JP2010001204A - Honeycomb structure - Google Patents

Honeycomb structure Download PDF

Info

Publication number
JP2010001204A
JP2010001204A JP2009039168A JP2009039168A JP2010001204A JP 2010001204 A JP2010001204 A JP 2010001204A JP 2009039168 A JP2009039168 A JP 2009039168A JP 2009039168 A JP2009039168 A JP 2009039168A JP 2010001204 A JP2010001204 A JP 2010001204A
Authority
JP
Japan
Prior art keywords
honeycomb structure
honeycomb
zeolite
coat layer
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009039168A
Other languages
Japanese (ja)
Inventor
Kazushige Ono
一茂 大野
Masafumi Kunieda
雅文 国枝
Takahiko Ido
貴彦 井戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2009039168A priority Critical patent/JP2010001204A/en
Publication of JP2010001204A publication Critical patent/JP2010001204A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a honeycomb structure which is hard to generate exfoliation and crack in the interface of a honeycomb unit and an outer peripheral coat layer. <P>SOLUTION: The honeycomb structure consists of a pillar-like honeycomb unit, in which a plurality of cells, having a zeolite and an inorganic binder and extending from a first end side to a second end side along the longitudinal direction, are divided by a cell wall, and the coat layer arranged in its outer peripheral side, wherein 0.75≤κc/κh≤1.25 (1) and 0.75≤Ec/Eh≤1.25 (2) are satisfied when the thermal expansion coefficient in the radial direction of the coat layer is κc, the Young's modulus in the radial direction of it is Ec, the thermal expansion coefficient in the radial direction of the honeycomb unit is κh, the Young's modulus in the radial direction of it is Eh. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、排ガスを処理するハニカム構造体に関する。   The present invention relates to a honeycomb structure for treating exhaust gas.

自動車排ガスの浄化に関しては、多くの技術が開発されているが、交通量の増大もあって、まだ十分な排ガス対策がとられているとは言い難い。日本国内においても、世界的にも自動車排ガス規制は、さらに強化されていく方向にある。その中でも、ディーゼル排ガス中のNOx規制については、非常に厳しくなってきている。従来は、エンジンの燃焼システムの制御によってNOx低減を図ってきたが、それだけでは対応しきれなくなってきた。このような課題に対応するディーゼルNOx浄化システムとして、アンモニアを還元剤として用いるNOx還元システム(SCRシステムと呼ばれている。)が提案されている。このようなシステムに用いられる触媒担体として、ハニカム構造体が知られている。   Many technologies have been developed for the purification of automobile exhaust gas, but due to the increase in traffic, it is difficult to say that sufficient exhaust gas countermeasures have been taken. In Japan and around the world, exhaust gas regulations are becoming more strict. Among them, NOx regulations in diesel exhaust gas are becoming very strict. Conventionally, NOx reduction has been attempted by controlling the combustion system of the engine, but it has become impossible to cope with it. As a diesel NOx purification system corresponding to such a problem, a NOx reduction system (referred to as an SCR system) using ammonia as a reducing agent has been proposed. A honeycomb structure is known as a catalyst carrier used in such a system.

このハニカム構造体は、例えば、長手方向に沿って、該ハニカム構造体の一方の端面から他方の端面まで延伸する複数のセル(貫通孔)を有し、これらのセルは、触媒が担持されたセル壁により、相互に区画されている。従って、このようなハニカム構造体に排ガスを流通させた場合、セル壁に担持された触媒によって、排ガスに含まれるNOxが浄化されるため、排ガスを処理することができる。   This honeycomb structure has, for example, a plurality of cells (through holes) extending from one end face of the honeycomb structure to the other end face along the longitudinal direction, and these cells carry a catalyst. They are partitioned from each other by cell walls. Therefore, when exhaust gas is circulated through such a honeycomb structure, NOx contained in the exhaust gas is purified by the catalyst supported on the cell walls, so that the exhaust gas can be treated.

一般に、このようなハニカム構造体のセル壁は、コージェライトで構成され、このセル壁には、触媒として、例えばゼオライト(鉄または銅等でイオン交換されたもの)が担持される。この他、セル壁にゼオライトを使用し、ハニカム構造体を形成することが提案されている(例えば特許文献1)。   In general, the cell walls of such a honeycomb structure are made of cordierite, and zeolite (for example, ion-exchanged with iron or copper) is supported on the cell walls as a catalyst. In addition, it has been proposed to use a zeolite for the cell wall to form a honeycomb structure (for example, Patent Document 1).

前述のようなハニカム構造体は、例えば、接着層を介して、セラミックユニットを所定の数だけ結束させた後、この結束体を所望の形状に切削加工し、さらに切削加工された外周面にコート層を設置することにより製作される。この際に、接着層とセラミックユニットの熱膨張率の比およびヤング率の比を、適正な範囲に調整することにより、接着層とセラミックユニットとの界面での剥離やクラックの発生を抑制することが提案されている(特許文献2)。   In the honeycomb structure as described above, for example, after binding a predetermined number of ceramic units through an adhesive layer, the bundle is cut into a desired shape, and the outer peripheral surface that has been cut is coated. Manufactured by installing layers. At this time, by controlling the ratio of the thermal expansion coefficient and the Young's modulus between the adhesive layer and the ceramic unit to an appropriate range, it is possible to suppress the occurrence of peeling and cracks at the interface between the adhesive layer and the ceramic unit. Has been proposed (Patent Document 2).

国際公開第2005/063653号パンフレットInternational Publication No. 2005/063653 Pamphlet 国際公開第2003/67042号パンフレットInternational Publication No. 2003/67042 Pamphlet

前述のように、接着層とセラミックユニットのそれぞれの熱膨張率およびヤング率が調整されたハニカム構造体では、接着層とセラミックユニットとの界面での剥離およびクラックの発生を抑制することができる。   As described above, in the honeycomb structure in which the thermal expansion coefficient and Young's modulus of the adhesive layer and the ceramic unit are adjusted, it is possible to suppress the occurrence of peeling and cracks at the interface between the adhesive layer and the ceramic unit.

しかしながら、ハニカム構造体における剥離およびクラックの発生箇所は、接着層とハニカムユニット(セラミックユニット)の界面に限られるものではない。外周面に外周コート層を有するハニカム構造体では、例えば、ハニカムユニットと外周コート層との界面においても、同様の問題は生じ得る。   However, the occurrence of peeling and cracks in the honeycomb structure is not limited to the interface between the adhesive layer and the honeycomb unit (ceramic unit). In the honeycomb structure having the outer peripheral coat layer on the outer peripheral surface, for example, the same problem may occur at the interface between the honeycomb unit and the outer peripheral coat layer.

また、前述の特許文献2における熱膨張率およびヤング率の適正範囲は、例えばSiCなどの焼結体で構成されたハニカム構造体において得られたものであり、焼結体以外の部材においても同様に適用できるとは限られない。特に、前述のような、セル壁がゼオライトで構成されたハニカム構造体は、焼結体ではないため、焼結体で構成されたハニカム構造体に比べて強度が低い。従って、セル壁がゼオライトで構成されたハニカム構造体において、ハニカムユニットとコート層の熱膨張率およびヤング率を、特許文献2に記載の範囲に調整したとしても、依然として、この界面で剥離、クラックが生じことは十分に予想される。   Further, the appropriate ranges of the thermal expansion coefficient and Young's modulus in the above-mentioned Patent Document 2 are those obtained in a honeycomb structure made of a sintered body such as SiC, and the same applies to members other than the sintered body. It may not be applicable to. In particular, a honeycomb structure having cell walls made of zeolite as described above is not a sintered body, and therefore has a lower strength than a honeycomb structure made of a sintered body. Accordingly, in the honeycomb structure in which the cell wall is composed of zeolite, even if the thermal expansion coefficient and Young's modulus of the honeycomb unit and the coating layer are adjusted to the ranges described in Patent Document 2, peeling and cracking still occur at this interface. It is fully expected that this will occur.

本発明は、このような問題に鑑みなされたものであり、ハニカムユニットと外周コート層との界面で、剥離およびクラックの生じにくいハニカム構造体を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a honeycomb structure in which peeling and cracking are unlikely to occur at the interface between the honeycomb unit and the outer peripheral coat layer.

本発明では、ゼオライトおよび無機バインダを含み、長手方向に沿って、第1の端面から第2の端面に延伸する複数のセルがセル壁によって区画された柱状のハニカムユニットと、外周面に形成された外周コート層とにより構成されるハニカム構造体であって、
前記外周コート層の径方向の熱膨張率をκcとし、径方向のヤング率をEcとし、前記ハニカムユニットの径方向の熱膨張率をκhとし、径方向のヤング率をEhとしたとき、
0.75≦κc/κh≦1.25 式(1)、および
0.75≦Ec/Eh≦1.25 式(2)
を満足することを特徴とする。
In the present invention, a plurality of cells that include a zeolite and an inorganic binder and extend from the first end surface to the second end surface along the longitudinal direction are formed on the outer peripheral surface and the columnar honeycomb unit defined by the cell walls. A honeycomb structure constituted by the outer peripheral coating layer,
When the thermal expansion coefficient in the radial direction of the outer peripheral coating layer is κc, the Young's modulus in the radial direction is Ec, the thermal expansion coefficient in the radial direction of the honeycomb unit is κh, and the Young's modulus in the radial direction is Eh,
0.75 ≦ κc / κh ≦ 1.25 Formula (1), and 0.75 ≦ Ec / Eh ≦ 1.25 Formula (2)
It is characterized by satisfying.

本発明において、ハニカムユニットに含まれるゼオライトは、β型ゼオライト、Y型ゼオライト、フェリエライト、ZSM−5型ゼオライト、モルデナイト、フォージサイト、ゼオライトA、またはゼオライトLであっても良い。   In the present invention, the zeolite contained in the honeycomb unit may be β-type zeolite, Y-type zeolite, ferrierite, ZSM-5-type zeolite, mordenite, forgesite, zeolite A, or zeolite L.

