシリカ(日産化学社製、商品名:スノーテックスN−40)、
有機質中空粒子:樹脂分濃度が14質量%で、比重が0.02、平均粒子直径が40μmのアクリルニトリル系樹脂製中空球状粒子(松本油脂社製、商品名:F−50E)、
増粘剤:比重が2.5のベントナイト(クニミネ工業社製、商品名:クニピア−F)。
Silicon nitride powder: silicon nitride powder having a specific gravity of 3.19 and an average particle diameter of 2 μm (manufactured by Denka, trade name: SN-B),
Silicon carbide powder: Silicon carbide powder having a specific gravity of 3.21 and an average particle diameter of 2.3 μm (trade name: 6S manufactured by Taiheiyo Random Co., Ltd.)
Inorganic hollow particles: Silica-alumina glassy hollow spherical particles having a specific gravity of 0.6 and an average particle diameter of 45 μm (trade name: SL75, manufactured by Taiheiyo Cement Co., Ltd.)
Inorganic fiber: specific gravity of 3.0, average fiber diameter of about 10 μm, average fiber length of about 50 μm alumina-silica glass fiber (manufactured by Saint-Gobain TM, trade name: HMS),
Inorganic binder: Colloidal silica with solid content concentration of 40% by mass (manufactured by Nissan Chemical Co., Ltd., trade name: Snowtex N-40),
Organic hollow particles: Resin concentration of 14% by mass, specific gravity of 0.02, average particle diameter of 40 μm acrylonitrile resin hollow spherical particles (manufactured by Matsumoto Yushi Co., Ltd., trade name: F-50E),
Thickener: Bentonite having a specific gravity of 2.5 (Kunimine Industries, trade name: Kunipia-F).

[2]接合層の作製
縦56mm×横56mm×長さ152.4mmの角柱状のセラミックス成形体(結晶相:β型Si、平均細孔直径:20μm、気孔率:65%、セルの厚さ:0.3mm、セルピッチ:1.5mm)の一側面上に、上記で得られたセラミックス接合用組成物を塗布し、200℃で乾燥して厚さ2mmの接合層を得た。
[2] Production of Bonding Layer Square columnar ceramic molded body having a length of 56 mm × width of 56 mm × length of 152.4 mm (crystal phase: β-type Si 3 N 4 , average pore diameter: 20 μm, porosity: 65%, cell The ceramic bonding composition obtained above was applied on one side of the film (thickness: 0.3 mm, cell pitch: 1.5 mm) and dried at 200 ° C. to obtain a bonding layer having a thickness of 2 mm.

[3]接合層の評価
[3−1]全気孔率、閉気孔率
中空粒子を添加せずに作製した例13の接合層について、アルキメデス法により見掛け密度ρ[g/cm]および嵩密度ρ[g/cm]を計測した。次に、中空粒子を添加して作製した接合層(例1〜12)から縦1mm×横10mm×長さ60mmの直方体のサンプルを切り出し、質量W[g]を計測し、下記式1および式2により全気孔率P[%]および閉気孔率P[%]を算出した。
[3] Evaluation of bonding layer [3-1] Total porosity, closed porosity For the bonding layer of Example 13 prepared without adding hollow particles, the apparent density ρ 0 [g / cm 3 ] and bulk by Archimedes method The density ρ 1 [g / cm 3 ] was measured. Next, a rectangular parallelepiped sample having a length of 1 mm, a width of 10 mm, and a length of 60 mm was cut out from a bonding layer (Examples 1 to 12) prepared by adding hollow particles, and the mass W [g] was measured. 2 was used to calculate the total porosity P 0 [%] and the closed porosity P 1 [%].

サンプル容積V=1×10×60/1000
接合層構成材の容積V=W/ρ
開気孔容積V=(ρ−ρ)/ρ×V
全気孔容積V=V−V
閉気孔容積V=V−V
=V/V ・・・式1、
=V/V ・・・式2。
Sample volume V 0 = 1 × 10 × 60/1000
Bonding layer constituent volume V 1 = W / ρ 0
Open pore volume V 2 = (ρ 0 −ρ 1 ) / ρ 1 × V 1
Total pore volume V 3 = V 0 −V 1
Closed pore volume V 4 = V 3 −V 2
P 0 = V 3 / V 0 Formula 1,
P 1 = V 4 / V 0 Formula 2

