JP2007202942A - Endoscopic image signal processor and electronic endoscope system - Google Patents

Endoscopic image signal processor and electronic endoscope system Download PDF

Info

Publication number
JP2007202942A
JP2007202942A JP2006028156A JP2006028156A JP2007202942A JP 2007202942 A JP2007202942 A JP 2007202942A JP 2006028156 A JP2006028156 A JP 2006028156A JP 2006028156 A JP2006028156 A JP 2006028156A JP 2007202942 A JP2007202942 A JP 2007202942A
Authority
JP
Japan
Prior art keywords
endoscope
temperature
signal processing
image signal
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006028156A
Other languages
Japanese (ja)
Other versions
JP4787032B2 (en
Inventor
Satoshi Takami
敏 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Pentax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentax Corp filed Critical Pentax Corp
Priority to JP2006028156A priority Critical patent/JP4787032B2/en
Publication of JP2007202942A publication Critical patent/JP2007202942A/en
Application granted granted Critical
Publication of JP4787032B2 publication Critical patent/JP4787032B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To display images photographed by an electronic endoscope using an LED for a light source on a monitor by fixed brightness. <P>SOLUTION: An endoscope processor 40 comprises a preceding stage signal processing circuit 41, an A/D converter 42, an image memory 43, a D/A converter 44, a post stage signal processing circuit 45 and a processor controller 46. The preceding stage signal processing circuit 41 receives image signals from an imaging element process circuit 29, and the image signal is equivalent to the image photographed by the endoscope. The post stage signal processing circuit 45 receives the image signals from the preceding stage signal processing circuit 41 through the A/D converter 42, the image memory 43 and the D/A converter 44. The processor controller 46 receives temperature signals from an endoscope controller 25. The temperature signal is equivalent to the temperature of an LED light source, and the processor controller 46 calculates gain on the basis of the temperature signal. The post stage signal processing circuit 45 receives the gain and the post stage signal processing circuit 45 multiplies the image signal with the gain. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光源としてLEDが用いられる内視鏡の画像の明るさを一定に保つ内視鏡画像信号処理装置に関する。   The present invention relates to an endoscope image signal processing apparatus that maintains constant brightness of an endoscope image in which an LED is used as a light source.

内視鏡を用いて被写体の観察をするために、内視鏡の挿入管の先端付近を照明することが必要である。従来の内視鏡において、内視鏡の外部の光源からの照射光を光ファイバにより形成されるライトガイドを介して内視鏡の挿入管の先端まで伝達させることにより照明が行なわれていた。   In order to observe a subject using an endoscope, it is necessary to illuminate the vicinity of the distal end of the insertion tube of the endoscope. In a conventional endoscope, illumination is performed by transmitting irradiation light from a light source outside the endoscope to a distal end of an insertion tube of the endoscope through a light guide formed by an optical fiber.

内視鏡においては挿入管の細径化が望まれている。そこで、挿入管の先端に照明光源としてLEDを設けることにより、ライトガイドを不要として細径化した内視鏡が知られている(特許文献1参照)。   In endoscopes, it is desired to reduce the diameter of the insertion tube. In view of this, there is known an endoscope in which an LED is provided as an illumination light source at the distal end of an insertion tube to reduce the diameter without using a light guide (see Patent Document 1).

しかし、LEDに一定の電流を供給しても、発光する光の輝度が変化することが問題であった。すなわち、照明光の輝度が変化することにより観察される被写体像全体の明るさが一定とならず、観察しづらいことが問題であった。
特開平11−216111号公報
However, even if a constant current is supplied to the LED, the problem is that the luminance of the emitted light changes. That is, the brightness of the entire subject image observed due to the change in the luminance of the illumination light is not constant, and it is difficult to observe.
JP-A-11-216111

したがって、本発明ではLEDを照明光源として用いる電子内視鏡の撮影する画像を一定の明るさの画像となるように信号処理を行うことを目的とする。   Therefore, an object of the present invention is to perform signal processing so that an image captured by an electronic endoscope using an LED as an illumination light source becomes an image having a certain brightness.