また、ハニカムユニットに含まれるゼオライトは、アルミナに対するシリカの重量比が30〜50であっても良い。   Further, the zeolite contained in the honeycomb unit may have a silica to alumina weight ratio of 30 to 50.

また、ハニカムユニットに含まれるゼオライトは、Fe、Cu、Ni、Co、Zn、Mn、Ti、AgまたはVでイオン交換されていても良い。   Moreover, the zeolite contained in the honeycomb unit may be ion-exchanged with Fe, Cu, Ni, Co, Zn, Mn, Ti, Ag or V.

また本発明において、さらに前記ハニカムユニットは、アルミナ、シリカ、ジルコニア、チタニア、セリアおよびムライトから選定された少なくとも一つの粒子を含んでいても良い。   In the present invention, the honeycomb unit may further include at least one particle selected from alumina, silica, zirconia, titania, ceria, and mullite.

また、前記ハニカムユニットに含まれる無機バインダは、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト、およびアタパルジャイトの群から選定された少なくとも一つを含んでも良い。   The inorganic binder contained in the honeycomb unit may include at least one selected from the group consisting of alumina sol, silica sol, titania sol, water glass, sepiolite, and attapulgite.

また、前記ハニカムユニットは、さらに無機繊維を含んでも良い。   The honeycomb unit may further include inorganic fibers.

前記ハニカムユニットに含まれるそのような無機繊維は、アルミナ、シリカ、炭化珪素、シリカアルミナ、ガラス、チタン酸カリウムおよびホウ酸アルミニウムの群から選定された少なくとも一つであっても良い。   Such inorganic fibers contained in the honeycomb unit may be at least one selected from the group of alumina, silica, silicon carbide, silica alumina, glass, potassium titanate, and aluminum borate.

また本発明によるハニカム構造体において、前記外周コート層は、無機粒子と、無機バインダおよび無機繊維の少なくとも一つとを含んでも良い。   In the honeycomb structure according to the present invention, the outer peripheral coat layer may include inorganic particles and at least one of an inorganic binder and inorganic fibers.

特に、前記外周コート層に含まれる無機粒子は、ゼオライト、アルミナ、シリカ、ジルコニア、チタニア、セリアおよびムライトのうち少なくとも一つを含んでいても良い。   In particular, the inorganic particles contained in the outer peripheral coat layer may contain at least one of zeolite, alumina, silica, zirconia, titania, ceria and mullite.

また、前記外周コート層に含まれる無機バインダは、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト、およびアタパルジャイトの群から選定された少なくとも一つを含んでいても良い。   Further, the inorganic binder contained in the outer peripheral coat layer may contain at least one selected from the group consisting of alumina sol, silica sol, titania sol, water glass, sepiolite, and attapulgite.

また、前記外周コート層に含まれる無機繊維は、アルミナ、シリカ、炭化珪素、シリカアルミナ、ガラス、チタン酸カリウムおよびホウ酸アルミニウムの群から選定された少なくとも一つであっても良い。   Further, the inorganic fiber contained in the outer peripheral coat layer may be at least one selected from the group consisting of alumina, silica, silicon carbide, silica alumina, glass, potassium titanate, and aluminum borate.

また、本発明によるハニカム構造体は、複数のハニカムユニットを接着層を介して接合することにより構成されていても良い。   In addition, the honeycomb structure according to the present invention may be configured by joining a plurality of honeycomb units via an adhesive layer.

本発明では、ハニカムユニットと外周コート層との界面で、剥離およびクラックの生じにくいハニカム構造体を提供することが可能となる。   In the present invention, it is possible to provide a honeycomb structure in which peeling and cracking are unlikely to occur at the interface between the honeycomb unit and the outer peripheral coat layer.

本発明のハニカム構造体の一例を模式的に示した斜視図である。1 is a perspective view schematically showing an example of a honeycomb structure of the present invention. 図1のハニカム構造体を構成するハニカムユニットの一例を模式的に示した斜視図である。FIG. 2 is a perspective view schematically showing an example of a honeycomb unit constituting the honeycomb structure of FIG. 1. 本発明のハニカム構造体の他の例を示した斜視図である。FIG. 6 is a perspective view showing another example of the honeycomb structure of the present invention.

以下図面により本発明の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1には、本発明によるハニカム構造体の一例を模式的に示す。また、図2には、図1に示したハニカム構造体の基本単位である、ハニカムユニットの一例を模式的に示す。   FIG. 1 schematically shows an example of a honeycomb structure according to the present invention. FIG. 2 schematically shows an example of a honeycomb unit which is a basic unit of the honeycomb structure shown in FIG.

図1に示すように、本発明のハニカム構造体100は、2つの端面110および115を有する。また、ハニカム構造体100の両端面を除く外周面には、外周コート層120が形成されている。   As shown in FIG. 1, the honeycomb structure 100 of the present invention has two end faces 110 and 115. An outer peripheral coat layer 120 is formed on the outer peripheral surface of the honeycomb structure 100 excluding both end surfaces.

ハニカム構造体100は、例えば、図2に示す柱状のセラミック製ハニカムユニット130を、接着層150を介して複数個(図1の例では、縦横4列ずつ16個)接合させた後、外周側を所定の形状(図1の例では、円柱状)に沿って切削加工することにより構成される。   The honeycomb structure 100 includes, for example, a plurality of columnar ceramic honeycomb units 130 shown in FIG. 2 bonded to each other via the adhesive layer 150 (in the example of FIG. Is formed by cutting along a predetermined shape (cylindrical in the example of FIG. 1).

図2に示すように、ハニカムユニット130は、該ハニカムユニットの長手方向に沿って一端から他端まで延伸し、両端面で開口された複数のセル(貫通孔)121と、該セルを区画するセル壁123とを有する。本発明のハニカムユニット130は、NOx浄化に寄与するゼオライトを含む。従って、本発明によるハニカム構造体を、NOx浄化用の触媒担体として使用する場合、セル壁に、必ずしも貴金属触媒を担持する必要はない。ただし、セル壁には、さらに貴金属触媒を担持しても良い。   As shown in FIG. 2, the honeycomb unit 130 extends from one end to the other end along the longitudinal direction of the honeycomb unit, and divides the cells from a plurality of cells (through holes) 121 opened at both end surfaces. Cell wall 123. The honeycomb unit 130 of the present invention includes zeolite that contributes to NOx purification. Therefore, when the honeycomb structure according to the present invention is used as a catalyst carrier for NOx purification, it is not always necessary to support a noble metal catalyst on the cell wall. However, a noble metal catalyst may be further supported on the cell wall.

このように構成されたハニカム構造体100は、例えば、尿素タンクを有する尿素SCRシステムの触媒担体として使用される。この尿素SCRシステムに、排ガスが流通されると、尿素タンクに収容されている尿素が排ガス中の水と反応して、アンモニアが生じる。

CO(NH+HO → 2NH+CO 式(3)

このアンモニアが、NOxを含む排ガスとともに、ハニカム構造体100の一方の端面(例えば端面110)から、各セルに流入した場合、セル壁に含まれているゼオライト上で、この混合ガスの間で、以下の反応が生じる。

4NH+4NO+O → 4N+6HO 式(4−1)
8NH+6NO → 7N+12HO 式(4−2)
2NH+NO+NO → 2N+3HO 式(4−3)

その後、浄化された排ガスは、ハニカム構造体100の他方の端面(例えば端面115)から排出される。このように、ハニカム構造体100内に排ガスを流通させることにより、排ガス中のNOxを処理することができる。また、ここでは、尿素水を加水分解して、NHを供給する方法を示したが、その他の方法でNHを供給しても良い。
The honeycomb structure 100 configured as described above is used, for example, as a catalyst carrier of a urea SCR system having a urea tank. When exhaust gas is circulated through the urea SCR system, the urea contained in the urea tank reacts with the water in the exhaust gas to produce ammonia.

CO (NH 2 ) 2 + H 2 O → 2NH 3 + CO 2 Formula (3)

When this ammonia flows into each cell from one end face (for example, end face 110) of the honeycomb structure 100 together with the exhaust gas containing NOx, between the mixed gas on the zeolite contained in the cell wall, The following reactions occur:

4NH 3 + 4NO + O 2 → 4N 2 + 6H 2 O Formula (4-1)
8NH 3 + 6NO 2 → 7N 2 + 12H 2 O Formula (4-2)
2NH 3 + NO + NO 2 → 2N 2 + 3H 2 O Formula (4-3)

Thereafter, the purified exhaust gas is discharged from the other end surface of the honeycomb structure 100 (for example, the end surface 115). Thus, NOx in the exhaust gas can be treated by flowing the exhaust gas through the honeycomb structure 100. Further, here, the method of supplying NH 3 by hydrolyzing urea water is shown, but NH 3 may be supplied by other methods.

ここで、従来のSiC焼結体で構成されたハニカム構造体の場合、ハニカム構造体の使用期間中に、ハニカムユニットと接着層の熱膨張率およびヤング率の差異に起因して、しばしば、この界面で剥離またはクラックが生じることがある。そこで、予めハニカムユニットと接着層の熱膨張率比およびヤング率比を所定の範囲に調整しておくことにより、ハニカムユニットと接着層との界面(ハニカムユニット/接着層界面)での剥離またはクラックの発生を抑制することが提案されている(前述の特許文献2)。   Here, in the case of a honeycomb structure composed of a conventional SiC sintered body, during the use period of the honeycomb structure, due to the difference in the thermal expansion coefficient and Young's modulus between the honeycomb unit and the adhesive layer, this is often the case. Peeling or cracking may occur at the interface. Therefore, the thermal expansion coefficient ratio and Young's modulus ratio between the honeycomb unit and the adhesive layer are adjusted in a predetermined range in advance, so that peeling or cracks at the interface between the honeycomb unit and the adhesive layer (honeycomb unit / adhesive layer interface). It has been proposed to suppress the occurrence of the above (Patent Document 2 described above).

