JP2007201225A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2007201225A
JP2007201225A JP2006018651A JP2006018651A JP2007201225A JP 2007201225 A JP2007201225 A JP 2007201225A JP 2006018651 A JP2006018651 A JP 2006018651A JP 2006018651 A JP2006018651 A JP 2006018651A JP 2007201225 A JP2007201225 A JP 2007201225A
Authority
JP
Japan
Prior art keywords
liquid
liquid cooling
semiconductor module
seal member
seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006018651A
Other languages
Japanese (ja)
Inventor
Masanobu Obara
雅信 小原
Nobuyoshi Kimoto
信義 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006018651A priority Critical patent/JP2007201225A/en
Publication of JP2007201225A publication Critical patent/JP2007201225A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a direct liquid-cooling semiconductor device capable of sealing reliably so that no liquid is leaked from the sealed section of a semiconductor module with a relatively simple configuration. <P>SOLUTION: The semiconductor device has a semiconductor module 1 and a liquid-cooled member 2. A circulation path 21 of a cooling liquid, and an opening 22 where the circulation path 21 is exposed partially are formed in the liquid-cooled member 2. A surrounding wall 25 is formed opposite to the peripheral side of the semiconductor module 1. The semiconductor module 1 and the liquid-cooled member 2 are joined integrally and the cooling surface of the semiconductor module 1 faces the opening 22. A first sealing member 3a is fitted to the position of the periphery for surrounding the opening 2 of the liquid-cooled member 2 between the opposing surfaces of both of them 1, 2. A second sealing member 3b is inserted between the opposing surfaces of the peripheral side of the semiconductor module 1 and the surrounding wall 25 of the liquid-cooled member 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、発熱量の大きな半導体素子を備えた半導体モジュールを冷却する機能を備えた半導体装置に係り、特には、半導体モジュールを冷却液によって直接に冷却する直接液冷方式の構造の半導体装置に関する。   The present invention relates to a semiconductor device having a function of cooling a semiconductor module including a semiconductor element having a large calorific value, and more particularly, to a semiconductor device having a direct liquid cooling structure for directly cooling a semiconductor module with a cooling liquid. .

電気自動車やハイブリッド自動車のモータを駆動するインバータ等の大電力を扱う半導体装置においては、消費電力が大きなIGBT(Insulated Gate Bipolar Transistor)等の電力用の半導体素子の複数個をパッケージ化した半導体モジュールが用いられている。この様な電力用の半導体モジュールは、発熱量が大きいために、効率良く冷却することが必要となる。特に、近年の電力用の半導体モジュールは、パワー密度が向上しているため、半導体モジュールを冷却液によって直接に冷却して冷却性能を高めた、いわゆる直接液冷方式が多く採用されつつある。この場合、自動車内では取付スペースが狭いので、できるだけ小型であることが要求される。   In a semiconductor device that handles a large amount of power such as an inverter that drives a motor of an electric vehicle or a hybrid vehicle, a semiconductor module in which a plurality of power semiconductor elements such as an insulated gate bipolar transistor (IGBT) that consumes a large amount of power is packaged. It is used. Such a power semiconductor module has a large amount of heat generation, and thus needs to be efficiently cooled. In particular, since the power density of recent semiconductor modules for electric power has been improved, so-called direct liquid cooling, in which the semiconductor module is directly cooled with a cooling liquid to improve the cooling performance, is being increasingly adopted. In this case, since the installation space is small in the automobile, it is required to be as small as possible.

ところで、従来の直接液冷方式のものは、半導体モジュールの冷却面が液冷部材に形成された流通路の開口部に臨むように、液冷部材の開口部周縁と半導体モジュールの周縁との間にシール部材を介在させた状態で半導体モジュールと液冷部材とを一体的に接合することにより、半導体モジュールの冷却面を冷却液が直接冷却するとともに、シール部材によって流通路から冷却液が外部に漏れるのを防ぐ構造となっている(例えば、特許文献1参照)。そして、この場合のシール部材としては、一般的にはガスケットやOリングなどと称せられるものが適用されている。   By the way, in the conventional direct liquid cooling type, the cooling surface of the semiconductor module faces the opening of the flow path formed in the liquid cooling member, and the gap between the opening periphery of the liquid cooling member and the periphery of the semiconductor module. By integrally joining the semiconductor module and the liquid cooling member with the sealing member interposed therebetween, the cooling liquid directly cools the cooling surface of the semiconductor module, and the cooling liquid is discharged from the flow path to the outside by the sealing member. It has a structure that prevents leakage (see, for example, Patent Document 1). In this case, what is generally called a gasket or an O-ring is applied as the seal member.

しかし、このような構造であると、シール部材に対する加圧力の不均一や、シール面への異物の付着による異物噛みこみ、あるいはシール部材の傷や経年劣化等に起因して液漏れを生ずることがある。そして、このシール部分から冷却液が漏れて半導体モジュールの電極端子を濡らすと、電極間に電気的な短絡が生じるなどして絶縁性を低下させ、半導体モジュールが故障する恐れがあり、信頼性を保証できる期間を長くできないという問題がある。   However, with such a structure, liquid leakage may occur due to non-uniform pressure applied to the seal member, biting of foreign matter due to foreign matter adhering to the seal surface, or damage or aging of the seal member. There is. And if the coolant leaks from this seal part and wets the electrode terminals of the semiconductor module, the electrical insulation may deteriorate due to an electrical short circuit between the electrodes, and the semiconductor module may break down. There is a problem that the period that can be guaranteed cannot be extended.

そこで、従来技術では、シール部分から冷却液が漏出しないように、液冷部材の開口部の周りにシール部材を内外2重に配置して漏れを阻止するなどの対策が講じられている。   Therefore, in the prior art, measures are taken such as preventing the leakage by arranging the sealing member in an inner and outer double around the opening of the liquid cooling member so that the cooling liquid does not leak from the sealing portion.

しかしながら、このような対策を講じた場合でも、内外2重のシール部材の締付圧をそれぞれ独立して適切に調整することが困難であるため、冷却液が内側のシール部材のみならず外側のシール部材を通過して液漏れを引き起こす恐れがあった。   However, even when such measures are taken, it is difficult to properly adjust the tightening pressures of the inner and outer double seal members independently of each other. There was a risk of causing liquid leakage through the seal member.

そこで、従来技術では、冷却部材のシール部材の外側に位置する部分に漏液を排出する漏液排出溝、およびこの漏液排出溝に連通した液抜き穴を形成し、シール部分から冷却液が漏出した場合には、この冷却液を漏液排出溝と液抜き穴を経由して装置外部に導くことにより、電極端子間の短絡を防止するようにした構造が提案されている(例えば、特許文献2〜4等参照)。   Therefore, in the prior art, a leakage discharge groove for discharging the leakage and a drain hole communicating with the leakage discharge groove are formed in a portion located outside the sealing member of the cooling member, and the coolant is discharged from the sealing portion. In the case of leakage, a structure has been proposed in which this cooling liquid is guided to the outside of the apparatus via a liquid discharge groove and a liquid drain hole to prevent a short circuit between electrode terminals (for example, a patent) Reference 2-4 etc.).

