JP2007199540A - Reflection-type replica photonic device - Google Patents

Reflection-type replica photonic device Download PDF

Info

Publication number
JP2007199540A
JP2007199540A JP2006020035A JP2006020035A JP2007199540A JP 2007199540 A JP2007199540 A JP 2007199540A JP 2006020035 A JP2006020035 A JP 2006020035A JP 2006020035 A JP2006020035 A JP 2006020035A JP 2007199540 A JP2007199540 A JP 2007199540A
Authority
JP
Japan
Prior art keywords
resin
optical element
replica
light
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006020035A
Other languages
Japanese (ja)
Other versions
JP4811032B2 (en
Inventor
Hiroyuki Sasai
浩行 笹井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2006020035A priority Critical patent/JP4811032B2/en
Publication of JP2007199540A publication Critical patent/JP2007199540A/en
Application granted granted Critical
Publication of JP4811032B2 publication Critical patent/JP4811032B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reflection-type replica photonic device that prevents an increase of stray light due to the internal reflection/scattering of the light that penetrates a metallic reflective film, even when the thickness of the metallic reflective film is reduced. <P>SOLUTION: A tar epoxy resin which is made by mixing an epoxy resin, and tar pitch and swelling coal as a light-absorbing material is used for a resin material for transferring and replicating the shape of an original photonic device to a resin layer on a separate substrate by a stamping operation, directly or through a negative master photonic device. Accordingly, the transmitted light is absorbed by the resin material, and will not cause reflection/scattering. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、各種の光学機器や計測機器に使用される反射型レプリカ光学素子に関する。   The present invention relates to a reflective replica optical element used in various optical instruments and measuring instruments.

カメラ、顕微鏡、望遠鏡等の光学機器や、分光器、分波器等の計測機器に広く使用されている各種のレンズ、ミラー、回折格子などの光学素子は、一般的に高い加工精度を必要とするものが多い。特に、放物面鏡や楕円面鏡などの非球面光学素子や各種の回折格子のように最高度の精度を要求される光学素子の製作には、極めて精巧な製造装置と複雑な作業工程が必要であり、従ってその製造コストは極めて高価となる。このため、これらの光学素子の量産には、1個のオリジナルの光学素子(マスター)から転写・複製によってレプリカ光学素子を製作し、これを市場に供給する方法が広く採用されている。   Optical elements such as various lenses, mirrors, and diffraction gratings that are widely used in optical instruments such as cameras, microscopes, and telescopes, and measuring instruments such as spectrometers and demultiplexers generally require high processing accuracy. There are many things to do. In particular, the production of optical elements that require the highest degree of precision, such as aspherical optical elements such as parabolic mirrors and ellipsoidal mirrors, and various diffraction gratings, requires extremely sophisticated manufacturing equipment and complicated work processes. Is necessary, and therefore its production cost is very high. For this reason, for mass production of these optical elements, a method of manufacturing replica optical elements from one original optical element (master) by transfer / duplication and supplying the replica optical elements to the market is widely adopted.

あらかじめ最適な方法で製作されたマスター光学素子から多数のレプリカ光学素子を作製する代表的な手法としては次のものがある。   The following is a typical method for producing a large number of replica optical elements from a master optical element produced in advance by an optimum method.

第1段階で、オリジナルのマスター光学素子の凹凸形状を反転させたネガ・マスター光学素子を作製する。これにはまず、マスター光学素子の表面に離型材を塗布し、このマスター光学素子と別途準備されたネガ・マスター基板との間に所定の厚さの樹脂層を挟み込み、そのままの状態で樹脂層が完全に硬化するまで放置する。その後、離型材の面でマスター光学素子を分離すれば、表面にマスター光学素子の表面の凹凸が反転した形状で刻印されたネガ・マスター光学素子を得る。   In the first stage, a negative master optical element is produced by inverting the uneven shape of the original master optical element. First, a release material is applied to the surface of the master optical element, a resin layer having a predetermined thickness is sandwiched between the master optical element and a separately prepared negative master substrate, and the resin layer is left as it is. Leave until fully cured. Thereafter, if the master optical element is separated on the surface of the release material, a negative master optical element is obtained which is engraved on the surface with a shape in which the irregularities on the surface of the master optical element are reversed.