ただし、ハニカム構造体において、そのようなクラックおよび剥離の発生現象は、ハニカムユニットと接着層との界面での固有の問題ではない。すなわち、ハニカムユニットと外周コート層の界面(ハニカムユニットの外周コート層界面)においても同様の問題は、生じ得る。従って、ハニカムユニットとコート層においても、両者の熱膨張率およびヤング率を適正な範囲に調整する必要がある。特に、図3のように、ハニカム構造体が、単一のハニカムユニットで構成されている場合には、このような問題が生じやすい傾向にある。   However, in the honeycomb structure, such a phenomenon of occurrence of cracks and peeling is not an inherent problem at the interface between the honeycomb unit and the adhesive layer. That is, the same problem can occur at the interface between the honeycomb unit and the outer peripheral coat layer (the outer peripheral coat layer interface of the honeycomb unit). Therefore, also in the honeycomb unit and the coat layer, it is necessary to adjust the thermal expansion coefficient and Young's modulus of both to an appropriate range. In particular, as shown in FIG. 3, such a problem tends to occur when the honeycomb structure is composed of a single honeycomb unit.

しかしながら、前述の特許文献2における熱膨張率およびヤング率の適正範囲は、SiCなどの焼結体で構成されたハニカム構造体において得られたものであり、焼結体以外の部材においても同様に適用できるとは限られない。特に、本発明のような、セル壁123がゼオライトを含み、ゼオライト粒子が無機バインダで結合されているのみで十分に焼結されていないハニカム構造体100は、焼結体で構成されたハニカム構造体に比べて、強度が低いことが知られている。従って、本発明によるハニカム構造体100において、ハニカムユニットとコート層の熱膨張率およびヤング率を、特許文献2に記載の範囲に調整したとしても、依然として、ハニカムユニットと外周コート層との界面で剥離、クラックが生じる危険性がある。   However, the appropriate ranges of the coefficient of thermal expansion and the Young's modulus in Patent Document 2 described above are those obtained in a honeycomb structure made of a sintered body such as SiC, and similarly in members other than the sintered body. Not always applicable. In particular, the honeycomb structure 100 in which the cell wall 123 contains zeolite and the zeolite particles are bonded with an inorganic binder and is not sufficiently sintered as in the present invention is a honeycomb structure formed of a sintered body. It is known that the strength is lower than that of the body. Therefore, in the honeycomb structure 100 according to the present invention, even when the thermal expansion coefficient and Young's modulus of the honeycomb unit and the coat layer are adjusted to the ranges described in Patent Document 2, the interface still remains between the honeycomb unit and the outer peripheral coat layer. There is a risk of peeling and cracking.

本願発明者らは、以上のような考察に基づき多くの研究を行い、セル壁がゼオライトと、無機バインダとを含む材料で構成されたハニカム構造体において、ハニカムユニットと外周コート層の熱膨張率およびヤング率を所定の関係を満たすように調整することにより、ハニカムユニットと外周コート層との界面での剥離およびクラックの発生を有意に抑制し得ることを見出した。この結果によれば、ハニカムユニットの熱膨張率をκhとし、ヤング率をEhとし、外周コート層の熱膨張率をκcとし、ヤング率をEcとしたとき、
0.75≦κc/κh≦1.25 式(1)、および
0.75≦Ec/Eh≦1.25 式(2)
を満たすようにして、各値を調整することにより、ハニカムユニットと外周コート層との界面での剥離およびクラックの発生を有意に抑制することができる。
The inventors of the present application have made many studies based on the above considerations, and in the honeycomb structure in which the cell wall is composed of a material containing zeolite and an inorganic binder, the thermal expansion coefficient of the honeycomb unit and the outer peripheral coat layer. It was also found that by adjusting the Young's modulus so as to satisfy a predetermined relationship, peeling and cracking at the interface between the honeycomb unit and the outer peripheral coat layer can be significantly suppressed. According to this result, when the thermal expansion coefficient of the honeycomb unit is κh, the Young's modulus is Eh, the thermal expansion coefficient of the outer peripheral coat layer is κc, and the Young's modulus is Ec,
0.75 ≦ κc / κh ≦ 1.25 Formula (1), and 0.75 ≦ Ec / Eh ≦ 1.25 Formula (2)
By adjusting the respective values so as to satisfy the above, it is possible to significantly suppress the occurrence of peeling and cracks at the interface between the honeycomb unit and the outer peripheral coat layer.

本発明のハニカム構造体100は、このような知見に基づいて得られたものであり、ハニカムユニット130と外周コート層120の熱膨張率およびヤング率が、上記式(1)、式(2)を満たすように調整されていることを特徴としている。このような特徴により、本発明のハニカム構造体100では、ハニカムユニットと外周コート層との界面での剥離およびクラックの発生を有意に抑制することができる。   The honeycomb structure 100 of the present invention is obtained based on such knowledge, and the thermal expansion coefficient and Young's modulus of the honeycomb unit 130 and the outer peripheral coat layer 120 are the above formulas (1) and (2). It is characterized by being adjusted to satisfy. With such a feature, in the honeycomb structure 100 of the present invention, it is possible to significantly suppress the occurrence of peeling and cracks at the interface between the honeycomb unit and the outer peripheral coat layer.

なお、本願において、ハニカムユニットおよび外周コート層の熱膨張率κh、κcは、いずれも径方向、すなわち長手方向に対して垂直な方向における値である。同様に、ハニカムユニットおよび外周コート層の各ヤング率Eh、Ecも、径方向における値である。   In the present application, the thermal expansion coefficients κh and κc of the honeycomb unit and the outer peripheral coat layer are both values in the radial direction, that is, the direction perpendicular to the longitudinal direction. Similarly, the Young's moduli Eh and Ec of the honeycomb unit and the outer peripheral coat layer are also values in the radial direction.

ハニカムユニットおよび外周コート層の熱膨張率κh、κcは、以下の方法で測定することができる。   The thermal expansion coefficients κh and κc of the honeycomb unit and the outer peripheral coat layer can be measured by the following method.

縦3mm×横3mm×高さ15mmの寸法の測定サンプルを準備する。ハニカムユニットの測定サンプルは、ハニカムユニットを製作する際に使用される成形用ペースト(詳細は後述する)を用いて、実際のハニカムユニットを製作する場合と同様の工程により作製される。同様に、外周コート層の測定サンプルは、ハニカムユニットの外周面に外周コート層を形成する際に使用される外周コート層用ペースト(詳細は後述する)を用いて、実際の外周コート層を製作する場合と同様の工程により、縦3mm×横3mm×高さ15mmの寸法で作製する。   A measurement sample having dimensions of 3 mm long × 3 mm wide × 15 mm high is prepared. The measurement sample of the honeycomb unit is manufactured by a process similar to that for manufacturing an actual honeycomb unit using a molding paste (details will be described later) used when manufacturing the honeycomb unit. Similarly, the outer peripheral coat layer measurement sample is manufactured using the outer peripheral coat layer paste (details will be described later) used when forming the outer peripheral coat layer on the outer peripheral surface of the honeycomb unit. In the same manner as in the case of manufacturing, a size of 3 mm in length, 3 mm in width, and 15 mm in height is produced.

次に、測定サンプルと、アルミナ製の基準サンプル(3mm×3mm×15mm)とを、両サンプルの長手方向が水平方向となるようにして、密閉式容器内に並べて設置する。なお、これらのサンプルには、上面(すなわち3mm×15mmの上部領域)の中央部分と接するように、それぞれの検出棒が設置されている。   Next, a measurement sample and an alumina reference sample (3 mm × 3 mm × 15 mm) are placed side by side in a sealed container so that the longitudinal direction of both samples is in the horizontal direction. In these samples, each detection rod is installed so as to be in contact with the central portion of the upper surface (that is, the upper region of 3 mm × 15 mm).

次に、アルゴン雰囲気下で、測定サンプルおよび基準サンプルを室温から、5℃/分の昇温速度で700℃まで昇温し、700℃で20分間保持した後、室温まで自然冷却させる。この際、測定サンプルおよび基準サンプルが熱膨張するが、この変化量は、検出棒により検出される。従って、基準サンプルと測定サンプルの変化量の差から、測定サンプルの熱膨張率が求められる。   Next, in an argon atmosphere, the measurement sample and the reference sample are heated from room temperature to 700 ° C. at a heating rate of 5 ° C./min, held at 700 ° C. for 20 minutes, and then naturally cooled to room temperature. At this time, the measurement sample and the reference sample are thermally expanded, and the amount of change is detected by the detection rod. Therefore, the coefficient of thermal expansion of the measurement sample is obtained from the difference in change between the reference sample and the measurement sample.

測定には、熱膨張率測定装置(DL−7000、アルバック理工(株)製)を使用した。この装置の最小検出感度は、0.1μmである。   For the measurement, a thermal expansion coefficient measuring device (DL-7000, manufactured by ULVAC-RIKO) was used. The minimum detection sensitivity of this device is 0.1 μm.

ハニカムユニットおよび外周コート層の各ヤング率Eh、Ecは、以下の方法により測定する。   The Young's moduli Eh and Ec of the honeycomb unit and the outer peripheral coat layer are measured by the following methods.

横10mm×長さ50mm×厚さ0.4mmの寸法の測定サンプルを準備する。ハニカムユニットの測定サンプルは、ハニカムユニットを製作する際に使用する成形用ペースト(詳細は後述する)を用いて、実際のハニカムユニットを製作する場合と同様の工程により作製する。同様に、外周コート層の測定サンプルは、ハニカムユニットの外周面に外周コート層を設置する際に使用する、外周コート層用ペースト(詳細は後述する)を用いて、実際の外周コート層を製作する場合と同様の工程により、横10mm×長さ50mm×厚さ0.4mmの寸法で作製する。   A measurement sample having dimensions of width 10 mm × length 50 mm × thickness 0.4 mm is prepared. The measurement sample of the honeycomb unit is manufactured by the same process as that for manufacturing an actual honeycomb unit using a molding paste (details will be described later) used when manufacturing the honeycomb unit. Similarly, the outer peripheral coat layer measurement sample is prepared by using the outer peripheral coat layer paste (details will be described later), which is used when installing the outer peripheral coat layer on the outer peripheral surface of the honeycomb unit. In the same process as in the case of making, a size of width 10 mm × length 50 mm × thickness 0.4 mm is produced.