特開平9−246443号公報JP-A-9-246443 特開2001−308246号公報JP 2001-308246 A 特開2003−31745号公報JP 2003-31745 A 特開2005−32904号公報JP 2005-32904 A

しかし、上記特許文献2〜4に記載されている従来構造の場合、液冷部材に漏液排出溝や液抜き穴を形成するなどの余分な切削加工が必要となるために、構成が複雑化するとともにコストがかかる。しかも、実使用環境が良くないと、漏液排出溝や液抜き穴に塵が詰まって漏液を上手く外部に排出できない等の不具合がある。   However, in the case of the conventional structures described in Patent Documents 2 to 4, the configuration is complicated because an extra cutting process such as forming a liquid discharge groove or a liquid drain hole is required in the liquid cooling member. And costly. Moreover, if the actual use environment is not good, there is a problem that the liquid leakage drain groove or liquid drain hole is clogged with dust and the liquid leakage cannot be discharged to the outside.

この発明は、上記の問題点を解決し、比較的簡単な構造でもって、半導体モジュールと液冷部材との間のシール部分から液漏れが生じないように確実にシールすることができる半導体装置を提供することを課題とする。   The present invention solves the above-described problems and provides a semiconductor device that can be reliably sealed with a relatively simple structure so that liquid leakage does not occur from the sealed portion between the semiconductor module and the liquid cooling member. The issue is to provide.

この発明は、上記の課題を解決するため、半導体素子が実装された半導体モジュールと、内部に冷却液の流通路を有するとともに当該流通路の一部が外部に露出するように開口部が形成されている液冷部材とを備え、上記半導体モジュールと上記液冷部材とが2つのシール部材を介して一体的に接合されて上記開口部が閉鎖されるとともに、上記半導体モジュールの冷却面が上記流通路に臨んでいる直接液冷方式の半導体装置において、次の構成を採用している。   In order to solve the above-described problems, the present invention has a semiconductor module on which a semiconductor element is mounted, a coolant flow passage inside, and an opening formed so that a part of the flow passage is exposed to the outside. A liquid cooling member, the semiconductor module and the liquid cooling member are integrally joined via two sealing members to close the opening, and the cooling surface of the semiconductor module is the flow channel A direct liquid cooling type semiconductor device facing the road employs the following configuration.

すなわち、第1の発明では、液冷部材に半導体モジュールの冷却面と略直交する周側面に対向して周壁部が形成されており、上記2つのシール部材の内、一方のシール部材は上記液冷部材の開口部を囲む周縁部に装着されて半導体モジュールと液冷部材との締め付けにより圧接され、また、他方のシール部材は上記半導体モジュールの周側面と上記液冷部材に形成された周壁部との対向面間に嵌挿されていることを特徴としている。   That is, in the first invention, a peripheral wall portion is formed on the liquid cooling member so as to face the peripheral side surface substantially orthogonal to the cooling surface of the semiconductor module, and one of the two sealing members is the liquid sealing member. It is attached to the peripheral part surrounding the opening of the cooling member and is pressed by tightening the semiconductor module and the liquid cooling member, and the other sealing member is the peripheral side surface of the semiconductor module and the peripheral wall part formed on the liquid cooling member It is characterized by being inserted between opposing surfaces.

また、第2の発明では、上記2つのシール部材は、共に半導体モジュールの冷却面側と上記液冷部材の開口部形成側との対向面間に介在されており、かつ、上記半導体モジュールと液冷部材との対向面間距離を上記各シール部材の位置で互いに異ならせることにより各シール部材に対する加圧力を異ならせていることを特徴としている。なお、この場合、半導体モジュールと液冷部材との対向面間距離を各シール部材の位置で互いに異らせる代わりに、2つのシール部材の太さを互いに異ならせることもできる。   In the second invention, the two sealing members are both interposed between opposing surfaces of the cooling surface side of the semiconductor module and the opening forming side of the liquid cooling member, and the semiconductor module and the liquid It is characterized in that the pressure applied to each seal member is made different by making the distance between the opposing surfaces of the cold member different from each other at the position of each seal member. In this case, the thicknesses of the two seal members can be made different from each other instead of making the distance between the opposing surfaces of the semiconductor module and the liquid cooling member different at the position of each seal member.

第1の発明によれば、2つのシール部材によって液漏れを2重にシールしており、かつ、両シール部材の締付面が互いに直交する異なる2面であることから、両シール部材が同時に異物を噛みこんで液漏れを生じさせる恐れが極めて少なくなる。さらに、両シール部材のシール方式が異なるため、両シール部材にシール不足が同時に発生する恐れが著しく軽減される。特に、半導体モジュールの周側面と液冷部材に形成された周壁部との対向面間に嵌挿されたシール部材は、導体モジュールと液冷部材との締め付けにより加圧されるシール部材に比べて、加圧力の不均一化が起こり難く、このため、開口部の周縁に位置するシール部材で液漏れが生じても、半導体モジュールの周側面と液冷部材に形成された周壁部との対向面間に嵌挿されたシール部材によって液漏れを阻止することができる。   According to the first aspect of the present invention, the liquid leakage is double sealed by the two sealing members, and the tightening surfaces of the two sealing members are two different surfaces orthogonal to each other. The possibility of causing foreign matter to leak and cause liquid leakage is extremely reduced. Furthermore, since the sealing methods of the two seal members are different, the risk of insufficient seals occurring at both seal members is greatly reduced. In particular, the sealing member inserted between the opposing surfaces of the peripheral side surface of the semiconductor module and the peripheral wall portion formed on the liquid cooling member is more than the sealing member pressurized by tightening the conductor module and the liquid cooling member. Therefore, even if liquid leakage occurs in the sealing member located at the periphery of the opening, the opposing surface between the peripheral side surface of the semiconductor module and the peripheral wall formed on the liquid cooling member Liquid leakage can be prevented by the seal member inserted between them.

第2の発明によれば、半導体モジュールと液冷部材との対向面間距離が両シール部材の位置で互いに異なるので、導体モジュールと液冷部材とを締め付ける際に、両シール部材に対する加圧力を互いに異ならせることができる。このため、各シール部材の加圧力の許容範囲が広がり、各シール部材に対しては、各シール方式に適合した加圧力を付与することができるため、各シール部材に生じる液漏れを確実に防止することができる。これは、2つのシール部材の太さを互いに異ならせた場合も同様である。   According to the second invention, since the distance between the facing surfaces of the semiconductor module and the liquid cooling member is different from each other at the positions of the two sealing members, when the conductor module and the liquid cooling member are tightened, the pressure applied to both the sealing members is reduced. Can be different from each other. For this reason, the allowable range of the pressurizing force of each seal member is widened, and since the pressurizing force suitable for each seal method can be applied to each seal member, liquid leakage generated in each seal member is surely prevented. can do. The same applies to the case where the thicknesses of the two seal members are different from each other.