本発明の内視鏡画像信号処理装置は、電子内視鏡の光源として用いられるLEDの温度である光源温度を検出する温度センサから光源温度に相当する温度信号を受信し電子内視鏡の撮影する画像を受光する撮像素子から前記画像に相当する画像信号を受信する受信部と、光源温度に応じたゲインを画像信号に乗じる画像信号処理部とを備えることを特徴としている。   An endoscope image signal processing apparatus according to the present invention receives a temperature signal corresponding to a light source temperature from a temperature sensor that detects a light source temperature, which is a temperature of an LED used as a light source of an electronic endoscope, and shoots the electronic endoscope. A receiving unit that receives an image signal corresponding to the image from an imaging element that receives the image to be received, and an image signal processing unit that multiplies the image signal by a gain corresponding to a light source temperature.

さらに、画像信号処理部はLED固有の温度対輝度特性に基づいて光源温度毎に応じてゲインを定める演算部を有することが好ましい。さらには、演算部においてゲインはLED固有の温度対輝度特性に従って光源温度に応じて算出されるLEDの発する光の輝度とLEDの輝度の基準として予め定められる基準輝度との比に応じて定められることが好ましい。   Furthermore, it is preferable that the image signal processing unit includes a calculation unit that determines a gain according to each light source temperature based on a temperature-luminance characteristic specific to the LED. Further, the gain in the calculation unit is determined according to a ratio between the luminance of the light emitted from the LED calculated according to the light source temperature according to the temperature-luminance characteristic specific to the LED and a reference luminance predetermined as the reference of the luminance of the LED. It is preferable.

また、温度センサがLEDに密着するように設置されることが好ましい。   Moreover, it is preferable that the temperature sensor is installed so as to be in close contact with the LED.

また、LEDが電子内視鏡の挿入管の先端に設けられることが好ましい。   Moreover, it is preferable that LED is provided in the front-end | tip of the insertion tube of an electronic endoscope.

また、本発明の内視鏡システムは、電子内視鏡の光源として用いられるLEDの温度である光源温度を検出する温度センサと、内視鏡の先端に設けられLEDに照明される被写体像を撮像して画像信号を生成する撮像素子と、光源温度に応じたゲインを画像信号に乗じる画像信号処理部とを備えることを特徴としている。   The endoscope system of the present invention also includes a temperature sensor that detects a light source temperature, which is a temperature of an LED used as a light source of an electronic endoscope, and a subject image that is provided at the distal end of the endoscope and is illuminated by the LED. An image pickup device that picks up an image to generate an image signal and an image signal processing unit that multiplies the image signal by a gain corresponding to the light source temperature are provided.

本発明によれば、LED光源の温度変化により発光する光の輝度変化に関わらずモニタに表示させる画像の明るさを一定に保つことが可能になる。   According to the present invention, it is possible to keep the brightness of an image displayed on a monitor constant regardless of a change in luminance of light emitted due to a temperature change of an LED light source.

以下、本発明の実施形態について図面を参照して説明する。
図1は、本発明の一実施形態を適用した内視鏡画像信号処理装置を有する内視鏡システムの外観図である。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is an external view of an endoscope system having an endoscope image signal processing device to which an embodiment of the present invention is applied.

内視鏡システム10は、電子内視鏡20、内視鏡プロセッサ(内視鏡画像信号処理装置)40、およびモニタ50によって構成される。電子内視鏡20は、コネクタ21を介して内視鏡プロセッサ40に接続される。モニタ50もコネクタ(図示せず)を介して内視鏡プロセッサ40に接続される。   The endoscope system 10 includes an electronic endoscope 20, an endoscope processor (endoscope image signal processing device) 40, and a monitor 50. The electronic endoscope 20 is connected to the endoscope processor 40 via the connector 21. The monitor 50 is also connected to the endoscope processor 40 via a connector (not shown).

電子内視鏡20の挿入管22の先端近辺の被写体(図示せず)には、挿入管22の先端に設けられる光源(図示せず)から照明光が照射される。照明光が照射された被写体は、挿入管22の先端に設けられるCCD等の撮像素子(図示せず)により撮像される。   A subject (not shown) near the distal end of the insertion tube 22 of the electronic endoscope 20 is irradiated with illumination light from a light source (not shown) provided at the distal end of the insertion tube 22. The subject irradiated with the illumination light is imaged by an imaging element (not shown) such as a CCD provided at the distal end of the insertion tube 22.

撮像された画像は画像信号として内視鏡プロセッサ40に送信される。内視鏡プロセッサ40に送信された画像信号は所定の処理が行われた後、モニタ50に出力され、そこで被写体像が表示される。   The captured image is transmitted to the endoscope processor 40 as an image signal. The image signal transmitted to the endoscope processor 40 is subjected to predetermined processing and then output to the monitor 50 where the subject image is displayed.