次に、測定サンプルをヤング率測定装置に設置し、いわゆる共振法により、測定サンプルのヤング率を測定する。測定装置には、JE−RT型弾性率測定装置(日本テクノプラス(株)社製)を使用した。測定雰囲気は、大気とし、測定温度は、室温とする。   Next, the measurement sample is placed in a Young's modulus measuring apparatus, and the Young's modulus of the measurement sample is measured by a so-called resonance method. A JE-RT type elastic modulus measuring device (manufactured by Nippon Techno Plus Co., Ltd.) was used as the measuring device. The measurement atmosphere is air, and the measurement temperature is room temperature.

次に、本発明によるハニカム構造体を構成する各部材について、より詳しく説明する。   Next, each member constituting the honeycomb structure according to the present invention will be described in more detail.

本発明のハニカム構造体において、ハニカムユニット130は、ゼオライトに加えて無機バインダを含んでいる。さらに、ハニカムユニット130は、ゼオライト以外の無機粒子、および/または無機繊維を含んでいても良い。   In the honeycomb structure of the present invention, the honeycomb unit 130 includes an inorganic binder in addition to zeolite. Furthermore, the honeycomb unit 130 may include inorganic particles other than zeolite and / or inorganic fibers.

ゼオライトは、例えば、β型ゼオライト、Y型ゼオライト、フェリエライト、ZSM−5型ゼオライト、モルデナイト、フォージサイト、ゼオライトA、またはゼオライトLであっても良い。あるいは、ゼオライトは、Fe、Cu、Ni、Co、Zn、Mn、AgまたはVでイオン交換されたものであっても良い。   The zeolite may be, for example, β-type zeolite, Y-type zeolite, ferrierite, ZSM-5 type zeolite, mordenite, forgesite, zeolite A, or zeolite L. Alternatively, the zeolite may be ion-exchanged with Fe, Cu, Ni, Co, Zn, Mn, Ag or V.

またゼオライトは、アルミナに対するシリカの重量比が30〜50であることが望ましい。   The zeolite preferably has a silica to alumina weight ratio of 30-50.

無機バインダとしては、無機ゾルや粘土系バインダ等を用いることができ、上記無機ゾルの具体例としては、例えば、アルミナゾル、シリカゾル、チタニアゾル、水ガラス等が挙げられる。また、粘土系バインダとしては、例えば、白土、カオリン、モンモリロナイト、セピオライト、アタパルジャイト等の複鎖構造型粘土等が挙げられる。これらは単独で用いても良く、2種以上を併用してもよい。   As the inorganic binder, an inorganic sol, a clay-based binder, or the like can be used, and specific examples of the inorganic sol include alumina sol, silica sol, titania sol, water glass, and the like. In addition, examples of the clay-based binder include double chain structure type clays such as clay, kaolin, montmorillonite, sepiolite, attapulgite, and the like. These may be used alone or in combination of two or more.

これらの中では、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライトおよびアタパルジャイトからなる群から選択された少なくとも1種が望ましい。   Among these, at least one selected from the group consisting of alumina sol, silica sol, titania sol, water glass, sepiolite, and attapulgite is desirable.

ゼオライト以外の無機粒子としては、アルミナ、シリカ、ジルコニア、チタニア、セリア、ムライト等が望ましい。これらの粒子は、単独で用いてもよく、2種以上併用してもよい。また、これらの中では、アルミナ、ジルコニアが特に望ましい。   As inorganic particles other than zeolite, alumina, silica, zirconia, titania, ceria, mullite and the like are desirable. These particles may be used alone or in combination of two or more. Of these, alumina and zirconia are particularly desirable.

また、ハニカムユニットに無機繊維を加える場合、無機繊維の材料としては、アルミナ、シリカ、炭化珪素、シリカアルミナ、ガラス、チタン酸カリウムまたはホウ酸アルミニウム等が望ましい。これらは、単独で用いてもよく、2種以上を併用してもよい。上記材料の中では、アルミナが望ましい。なおウィスカも無機粒子に含まれるものとする。   When inorganic fibers are added to the honeycomb unit, the material of the inorganic fibers is preferably alumina, silica, silicon carbide, silica alumina, glass, potassium titanate or aluminum borate. These may be used alone or in combination of two or more. Of the above materials, alumina is desirable. Whisker is also included in the inorganic particles.

ハニカムユニットに含まれる無機粒子(ゼオライトおよびゼオライト以外の無機粒子)の含有量は、望ましい下限は30重量%であり、より望ましい下限は40重量%であり、特に望ましい下限は50重量%である。一方、望ましい上限は90重量%であり、より望ましい上限は80重量%であり、特に望ましい上限は75重量%である。無機粒子(ゼオライトおよびゼオライト以外の無機粒子)の含有量が30重量%未満では、浄化に寄与するゼオライトの量が相対的に少なくなる。一方、90重量%を超えると、ハニカムユニットの強度が低下する可能性がある。   As for the content of inorganic particles (inorganic particles other than zeolite and zeolite) contained in the honeycomb unit, a desirable lower limit is 30% by weight, a more desirable lower limit is 40% by weight, and a particularly desirable lower limit is 50% by weight. On the other hand, a desirable upper limit is 90% by weight, a more desirable upper limit is 80% by weight, and a particularly desirable upper limit is 75% by weight. When the content of inorganic particles (inorganic particles other than zeolite and zeolite) is less than 30% by weight, the amount of zeolite contributing to purification becomes relatively small. On the other hand, if it exceeds 90% by weight, the strength of the honeycomb unit may be lowered.

無機バインダは、固形分として、5重量%以上含まれることが好ましく、10重量%以上含まれることがより好ましく、15重量%以上含まれることが特に好ましい。一方、無機バインダの含有量は、固形分として、50重量%以下であることが好ましく、40重量%以下であることがより好ましく、35重量%以下であることが特に好ましい。無機バインダの量が、固形分として5重量%未満では、製造したハニカムユニットの強度が低くなることがある。一方、無機バインダの量が、固形分として50重量%を超えると、原料組成物の成型性が悪くなることがある。   The inorganic binder is preferably contained in an amount of 5% by weight or more, more preferably 10% by weight or more, and particularly preferably 15% by weight or more as a solid content. On the other hand, the content of the inorganic binder is preferably 50% by weight or less, more preferably 40% by weight or less, and particularly preferably 35% by weight or less as a solid content. When the amount of the inorganic binder is less than 5% by weight as the solid content, the strength of the manufactured honeycomb unit may be lowered. On the other hand, when the amount of the inorganic binder exceeds 50% by weight as the solid content, the moldability of the raw material composition may be deteriorated.

ハニカムユニットに無機繊維が含まれる場合、無機繊維の合計量について、望ましい下限は3重量%であり、より望ましい下限は5重量%であり、特に望ましい下限は8重量%である。一方、望ましい上限は50重量%であり、より望ましい上限は40重量%であり、特に望ましい上限は30重量%である。無機繊維の含有量が3重量%未満ではハニカムユニットの強度向上の寄与が小さくなり、50重量%を超えると浄化に寄与するゼオライトの量が相対的に少なくなる。   When inorganic fibers are contained in the honeycomb unit, a desirable lower limit is 3% by weight, a more desirable lower limit is 5% by weight, and a particularly desirable lower limit is 8% by weight with respect to the total amount of inorganic fibers. On the other hand, the desirable upper limit is 50% by weight, the more desirable upper limit is 40% by weight, and the particularly desirable upper limit is 30% by weight. When the inorganic fiber content is less than 3% by weight, the contribution to improving the strength of the honeycomb unit is small, and when it exceeds 50% by weight, the amount of zeolite contributing to purification is relatively small.

前述のハニカムユニット130の長手方向に対して垂直な断面の形状は、特に限定されるものではなく、ハニカムユニットを接着層を介して接合することが可能であれば、いかなる形状であっても良い。ハニカムユニット130の形状は、正方形、長方形、六角形、扇形などであっても良い。   The shape of the cross section perpendicular to the longitudinal direction of the honeycomb unit 130 is not particularly limited, and may be any shape as long as the honeycomb unit can be bonded via the adhesive layer. . The shape of the honeycomb unit 130 may be a square, a rectangle, a hexagon, a sector, or the like.

また、ハニカムユニット130のセル121の長手方向に対して垂直な断面の形状は、特に限られず、正方形以外に、例えば三角形、多角形としても良い。   Moreover, the shape of the cross section perpendicular | vertical with respect to the longitudinal direction of the cell 121 of the honeycomb unit 130 is not specifically limited, For example, it is good also as a triangle and a polygon other than a square.

ハニカムユニット130のセル密度は、15.5〜186個/cm(100〜1200cpsi)の範囲であることが好ましく、46.5〜170個/cm(300〜1100cpsi)の範囲であることがより好ましく、62〜155個/cm(400〜1000cpsi)の範囲であることがさらに好ましい。 The cell density of the honeycomb unit 130 is preferably in the range of 15.5 to 186 cells / cm 2 (100 to 1200 cpsi), and is preferably in the range of 46.5 to 170 cells / cm 2 (300 to 1100 cpsi). More preferably, it is in a range of 62 to 155 / cm 2 (400 to 1000 cpsi).

ハニカムユニット130のセル壁123の厚さは、特に限定されないが、強度の点から望ましい下限は、0.1mmであり、浄化性能の観点から望ましい上限は、0.4mmである。   The thickness of the cell wall 123 of the honeycomb unit 130 is not particularly limited, but the lower limit desirable from the viewpoint of strength is 0.1 mm, and the upper limit desirable from the viewpoint of purification performance is 0.4 mm.

本発明のハニカム構造体100の形状は、いかなる形状であっても良い。例えば、ハニカム構造体100の形状は、図1に示すような円柱の他、楕円柱、四角柱、多角柱等であっても良い。   The shape of the honeycomb structure 100 of the present invention may be any shape. For example, the shape of the honeycomb structure 100 may be an elliptical column, a quadrangular column, a polygonal column, etc. in addition to the column as shown in FIG.