実施の形態1.
図1はこの発明の実施の形態1における半導体装置の要部を示す縦断面図である。
Embodiment 1 FIG.
1 is a longitudinal sectional view showing a main part of a semiconductor device according to Embodiment 1 of the present invention.

この実施の形態1の半導体装置は、半導体モジュール1と液冷部材2とを備える。半導体モジュール1は、全体形状が平坦な直方体状のもので、半導体素子としてIGBT等の複数個の電力用のスイッチング素子11が絶縁基板12の表面に形成された配線パターン13上に半田付け等により固着されており、また、各スイッチング素子11はアルミ線等の金属細線14を介して配線パターン13にワイヤボンドされて電気的に接続されている。   The semiconductor device according to the first embodiment includes a semiconductor module 1 and a liquid cooling member 2. The semiconductor module 1 has a rectangular parallelepiped shape as a whole, and a plurality of power switching elements 11 such as IGBTs as semiconductor elements are soldered on the wiring pattern 13 formed on the surface of the insulating substrate 12. Further, each switching element 11 is wire-bonded to the wiring pattern 13 via a fine metal wire 14 such as an aluminum wire and electrically connected thereto.

そして、絶縁基板12の裏面には熱伝導度の高い銅やアルミニウム等の材料でできたモジュールベース15が固定されている。このモジュールベース15は、スイッチング素子11からの発熱を効率良く外部に伝導するとともに、後述の第1シール部材3aを確実にシールするための役目を同時に果たしている。   A module base 15 made of a material having high thermal conductivity such as copper or aluminum is fixed to the back surface of the insulating substrate 12. The module base 15 efficiently conducts heat generated from the switching element 11 to the outside, and at the same time plays a role for reliably sealing a first seal member 3a described later.

また、スイッチング素子11や金属細線14を外環境から保護するため、これらを覆うモジュールケース16がモジュールベース15の周縁部に接着固定されている。そして、このモジュールケース16の周側部の上部には、後述の第2シール部材3bを押圧して所定位置に容易に位置決めするための突起部16aが形成されている。なお、図示していないが、半導体モジュール1を使用する際に外部の電気回路と接続するための電極端子がモジュールケース16の上面あるいは側面に設けられて配線パターン13と電気的に接続されている。   Further, in order to protect the switching element 11 and the fine metal wires 14 from the external environment, a module case 16 that covers them is bonded and fixed to the peripheral portion of the module base 15. A protrusion 16a is formed on an upper portion of the peripheral side portion of the module case 16 so as to press a second seal member 3b, which will be described later, so that the module case 16 is easily positioned at a predetermined position. Although not shown, electrode terminals for connecting to an external electric circuit when the semiconductor module 1 is used are provided on the upper surface or side surface of the module case 16 and are electrically connected to the wiring pattern 13. .

一方、液冷部材2は、銅やアルミニュウムなどの金属やPPS(ポリフェニレンサルファイド)等の樹脂からなるもので、その内部には冷却液の流通路21が形成されるとともに、その流通路21の一部が外部に露出するようにされて開口部22が設けられている。また、この開口部22の周縁部分には装着溝23が形成され、この装着溝23内にゴム製のガスケットなどからなる第1シール部材3aが装着されている。   On the other hand, the liquid cooling member 2 is made of a metal such as copper or aluminum, or a resin such as PPS (polyphenylene sulfide), and a cooling liquid flow passage 21 is formed in the liquid cooling member 2. An opening 22 is provided so that the portion is exposed to the outside. A mounting groove 23 is formed in the peripheral portion of the opening 22, and a first seal member 3 a made of a rubber gasket or the like is mounted in the mounting groove 23.

また、液冷部材2には、半導体モジュール1の冷却面(すなわち、モジュールベース15の底面)と略直交するモジュールケース16の周側面に対向して周壁部25が一体形成されており、この周壁部25とモジュールケース16の周側面との対向面間に第2シール部材3bが嵌挿されている。   In addition, a peripheral wall 25 is integrally formed on the liquid cooling member 2 so as to face the peripheral side surface of the module case 16 substantially orthogonal to the cooling surface of the semiconductor module 1 (that is, the bottom surface of the module base 15). The second seal member 3 b is inserted between the opposing surfaces of the portion 25 and the peripheral side surface of the module case 16.

半導体装置を組み立てる際、予め第1シール部材3aは液冷部材2の装着溝23に装着され、また、第2シール部材3bはモジュールケース16の突起部16a下方の周側面に嵌込される。そして、この状態で半導体モジュール1を液冷部材2の周壁部25内に沿って押し込むことにより、第2シール部材3bが突起部16aに押されて移動して液冷部材2の周壁部25とモジュールケース16の周側面との対向面間の所定位置に嵌挿される。そして、半導体モジュール1を液冷部材2の周壁部25内に沿って押し込んだ後は、半導体モジュール11と液冷部材2とを図示しないボルト等によって締結する。   When assembling the semiconductor device, the first seal member 3a is mounted in advance in the mounting groove 23 of the liquid cooling member 2, and the second seal member 3b is fitted into the peripheral side surface below the protrusion 16a of the module case 16. In this state, the semiconductor module 1 is pushed along the peripheral wall portion 25 of the liquid cooling member 2, whereby the second seal member 3 b is pushed and moved by the protruding portion 16 a to move with the peripheral wall portion 25 of the liquid cooling member 2. The module case 16 is inserted into a predetermined position between the opposed surfaces of the module case 16 and the peripheral side surface. And after pushing in the semiconductor module 1 along the surrounding wall part 25 of the liquid cooling member 2, the semiconductor module 11 and the liquid cooling member 2 are fastened with the volt | bolt etc. which are not shown in figure.

これにより、両シール部材3a,3bによって流通路21から冷却液が外部に漏れないように2重にシールされる。また、半導体モジュール11の冷却面となるモジュールベース15の底面が液冷部材2の開口部22に臨むので、液冷部材2の流通路21にエチレングリコール等の粘性の高い液体の水溶液などからなる冷却液を流すことで、半導体モジュール11を構成するスイッチング素子11がモジュールベース15を介して冷却液によって冷却される。   Thus, the two sealing members 3a and 3b are double-sealed so that the coolant does not leak from the flow passage 21 to the outside. Further, since the bottom surface of the module base 15 serving as the cooling surface of the semiconductor module 11 faces the opening 22 of the liquid cooling member 2, the flow path 21 of the liquid cooling member 2 is made of an aqueous solution of a highly viscous liquid such as ethylene glycol. By flowing the coolant, the switching elements 11 constituting the semiconductor module 11 are cooled by the coolant via the module base 15.