次に図2を用いて、電子内視鏡20の内部構成について説明する。図2は、電子内視鏡20の内部構成を概略的に示すブロック図である。   Next, the internal configuration of the electronic endoscope 20 will be described with reference to FIG. FIG. 2 is a block diagram schematically showing the internal configuration of the electronic endoscope 20.

電子内視鏡20は、操作部23、挿入管22、ケーブル24、およびコネクタ21によって構成される。挿入管22は、操作部23に取り付けられる。コネクタ21は、ケーブル24を介して操作部23に取り付けられる。   The electronic endoscope 20 includes an operation unit 23, an insertion tube 22, a cable 24, and a connector 21. The insertion tube 22 is attached to the operation unit 23. The connector 21 is attached to the operation unit 23 via the cable 24.

操作部23には、内視鏡コントローラ25、光源駆動回路26、撮像素子駆動回路27、CDS/AGC28、および撮像素子プロセス回路29が設けられる。内視鏡コントローラ25によって、光源駆動回路26、撮像素子駆動回路27、CDS/AGC28、および撮像素子プロセス回路29の動作が制御される。   The operation unit 23 includes an endoscope controller 25, a light source driving circuit 26, an image sensor driving circuit 27, a CDS / AGC 28, and an image sensor process circuit 29. The endoscope controller 25 controls operations of the light source drive circuit 26, the image sensor drive circuit 27, the CDS / AGC 28, and the image sensor process circuit 29.

挿入管22の先端には、配光レンズ30、対物レンズ31、撮像素子32、LED光源33、および温度センサ34が設けられる。光源駆動回路26に駆動されてLED光源33が発光し、発光する光が配光レンズ30を介して、先端付近の被写体に照射される。なお、光量を安定させるために、LED光源33には一定の電流が流される。   A light distribution lens 30, an objective lens 31, an image sensor 32, an LED light source 33, and a temperature sensor 34 are provided at the distal end of the insertion tube 22. The LED light source 33 emits light when driven by the light source driving circuit 26, and the emitted light is irradiated to the subject near the tip via the light distribution lens 30. In order to stabilize the amount of light, a constant current is passed through the LED light source 33.

対物レンズ31は、照明光が照射された被写体からの反射光を撮像素子32の受光面に結像させる。撮像素子駆動回路27に駆動され撮像素子32により撮像される。撮像素子が撮像した被写体像に応じた画像信号が生成される。   The objective lens 31 forms an image of the reflected light from the subject irradiated with the illumination light on the light receiving surface of the image sensor 32. The image is driven by the image sensor drive circuit 27 and imaged by the image sensor 32. An image signal corresponding to the subject image captured by the image sensor is generated.

画像信号は、CDS/AGC28に送信される。CDS/AGC28において、画像信号は相関二重サンプリングされ、またゲインの調整が行なわれる。ゲインの調整が行われた画像信号は、撮像素子プロセス回路29に送られる。撮像素子プロセス回路29において、クランプ、ブランキング、YC分離処理等の所定の信号処理が行なわれる。YC分離処理の行われた画像信号は、Y信号とC信号として内視鏡プロセッサ40に送られる。   The image signal is transmitted to the CDS / AGC 28. In the CDS / AGC 28, the image signal is subjected to correlated double sampling, and gain adjustment is performed. The image signal whose gain has been adjusted is sent to the image sensor process circuit 29. In the image sensor process circuit 29, predetermined signal processing such as clamping, blanking, and YC separation processing is performed. The image signal subjected to the YC separation process is sent to the endoscope processor 40 as a Y signal and a C signal.

温度センサ34は、LED光源33と同じ基板35においてLED光源33と密着するように設けられる。LED光源33の温度は、温度に応じた電圧等の電気信号である温度信号として温度センサ34によって検出される。温度信号は内視鏡コントローラ25に送られる。温度信号は内視鏡コントローラ25から内視鏡プロセッサ40に送られる。   The temperature sensor 34 is provided in close contact with the LED light source 33 on the same substrate 35 as the LED light source 33. The temperature of the LED light source 33 is detected by the temperature sensor 34 as a temperature signal that is an electrical signal such as a voltage corresponding to the temperature. The temperature signal is sent to the endoscope controller 25. The temperature signal is sent from the endoscope controller 25 to the endoscope processor 40.