ハニカム構造体100の接着層150は、接着層用ペーストを原料として形成される。接着層用ペーストとしては、特に限定されるものではないが、例えば、無機粒子と無機バインダを混ぜたものや、無機バインダと無機繊維を混ぜたものや、無機粒子と無機バインダと無機繊維を混ぜたものなどを用いることができる。また、これらにさらに有機バインダを加えてもよい。   The adhesive layer 150 of the honeycomb structure 100 is formed using an adhesive layer paste as a raw material. The adhesive layer paste is not particularly limited, but for example, a mixture of inorganic particles and inorganic binder, a mixture of inorganic binder and inorganic fibers, or a mixture of inorganic particles, inorganic binder and inorganic fibers. Can be used. Moreover, you may add an organic binder to these further.

無機粒子、無機バインダおよび無機繊維としては、前述のようなハニカムユニットを構成する材料と同様のものを使用することができる。また、有機バインダとしては、特に限定されるものではないが、例えば、ポリビニルアルコール、メチルセルロース、エチルセルロースおよびカルボキシメチルセルロースなどから選ばれる1種以上が挙げられる。有機バインダの中では、カルボキシルメチルセルロースが望ましい。   As the inorganic particles, the inorganic binder, and the inorganic fibers, the same materials as those constituting the honeycomb unit as described above can be used. Moreover, as an organic binder, although it does not specifically limit, 1 or more types chosen from polyvinyl alcohol, methylcellulose, ethylcellulose, carboxymethylcellulose, etc. are mentioned, for example. Among organic binders, carboxymethyl cellulose is desirable.

接着層の厚さは、0.3〜2.0mmの範囲であることが好ましい。接着層の厚さが0.3mm未満では十分な接合強度が得られないおそれがあるためである。また接着層の厚さが2.0mmを超えると、圧力損失が大きくなることがある。なお、接合させるハニカムユニットの数は、ハニカム構造体の大きさに合わせて適宜選定される。   The thickness of the adhesive layer is preferably in the range of 0.3 to 2.0 mm. This is because if the thickness of the adhesive layer is less than 0.3 mm, sufficient bonding strength may not be obtained. If the thickness of the adhesive layer exceeds 2.0 mm, the pressure loss may increase. The number of honeycomb units to be joined is appropriately selected according to the size of the honeycomb structure.

ハニカム構造体100のコート層120は、無機粒子、無機バインダおよび無機繊維の少なくとも一つを含むペーストを原料として形成される。コート層を形成するペーストには、さらに有機バインダが含まれても良い。外周コート層120は、接着層150と異なる材料で構成されても良いが、同じ材料であることが好ましい。剥離やクラックが発生しにくくなるからである。すなわち、コート層120に含まれる無機粒子は、ゼオライト、アルミナ、シリカ、ジルコニア、チタニア、セリアおよびムライトの少なくとも一つであることが好ましい。また、コート層120に含まれる無機バインダは、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライトおよびアタパルジャイトの群から選定された一つであることが好ましい。また、コート層120に含まれる無機繊維は、アルミナ、シリカ、炭化珪素、シリカアルミナ、ガラス、チタン酸カリウム、およびホウ酸アルミニウムの群から選定された少なくとも一つであることが好ましい。原料となるペーストには、必要に応じて、酸化物系セラミックを成分とする微小中空球体であるバルーンや、球状アクリル粒子、グラファイト等の造孔剤を添加しても良い。外周コート層の最終的な厚さは、0.1mm〜2.0mmが好ましい。   The coat layer 120 of the honeycomb structure 100 is formed using a paste containing at least one of inorganic particles, an inorganic binder, and inorganic fibers as a raw material. The paste for forming the coating layer may further contain an organic binder. The outer peripheral coat layer 120 may be made of a material different from that of the adhesive layer 150, but is preferably made of the same material. This is because peeling and cracking are less likely to occur. That is, the inorganic particles contained in the coat layer 120 are preferably at least one of zeolite, alumina, silica, zirconia, titania, ceria, and mullite. The inorganic binder contained in the coat layer 120 is preferably one selected from the group consisting of alumina sol, silica sol, titania sol, water glass, sepiolite, and attapulgite. The inorganic fiber contained in the coat layer 120 is preferably at least one selected from the group consisting of alumina, silica, silicon carbide, silica alumina, glass, potassium titanate, and aluminum borate. If necessary, a pore-forming agent such as balloons that are fine hollow spheres containing oxide-based ceramics, spherical acrylic particles, and graphite may be added to the raw material paste. The final thickness of the outer peripheral coat layer is preferably 0.1 mm to 2.0 mm.

なお、以上の記載では、図1のような、接着層150を介して複数のハニカムユニット130を接合することにより構成されるハニカム構造体を例に、本発明の特徴を説明した。   In the above description, the features of the present invention have been described by taking as an example a honeycomb structure configured by bonding a plurality of honeycomb units 130 via the adhesive layer 150 as shown in FIG.

図3には、本発明のハニカム構造体の別の構成例を示す。なお、ハニカム構造体200は、複数のセル122がセル壁124を隔てて、長手方向に並設された単一のハニカムユニットから構成されることを除き、ハニカム構造体100と同様の構造を有する。
(ハニカム構造体の製作方法)
次に、本発明のハニカム構造体の製造方法を説明する。なお、ここでは、前述の図1のような、複数のハニカムユニットから構成されるハニカム構造体100の製造方法を例に説明する。ただし、以下の説明は、接着層によるハニカムユニットの接合工程を除き、図3に示す構造のハニカム構造体の製造方法にも適用できることは、当業者には明らかである。
FIG. 3 shows another configuration example of the honeycomb structure of the present invention. The honeycomb structure 200 has a structure similar to that of the honeycomb structure 100 except that the plurality of cells 122 are composed of a single honeycomb unit arranged in parallel in the longitudinal direction with the cell walls 124 therebetween. .
(Manufacturing method of honeycomb structure)
Next, a method for manufacturing the honeycomb structure of the present invention will be described. Here, a method for manufacturing a honeycomb structure 100 composed of a plurality of honeycomb units as shown in FIG. 1 will be described as an example. However, it will be apparent to those skilled in the art that the following description can be applied to a method for manufacturing a honeycomb structure having the structure shown in FIG. 3 except for the bonding step of the honeycomb unit by the adhesive layer.

まず、ゼオライトを含む無機粒子、無機バインダを主成分とし、さらに必要に応じて無機繊維を添加した原料ペースト(成形用ペースト)を用いて押出成形等を行い、ハニカムユニット成形体を作製する。   First, a honeycomb unit molded body is manufactured by performing extrusion molding using a raw material paste (molding paste) containing inorganic particles containing zeolite and an inorganic binder as main components and further adding inorganic fibers as necessary.

原料ペーストには、これらの他に有機バインダ、分散媒および成形助剤を成形性にあわせて適宜加えてもよい。有機バインダとしては、特に限定されるものではないが、例えば、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール、フェノール樹脂およびエポキシ樹脂等から選ばれる1種以上の有機バインダが挙げられる。有機バインダの配合量は、無機粒子、無機バインダおよび無機繊維の合計100重量部に対して、1〜10重量部が好ましい。   In addition to these, an organic binder, a dispersion medium, and a molding aid may be appropriately added to the raw material paste in accordance with the moldability. The organic binder is not particularly limited, and examples thereof include one or more organic binders selected from methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyethylene glycol, phenol resin, epoxy resin, and the like. The blending amount of the organic binder is preferably 1 to 10 parts by weight with respect to a total of 100 parts by weight of the inorganic particles, the inorganic binder, and the inorganic fibers.

分散媒としては、特に限定されるものではないが、例えば、水、有機溶媒(ベンゼンなど)およびアルコール(メタノールなど)などを挙げることができる。成形助剤としては、特に限定されるものではないが、例えば、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸およびポリアルコール等を挙げることができる。   Although it does not specifically limit as a dispersion medium, For example, water, an organic solvent (benzene etc.), alcohol (methanol etc.), etc. can be mentioned. Although it does not specifically limit as a shaping | molding adjuvant, For example, ethylene glycol, dextrin, a fatty acid, fatty-acid soap, a polyalcohol etc. can be mentioned.

原料ペーストは、特に限定されるものではないが、混合・混練することが好ましく、例えば、ミキサーやアトライタなどを用いて混合してもよく、ニーダーなどで十分に混練してもよい。原料ペーストを成形する方法は、特に限定されるものではないが、例えば、押出成形などによってセルを有する形状に成形することが好ましい。   The raw material paste is not particularly limited, but is preferably mixed and kneaded. For example, the raw material paste may be mixed using a mixer or an attritor, or may be sufficiently kneaded using a kneader. Although the method of shape | molding raw material paste is not specifically limited, For example, it is preferable to shape | mold into the shape which has a cell by extrusion molding etc.

次に、得られた成形体は、乾燥することが好ましい。乾燥に用いる乾燥機は、特に限定されるものではないが、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機および凍結乾燥機などが挙げられる。また、得られた成形体は、脱脂することが好ましい。脱脂する条件は、特に限定されず、成形体に含まれる有機物の種類や量によって適宜選択するが、おおよそ400℃、2時間が好ましい。更に、得られた成形体は、焼成することが好ましい。焼成条件としては、特に限定されるものではないが、600〜1200℃が好ましく、600〜1000℃がより好ましい。この理由は、焼成温度が600℃未満では、焼結が進行せずハニカムユニットとしての強度が低くなり、1200℃を超えると、焼結が過剰に進行し、ゼオライトの反応サイトが減少してしまうためである。   Next, it is preferable to dry the obtained molded body. The dryer used for drying is not particularly limited, and examples thereof include a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, and a freeze dryer. Moreover, it is preferable to degrease the obtained molded object. The degreasing conditions are not particularly limited, and are appropriately selected depending on the type and amount of organic matter contained in the molded body, but are preferably about 400 ° C. and 2 hours. Furthermore, the obtained molded body is preferably fired. Although it does not specifically limit as baking conditions, 600-1200 degreeC is preferable and 600-1000 degreeC is more preferable. The reason for this is that if the firing temperature is less than 600 ° C., the sintering does not proceed and the strength as the honeycomb unit is lowered, and if it exceeds 1200 ° C., the sintering proceeds excessively and the reaction sites of the zeolite decrease. Because.