上記構成において、第1シール部材3aは、半導体モジュール1と液冷部材2との締め付けにより、モジュールベース15の底面と液冷部材2の装着溝23の底面との間の対向面間距離Laによって規定される寸法に圧縮されて所定の加圧力を受ける。したがって、この対向面間距離Laを調整することで第1シール部材3aに対する加圧力が任意に変化される。また、第2シール部材3bは、モジュールケース16の周側面と液冷部材2の周壁部25との対向面間距離(隙間寸法)Lbによって規定される寸法に圧縮されて所定の加圧力を受ける。したがって、この対向面間距離Lbを調整することで第2シール部材3bに対する加圧力が任意に変化される。ただし、第2シール部材3bは半導体モジュール1と冷却部材の締め付けの加圧力は受けない。   In the above-described configuration, the first seal member 3a is tightened between the semiconductor module 1 and the liquid cooling member 2 by the distance La between the opposing surfaces between the bottom surface of the module base 15 and the bottom surface of the mounting groove 23 of the liquid cooling member 2. It is compressed to a specified dimension and receives a predetermined pressure. Therefore, the pressure applied to the first seal member 3a is arbitrarily changed by adjusting the distance La between the opposing surfaces. The second seal member 3b is compressed to a dimension defined by a distance (gap dimension) Lb between opposing surfaces of the peripheral side surface of the module case 16 and the peripheral wall portion 25 of the liquid cooling member 2 and receives a predetermined pressure. . Therefore, the pressure applied to the second seal member 3b is arbitrarily changed by adjusting the distance Lb between the opposing surfaces. However, the second seal member 3b does not receive the pressing force for tightening the semiconductor module 1 and the cooling member.

ここで、第1シール部材3aは、半導体モジュール1と液冷部材2とをボルト等によって締め付けることでシールする方式(以下、締め付け方式という)であり、第2シール部材3bは液冷部材2の周壁部25とモジュールケース16の周側面との対向面間に嵌挿される方式(以下、嵌め込み方式という)であって、両シール部材3a,3bのシール方式が異なる。しかも、各シール部材3a,3bに対して加圧力を付与する仕方が独立している。したがって、各シール部材3a,3bに対しては各シール方式に適合した加圧力を付与することができ、両シール部材3a,3bが同時に液漏れを起こす恐れが極めて少なくなる。   Here, the first seal member 3a is a method of sealing by tightening the semiconductor module 1 and the liquid cooling member 2 with a bolt or the like (hereinafter referred to as a tightening method), and the second seal member 3b is a member of the liquid cooling member 2. It is a system (hereinafter referred to as a “fitting system”) that is inserted between the opposed surfaces of the peripheral wall portion 25 and the peripheral side surface of the module case 16, and the sealing systems of both the sealing members 3 a and 3 b are different. In addition, the method of applying pressure to the seal members 3a and 3b is independent. Therefore, a pressure suitable for each sealing method can be applied to each of the seal members 3a and 3b, and the possibility that both the seal members 3a and 3b leak at the same time is extremely reduced.

特に、第1シール部材3aは締め付け方式であるために、各ボルトの締結力の違いによって第1シール部材3aに対する加圧力に不均一が生じる可能性があるのに対して、第2シール部材3bは嵌め込み方式であるため、第2シール部材3bに対しては均等に加圧力が作用する。このため、第1シール部材3aで液漏れが生じても、第2シール部材3bによって液漏れを阻止することができる。また、両シール部材3a,3bの締付面が互いに直交する異なる2面であることから、両シール部材3a,3bが同時に異物を噛み込んで液漏れを生じさせる恐れも極めて小さい。   In particular, since the first seal member 3a is a tightening method, the pressure applied to the first seal member 3a may be uneven due to the difference in fastening force of each bolt, whereas the second seal member 3b. Since is a fitting method, the applied pressure acts equally on the second seal member 3b. For this reason, even if a liquid leak occurs in the first seal member 3a, the second seal member 3b can prevent the liquid leak. Further, since the tightening surfaces of the seal members 3a and 3b are two different surfaces that are orthogonal to each other, there is very little possibility that the seal members 3a and 3b simultaneously bite foreign matter and cause liquid leakage.

さらに、液冷部材2の加工時の観点から捉えると、モジュールベース15に対向する開口部22の周辺部分は平面加工となる一方、液冷部材2の周壁部25は側面加工となるため、加工面の状態が同じでない。例えば、フライス盤を用いた加工においては、平面の加工痕は第1シール部材3aが周回される軸方向と直交する方向に沿って延びる加工痕ができる可能性があるが、側面の加工においては第2シール部材3bが周回される軸方向に沿って延びる加工痕ができる。したがって、第1シール部材3aについては加工痕に沿って漏液が発生する可能性があるのに対して、第2シール部材3bについては加工痕がその軸方向に沿って形成されることから漏液が発生する可能性は著しく小さい。この結果、嵌め込み方式の第2シール部材3bの方が高いシール性が得られる。   Further, from the viewpoint of processing the liquid cooling member 2, the peripheral portion of the opening 22 facing the module base 15 is flattened while the peripheral wall portion 25 of the liquid cooling member 2 is laterally processed. The surface condition is not the same. For example, in processing using a milling machine, there is a possibility that a processing trace on a flat surface may be a processing trace extending along a direction orthogonal to the axial direction around which the first seal member 3a is circulated. 2 A processing mark extending along the axial direction in which the sealing member 3b is circulated is formed. Accordingly, liquid leakage may occur along the machining mark for the first seal member 3a, whereas leakage occurs because the machining mark is formed along the axial direction of the second seal member 3b. The possibility of liquid generation is extremely small. As a result, higher sealing performance can be obtained with the fitting-type second seal member 3b.

このように、この実施の形態1では、締め付け方式の第1シール部材3aに加えて、これよりもシール性の高い嵌め込み方式の第2シール部材3bを設けて液漏れを2重にシールしているので、装置を傾斜したり、立てて設置したような場合であっても、第1シール部材3aと第2シール部材3bが同時に液漏れを生じる可能性が極めて小さくなる。また、従来構造のように、液冷部材2に漏液排出溝や液抜き穴を形成するなどの余分な切削加工が不要であるために、構成が簡素化されて比較的安価に実現することができる。   As described above, in the first embodiment, in addition to the first sealing member 3a of the tightening method, the second sealing member 3b of the fitting method having a higher sealing property is provided to double seal the liquid leakage. Therefore, even when the apparatus is inclined or installed upright, the possibility that the first seal member 3a and the second seal member 3b may leak simultaneously becomes extremely small. Further, unlike the conventional structure, extra cutting work such as forming a liquid discharge groove and a liquid drain hole in the liquid cooling member 2 is unnecessary, so that the configuration is simplified and realized at a relatively low cost. Can do.