[3−2]接合層の曲げ強度、ヤング率
オートグラフ(島津製作所製、製品名:AGS−J)を用い、上記の縦1mm×横10mm×長さ60mmの直方体のサンプルに対しスパン40mm、ヘッドスピード0.5mm/秒の条件で荷重を印加し、最大荷重から曲げ強度を、荷重と変位量との関係から接合層の弾性率の尺度となるヤング率をそれぞれ算出した。
[3-2] Bending strength of bonding layer, Young's modulus Using an autograph (manufactured by Shimadzu Corporation, product name: AGS-J), a span of 40 mm with respect to the above rectangular sample having a length of 1 mm, a width of 10 mm, and a length of 60 mm, A load was applied under the condition of a head speed of 0.5 mm / second, the bending strength was calculated from the maximum load, and the Young's modulus, which was a measure of the elastic modulus of the bonding layer, was calculated from the relationship between the load and the displacement.

[3−3]接合強度
以下、接合強度の測定方法を図1を用いて説明する。
[2]で用いたものと同様のセラミックス成形体1の一側面上に例1〜15のセラミックス接合用組成物を塗布して塗布層を作製した。得られた塗布層上に、もう1個のセラミックス成形体1を、2つのセラミックス成形体1が略平行になるように積層し、200℃で乾燥して厚さ2mmのセラミックス接合層2付きセラミックス接合体Aを得た。
[3-3] Bonding Strength Hereinafter, a method for measuring the bonding strength will be described with reference to FIG.
The ceramic bonding composition of Examples 1 to 15 was applied on one side surface of the ceramic molded body 1 similar to that used in [2] to prepare a coating layer. On the obtained coating layer, another ceramic molded body 1 is laminated so that the two ceramic molded bodies 1 are substantially parallel, dried at 200 ° C., and a ceramic with a ceramic bonding layer 2 having a thickness of 2 mm. A joined body A was obtained.

得られた接合体Aのうち、一方のセラミックス成形体1の両端を保持部材3で保持した後、もう一方の(保持部材3で保持していない)セラミックス成形体1に対し、上部から垂直に荷重を印加した。その最大荷重を接合面積(56mm×152.4mm)で割ることにより、せん断応力を求めた。これを接合層とセラミックス成形体との接合強度とした。   In the obtained bonded body A, both ends of one ceramic molded body 1 are held by the holding member 3, and then perpendicular to the other ceramic molded body 1 (not held by the holding member 3) from above. A load was applied. The shear stress was determined by dividing the maximum load by the joint area (56 mm × 152.4 mm). This was defined as the bonding strength between the bonding layer and the ceramic molded body.

上記方法により測定した全気孔率[%]、閉気孔率[%]、接合層の曲げ強度[MPa]、ヤング率[GPa]および接合強度[kPa]を表1(例1〜5)、表2(例6〜10)および表3(例11〜15)にそれぞれ示す。   Table 1 (Examples 1 to 5) and Tables 1 to 5 show the total porosity [%], closed porosity [%], bonding layer bending strength [MPa], Young's modulus [GPa] and bonding strength [kPa] measured by the above method. 2 (Examples 6 to 10) and Table 3 (Examples 11 to 15), respectively.

Figure 2007204360
Figure 2007204360

Figure 2007204360
Figure 2007204360

Figure 2007204360
Figure 2007204360

表1〜3から明らかなように、本発明のセラミックス接合用組成物の使用により、セラミックス成形体と接合層との間の接合強度を損なうことなく、接合層の弾性率を顕著に低減できたことがわかる。すなわち、本発明のセラミックス接合用組成物の使用により、耐熱衝撃性に優れたセラミックス接合層および該接合層を有するセラミックス接合体が得られる。   As is apparent from Tables 1 to 3, by using the ceramic bonding composition of the present invention, the elastic modulus of the bonding layer could be significantly reduced without impairing the bonding strength between the ceramic molded body and the bonding layer. I understand that. That is, by using the ceramic bonding composition of the present invention, a ceramic bonding layer having excellent thermal shock resistance and a ceramic bonded body having the bonding layer can be obtained.

本発明は、複数のセラミックス成形体を接合してDPFを得る際に好適に適用できる。   The present invention can be suitably applied when a DPF is obtained by joining a plurality of ceramic molded bodies.

本発明により得られるセラミックス接合体の接合強度の測定方法を示す図。The figure which shows the measuring method of the joint strength of the ceramic joined body obtained by this invention.