次に、以上の工程で得られたハニカムユニットの側面に、後に接着層となる接着層用ペーストを均一な厚さで塗布した後、この接着層用ペーストを介して、順次他のハニカムユニットを積層する。この工程を繰り返し、所望の寸法の(例えば、ハニカムユニットが縦横4個ずつ配列された)ハニカム構造体を作製する。   Next, after applying the adhesive layer paste, which will later become an adhesive layer, to the side surface of the honeycomb unit obtained in the above steps with a uniform thickness, the other honeycomb units are sequentially passed through the adhesive layer paste. Laminate. This process is repeated to produce a honeycomb structure having a desired size (for example, four honeycomb units are arranged vertically and horizontally).

次にこのハニカム構造体を加熱して、接着層用ペーストを乾燥、固化させて、接着層を形成させるとともに、ハニカムユニット同士を固着させる。   Next, the honeycomb structure is heated to dry and solidify the adhesive layer paste, thereby forming an adhesive layer and fixing the honeycomb units together.

次にダイヤモンドカッター等を用いて、ハニカム構造体を、例えば円柱状に切削加工し、必要な外周形状のハニカム構造体を作製する。   Next, the honeycomb structure is cut into, for example, a cylindrical shape by using a diamond cutter or the like, and a honeycomb structure having a necessary outer peripheral shape is manufactured.

次に、ハニカム構造体の外周面(側面)に外周コート層用ペーストを塗布後、これを乾燥、固化させて、外周コート層を形成する。   Next, after applying the outer peripheral coat layer paste to the outer peripheral surface (side surface) of the honeycomb structure, this is dried and solidified to form the outer peripheral coat layer.

その後、ハニカム構造体が脱脂される。この処理により、接着層用のペーストまたは外周コート層用ペーストに有機バインダが含まれている場合、これらの有機バインダを脱脂除去することができる。脱脂条件は、含まれる有機物の種類や量によって適宜選定されるが、通常の場合、700℃、2時間程度である。   Thereafter, the honeycomb structure is degreased. By this treatment, when an organic binder is contained in the adhesive layer paste or the outer peripheral coat layer paste, these organic binders can be degreased and removed. The degreasing conditions are appropriately selected depending on the type and amount of the organic matter contained, but are usually 700 ° C. and about 2 hours.

以上の工程により、図1に示すハニカム構造体を製作することができる。   Through the above steps, the honeycomb structure shown in FIG. 1 can be manufactured.

以下、実施例により本発明を詳しく説明する。
(実施例1)
まず、Feゼオライト粒子(平均粒子径2μm、アルミナに対するシリカの重量比40)2250重量部、アルミナ粒子(平均粒子径2μm)550重量部、アルミナゾル(固形分30%)2600重量部、アルミナ繊維(平均繊維長100μm、平均繊維径6μm)780重量部、メチルセルロース410重量部に、可塑剤および潤滑剤(ユニルーブ)を混合、混練して混合組成物(原料組成物)を得た。Feゼオライト粒子は、ゼオライト重量に対して3wt%の分がFeでイオン交換されたものである。イオン交換量は、装置ICPS−8100(島津製作所製)を用いて、IPC発光分析により求めた。次に、この混合組成物を押出成形機により押出成形を行い、ハニカムユニット成形体を得た。
Hereinafter, the present invention will be described in detail by way of examples.
Example 1
First, 2250 parts by weight of Fe zeolite particles (average particle size 2 μm, weight ratio of silica to alumina 40), 550 parts by weight of alumina particles (average particle size 2 μm), 2600 parts by weight of alumina sol (solid content 30%), alumina fibers (average A plasticizer and a lubricant (unilube) were mixed and kneaded with 780 parts by weight of a fiber length of 100 μm and an average fiber diameter of 6 μm and 410 parts by weight of methylcellulose to obtain a mixed composition (raw material composition). The Fe zeolite particles are obtained by ion exchange of 3 wt% of the zeolite weight with Fe. The ion exchange amount was determined by IPC emission analysis using an apparatus ICPS-8100 (manufactured by Shimadzu Corporation). Next, this mixed composition was subjected to extrusion molding with an extrusion molding machine to obtain a honeycomb unit molded body.

次に、マイクロ波乾燥機および熱風乾燥機を用いてこれらの成形体を十分乾燥させ、400℃で5時間保持して脱脂した。その後、700℃で5時間保持して焼成を行い、図3に示す形状のハニカムユニット(外径143mm×全長150mm)を得た。セル壁の厚さは、0.25mmであり、セル密度は、78個/cmであった。また、開口率は、60%であった。 Next, these molded bodies were sufficiently dried using a microwave dryer and a hot air dryer, and degreased by holding at 400 ° C. for 5 hours. Subsequently, firing was performed at 700 ° C. for 5 hours to obtain a honeycomb unit having the shape shown in FIG. 3 (outer diameter 143 mm × total length 150 mm). The cell wall thickness was 0.25 mm, and the cell density was 78 cells / cm 2 . Moreover, the aperture ratio was 60%.

ハニカムユニットおよび外周コート層の熱膨張率κh、κcを、以下の方法で測定した。   The thermal expansion coefficients κh and κc of the honeycomb unit and the outer peripheral coat layer were measured by the following method.

縦3mm×横3mm×高さ15mmの寸法の測定サンプルを準備した。ハニカムユニットの測定サンプルは、ハニカムユニットを製作する際に使用される成形用ペースト(原料組成物)を用いて、実際のハニカムユニットを製作する場合と同様の工程により作製した。同様に、外周コート層の測定サンプルは、ハニカムユニットの外周面に外周コート層を形成する際に使用される外周コート層用ペーストを用いて、実際の外周コート層を製作する場合と同様の工程により、縦3mm×横3mm×高さ15mmの寸法で作製した。   A measurement sample having dimensions of 3 mm in length, 3 mm in width, and 15 mm in height was prepared. The measurement sample of the honeycomb unit was manufactured by using the molding paste (raw material composition) used when manufacturing the honeycomb unit by the same process as that for manufacturing the actual honeycomb unit. Similarly, the measurement sample of the outer peripheral coat layer is the same process as the case of manufacturing the actual outer peripheral coat layer using the outer peripheral coat layer paste used when forming the outer peripheral coat layer on the outer peripheral surface of the honeycomb unit. Thus, a size of 3 mm long × 3 mm wide × 15 mm high was prepared.

次に、測定サンプルと、アルミナ製の基準サンプル(3mm×3mm×15mm)とを、両サンプルの長手方向が水平方向となるようにして、密閉式容器内に並べて設置した。なお、これらのサンプルには、上面(すなわち3mm×15mmの上部領域)の中央部分と接するように、それぞれの検出棒が設置される。   Next, a measurement sample and an alumina reference sample (3 mm × 3 mm × 15 mm) were placed side by side in a sealed container so that the longitudinal direction of both samples was horizontal. In addition, each detection rod is installed in these samples so that the center part of an upper surface (namely, 3 mm x 15 mm upper area | region) may be contact | connected.

次に、アルゴン雰囲気下で、測定サンプルおよび基準サンプルを室温から、5℃/分の昇温速度で700℃まで昇温し、700℃で20分間保持した後、室温まで自然冷却させた。この際、測定サンプルおよび基準サンプルが熱膨張するが、この変化量は、検出棒により検出される。従って、基準サンプルと測定サンプルの変化量の差から、測定サンプルの熱膨張率が求められる。   Next, in an argon atmosphere, the measurement sample and the reference sample were heated from room temperature to 700 ° C. at a temperature rising rate of 5 ° C./min, held at 700 ° C. for 20 minutes, and then naturally cooled to room temperature. At this time, the measurement sample and the reference sample are thermally expanded, and the amount of change is detected by the detection rod. Therefore, the coefficient of thermal expansion of the measurement sample is obtained from the difference in change between the reference sample and the measurement sample.

測定には、熱膨張率測定装置(DL−7000、アルバック理工(株)製)を使用した。この装置の最小検出感度は、0.1μmであった。   For the measurement, a thermal expansion coefficient measuring device (DL-7000, manufactured by ULVAC-RIKO) was used. The minimum detection sensitivity of this apparatus was 0.1 μm.

ハニカムユニットおよび外周コート層の各ヤング率Eh、Ecは、以下の方法により測定した。   The Young's moduli Eh and Ec of the honeycomb unit and the outer peripheral coat layer were measured by the following methods.

縦10mm×長さ50mm×厚さ0.4mmの寸法の測定サンプルを準備した。ハニカムユニットの測定サンプルは、ハニカムユニットを製作する際に使用する成形用ペーストを用いて、実際のハニカムユニットを製作する場合と同様の工程により作製した。同様に、外周コート層の測定サンプルは、ハニカムユニットの外周面に外周コート層を設置する際に使用する、外周コート層用ペースト(原料組成物)を用いて、実際の外周コート層を製作する場合と同様の工程により、縦10mm×長さ50mm×厚さ0.4mmの寸法で作製した。   A measurement sample having dimensions of 10 mm in length, 50 mm in length, and 0.4 mm in thickness was prepared. The measurement sample of the honeycomb unit was manufactured by the same process as that for manufacturing an actual honeycomb unit using a molding paste used for manufacturing the honeycomb unit. Similarly, for the measurement sample of the outer peripheral coat layer, an actual outer peripheral coat layer is manufactured using the outer peripheral coat layer paste (raw material composition) used when the outer peripheral coat layer is installed on the outer peripheral surface of the honeycomb unit. By the same process as the case, it was produced with dimensions of 10 mm in length, 50 mm in length, and 0.4 mm in thickness.