後述するように、コネクタ21を介して電子内視鏡20を内視鏡プロセッサ40に接続することにより、撮像素子プロセス回路29および内視鏡コントローラ25が電気的に内視鏡プロセッサ40と接続される。   As will be described later, by connecting the electronic endoscope 20 to the endoscope processor 40 via the connector 21, the imaging element process circuit 29 and the endoscope controller 25 are electrically connected to the endoscope processor 40. The

次に、内視鏡プロセッサ40の構成について図3を用いて説明する。図3は、内視鏡プロセッサ40の内部構成を概略的に示すブロック図である。   Next, the configuration of the endoscope processor 40 will be described with reference to FIG. FIG. 3 is a block diagram schematically showing the internal configuration of the endoscope processor 40.

内視鏡プロセッサ40は、前段信号処理回路41、A/Dコンバータ42、画像メモリ43、D/Aコンバータ44、後段信号処理回路45、およびプロセッサコントローラ46等によって構成される。   The endoscope processor 40 includes a front-stage signal processing circuit 41, an A / D converter 42, an image memory 43, a D / A converter 44, a rear-stage signal processing circuit 45, a processor controller 46, and the like.

コネクタ21を介して電子内視鏡20を内視鏡プロセッサ40に接続すると、撮像素子プロセス回路29と前段信号処理回路41とが接続され、内視鏡コントローラ25とプロセッサコントローラ46とが接続される。   When the electronic endoscope 20 is connected to the endoscope processor 40 via the connector 21, the image sensor process circuit 29 and the pre-stage signal processing circuit 41 are connected, and the endoscope controller 25 and the processor controller 46 are connected. .

撮像素子プロセス回路29から出力された画像信号は、前段信号処理回路41に送られる。前段信号処理回路41において、画像信号に対して輪郭強調処理等の所定の信号処理が施される。前段信号処理回路41はA/Dコンバータ42に接続されており、所定の信号処理の施された画像信号はA/Dコンバータ42によってA/D変換される。   The image signal output from the image sensor process circuit 29 is sent to the pre-stage signal processing circuit 41. In the pre-stage signal processing circuit 41, predetermined signal processing such as edge enhancement processing is performed on the image signal. The pre-stage signal processing circuit 41 is connected to an A / D converter 42, and an image signal subjected to predetermined signal processing is A / D converted by the A / D converter 42.

A/Dコンバータ42は、画像メモリ43に接続される。A/Dコンバータ42によってデジタル信号に変換された画像信号は、画像メモリ43に格納される。画像メモリ43はさらにD/Aコンバータ44に接続されており、画像メモリ43に格納された画像信号は適時読出されてD/Aコンバータ44によってD/A変換される。   The A / D converter 42 is connected to the image memory 43. The image signal converted into a digital signal by the A / D converter 42 is stored in the image memory 43. The image memory 43 is further connected to a D / A converter 44, and an image signal stored in the image memory 43 is read out in a timely manner and D / A converted by the D / A converter 44.

D/Aコンバータ44は、後段信号処理回路45に接続される。D/Aコンバータ44によりD/A変換された画像信号は、後段信号処理回路45において画像信号の輝度信号成分のゲイン調整が行われ、さらに所定の信号処理が施される。所定の信号処理が施された画像信号は、輝度信号成分、色度信号成分、および同期信号成分を有するビデオ信号としてモニタ50に出力される。モニタ50には送信されたビデオ信号に相当する画像が表示される。   The D / A converter 44 is connected to the subsequent signal processing circuit 45. The image signal D / A converted by the D / A converter 44 is subjected to gain adjustment of the luminance signal component of the image signal in the subsequent signal processing circuit 45 and further subjected to predetermined signal processing. The image signal subjected to the predetermined signal processing is output to the monitor 50 as a video signal having a luminance signal component, a chromaticity signal component, and a synchronization signal component. An image corresponding to the transmitted video signal is displayed on the monitor 50.

後段信号処理回路45において行われる輝度信号のゲイン調整について詳細に説明する。1フレームの画像信号が後段信号処理回路45に送られるたびに、画像信号の輝度信号成分に乗じるゲインがプロセッサコントローラ46から後段信号処理回路45に送られる。   The gain adjustment of the luminance signal performed in the post-stage signal processing circuit 45 will be described in detail. Each time an image signal of one frame is sent to the subsequent signal processing circuit 45, a gain to be multiplied by the luminance signal component of the image signal is sent from the processor controller 46 to the subsequent signal processing circuit 45.