なお、この実施の形態1において、半導体モジュール1と液冷部材2とで挟まれた空間内の第1シール部材3aと第2シール部材3bとの中間箇所に液漏れセンサを設置し、この液漏れセンサで、第1シール部材3aの液漏れ発生を、第2シール部材3bからの液漏れが起こる前に早期に検出するようにしてもよい。   In the first embodiment, a liquid leak sensor is installed at an intermediate position between the first seal member 3a and the second seal member 3b in the space sandwiched between the semiconductor module 1 and the liquid cooling member 2. The leakage sensor may detect the occurrence of liquid leakage from the first seal member 3a at an early stage before the liquid leakage from the second seal member 3b occurs.

この場合の液漏れセンサとしては、例えば、液冷部材2の表面もしくはモジュールベース15の表面に2電極を離して配置し、両電極間の絶縁抵抗を測定することによって液漏れによる絶縁抵抗の低下を検知したり、あるいは、両電極間に吸水性の絶縁物質を挟んだ構造で、電極間材料の吸湿による容量変化を検知したり、また、モジュールベース15と液冷部材2が共に金属で形成されていてシール部材3a,3bがゴム等の絶縁体であれば、モジュールベース15と液冷部材2間の絶縁抵抗を検知したりするなど、各種の検知方式のものを採用することができる。   As a liquid leak sensor in this case, for example, two electrodes are arranged apart on the surface of the liquid cooling member 2 or the surface of the module base 15 and the insulation resistance between the two electrodes is measured to reduce the insulation resistance due to the liquid leak. Or a structure in which a water-absorbing insulating material is sandwiched between both electrodes to detect a capacity change due to moisture absorption of the interelectrode material, and the module base 15 and the liquid cooling member 2 are both formed of metal. If the seal members 3a and 3b are insulators such as rubber, various detection methods such as detecting the insulation resistance between the module base 15 and the liquid cooling member 2 can be employed.

実施の形態2.
図2はこの発明の実施の形態2における半導体装置の縦断面図であり、図1に示した実施の形態1と同一または相当する構成部分には同一の符号を付す。
Embodiment 2. FIG.
FIG. 2 is a longitudinal sectional view of a semiconductor device according to the second embodiment of the present invention. Components identical or corresponding to those of the first embodiment shown in FIG.

この実施の形態2の特徴は、液冷部材2の上部の開口部22の周縁に沿って、深さの異なる2つの装着溝23,24が形成されている。特に、ここでは、第1シール部材3aに対する装着溝23の深さよりも第2シール部材3bに対する装着溝の深さ24の方が幾分浅くなるように設定されている。また、半導体モジュール1のモジュールベース15は、各シール部材3a,3bに当接するようにモジュールケース16の外方に張り出した大きさに設定されている。   The feature of the second embodiment is that two mounting grooves 23 and 24 having different depths are formed along the periphery of the opening 22 at the top of the liquid cooling member 2. In particular, here, the depth 24 of the mounting groove for the second seal member 3b is set somewhat shallower than the depth of the mounting groove 23 for the first seal member 3a. Further, the module base 15 of the semiconductor module 1 is set to have a size that protrudes outward from the module case 16 so as to be in contact with the seal members 3a and 3b.

そして、各装着溝23,24内に第1、第2シール部材3a,3bが装着されており、この状態で、半導体モジュール1の冷却面となるモジュールベース15の底面が液冷部材2の開口部22に臨むように、半導体モジュール1と液冷部材2とを位置合わせして両者1,2が図示しないボルト等によって一体に締結されている。   The first and second seal members 3a and 3b are mounted in the mounting grooves 23 and 24. In this state, the bottom surface of the module base 15 serving as the cooling surface of the semiconductor module 1 is the opening of the liquid cooling member 2. The semiconductor module 1 and the liquid cooling member 2 are aligned so as to face the portion 22, and both 1 and 2 are fastened together by a bolt or the like (not shown).

したがって、この実施の形態2では、2つのシール部材3a,3bの太さは同じであるが、各シール部材3a,3bが装着される装着溝23,24の深さが異なることから、第1、第2シール部材3bの位置でモジュールベース15の底面と装着溝23,24の底面との間の対向面間距離Lc,Ldが互いに異なっている。このように、各シール部材3a,3bを装着する装着溝23,24の深さを互いに異ならせることにより、半導体モジュール1と液冷部材2を締付けた際に対向面間距離Lc,Ldを調整することで、両シール部材3a,3bに対する加圧力を独立して変えることができる。
その他の構成は実施の形態1と同様であるから、ここでは詳しい説明は省略する。
Therefore, in the second embodiment, the thicknesses of the two seal members 3a and 3b are the same, but the depths of the mounting grooves 23 and 24 in which the seal members 3a and 3b are mounted are different. The distances Lc and Ld between the opposing surfaces between the bottom surface of the module base 15 and the bottom surfaces of the mounting grooves 23 and 24 are different from each other at the position of the second seal member 3b. In this way, by adjusting the depth of the mounting grooves 23 and 24 for mounting the seal members 3a and 3b to each other, the distances Lc and Ld between the opposing surfaces are adjusted when the semiconductor module 1 and the liquid cooling member 2 are tightened. By doing so, the applied pressure to both seal members 3a and 3b can be changed independently.
Since other configurations are the same as those of the first embodiment, detailed description thereof is omitted here.

ここで、一般にシール部材に対する加圧力は、変形前の元のシール部材の高さと、圧縮により変形した間隔から求められる変形量であるつぶし率δhによって規定される。このつぶし率δhは、次式で表される。
δh=(Ho−Hg)/Ho×100[%]
ここに、Hoは元のシール部材の高さ、Hgはシール部材の加圧状態での対向面間距離である。
Here, in general, the pressure applied to the seal member is defined by a crushing rate δh, which is a deformation amount obtained from the height of the original seal member before deformation and an interval deformed by compression. This crushing rate δh is expressed by the following equation.
δh = (Ho−Hg) / Ho × 100 [%]
Here, Ho is the height of the original seal member, and Hg is the distance between the opposing surfaces in the pressurized state of the seal member.

また、圧縮永久歪δHは、つぶし率δhが同じ場合であっても時間経過とともに次第に大きくなり、また、使用温度が高いほど短時間で大きくなる。通常、圧縮永久歪が80%に達するとシール部材の使用寿命といわれている。この圧縮永久歪δHは、次式で与えられる。
δH=(Ho−Hp)/(Ho−Hg)×100[%]
ここに、Hpは圧縮状態で所定時間放置後のシール部材の高さである。
Further, the compression set δH gradually increases with time even when the crushing ratio δh is the same, and increases in a shorter time as the use temperature is higher. Usually, when the compression set reaches 80%, it is said that the service life of the seal member is reached. This compression set δH is given by the following equation.
δH = (Ho−Hp) / (Ho−Hg) × 100 [%]
Here, Hp is the height of the seal member after being left for a predetermined time in the compressed state.

図3はシール部材を80℃の空気中に70時間保存した後のつぶし率δhと圧縮永久歪δHとの関係の一例を示す特性図である。   FIG. 3 is a characteristic diagram showing an example of the relationship between the crushing ratio δh and the compression set δH after the sealing member has been stored in air at 80 ° C. for 70 hours.