次に、測定サンプルをヤング率測定装置に設置し、いわゆる共振法により、測定サンプルのヤング率を測定した。測定装置には、JE−RT型弾性率測定装置(日本テクノプラス(株)社製)を使用した。測定雰囲気は、大気とし、測定温度は、室温とした。   Next, the measurement sample was placed in a Young's modulus measuring apparatus, and the Young's modulus of the measurement sample was measured by a so-called resonance method. A JE-RT type elastic modulus measuring device (manufactured by Nippon Techno Plus Co., Ltd.) was used as the measuring device. The measurement atmosphere was air, and the measurement temperature was room temperature.

ハニカムユニットの熱膨張率κh(径方向)およびヤング率Eh(径方向)を測定した結果、ハニカムユニットの熱膨張率κhは、0.6×10−6(K−1)であり、ヤング率Ehは、1.1GPaであった。 As a result of measuring the thermal expansion coefficient κh (radial direction) and Young's modulus Eh (radial direction) of the honeycomb unit, the thermal expansion coefficient κh of the honeycomb unit is 0.6 × 10 −6 (K −1 ), and Young's modulus Eh was 1.1 GPa.

次に、外周コート層用ペーストをハニカムユニットの外周面に塗布し、120℃で1時間加熱後、放冷した。この処理により、ハニカムユニットの外周面に、厚さ0.5mmの外周コート層が形成された。外周コート層用ペーストは、無機粒子としてシリカ(平均粒子径2μm、アルミナに対するシリカの重量比40)を21wt%、無機バインダとしてアルミナゾル(固形分30%)を25wt%、無機繊維としてホウ酸アルミニウム(平均繊維長100μm、平均繊維径6μm)を24wt%、およびカルボキシメチルセルロースを5wt%の割合で混合し、さらにこれに水を25wt%の配合で加えて調製した。なお、造孔材は、添加していない。   Next, the outer peripheral coat layer paste was applied to the outer peripheral surface of the honeycomb unit, heated at 120 ° C. for 1 hour, and then allowed to cool. By this treatment, an outer peripheral coating layer having a thickness of 0.5 mm was formed on the outer peripheral surface of the honeycomb unit. The outer periphery coating layer paste is 21 wt% silica (average particle diameter 2 μm, silica weight ratio 40 to alumina) as inorganic particles, 25 wt% alumina sol (solid content 30%) as inorganic binder, aluminum borate (inorganic fiber) An average fiber length of 100 μm and an average fiber diameter of 6 μm) were mixed at a ratio of 24 wt% and carboxymethyl cellulose at a ratio of 5 wt%, and water was further added thereto in a blending ratio of 25 wt%. The pore former is not added.

前述の測定方法により、このコート層の熱膨張率κc(径方向)およびヤング率Ec(径方向)を測定した結果、コート層の熱膨張率κcは、0.46×10−6(K−1)であり、ヤング率Ecは、1.0GPaであった。 As a result of measuring the thermal expansion coefficient κc (radial direction) and Young's modulus Ec (radial direction) of this coat layer by the above-described measuring method, the thermal expansion coefficient κc of the coat layer was 0.46 × 10 −6 (K − 1 ) and Young's modulus Ec was 1.0 GPa.

このような工程により、実施例1に係るハニカム構造体を作製した。
(実施例2〜11)
実施例1と同様の方法により、実施例2〜11に係るハニカム構造体を得た。ただし、これらのハニカム構造体では、外周コート層用ペースト(すなわち外周コート層でもある)の材料およびその配合比を変化させることにより、熱膨張率κcおよびヤング率Ecを変化させた外周コート層を、ハニカムユニットの外周面に形成した。
Through such a process, the honeycomb structure according to Example 1 was manufactured.
(Examples 2 to 11)
In the same manner as in Example 1, honeycomb structures according to Examples 2 to 11 were obtained. However, in these honeycomb structures, the outer peripheral coat layer in which the thermal expansion coefficient κc and Young's modulus Ec are changed by changing the material of the outer peripheral coat layer paste (that is also the outer peripheral coat layer) and the blending ratio thereof. And formed on the outer peripheral surface of the honeycomb unit.

表1には、実施例1〜11に係る各ハニカム構造体の外周コート層用ペーストの組成、外周コート層の熱膨張率κcおよびヤング率Ec、ならびに比(κc/κh)(ハニカムユニットの熱膨張率に対する外周コート層の熱膨張率)および比(Ec/Eh)(ハニカムユニットのヤング率に対する外周コート層のヤング率)の値をまとめて示した。なお、外周コート層用ペーストに造孔材が添加されている実施例の場合、添加された造孔材の平均粒子径は、0.4μmである。   Table 1 shows the composition of the outer periphery coat layer paste of each honeycomb structure according to Examples 1 to 11, the thermal expansion coefficient κc and Young's modulus Ec of the outer periphery coat layer, and the ratio (κc / κh) (heat of the honeycomb unit). The values of the thermal expansion coefficient of the outer peripheral coat layer with respect to the expansion coefficient and the ratio (Ec / Eh) (Young's modulus of the outer peripheral coat layer with respect to the Young's modulus of the honeycomb unit) are collectively shown. In the case of the example in which the pore former is added to the outer periphery coat layer paste, the average particle diameter of the added pore former is 0.4 μm.

Figure 2010001204
(比較例1〜8)
実施例1と同様の方法により、比較例1〜8に係るハニカム構造体を得た。ただし、これらのハニカム構造体では、外周コート層用ペースト(すなわち外周コート層でもある)の材料およびその配合比を変化させることにより、熱膨張率κcおよびヤング率Ecを変化させた外周コート層を、ハニカムユニットの外周面に形成した。
Figure 2010001204
(Comparative Examples 1-8)
By the same method as in Example 1, honeycomb structures according to Comparative Examples 1 to 8 were obtained. However, in these honeycomb structures, the outer peripheral coat layer in which the thermal expansion coefficient κc and Young's modulus Ec are changed by changing the material of the outer peripheral coat layer paste (that is also the outer peripheral coat layer) and the blending ratio thereof. And formed on the outer peripheral surface of the honeycomb unit.

前述の表1には、比較例1〜8に係る各ハニカム構造体の外周コート層用ペーストの組成、外周コート層の熱膨張率κcおよびヤング率Ec、ならびに比(κc/κh)および比(Ec/Eh)の値をまとめて示した。なお、外周コート層用ペーストに造孔材が添加されている比較例の場合、添加された造孔材の平均粒子径は、0.4μmである。
(熱衝撃試験)
前述の方法で作製した各ハニカム構造体について、以下の方法により熱衝撃試験を実施した。
In Table 1 described above, the composition of the outer periphery coat layer paste of each honeycomb structure according to Comparative Examples 1 to 8, the thermal expansion coefficient κc and Young's modulus Ec of the outer periphery coat layer, and the ratio (κc / κh) and ratio ( Ec / Eh) values are shown together. In the case of the comparative example in which the pore former is added to the outer periphery coat layer paste, the average particle diameter of the added pore former is 0.4 μm.
(Thermal shock test)
Each honeycomb structure manufactured by the above-described method was subjected to a thermal shock test by the following method.

ハニカム構造体の外周全面に、保持シール材として、アルミナマット(三菱化学(株)製)を巻回し、金属容器に装着した。この金属容器を600℃に保持された電気炉に入れ、10分間保持した後、ハニカム構造体を炉から取り出し、室温まで冷却した(自然冷却)。この操作を10回繰り返した。   An alumina mat (manufactured by Mitsubishi Chemical Corporation) was wound around the entire outer periphery of the honeycomb structure as a holding sealing material and mounted on a metal container. The metal container was placed in an electric furnace maintained at 600 ° C. and held for 10 minutes, and then the honeycomb structure was taken out of the furnace and cooled to room temperature (natural cooling). This operation was repeated 10 times.

試験後、ハニカム構造体に剥離またはクラックが生じたか否かを目視で確認した。前述の表1の右欄には、各実施例および比較例における熱衝撃試験結果を示す。○の表示は、試験後にハニカム構造体に剥離またはクラックが生じなかったことを示しており、×の表示は、試験後にハニカム構造体に剥離またはクラックが生じたことを示している。   After the test, whether the honeycomb structure was peeled or cracked was visually confirmed. The right column of the above-mentioned Table 1 shows the thermal shock test result in each example and comparative example. The symbol “◯” indicates that no peeling or cracking occurred in the honeycomb structure after the test, and the symbol “X” indicates that peeling or cracking occurred in the honeycomb structure after the test.

この結果から、比(κc/κh)が0.75〜1.25の範囲にあり、比(Ec/Eh)が0.75〜1.25の範囲にある場合、ハニカム構造体が良好な耐熱衝撃性を示すことがわかった。   From this result, when the ratio (κc / κh) is in the range of 0.75 to 1.25 and the ratio (Ec / Eh) is in the range of 0.75 to 1.25, the honeycomb structure has good heat resistance. It was found to exhibit impact properties.

100 ハニカム構造体
110 第1の端面
115 第2の端面
120 外周コート層
121、122 セル
123、124 セル壁
130 ハニカムユニット
150 接着層
200 別のハニカム構造体。
DESCRIPTION OF SYMBOLS 100 Honeycomb structure 110 1st end surface 115 2nd end surface 120 Periphery coating layer 121, 122 Cell 123, 124 Cell wall 130 Honeycomb unit 150 Adhesion layer 200 Another honeycomb structure.