符号の説明Explanation of symbols

1:セラミックス成形体
2:セラミックス接合層
3:保持部材
1: Ceramic molded body 2: Ceramic bonding layer 3: Holding member

Claims (8)

セラミックス粒子を3〜55体積%、無機バインダーを1〜25体積%および液状媒体を含有するセラミックス接合用組成物であって、中空粒子を含むことを特徴とするセラミックス接合用組成物。   A ceramic bonding composition comprising 3 to 55% by volume of ceramic particles, 1 to 25% by volume of an inorganic binder and a liquid medium, comprising hollow particles. 前記中空粒子が有機質中空粒子および/または無機質中空粒子である請求項1に記載のセラミックス接合用組成物。   The ceramic bonding composition according to claim 1, wherein the hollow particles are organic hollow particles and / or inorganic hollow particles. 前記中空粒子の平均粒子直径が5〜300μmである請求項1または2に記載のセラミックス接合用組成物。   The ceramic bonding composition according to claim 1 or 2, wherein the hollow particles have an average particle diameter of 5 to 300 µm. 前記中空粒子の比重が0.005〜1.5である請求項1〜3のいずれかに記載のセラミックス接合用組成物。   The ceramic bonding composition according to any one of claims 1 to 3, wherein the specific gravity of the hollow particles is 0.005 to 1.5. 前記組成物中の全固形分の総体積に対する中空粒子の合計体積が5〜90%である請求項1〜4のいずれかに記載のセラミックス接合用組成物。   The ceramic bonding composition according to any one of claims 1 to 4, wherein the total volume of the hollow particles is 5 to 90% with respect to the total volume of the total solid content in the composition. 請求項1〜5のいずれかに記載のセラミックス接合用組成物がセラミックス成形体の接合面上に塗布された後、加熱されて形成されたセラミックス接合層を有するセラミックス接合体。   A ceramic joined body having a ceramic joining layer formed by applying the ceramic joining composition according to any one of claims 1 to 5 on a joining surface of a ceramic molded body and then heating the composition. 前記セラミックス接合層の気孔率が30〜90%である請求項6に記載のセラミックス接合体。   The ceramic joined body according to claim 6, wherein the ceramic joining layer has a porosity of 30 to 90%. 前記セラミックス接合層中の気孔の全体積のうち、閉気孔の占める割合が5%以上である請求項6または7に記載のセラミックス接合体。   The ceramic joined body according to claim 6 or 7, wherein the proportion of closed pores in the total volume of pores in the ceramic joining layer is 5% or more.
JP2006352020A 2006-01-05 2006-12-27 Composition for ceramic bonding and ceramic bonded article Pending JP2007204360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006352020A JP2007204360A (en) 2006-01-05 2006-12-27 Composition for ceramic bonding and ceramic bonded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006000637 2006-01-05
JP2006352020A JP2007204360A (en) 2006-01-05 2006-12-27 Composition for ceramic bonding and ceramic bonded article

Publications (1)

Publication Number Publication Date
JP2007204360A true JP2007204360A (en) 2007-08-16

Family

ID=38484143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006352020A Pending JP2007204360A (en) 2006-01-05 2006-12-27 Composition for ceramic bonding and ceramic bonded article

Country Status (1)

Country Link
JP (1) JP2007204360A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066388A1 (en) * 2007-11-21 2009-05-28 Ibiden Co., Ltd. Honeycomb structure and process for producing the same
JP2010012415A (en) * 2008-07-03 2010-01-21 Ngk Insulators Ltd Honeycomb structure
JP2011057540A (en) * 2009-03-30 2011-03-24 Ibiden Co Ltd Sealant for honeycomb structure, honeycomb structure and method for manufacturing honeycomb structure
JPWO2009095982A1 (en) * 2008-01-28 2011-05-26 イビデン株式会社 Honeycomb structure
WO2013145243A1 (en) * 2012-03-29 2013-10-03 イビデン株式会社 Honeycomb structure, honeycomb filter for exhaust gas purification, and exhaust gas purification device
WO2013145245A1 (en) * 2012-03-29 2013-10-03 イビデン株式会社 Honeycomb structure, honeycomb filter for exhaust gas purification, and exhaust gas purification device
KR20140048210A (en) * 2011-07-22 2014-04-23 다우 글로벌 테크놀로지스 엘엘씨 Process for producing cemented and skinned ceramic honeycomb structures
JPWO2013125713A1 (en) * 2012-02-24 2015-07-30 日本碍子株式会社 Honeycomb structure
JPWO2013145243A1 (en) * 2012-03-29 2015-08-03 イビデン株式会社 Honeycomb structure, exhaust gas purification honeycomb filter and exhaust gas purification device
JP2015182926A (en) * 2014-03-25 2015-10-22 日本碍子株式会社 Method of producing honeycomb structure
JP2016222884A (en) * 2014-12-30 2016-12-28 ザ・ボーイング・カンパニーThe Boeing Company Bonding of dissimilar ceramic components