図3から分かるように、例えば、第1シール部材3aのつぶし率が20%、第2シール部材3bのつぶし率が25%になるように、各装着溝23,24の深さを設定すると、第2シール部材3bの圧縮永久歪は、第1シール部材3aの圧縮永久歪より小さくなる。このため、第2シール部材3bが使用寿命に到達するまでの時間は、第1シール部材3aが使用寿命に達するまでの時間より長くなる。   As can be seen from FIG. 3, for example, when the depth of each mounting groove 23, 24 is set so that the crushing rate of the first seal member 3a is 20% and the crushing rate of the second seal member 3b is 25%, The compression set of the second seal member 3b is smaller than the compression set of the first seal member 3a. For this reason, the time until the second seal member 3b reaches the service life is longer than the time until the first seal member 3a reaches the service life.

このように、この実施の形態2では、各シール部材3a,3bが装着される装着溝23,24の深さを異ならせることにより半導体モジュール1と液冷部材2を締付けた際に対向面間距離Lc,Ldを調整することで、両シール部材3a,3bに対する加圧力を独立して変えることができるので、両シール部材の加圧力の許容範囲が広がり、シール部材3a,3bに対する加圧力が不適切なために生じる液漏れを防止することができる。   As described above, in the second embodiment, when the semiconductor module 1 and the liquid cooling member 2 are tightened by varying the depth of the mounting grooves 23 and 24 in which the seal members 3a and 3b are mounted, the distance between the opposing surfaces is reduced. By adjusting the distances Lc and Ld, the pressure applied to both the seal members 3a and 3b can be changed independently. Therefore, the allowable range of the pressure applied to both the seal members is expanded, and the pressure applied to the seal members 3a and 3b is increased. It is possible to prevent liquid leakage that occurs due to inappropriateness.

特に、第1シール部材3aが装着される装着溝23の深さよりも第2シール部材3bが装着される装着溝24の深さの方を幾分浅く設定することで、第1シール部材3aに生じる永久歪よりもその外側に位置する第2シール部材3bに生じる永久歪が小さくなるように調整すれば、第2シール部材3bの使用寿命が長くなるので、第1シール部材3aの劣化によって液漏れが生じた時点でも、その外側の第2シール部材3bは未だ劣化に至らず、液漏れを防止することができる。   In particular, the depth of the mounting groove 24 in which the second seal member 3b is mounted is set somewhat shallower than the depth of the mounting groove 23 in which the first seal member 3a is mounted. If the second seal member 3b located outside the permanent seal is adjusted so that the permanent strain generated is smaller than the permanent set, the service life of the second seal member 3b is extended. Even when a leak occurs, the second seal member 3b on the outer side has not yet deteriorated, and a liquid leak can be prevented.

なお、この実施の形態2では、締め付け時の対向面間距離Lc,Ldを変えるために装着溝23,24の深さを異ならせたが、これに限らず、例えばモジュールベース15の冷却面(底面)側の加工が可能であれば、モジュールベース15の底面に段差を設け、これによって第1、第2シール部材3a,3bの対向面間距離Lc,Ldを異ならせるようにすることも可能である。   In the second embodiment, the depths of the mounting grooves 23 and 24 are varied in order to change the distances Lc and Ld between the opposing surfaces at the time of tightening. However, the present invention is not limited to this, and for example, the cooling surface of the module base 15 ( If processing on the bottom surface side is possible, a step is provided on the bottom surface of the module base 15 so that the distances Lc and Ld between the opposing surfaces of the first and second seal members 3a and 3b can be made different. It is.

また、この実施の形態2のように、第1シール部材3aの装着溝23の深さよりも第2シール部材3bの装着溝24の深さの方が幾分浅くなるように設定することが液漏れ防止上は好ましいが、その逆に、第2シール部材3bの装着溝24の深さよりも第1シール部材3aの装着溝23の深さの方が幾分浅くなるように設定して、第1シール部材3aに生じる永久歪を小さくすることも可能である。   Further, as in the second embodiment, the depth of the mounting groove 24 of the second seal member 3b is set somewhat shallower than the depth of the mounting groove 23 of the first seal member 3a. On the contrary, the depth of the mounting groove 23 of the first seal member 3a is set somewhat shallower than the depth of the mounting groove 24 of the second seal member 3b. It is also possible to reduce the permanent distortion generated in one seal member 3a.

実施の形態3.
図4はこの発明の実施の形態3における半導体装置の縦断面図であり、図2に示した実施の形態2と同一または相当する構成部分には同一の符号を付す。
Embodiment 3 FIG.
FIG. 4 is a longitudinal sectional view of the semiconductor device according to the third embodiment of the present invention. Components identical or corresponding to those of the second embodiment shown in FIG.

この実施の形態3の特徴は、第1、第2シール部材3a,3bの太さを異ならせていることである。特に、この実施の形態3では、第2シール部材3bの太さが第1シール部材3aの太さよりも大きくなるように設定されている。また、両シール部材3a,3bの太さが異なることから、各シール部材3a,3bが装着される装着溝23,24の深さも同じでなく、第1、第2シール部材3a,3bが略同じつぶし率δhとなるように深さが設定されている。よって、第1シール部材3aの対向面間距離Leよりも第2シール部材3bの対向面間距離Lfが大きくなっている。   The feature of the third embodiment is that the thicknesses of the first and second seal members 3a and 3b are different. In particular, in Embodiment 3, the thickness of the second seal member 3b is set to be larger than the thickness of the first seal member 3a. Further, since the thicknesses of the seal members 3a and 3b are different, the depths of the mounting grooves 23 and 24 in which the seal members 3a and 3b are mounted are not the same, and the first and second seal members 3a and 3b are substantially the same. The depth is set so that the crushing ratio δh is the same. Therefore, the distance Lf between the opposing surfaces of the second seal member 3b is larger than the distance Le between the opposing surfaces of the first seal member 3a.

図5はシール部材におけるがつぶし率25%、100℃で70時間保存後の圧縮永久歪とシール部材の太さとの関係の一例を示す特性図である。   FIG. 5 is a characteristic diagram showing an example of the relationship between the compression set and the thickness of the seal member after being stored at 100 ° C. for 70 hours with a crushing rate of 25% in the seal member.

図5から分かるように、シール部材の圧縮永久歪とシール部材の太さとの間には相関があり、つぶし率δhが同じであっても、シール部材の太さが大きくなると圧縮永久歪δHは急速に小さくなる。すなわち、シール部材が太いほど経時劣化が小さく長期間の寿命を得ることができる。   As can be seen from FIG. 5, there is a correlation between the compression set of the seal member and the thickness of the seal member. Even if the crushing ratio δh is the same, the compression set δH is increased when the thickness of the seal member is increased. Decreases rapidly. That is, the thicker the seal member, the smaller the deterioration with time and the longer the lifetime.