第2段階では、前記のネガ・マスター光学素子の凹凸形状を反転・刻印して、マスター光学素子と同一の形状を持つレプリカ光学素子を作製する。まず、レプリカ基板を準備し、その表面に所定の厚さの樹脂層を塗着させる。表面に離型材を塗布したネガ・マスター光学素子を前記樹脂層上に押し当て、そのままの状態で樹脂層が完全に硬化するまで放置する。その後、離型材の面でネガ・マスター光学素子を分離する。樹脂層上に残留した離型材を洗浄除去した後、最後にこの光学素子の使用目的によって必要とされる金属反射膜を樹脂層表面に施して、反射型レプリカ光学素子が完成する。例えば、非球面鏡や反射型回折格子のレプリカであれば、表面にアルミニウムなど金属反射膜が蒸着される。(特許文献1参照)
特開平7−261010号公報
In the second stage, the concavo-convex shape of the negative master optical element is inverted and engraved to produce a replica optical element having the same shape as the master optical element. First, a replica substrate is prepared, and a resin layer having a predetermined thickness is applied to the surface of the replica substrate. A negative master optical element coated with a release material on the surface is pressed onto the resin layer and left as it is until the resin layer is completely cured. Thereafter, the negative master optical element is separated on the surface of the release material. After the release material remaining on the resin layer is washed away, a metal reflective film required for the purpose of use of the optical element is finally applied to the surface of the resin layer to complete a reflective replica optical element. For example, in the case of an aspherical mirror or a replica of a reflective diffraction grating, a metal reflective film such as aluminum is deposited on the surface. (See Patent Document 1)
Japanese Patent Laid-Open No. 7-261010

しかしながら、上記の方法で製作されたレプリカ光学素子には、以下に述べる問題点がある。   However, the replica optical element manufactured by the above method has the following problems.

反射型レプリカ光学素子の精度を決定する要素の一つに、金属反射膜の表面粗さがある。表面粗さが大きくなれば、反射光の一部が正しい方向から逸脱し、不規則な方向に散乱されるため、光学素子の性能は大きく低下する。また、真空蒸着される金属反射膜の厚さが大きくなるに従って表面粗さが大きくなることが知られている。このため、表面粗さを抑えるためには、反射型レプリカ光学素子の表面に蒸着される金属反射膜の厚さを薄くすることが要求される。しかしながら、金属反射膜を薄くした場合には、この光学素子への入射光の一部が金属反射膜を透過して樹脂の層および基板内に侵入する。この侵入光の内で樹脂と基板の境界面、あるいは基板の底面などで反射・散乱した部分が再度金属反射膜を通して外部に出射され、金属反射膜の本来の反射光を擾乱する。この擾乱の惹起する結果は、反射型レプリカ光学素子の種類によって異なる。反射型回折格子においては、この擾乱は迷光となって現れる。また、結像光学系に使われる集光球面鏡や放物面鏡においては、上記の擾乱は結像の不鮮明さあるいは解像度の劣化となって現れる。   One factor that determines the accuracy of the reflective replica optical element is the surface roughness of the metal reflective film. If the surface roughness increases, a part of the reflected light deviates from the correct direction and is scattered in an irregular direction, so that the performance of the optical element is greatly deteriorated. It is also known that the surface roughness increases as the thickness of the metal reflective film deposited by vacuum deposition increases. For this reason, in order to suppress the surface roughness, it is required to reduce the thickness of the metal reflective film deposited on the surface of the reflective replica optical element. However, when the metal reflection film is thinned, a part of the incident light to the optical element passes through the metal reflection film and enters the resin layer and the substrate. Of the intrusion light, a portion reflected / scattered at the boundary surface between the resin and the substrate or the bottom surface of the substrate is again emitted to the outside through the metal reflection film and disturbs the original reflected light of the metal reflection film. The result of causing this disturbance varies depending on the type of the reflective replica optical element. In the reflection type diffraction grating, this disturbance appears as stray light. In the condensing spherical mirror and parabolic mirror used in the imaging optical system, the above disturbance appears as unclear imaging or resolution degradation.