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066388A1 (en) * 2007-11-21 2009-05-28 Ibiden Co., Ltd. Honeycomb structure and process for producing the same
JPWO2009095982A1 (en) * 2008-01-28 2011-05-26 イビデン株式会社 Honeycomb structure
JP2010012415A (en) * 2008-07-03 2010-01-21 Ngk Insulators Ltd Honeycomb structure
JP2011057540A (en) * 2009-03-30 2011-03-24 Ibiden Co Ltd Sealant for honeycomb structure, honeycomb structure and method for manufacturing honeycomb structure
KR20140048210A (en) * 2011-07-22 2014-04-23 다우 글로벌 테크놀로지스 엘엘씨 Process for producing cemented and skinned ceramic honeycomb structures
KR101931401B1 (en) 2011-07-22 2019-03-13 다우 글로벌 테크놀로지스 엘엘씨 Process for producing cemented and skinned ceramic honeycomb structures
JPWO2013125713A1 (en) * 2012-02-24 2015-07-30 日本碍子株式会社 Honeycomb structure
WO2013145245A1 (en) * 2012-03-29 2013-10-03 イビデン株式会社 Honeycomb structure, honeycomb filter for exhaust gas purification, and exhaust gas purification device
WO2013145243A1 (en) * 2012-03-29 2013-10-03 イビデン株式会社 Honeycomb structure, honeycomb filter for exhaust gas purification, and exhaust gas purification device
JPWO2013145243A1 (en) * 2012-03-29 2015-08-03 イビデン株式会社 Honeycomb structure, exhaust gas purification honeycomb filter and exhaust gas purification device
JPWO2013145245A1 (en) * 2012-03-29 2015-08-03 イビデン株式会社 Honeycomb structure, exhaust gas purification honeycomb filter and exhaust gas purification device
JP2015182926A (en) * 2014-03-25 2015-10-22 日本碍子株式会社 Method of producing honeycomb structure
JP2016222884A (en) * 2014-12-30 2016-12-28 ザ・ボーイング・カンパニーThe Boeing Company Bonding of dissimilar ceramic components
US10894747B2 (en) 2014-12-30 2021-01-19 The Boeing Company Bonding dissimilar ceramic components
US11780781B2 (en) 2014-12-30 2023-10-10 The Boeing Company Bonding dissimilar ceramic components

Similar Documents

Publication Publication Date Title
JP2007204360A (en) Composition for ceramic bonding and ceramic bonded article
US20070160825A1 (en) Composition for ceramic bonding and ceramic bonded article
JP5485546B2 (en) Bonded body, honeycomb segment bonded body, and honeycomb structure using the same
JP4870558B2 (en) Honeycomb structure and sealing material layer
JP5469305B2 (en) Bonding material, manufacturing method thereof, and honeycomb structure using the same
WO2001023069A1 (en) Honeycomb filter and ceramic filter assembly
JP6308943B2 (en) Cement and skin material for ceramic honeycomb structures
JP2003117322A (en) Honeycomb filter
JP2003155908A (en) Honeycomb structural body, and manufacturing method thereof
JP2003117320A (en) Honeycomb filter
JPWO2003067042A1 (en) Honeycomb filter for exhaust gas purification
JPWO2007111279A1 (en) Bonded body, bonded material composition, honeycomb segment bonded body, and honeycomb structure using the same
JP5244619B2 (en) Bonding material composition and method for producing the same, joined body and method for producing the same
JP4890857B2 (en) Honeycomb structure
WO2009117580A2 (en) Improved cement to make thermal shock resistant ceramic honeycomb structures and method to make them
JP5833015B2 (en) Improved cements for obtaining thermal shock resistant ceramic honeycomb structures and methods for their preparation
EP2448674B1 (en) Cement containing multi-modal fibers for making thermal shock resistant ceramic honeycomb structures
JP4997068B2 (en) JOINT BODY AND MANUFACTURING METHOD THEREOF
JP4997064B2 (en) Bonding material composition and method for producing the same, joined body and method for producing the same
JP2004261623A (en) Honeycomb structure
JP2012532087A (en) Process for making acicular and skin acicular mullite honeycomb structures
JP6389045B2 (en) Honeycomb structure
JP5060743B2 (en) SiC bonding material
JP5318753B2 (en) JOINT BODY, MANUFACTURING METHOD THEREOF, JOINT MATERIAL COMPOSITION, AND MANUFACTURING METHOD THEREOF
JP2010001204A (en) Honeycomb structure