したがって、半導体モジュール1と液冷部材2とを締め付けた際に、両シール部材3a,3bのつぶし率δhが略同じあっても、第2シール部材3bの太さを第1シール部材3aの太さよりも大きくして、第2シール部材3bに生じる永久歪が小さくなるようにすれば、第2シール部材3bの使用寿命が長くなるので、第1シール部材3aの劣化によって液漏れが生じた時点でも、その外側の第2シール部材3bは未だ劣化に至らず、液漏れを防止することができる。   Therefore, when the semiconductor module 1 and the liquid cooling member 2 are tightened, even if the crushing ratios δh of both the sealing members 3a and 3b are substantially the same, the thickness of the second sealing member 3b is set to the thickness of the first sealing member 3a. If the permanent deformation generated in the second seal member 3b is made smaller than this, the service life of the second seal member 3b will be extended, so that when the liquid leakage occurs due to the deterioration of the first seal member 3a. However, the outer second seal member 3b has not yet deteriorated, and liquid leakage can be prevented.

なお、この実施の形態3のように、第1シール部材3aの太さよりも第2シール部材3bの太さを大きく設定することが液漏れ防止上は好ましいが、その逆に、第2シール部材3bの太さよりも第1シール部材3aの太さを大きく設定して、第1シール部材3aに生じる永久歪を小さくするようにすることも可能である。
その他の構成、および作用効果は実施の形態2と同様であるから、ここでは詳しい説明は省略する。
As in the third embodiment, it is preferable to set the thickness of the second seal member 3b to be larger than the thickness of the first seal member 3a in terms of preventing liquid leakage, but conversely, the second seal member It is also possible to set the thickness of the first seal member 3a to be larger than the thickness of 3b so as to reduce the permanent distortion generated in the first seal member 3a.
Since other configurations and operational effects are the same as those of the second embodiment, detailed description thereof is omitted here.

この発明は、上記の実施の形態1〜3の各個別の構成に限定されるものではなく、各実施の形態1〜3の構成を適宜組み合わせることができるのは勿論である。例えば、実施の形態1の構成において、実施の形態2のように第1、第2シール部材3a,3bの各位置において対向面間距離を変えたり、実施の形態3のように両シール部材3a,3bの太さを変えて、各シール部材3a,3bに対して適切な加圧力が加わるように設定することができる。さらに、上記の実施の形態2,3においても、実施の形態1で説明したように、第1、第2シール部材3a,3bの間に液漏れセンサを設置することが可能である。   The present invention is not limited to the individual configurations of the above-described first to third embodiments, and it is needless to say that the configurations of the first to third embodiments can be appropriately combined. For example, in the configuration of the first embodiment, the distance between the opposing surfaces is changed at each position of the first and second seal members 3a and 3b as in the second embodiment, or both the seal members 3a as in the third embodiment. , 3b can be changed so that an appropriate pressure is applied to the seal members 3a, 3b. Further, in the second and third embodiments, as described in the first embodiment, it is possible to install a liquid leak sensor between the first and second seal members 3a and 3b.

また、上記の実施の形態1〜3では、半導体モジュール1を構成する半導体素子として、IGBT等の電力用のスイッチング素子11を備えたものについて説明したが、この発明はこのようなものに限らず、例えば高集積で高速の論理素子の複数個をパッケージ化した半導体モジュール1を備えた半導体装置についても同様に適用することが可能である。   In the first to third embodiments, the semiconductor element constituting the semiconductor module 1 has been described as including the power switching element 11 such as an IGBT. However, the present invention is not limited to this. For example, the present invention can be similarly applied to a semiconductor device including the semiconductor module 1 in which a plurality of highly integrated and high-speed logic elements are packaged.

この発明の実施の形態1における半導体装置の要部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the principal part of the semiconductor device in Embodiment 1 of this invention. この発明の実施の形態2における半導体装置の要部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the principal part of the semiconductor device in Embodiment 2 of this invention. シール部材の潰し率と圧縮永久歪との関係を示す特性図である。It is a characteristic view which shows the relationship between the crushing rate of a sealing member, and compression set. この発明の実施の形態3における半導体装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the semiconductor device in Embodiment 3 of this invention. シール部材の太さと永久歪と関係を示す特性図である。It is a characteristic view which shows the relationship between the thickness of a sealing member, and permanent set.

符号の説明Explanation of symbols

1 半導体モジュール、11 スイッチング素子(半導体素子)、
15 モジュールベース、16 モジュールケース、2 液冷部材、21 流通路、
22 開口部、23 装着溝、24 装着溝、25 周壁部、3a 第1シール部材、
3b 第2シール部材、La〜Lf 対向面間距離。
1 semiconductor module, 11 switching element (semiconductor element),
15 module base, 16 module case, 2 liquid cooling member, 21 flow path,
22 opening, 23 mounting groove, 24 mounting groove, 25 peripheral wall, 3a first seal member,
3b Second seal member, La to Lf Distance between opposing surfaces.

Claims (4)