本発明は、上述した従来技術の問題点を解決して、反射型レプリカ光学素子内部からの反射光を除去することにより、金属反射膜の厚さを可能な限り小さくして表面粗さを小さくすることを目的としており、オリジナルの光学素子の形状を直接あるいはネガ・マスター光学素子を経由する刻印操作を介して別個の基板上の樹脂層に転写複製することによって製作される反射型レプリカ光学素子であって、前記樹脂層が光を吸収する物質を含有する物であることを特徴とする。   The present invention solves the above-mentioned problems of the prior art and removes the reflected light from the inside of the reflective replica optical element, thereby reducing the thickness of the metal reflective film as much as possible and reducing the surface roughness. Reflective replica optical element manufactured by transferring and replicating the shape of the original optical element to a resin layer on a separate substrate directly or via a marking operation via a negative master optical element And the said resin layer is a thing containing the substance which absorbs light, It is characterized by the above-mentioned.

金属反射膜の厚さを薄く蒸着することにより、表面粗さの小さい反射型レプリカ光学素子の製作が可能となる。また、たとえ入射光の一部が金属反射膜を透過しても、透過光は樹脂によって吸収されるため、樹脂層や基板内で反射・散乱されて再出射する光が存在しない。このため、迷光の少ない反射型回折格子や、高精度の結像を示す球面鏡や放物面鏡の製作が可能となる。   By depositing a thin metal reflective film, it is possible to manufacture a reflective replica optical element having a small surface roughness. Even if a part of the incident light passes through the metal reflection film, the transmitted light is absorbed by the resin, so there is no light that is reflected / scattered in the resin layer or the substrate and re-emitted. For this reason, it is possible to manufacture a reflective diffraction grating with little stray light, a spherical mirror or a parabolic mirror exhibiting high-precision imaging.

本発明の目的は、金属反射膜を透過した光を、再反射する前に除去する点にあり、このことは、ネガ・マスター光学素子の表面形状が刻印される樹脂に、光を吸収する物質を混在させることによって実現される。以下に本発明の1実施例として反射型凹面回折格子のレプリカの製作過程を、図1に従って説明する。   The object of the present invention is to remove the light transmitted through the metal reflective film before re-reflecting, which is a substance that absorbs light into the resin on which the surface shape of the negative master optical element is imprinted. It is realized by mixing. A process of manufacturing a replica of a reflective concave diffraction grating as one embodiment of the present invention will be described below with reference to FIG.