プロセッサコントローラ46に、内視鏡コントローラ25から温度信号が送られる。プロセッサコントローラ46において、温度信号に対応するゲインが求められる。求められたゲインが、前述のように、プロセッサコントローラ46から後段信号処理回路45に送られる。   A temperature signal is sent from the endoscope controller 25 to the processor controller 46. In the processor controller 46, a gain corresponding to the temperature signal is obtained. The obtained gain is sent from the processor controller 46 to the subsequent signal processing circuit 45 as described above.

なお、一般的にLEDはLED自身の温度により電流の輝度変換効率が変わることが知られている。そのため、定電流によってLEDを発光させる場合であっても、温度変化に応じて発光する光の輝度が低下することが知られている。また、LEDに電流を流すことによりLEDは自ら発熱するため、挿入管22の先端のように密閉した空間における継続的な使用によりLEDの輝度は減じることが考えられる。   In general, it is known that the luminance conversion efficiency of current varies depending on the temperature of the LED itself. For this reason, it is known that even when the LED is caused to emit light with a constant current, the luminance of the emitted light is reduced in accordance with the temperature change. Further, since the LED generates heat by passing a current through the LED, it is conceivable that the brightness of the LED is reduced by continuous use in a sealed space such as the tip of the insertion tube 22.

ところで、LEDに流れる電流値が一定に保たれることを条件とすれば、温度対輝度特性はLED毎に固有である。従って、LED光源33自身の温度から該温度対輝度特性に従ってLED光源33のその温度のときの輝度を求めることが可能である。   By the way, assuming that the value of the current flowing through the LED is kept constant, the temperature-luminance characteristic is unique for each LED. Therefore, it is possible to obtain the luminance of the LED light source 33 at that temperature from the temperature of the LED light source 33 according to the temperature-luminance characteristic.

そこで、LED光源33の輝度の基準となる基準輝度を予め定め、検出したLED光源33の温度に基づいて求められた現在輝度を基準輝度で除した値に基づいてゲインが算出される。すなわち、基準輝度に対する現在輝度の増減の割合に応じて、後段信号処理回路45に送られるゲインが減少または増大されて、結果的にモニタ50に表示させる画像の明るさが一定に保たれる。   Therefore, a reference luminance that is a reference for the luminance of the LED light source 33 is determined in advance, and a gain is calculated based on a value obtained by dividing the current luminance obtained based on the detected temperature of the LED light source 33 by the reference luminance. That is, the gain sent to the subsequent signal processing circuit 45 is decreased or increased according to the rate of increase / decrease of the current luminance with respect to the reference luminance, and as a result, the brightness of the image displayed on the monitor 50 is kept constant.

このようにして求めたゲインが後段信号処理回路45において画像信号の輝度信号成分に乗じられる。なお、LED光源33の温度からその温度の時のLED光源33の輝度を求めるためのLEDの温度対輝度特性の係数はROM47に記憶され、必要に応じてプロセッサコントローラ46に送られる。   The gain obtained in this way is multiplied by the luminance signal component of the image signal in the post-stage signal processing circuit 45. The LED temperature-to-brightness characteristic coefficient for determining the brightness of the LED light source 33 from the temperature of the LED light source 33 is stored in the ROM 47 and sent to the processor controller 46 as necessary.

なお、プロセッサコントローラ46によって、前段信号処理回路41、A/Dコンバータ42、画像メモリ43、D/Aコンバータ44、後段信号処理回路45の動作が制御される。   Note that the processor controller 46 controls operations of the front-stage signal processing circuit 41, the A / D converter 42, the image memory 43, the D / A converter 44, and the rear-stage signal processing circuit 45.

内視鏡プロセッサ40において行なわれるLED光源33の温度に対する表示画像の補正の動作を、図4のフローチャートを用いて説明する。内視鏡システム10において、電子内視鏡20の撮影画像を表示する観察モードに切替えられることにより、表示画像の補正の処理が始められる。   The operation of correcting the display image with respect to the temperature of the LED light source 33 performed in the endoscope processor 40 will be described with reference to the flowchart of FIG. In the endoscope system 10, the display image correction process is started by switching to the observation mode in which the captured image of the electronic endoscope 20 is displayed.