半導体素子が実装された半導体モジュールと、内部に冷却液の流通路を有するとともに当該流通路の一部が外部に露出するように開口部が形成されている液冷部材とを備え、上記半導体モジュールと上記液冷部材とが2つのシール部材を介して一体的に接合されて上記半導体モジュールの冷却面が上記流通路の開口部に臨んでいる直接液冷方式の半導体装置において、
上記液冷部材には、半導体モジュールの冷却面と略直交する周側面に対向して周壁部が形成されており、上記2つのシール部材の内、一方のシール部材は上記液冷部材の開口部を囲む周縁部に装着されて半導体モジュールと液冷部材との締め付けにより圧接され、また、他方のシール部材は上記半導体モジュールの周側面と上記液冷部材に形成された周壁部との対向面間に嵌挿されていることを特徴とする半導体装置。
A semiconductor module on which a semiconductor element is mounted; and a liquid cooling member having a cooling liquid flow passage therein and having an opening formed so that a part of the flow passage is exposed to the outside. In the direct liquid cooling type semiconductor device in which the liquid cooling member and the liquid cooling member are integrally joined via two sealing members, and the cooling surface of the semiconductor module faces the opening of the flow path,
The liquid cooling member has a peripheral wall portion facing a peripheral side surface substantially orthogonal to the cooling surface of the semiconductor module, and one of the two seal members is an opening of the liquid cooling member. The other sealing member is mounted between the opposing surface of the peripheral side surface of the semiconductor module and the peripheral wall portion formed on the liquid cooling member. A semiconductor device, wherein the semiconductor device is inserted into the semiconductor device.
半導体素子が実装された半導体モジュールと、内部に冷却液の流通路を有するとともに当該流通路の一部が外部に露出するように開口部が形成されている液冷部材とを備え、上記半導体モジュールと上記液冷部材とが2つのシール部材を介して一体的に接合されて上記半導体モジュールの冷却面が上記流通路の開口部に臨んでいる直接液冷方式の半導体装置において、
上記2つのシール部材は、共に半導体モジュールの冷却面側と上記液冷部材の開口部形成側との両対向面間に介在されており、かつ、上記半導体モジュールと液冷部材との対向面間距離を上記各シール部材の位置で互いに異ならせることにより各シール部材に対する加圧力を異ならせていることを特徴とする半導体装置。
A semiconductor module on which a semiconductor element is mounted; and a liquid cooling member having a cooling liquid flow passage therein and having an opening formed so that a part of the flow passage is exposed to the outside. In the direct liquid cooling type semiconductor device in which the liquid cooling member and the liquid cooling member are integrally joined via two sealing members, and the cooling surface of the semiconductor module faces the opening of the flow path,
The two seal members are both interposed between the opposing surfaces of the cooling surface side of the semiconductor module and the opening forming side of the liquid cooling member, and between the opposing surfaces of the semiconductor module and the liquid cooling member. A semiconductor device characterized in that the pressure applied to each seal member is made different by making the distances different from each other at the position of each seal member.
上記半導体モジュールと液冷部材との対向面間距離を上記各シール部材の位置で互いに異ならせる代わりに、上記各シール部材の太さを互いに異ならせることにより各シール部材に対する加圧力を異ならせていることを特徴とする請求項2記載の半導体装置。 Instead of making the distance between the opposing surfaces of the semiconductor module and the liquid cooling member different at the position of each seal member, the pressure applied to each seal member is made different by making the thickness of each seal member different from each other. The semiconductor device according to claim 2, wherein: 上記2つのシール部材の内、上記開口部の近接側に位置する一方のシール部材に生じる永久歪よりもその外側に位置する他方のシール部材に生じる永久歪が小さくなるように各シール部材に対する加圧力が設定されていることを特徴とする請求項1ないし請求項3のいずれか1項に記載の半導体装置。 Of the two seal members, the additional stress applied to each seal member is set so that the permanent strain generated in the other seal member located on the outer side is smaller than the permanent strain generated in one seal member located on the close side of the opening. 4. The semiconductor device according to claim 1, wherein a pressure is set.
JP2006018651A 2006-01-27 2006-01-27 Semiconductor device Pending JP2007201225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006018651A JP2007201225A (en) 2006-01-27 2006-01-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006018651A JP2007201225A (en) 2006-01-27 2006-01-27 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2007201225A true JP2007201225A (en) 2007-08-09

Family

ID=38455493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006018651A Pending JP2007201225A (en) 2006-01-27 2006-01-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2007201225A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198822A (en) * 2010-03-17 2011-10-06 Nissan Motor Co Ltd Cooling device for heating element
US8072758B2 (en) * 2008-10-24 2011-12-06 C.R.F. Societa Consortile Per Azioni Automotive inverter assembly
JP2013222914A (en) * 2012-04-19 2013-10-28 Hitachi Ltd Liquid leakage prevention device and method, and liquid cooling system
WO2014171276A1 (en) * 2013-04-16 2014-10-23 日産自動車株式会社 Cooling device for heat-generating element
JP2015213143A (en) * 2014-04-15 2015-11-26 トヨタ自動車株式会社 Power converter and manufacturing method thereof
JP2019186526A (en) * 2018-03-30 2019-10-24 日本電産株式会社 Cooling device
JP6698965B1 (en) * 2019-06-06 2020-05-27 三菱電機株式会社 Semiconductor device, power converter, and method of manufacturing semiconductor device
JP2020109780A (en) * 2018-12-28 2020-07-16 日本電産株式会社 Cooling apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8072758B2 (en) * 2008-10-24 2011-12-06 C.R.F. Societa Consortile Per Azioni Automotive inverter assembly
JP2011198822A (en) * 2010-03-17 2011-10-06 Nissan Motor Co Ltd Cooling device for heating element
JP2013222914A (en) * 2012-04-19 2013-10-28 Hitachi Ltd Liquid leakage prevention device and method, and liquid cooling system
JP5979311B2 (en) * 2013-04-16 2016-08-24 日産自動車株式会社 Heating element cooling device
CN105144375A (en) * 2013-04-16 2015-12-09 日产自动车株式会社 Cooling device for heat-generating element
WO2014171276A1 (en) * 2013-04-16 2014-10-23 日産自動車株式会社 Cooling device for heat-generating element
US10249553B2 (en) 2013-04-16 2019-04-02 Nissan Motor Co., Ltd. Cooling apparatus for a heat-generating element
JP2015213143A (en) * 2014-04-15 2015-11-26 トヨタ自動車株式会社 Power converter and manufacturing method thereof
JP2019186526A (en) * 2018-03-30 2019-10-24 日本電産株式会社 Cooling device
JP7238401B2 (en) 2018-03-30 2023-03-14 日本電産株式会社 Cooling system
JP2020109780A (en) * 2018-12-28 2020-07-16 日本電産株式会社 Cooling apparatus
JP7238400B2 (en) 2018-12-28 2023-03-14 日本電産株式会社 Cooling system
JP6698965B1 (en) * 2019-06-06 2020-05-27 三菱電機株式会社 Semiconductor device, power converter, and method of manufacturing semiconductor device
WO2020245998A1 (en) * 2019-06-06 2020-12-10 三菱電機株式会社 Semiconductor device, power conversion device, and manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
JP2007201225A (en) Semiconductor device
US7242582B2 (en) Semiconductor module mounting structure, a cardlike semiconductor module, and heat receiving members bonded to the cardlike semiconductor module
US9564385B2 (en) Package for a semiconductor device
US9013877B2 (en) Power semiconductor device
US8258622B2 (en) Power device package and semiconductor package mold for fabricating the same
US8637979B2 (en) Semiconductor device
KR100629220B1 (en) Electronic unit casing
US7701054B2 (en) Power semiconductor module and method for its manufacture
US8958225B2 (en) Electric power converter
US9559038B2 (en) Package for a semiconductor device
JP6286543B2 (en) Power module device, power conversion device, and method of manufacturing power module device
US20100232112A1 (en) Semiconductor module
JP2008021796A (en) Semiconductor device, and its manufacturing method
JP6526229B2 (en) Power module
WO2020105463A1 (en) Semiconductor module, power conversion device, and method for manufacturing semiconductor module
JP6138500B2 (en) Power semiconductor device
US20140367842A1 (en) Power semiconductor device and method of manufacturing the same
CN111194149B (en) Waterproof casing
CN102187456A (en) Semiconductor device cooling structure and power converter provided with the cooling structure
WO2013121521A1 (en) Semiconductor device
WO2021261136A1 (en) Power module and power conversion device using said power module
WO2015194023A1 (en) Power-module device and power conversion device
JP4137840B2 (en) Power semiconductor device
JP2005033140A (en) Semiconductor device
JP2004253495A (en) Liquid-cooled power semiconductor module and inverter including the same