まず、本明細書「背景技術」の項で説明した方法によって製作された、表面にオリジナルの回折格子の表面の凹凸が反転した形状で刻印されたネガ・マスター1を準備し、その表面に離型材2を塗布する。離型材2としては、飽和蒸気圧が低くて、薄い油膜状に展延できるシリコングリースやグリセリンやフタル酸ブチルなどを波長の10分の1のオーダーの厚みに蒸着したもの、あるいは親和力の弱い金や白金の蒸着膜が一般的に使用される。本実施例では離型材2にはシリコングリースを用い、真空蒸着装置内で、薄い油膜として塗布する。同時に、レプリカ用の基板4を準備し、その表面上に樹脂3を塗布する(図1(a))。基板4の材料は光学ガラスが一般的に用いられ、その表面は鏡面研磨される。樹脂3にはエポキシ系の接着剤や、尿素系、メラニン系、フェノール系などの耐熱性熱硬化樹脂、あるいは光硬化樹脂などを基材とし、これに光吸収性物質を混合した物が利用できる。本実施例においては、エポキシ樹脂に光吸収性物質としてタールピッチおよび膨潤炭を混合して製造されるタールエポキシ樹脂を用いたが、これに限定されるものではなく、上記各種の樹脂基材に黒色塗料あるいはカーボンブラックなどの光吸収性物質を均一に混和したものを用いることができる。   First, the negative master 1 manufactured by the method described in the “Background Art” section of the present specification and engraved with a surface in which the irregularities of the surface of the original diffraction grating are reversed is prepared. The mold material 2 is applied. As the release material 2, silicon grease, glycerin, butyl phthalate, or the like, which has a low saturated vapor pressure and can be spread in a thin oil film, is deposited to a thickness of an order of 1/10 of the wavelength, or gold with low affinity Generally, a vapor deposition film of platinum is used. In this embodiment, silicon grease is used for the release material 2 and is applied as a thin oil film in a vacuum deposition apparatus. At the same time, a replica substrate 4 is prepared, and a resin 3 is applied on the surface thereof (FIG. 1A). Optical glass is generally used as the material of the substrate 4 and its surface is mirror-polished. Resin 3 can be made of epoxy adhesive, urea-based, melanin-based, phenol-based heat-resistant thermosetting resin, or photo-curing resin as a base material mixed with a light-absorbing substance. . In this example, a tar epoxy resin produced by mixing tar pitch and swollen charcoal as a light-absorbing substance with an epoxy resin was used, but the present invention is not limited to this. A material in which a light-absorbing substance such as black paint or carbon black is uniformly mixed can be used.

図1(b)に示すように、ネガ・マスター1を離型材2を挟んで樹脂3に押し当てた状態で保持し、樹脂3が完全に凝固するまで放置する。この時、熱硬化性樹脂を樹脂3の基材とした場合は全体を加熱し、光硬化性樹脂を樹脂3の基材とした場合は適当な光源からの光を樹脂3に照射して、樹脂3の硬化を促進する。   As shown in FIG. 1B, the negative master 1 is held in a state of being pressed against the resin 3 with the release material 2 interposed therebetween, and is left until the resin 3 is completely solidified. At this time, when the thermosetting resin is the base material of the resin 3, the whole is heated. When the photocurable resin is the base material of the resin 3, the resin 3 is irradiated with light from an appropriate light source. The curing of the resin 3 is promoted.

樹脂3が完全に凝固し、基板4に固着した後、離型材2の層において上下を分離させ、樹脂3上の離型材2の残渣を洗浄・除去する(図1(c))。最後に、樹脂3上に金属反射膜を、その表面粗さが所定の値を超えない最小の厚さで蒸着する。本実施例においては、金属反射膜としてアルミニウム膜5を、約100nmの厚さに蒸着する。これによってレプリカ回折格子6が完成する(図1(c))。1個のネガ・マスター1を用いて上に述べた手順を繰り返すことによって、多数のレプリカ回折格子6が製作される。   After the resin 3 is completely solidified and fixed to the substrate 4, the upper and lower parts are separated in the layer of the release material 2, and the residue of the release material 2 on the resin 3 is washed and removed (FIG. 1 (c)). Finally, a metal reflective film is deposited on the resin 3 with a minimum thickness so that the surface roughness does not exceed a predetermined value. In this embodiment, an aluminum film 5 is deposited as a metal reflective film to a thickness of about 100 nm. Thereby, the replica diffraction grating 6 is completed (FIG. 1C). A large number of replica diffraction gratings 6 are manufactured by repeating the procedure described above using one negative master 1.