ステップS100において、1フレームの画像信号が受信される。受信された画像信号は、ステップS101において、所定の信号処理が施される。次のステップS102では、ステップS100において受信した画像信号を生成したときの温度に相当する温度信号が受信される。   In step S100, an image signal of one frame is received. The received image signal is subjected to predetermined signal processing in step S101. In the next step S102, a temperature signal corresponding to the temperature when the image signal received in step S100 is generated is received.

温度信号が受信されるとステップS103に進み、画像信号に乗じるゲインが算出される。すなわち、温度信号に基づいてLED光源33の現在輝度が求められ、現在輝度と標準輝度とに基づいてゲインが算出される。   When the temperature signal is received, the process proceeds to step S103, and a gain to be multiplied by the image signal is calculated. That is, the current brightness of the LED light source 33 is obtained based on the temperature signal, and the gain is calculated based on the current brightness and the standard brightness.

次のステップS104では、ステップS101において所定の信号処理が施された画像信号に、ステップS103で算出されたゲインが乗じられる。ゲイン調整が終了するとステップS105に進む。ステップS105においてゲイン調整の行われた画像信号にさらに所定の信号処理が施され、ビデオ信号としてモニタ50に出力される。   In the next step S104, the image signal subjected to the predetermined signal processing in step S101 is multiplied by the gain calculated in step S103. When the gain adjustment is completed, the process proceeds to step S105. In step S105, the image signal that has been subjected to gain adjustment is further subjected to predetermined signal processing and output to the monitor 50 as a video signal.

次のステップS106では、観察モードを終了とする入力があるか否かが判定される。終了の入力がある場合に、本実施形態における表示画像の補正の処理が終了する。終了入力が無い場合には、ステップS100に戻り、以後終了入力があるまでステップS100〜ステップS106の処理が繰返される。   In the next step S106, it is determined whether or not there is an input for ending the observation mode. When there is an end input, the display image correction processing in the present embodiment ends. If there is no end input, the process returns to step S100, and the processes in steps S100 to S106 are repeated until there is an end input thereafter.

以上のような構成の内視鏡画像信号処理装置によれば、LEDを照明光源として使用する電子内視鏡を用いる場合に、モニタ50表示する画像の明るさを一定に保つことが可能である。   According to the endoscope image signal processing apparatus having the above-described configuration, the brightness of the image displayed on the monitor 50 can be kept constant when an electronic endoscope using an LED as an illumination light source is used. .

なお、本実施形態においては、LED光源33の温度に基づいてプロセッサコントローラ46においてゲインを算出する構成であるが、予めLED光源33の温度に対応したゲインのテーブルをROM47に記憶させ、検出された温度に応じてゲインが定められる構成であってもよい。   In the present embodiment, the gain is calculated by the processor controller 46 based on the temperature of the LED light source 33. However, a gain table corresponding to the temperature of the LED light source 33 is stored in the ROM 47 in advance and detected. The gain may be determined according to the temperature.

また、本実施形態において、LED光源33が挿入管22の先端に設けられる構成であるが、従来の内視鏡システムのように内視鏡の外部の光源装置に設けられる構成であってもよい。また、内視鏡の操作部に設けられる構成であってもよい。ただし、LED光源33が外部光源装置または操作部に設けられる構成の場合は、従来の内視鏡と同様にライトガイドなどを用いて照明光を挿入管22の先端まで伝達させることが必要である。   In the present embodiment, the LED light source 33 is provided at the distal end of the insertion tube 22, but may be provided in a light source device outside the endoscope as in a conventional endoscope system. . Moreover, the structure provided in the operation part of an endoscope may be sufficient. However, in the case where the LED light source 33 is provided in the external light source device or the operation unit, it is necessary to transmit the illumination light to the distal end of the insertion tube 22 using a light guide or the like as in a conventional endoscope. .

なお、本実施形態において、温度センサ34がLED光源33に密着される構成であるが、密着されていなくてもよい。LED光源33の輝度の誤差を低くするためには、LED光源33に出来るだけ近付けることが望ましい。しかし、LED光源33の温度変化を検出しえる位置に配置されていれば、その位置における温度対輝度特性を求めておけば輝度の変化に対応したゲインを求めることは可能である。   In the present embodiment, the temperature sensor 34 is in close contact with the LED light source 33, but may not be in close contact. In order to reduce the error in the luminance of the LED light source 33, it is desirable that the LED light source 33 be as close as possible. However, if the LED light source 33 is arranged at a position where the temperature change can be detected, the gain corresponding to the change in luminance can be obtained by obtaining the temperature-luminance characteristics at that position.