Claims (13)

ゼオライトおよび無機バインダを含み、長手方向に沿って、第1の端面から第2の端面に延伸する複数のセルがセル壁によって区画された柱状のハニカムユニットと、外周面に設置されたコート層とにより構成されるハニカム構造体であって、
前記コート層の径方向の熱膨張率をκcとし、径方向のヤング率をEcとし、前記ハニカムユニットの径方向の熱膨張率をκhとし、径方向のヤング率をEhとしたとき、
0.75≦κc/κh≦1.25 式(1)、および
0.75≦Ec/Eh≦1.25 式(2)
が成立することを特徴とするハニカム構造体。
A columnar honeycomb unit including a zeolite and an inorganic binder, and a plurality of cells extending from the first end face to the second end face along the longitudinal direction are defined by cell walls; and a coat layer disposed on the outer peripheral face A honeycomb structure comprising:
When the thermal expansion coefficient in the radial direction of the coat layer is κc, the Young's modulus in the radial direction is Ec, the thermal expansion coefficient in the radial direction of the honeycomb unit is κh, and the Young's modulus in the radial direction is Eh,
0.75 ≦ κc / κh ≦ 1.25 Formula (1), and 0.75 ≦ Ec / Eh ≦ 1.25 Formula (2)
A honeycomb structure characterized by that:
前記ゼオライトは、β型ゼオライト、Y型ゼオライト、フェリエライト、ZSM−5型ゼオライト、モルデナイト、フォージサイト、ゼオライトA、またはゼオライトLであることを特徴とする請求項1に記載のハニカム構造体。   The honeycomb structure according to claim 1, wherein the zeolite is β-type zeolite, Y-type zeolite, ferrierite, ZSM-5 type zeolite, mordenite, forgesite, zeolite A, or zeolite L. 前記ゼオライトは、アルミナに対するシリカの重量比が30〜50であることを特徴とする請求項1または2に記載のハニカム構造体。   The honeycomb structure according to claim 1 or 2, wherein the zeolite has a silica to alumina weight ratio of 30 to 50. 前記ゼオライトは、Fe、Cu、Ni、Co、Zn、Mn、Ti、AgまたはVでイオン交換されていることを特徴とする請求項1乃至3のいずれか一つに記載のハニカム構造体。   The honeycomb structure according to any one of claims 1 to 3, wherein the zeolite is ion-exchanged with Fe, Cu, Ni, Co, Zn, Mn, Ti, Ag, or V. 前記ハニカムユニットは、アルミナ、シリカ、ジルコニア、チタニア、セリアおよびムライトから選定された少なくとも一つの粒子を含むことを特徴とする請求項1乃至4のいずれか一つに記載のハニカム構造体。   The honeycomb structure according to any one of claims 1 to 4, wherein the honeycomb unit includes at least one particle selected from alumina, silica, zirconia, titania, ceria, and mullite. 前記無機バインダは、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト、およびアタパルジャイトの群から選定された少なくとも一つを含むことを特徴とする請求項1乃至5のいずれか一つに記載のハニカム構造体。   The honeycomb structure according to any one of claims 1 to 5, wherein the inorganic binder includes at least one selected from the group consisting of alumina sol, silica sol, titania sol, water glass, sepiolite, and attapulgite. . 前記ハニカムユニットは、さらに無機繊維を含むことを特徴とする請求項1乃至6のいずれか一つに記載のハニカム構造体。   The honeycomb structure according to any one of claims 1 to 6, wherein the honeycomb unit further includes inorganic fibers. 前記無機繊維は、アルミナ、シリカ、炭化珪素、シリカアルミナ、ガラス、チタン酸カリウムおよびホウ酸アルミニウムの群から選定された少なくとも一つであることを特徴とする請求項7に記載のハニカム構造体。   The honeycomb structure according to claim 7, wherein the inorganic fiber is at least one selected from the group consisting of alumina, silica, silicon carbide, silica alumina, glass, potassium titanate, and aluminum borate. 前記コート層は、無機粒子と、無機バインダおよび無機繊維の少なくとも一つとを含むことを特徴とする請求項1乃至8のいずれか一つに記載のハニカム構造体。   The honeycomb structure according to any one of claims 1 to 8, wherein the coat layer includes inorganic particles and at least one of an inorganic binder and inorganic fibers. 前記コート層に含まれる無機粒子は、ゼオライト、アルミナ、シリカ、ジルコニア、チタニア、セリアおよびムライトのうち少なくとも一つを含むことを特徴とする請求項9に記載のハニカム構造体。   The honeycomb structure according to claim 9, wherein the inorganic particles contained in the coat layer include at least one of zeolite, alumina, silica, zirconia, titania, ceria and mullite. 前記コート層に含まれる無機バインダは、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト、およびアタパルジャイトの群から選定された少なくとも一つを含むことを特徴とする請求項9または10に記載のハニカム構造体。   The honeycomb structure according to claim 9 or 10, wherein the inorganic binder contained in the coat layer includes at least one selected from the group consisting of alumina sol, silica sol, titania sol, water glass, sepiolite, and attapulgite. . 前記コート層に含まれる無機繊維は、アルミナ、シリカ、炭化珪素、シリカアルミナ、ガラス、チタン酸カリウムおよびホウ酸アルミニウムの群から選定された少なくとも一つであることを特徴とする請求項9乃至11のいずれか一つに記載のハニカム構造体。   The inorganic fiber contained in the coating layer is at least one selected from the group consisting of alumina, silica, silicon carbide, silica alumina, glass, potassium titanate, and aluminum borate. The honeycomb structure according to any one of the above. 当該ハニカム構造体は、複数のハニカムユニットを接着層を介して接合することにより構成されることを特徴とする請求項1乃至12のいずれか一つに記載のハニカム構造体。   The honeycomb structure according to any one of claims 1 to 12, wherein the honeycomb structure is configured by joining a plurality of honeycomb units through an adhesive layer.
JP2009039168A 2008-05-20 2009-02-23 Honeycomb structure Pending JP2010001204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009039168A JP2010001204A (en) 2008-05-20 2009-02-23 Honeycomb structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009519678 2008-05-20
JP2009039168A JP2010001204A (en) 2008-05-20 2009-02-23 Honeycomb structure

Publications (1)

Publication Number Publication Date
JP2010001204A true JP2010001204A (en) 2010-01-07

Family

ID=41583231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009039168A Pending JP2010001204A (en) 2008-05-20 2009-02-23 Honeycomb structure

Country Status (1)

Country Link
JP (1) JP2010001204A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086817A1 (en) * 2010-12-24 2012-06-28 日本碍子株式会社 Honeycomb structure
JP2015166296A (en) * 2014-03-04 2015-09-24 日本碍子株式会社 honeycomb structure
JP2018199616A (en) * 2018-07-13 2018-12-20 日本碍子株式会社 Honeycomb structure
CN110317063A (en) * 2018-03-30 2019-10-11 日本碍子株式会社 Coating material, periphery carburization silicon systems honeycomb structure and the method that the periphery of carbonization silicon systems honeycomb structure is coated

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005045207A1 (en) * 2003-11-06 2005-05-19 Hitachi Metals, Ltd. Ceramic honeycomb filter, exhaust gas-purifying device, and exhaust gas-purifying method
WO2006137149A1 (en) * 2005-06-24 2006-12-28 Ibiden Co., Ltd. Honeycomb structure body
WO2007052479A1 (en) * 2005-11-04 2007-05-10 Ngk Insulators, Ltd. Honeycomb structure and honeycomb catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005045207A1 (en) * 2003-11-06 2005-05-19 Hitachi Metals, Ltd. Ceramic honeycomb filter, exhaust gas-purifying device, and exhaust gas-purifying method
WO2006137149A1 (en) * 2005-06-24 2006-12-28 Ibiden Co., Ltd. Honeycomb structure body
WO2007052479A1 (en) * 2005-11-04 2007-05-10 Ngk Insulators, Ltd. Honeycomb structure and honeycomb catalyst

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086817A1 (en) * 2010-12-24 2012-06-28 日本碍子株式会社 Honeycomb structure
CN103269770A (en) * 2010-12-24 2013-08-28 日本碍子株式会社 Honeycomb structure
JPWO2012086817A1 (en) * 2010-12-24 2014-06-05 日本碍子株式会社 Honeycomb structure
JP5916628B2 (en) * 2010-12-24 2016-05-11 日本碍子株式会社 Honeycomb structure
US9468921B2 (en) 2010-12-24 2016-10-18 Ngk Insulators, Ltd. Honeycomb structure
JP2015166296A (en) * 2014-03-04 2015-09-24 日本碍子株式会社 honeycomb structure
CN110317063A (en) * 2018-03-30 2019-10-11 日本碍子株式会社 Coating material, periphery carburization silicon systems honeycomb structure and the method that the periphery of carbonization silicon systems honeycomb structure is coated
US11578001B2 (en) * 2018-03-30 2023-02-14 Ngk Insulators, Ltd. Coating material, outer periphery-coated silicon carbide-based honeycomb structure, and method for coating outer periphery of silicon carbide-based honeycomb structure
JP2018199616A (en) * 2018-07-13 2018-12-20 日本碍子株式会社 Honeycomb structure

Similar Documents

Publication Publication Date Title
WO2009141891A1 (en) Honeycomb structure
JP5317959B2 (en) Honeycomb structure
EP1707546A1 (en) Honeycomb structure and seal material
JP5560158B2 (en) Honeycomb structure and exhaust gas purification device
WO2009141889A1 (en) Honeycomb structure
JPWO2006070539A1 (en) Honeycomb structure and sealing material layer
WO2005063653A9 (en) Honeycomb structure
JP2009255029A (en) Honeycomb structure
JP5681431B2 (en) Honeycomb structure
JP5356220B2 (en) Honeycomb structure
JP2011056328A (en) Honeycomb structure
JPWO2009141898A1 (en) Honeycomb structure
WO2009141892A1 (en) Honeycomb structure
WO2009141882A1 (en) Honeycomb structure
WO2009141893A1 (en) Honeycomb structure
JP2010001204A (en) Honeycomb structure
JP2010001205A (en) Honeycomb structure
WO2011061840A1 (en) Honeycomb structure
WO2009141890A1 (en) Honeycomb structure and exhaust gas purification apparatus
JP2011125847A (en) Honeycomb structure and method for producing the same
JP5934220B2 (en) Honeycomb structure and exhaust gas purification device
JP5175797B2 (en) Honeycomb structure
JP5356065B2 (en) Honeycomb structure
JP2011125845A (en) Method of producing honeycomb
JP2010280513A (en) Honeycomb structure and exhaust gas cleaning apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140520