上記の製作過程に従って製作されたレプリカ回折格子6においては、アルミニウム膜5の厚さが、表面粗さを十分小さくするべく、約100nmに抑えられているため、表面粗さによる迷光は可能なかぎり少なくなる。また、アルミニウム膜5を透過して樹脂3の層に新入した光は樹脂3中に混和されたタールピッチおよび膨潤炭によって吸収されるため、樹脂3内あるいは基板4内で反射・散乱される光は存在せず、従ってこれが迷光を増加させる原因にはなり得ない。   In the replica diffraction grating 6 manufactured according to the above manufacturing process, the thickness of the aluminum film 5 is suppressed to about 100 nm in order to make the surface roughness sufficiently small. Therefore, stray light due to the surface roughness is as much as possible. Less. In addition, the light newly transmitted to the resin 3 layer through the aluminum film 5 is absorbed by the tar pitch and swollen charcoal mixed in the resin 3, so that the light reflected / scattered in the resin 3 or the substrate 4. Does not exist, so this cannot cause stray light to increase.

製作過程は上記の例に限定される物ではない。変形例として、図1(a)に示した離型材2の更に外側に予めにアルミニウム膜を蒸着し、これを樹脂3に押し付けて固着させる方法のように、直接あるいは間接に樹脂層に回折格子の溝形状を刻印する方法には、本発明が適用可能である。また、上記実施例においては、図1(b)に示したように光学ガラス製の基板4の上に樹脂3を塗布しているが、この方法以外に、光学ガラスの基板4を用いず、樹脂3のみでレプリカ回折格子を作製する方法も使用されており、これにも本発明が適用できる。また、図1のネガ・マスター1の溝形状と同様の形状を持った金型をダイヤモンド・ターニング等の技術で製作し、この金型を用いて射出成形あるいはプレス成形によって樹脂を成形し、これに金属反射膜を蒸着してレプリカ回折格子を製作する方法も利用されているが、この方法に対しても本発明を適用することができる。さらに、本発明の適用範囲は反射型凹面回折格子に限定される物では無く、球面鏡、放物面鏡、楕円面鏡など表面に金属反射膜を持つ反射型レプリカ光学素子の全てに適用される物である。   The manufacturing process is not limited to the above example. As a modification, a diffraction grating is directly or indirectly deposited on the resin layer as in the method of depositing an aluminum film in advance on the outer side of the release material 2 shown in FIG. The present invention can be applied to the method of marking the groove shape. Moreover, in the said Example, although the resin 3 is apply | coated on the board | substrate 4 made from an optical glass as shown in FIG.1 (b), the board | substrate 4 of an optical glass is not used other than this method, A method of producing a replica diffraction grating using only the resin 3 is also used, and the present invention can be applied to this method. In addition, a mold having the same shape as the groove shape of the negative master 1 in FIG. 1 is manufactured by a technique such as diamond turning, and a resin is molded by injection molding or press molding using this mold. A method of manufacturing a replica diffraction grating by vapor-depositing a metal reflective film is also used, but the present invention can also be applied to this method. Furthermore, the scope of application of the present invention is not limited to a reflective concave diffraction grating, but is applicable to all reflective replica optical elements having a metal reflective film on the surface, such as spherical mirrors, parabolic mirrors, and ellipsoidal mirrors. It is a thing.

本発明は、各種の光学機器や計測機器に使用される反射型レプリカ光学素子に関する   The present invention relates to a reflective replica optical element used in various optical instruments and measuring instruments.

本発明の反射型レプリカ回折格子の製作手順を段階的に示した図である。It is the figure which showed the manufacture procedure of the reflection type replica diffraction grating of this invention in steps.

符号の説明Explanation of symbols

1 ネガ・マスター
2 離型材
3 樹脂
4 基板
5 アルミニウム膜
6 レプリカ回折格子
DESCRIPTION OF SYMBOLS 1 Negative master 2 Release material 3 Resin 4 Board | substrate 5 Aluminum film 6 Replica diffraction grating

Claims (1)