本発明の一実施形態を適用した内視鏡画像信号処理装置を有する内視鏡システムの外観図である。1 is an external view of an endoscope system having an endoscope image signal processing device to which an embodiment of the present invention is applied. FIG. 電子内視鏡の内部構成を概略的に示すブロック図である。It is a block diagram which shows roughly the internal structure of an electronic endoscope. 内視鏡プロセッサの内部構成を概略的に示すブロック図である。It is a block diagram which shows roughly the internal structure of an endoscope processor. 内視鏡プロセッサにおいて行なわれるLED光源の温度に対する表示画像の補正の動作を説明するためのフローチャートである。It is a flowchart for demonstrating the operation | movement of correction | amendment of the display image with respect to the temperature of the LED light source performed in an endoscope processor.

符号の説明Explanation of symbols

10 内視鏡システム
20 電子内視鏡
22 挿入管
25 内視鏡コントローラ
29 撮像素子プロセス回路
32 撮像素子
33 LED光源
34 温度センサ
35 基板
40 内視鏡プロセッサ
45 後段信号処理回路
46 プロセッサコントローラ
50 モニタ
DESCRIPTION OF SYMBOLS 10 Endoscope system 20 Electronic endoscope 22 Insertion tube 25 Endoscope controller 29 Image sensor process circuit 32 Image sensor 33 LED light source 34 Temperature sensor 35 Substrate 40 Endoscope processor 45 Subsequent signal processing circuit 46 Processor controller 50 Monitor

Claims (6)

電子内視鏡の光源として用いられるLEDの温度である光源温度を検出する温度センサから前記光源温度に相当する温度信号を受信し、前記電子内視鏡の撮影する画像を受光する撮像素子から前記画像に相当する画像信号を受信する受信部と、
前記光源温度に応じたゲインを前記画像信号に乗じる画像信号処理部とを備える
ことを特徴とする内視鏡画像信号処理装置。
A temperature signal corresponding to the light source temperature is received from a temperature sensor that detects a light source temperature that is a temperature of an LED used as a light source of the electronic endoscope, and the image pickup device that receives an image photographed by the electronic endoscope A receiving unit that receives an image signal corresponding to an image;
An endoscope image signal processing apparatus, comprising: an image signal processing unit that multiplies the image signal by a gain corresponding to the light source temperature.
前記画像信号処理部は、前記LED固有の温度対輝度特性に基づいて前記光源温度毎に応じて前記ゲインを定める演算部を有することを特徴とする請求項1に記載の内視鏡画像信号処理装置。   The endoscope image signal processing according to claim 1, wherein the image signal processing unit includes a calculation unit that determines the gain according to each light source temperature based on a temperature-luminance characteristic specific to the LED. apparatus. 前記演算部において、前記ゲインは、前記LED固有の前記温度対輝度特性に従って前記光源温度に応じて算出される前記LEDの発する光の輝度と、前記LEDの輝度の基準として予め定められる基準輝度との比に応じて定められることを特徴とする請求項2に記載の内視鏡画像信号処理装置。   In the calculation unit, the gain includes a luminance of light emitted from the LED calculated according to the light source temperature in accordance with the temperature-luminance characteristic specific to the LED, and a reference luminance predetermined as a reference for the luminance of the LED. The endoscope image signal processing apparatus according to claim 2, wherein the endoscope image signal processing apparatus is determined in accordance with a ratio of the endoscope image signal. 前記温度センサが、前記LEDに密着するように設置されることを特徴とする請求項1〜請求項3のいずれか1項に記載の内視鏡画像信号処理装置。   The endoscope image signal processing apparatus according to any one of claims 1 to 3, wherein the temperature sensor is installed so as to be in close contact with the LED. 前記LEDが、前記電子内視鏡の挿入管の先端に設けられることを特徴とする請求項1〜請求項4のいずれか1項に記載の内視鏡画像信号処理装置。   The endoscope image signal processing apparatus according to any one of claims 1 to 4, wherein the LED is provided at a distal end of an insertion tube of the electronic endoscope. 電子内視鏡の光源として用いられるLEDの温度である光源温度を検出する温度センサと、
前記内視鏡の先端に設けられ、前記LEDに照明される被写体像を撮像して画像信号を生成する撮像素子と、
前記光源温度に応じたゲインを前記画像信号に乗じる画像信号処理部とを備える
ことを特徴とする電子内視鏡システム。
A temperature sensor for detecting a light source temperature which is a temperature of an LED used as a light source of an electronic endoscope;
An image sensor that is provided at a distal end of the endoscope and captures a subject image illuminated by the LED to generate an image signal;
An electronic endoscope system comprising: an image signal processing unit that multiplies the image signal by a gain corresponding to the light source temperature.
JP2006028156A 2006-02-06 2006-02-06 Endoscope image signal processing apparatus and electronic endoscope system Active JP4787032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006028156A JP4787032B2 (en) 2006-02-06 2006-02-06 Endoscope image signal processing apparatus and electronic endoscope system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006028156A JP4787032B2 (en) 2006-02-06 2006-02-06 Endoscope image signal processing apparatus and electronic endoscope system

Publications (2)

Publication Number Publication Date
JP2007202942A true JP2007202942A (en) 2007-08-16
JP4787032B2 JP4787032B2 (en) 2011-10-05

Family

ID=38482938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006028156A Active JP4787032B2 (en) 2006-02-06 2006-02-06 Endoscope image signal processing apparatus and electronic endoscope system

Country Status (1)

Country Link
JP (1) JP4787032B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010136775A (en) * 2008-12-10 2010-06-24 Fujifilm Corp Image acquisition method and endoscope device
CN103501683A (en) * 2012-03-30 2014-01-08 奥林巴斯医疗株式会社 Endoscopic device
WO2020183528A1 (en) * 2019-03-08 2020-09-17 オリンパス株式会社 Endoscope device, endoscope image processing device, method for operating endoscope device, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5931031B2 (en) 2013-09-23 2016-06-08 富士フイルム株式会社 Endoscope system and method for operating endoscope system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6371233A (en) * 1986-09-16 1988-03-31 株式会社東芝 Endoscope apparatus
JPH11267099A (en) * 1998-03-24 1999-10-05 Olympus Optical Co Ltd Endoscope

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6371233A (en) * 1986-09-16 1988-03-31 株式会社東芝 Endoscope apparatus
JPH11267099A (en) * 1998-03-24 1999-10-05 Olympus Optical Co Ltd Endoscope

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010136775A (en) * 2008-12-10 2010-06-24 Fujifilm Corp Image acquisition method and endoscope device
CN103501683A (en) * 2012-03-30 2014-01-08 奥林巴斯医疗株式会社 Endoscopic device
WO2020183528A1 (en) * 2019-03-08 2020-09-17 オリンパス株式会社 Endoscope device, endoscope image processing device, method for operating endoscope device, and program
US11889988B2 (en) 2019-03-08 2024-02-06 Olympus Corporation Endoscope apparatus, endoscope image processing apparatus, endoscope apparatus actuation method, and recording medium

Also Published As

Publication number Publication date
JP4787032B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP5452785B1 (en) Imaging system
JP5372269B2 (en) Imaging device
US9538108B2 (en) Endoscope system and pixel correction method
US9844312B2 (en) Endoscope system for suppressing decrease of frame rate without changing clock rate of reading
JP5587834B2 (en) Electronic endoscope apparatus and electronic endoscope system
US9439554B2 (en) Endoscope having connector part with output selector
JP6049945B2 (en) Imaging apparatus and processing apparatus
JP6109457B1 (en) Imaging system and processing apparatus
JP4787032B2 (en) Endoscope image signal processing apparatus and electronic endoscope system
JP2007215907A (en) Endoscope processor, endoscopic system and black balance adjustment program
JP2010142288A (en) Endoscope and control method for the same
CN110337260B (en) Electronic endoscope device
JP6212257B2 (en) Electronic endoscope system
JP4836591B2 (en) Endoscope image signal processing apparatus and electronic endoscope system
US9247863B2 (en) Endoscope apparatus which controls clamping of optical black included in an image pickup signal
JP2011024901A (en) Electronic endoscope system and light control signal correcting method
JP2011235021A (en) Electronic endoscope system
WO2021171427A1 (en) Control device, endoscope, and control method
JP2008307294A (en) Imaging system
JP2009095466A (en) Endoscope system
JPH10165363A (en) Endoscopic image pickup signal processing device
JP2007117153A (en) Electronic endoscope system
JP2009213629A (en) Image pickup system and endoscope system
JP2014226196A (en) Light source device for endoscope and electronic endoscope system
JP2005261636A (en) White balance adjusting device of endoscope

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080502

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110714

R150 Certificate of patent or registration of utility model

Ref document number: 4787032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250