オリジナルの光学素子の形状を直接あるいはネガ・マスター光学素子を経由する刻印操作を介して別個の基板上の樹脂層に転写複製することによって製作される反射型レプリカ光学素子であって、前記樹脂層が光を吸収する物質を含有するものであることを特徴とする反射型レプリカ光学素子。   A reflective replica optical element manufactured by transferring and replicating the shape of an original optical element directly or through a marking operation via a negative master optical element to a resin layer on a separate substrate, the resin layer A reflective replica optical element characterized by comprising a substance that absorbs light.
JP2006020035A 2006-01-30 2006-01-30 Reflective replica optical element Expired - Fee Related JP4811032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006020035A JP4811032B2 (en) 2006-01-30 2006-01-30 Reflective replica optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006020035A JP4811032B2 (en) 2006-01-30 2006-01-30 Reflective replica optical element

Publications (2)

Publication Number Publication Date
JP2007199540A true JP2007199540A (en) 2007-08-09
JP4811032B2 JP4811032B2 (en) 2011-11-09

Family

ID=38454200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006020035A Expired - Fee Related JP4811032B2 (en) 2006-01-30 2006-01-30 Reflective replica optical element

Country Status (1)

Country Link
JP (1) JP4811032B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139327A1 (en) * 2008-05-15 2009-11-19 浜松ホトニクス株式会社 Method for manufacturing spectrometer
US8013993B2 (en) 2008-05-15 2011-09-06 Hamamatsu Photonics K.K. Spectroscopy module
US8018591B2 (en) 2008-05-15 2011-09-13 Hamamatsu Photonics K.K. Spectroscopy module
US8027034B2 (en) 2008-05-15 2011-09-27 Hamamatsu Photonics K.K. Method for manufacturing spectroscopy module, and spectroscopy module
US8035814B2 (en) 2008-05-15 2011-10-11 Hamamatsu Photonics K.K. Spectroscopy module
US8040507B2 (en) 2008-05-15 2011-10-18 Hamamatsu Photonics K.K. Spectrometer
US8139214B2 (en) 2008-05-15 2012-03-20 Hamamatsu Photonics K.K. Spectroscopy module, and method for manufacturing the same
JP2012150370A (en) * 2011-01-21 2012-08-09 Hitachi High-Technologies Corp Diffraction grating, capillary array electrophoresis apparatus, liquid chromatograph, spectrophotometer, and biochemical autoanalyzer
WO2012108457A1 (en) 2011-02-08 2012-08-16 浜松ホトニクス株式会社 Optical element and method of manufacturing same
JP2013092756A (en) * 2011-10-06 2013-05-16 Canon Inc Echelle diffraction grating, excimer laser, echelle diffraction grating manufacturing method and argon fluoride excimer laser
US8604412B2 (en) 2008-05-15 2013-12-10 Hamamatsu Photonics K.K. Spectral module and method for manufacturing spectral module
WO2014024565A1 (en) 2012-08-06 2014-02-13 浜松ホトニクス株式会社 Optical element, and method for producing same
JP2014514737A (en) * 2011-03-16 2014-06-19 カール ツァイス レーザー オプティックス ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of manufacturing a reflective optical component for an EUV projection exposure apparatus and components of this type
US8804118B2 (en) 2008-05-15 2014-08-12 Hamamatsu Photonics K.K. Spectral module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271265A (en) * 1986-12-06 1988-11-09 Kuraray Co Ltd Production of transmissivity modulation type photomask and production of diffraction gtating using the photomask
JPH05124401A (en) * 1991-11-08 1993-05-21 Seiko Epson Corp Device for converting direction of apparatus
JPH07261010A (en) * 1994-03-18 1995-10-13 Shimadzu Corp Replica diffraction grating
JP2002350611A (en) * 2001-05-25 2002-12-04 Canon Inc High reflection silver mirror and reflection type optical parts
JP2004219995A (en) * 2002-12-26 2004-08-05 Nippon Electric Glass Co Ltd Reflecting mirror
JP2004247072A (en) * 2003-02-10 2004-09-02 Funai Electric Co Ltd Planer light source device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271265A (en) * 1986-12-06 1988-11-09 Kuraray Co Ltd Production of transmissivity modulation type photomask and production of diffraction gtating using the photomask
JPH05124401A (en) * 1991-11-08 1993-05-21 Seiko Epson Corp Device for converting direction of apparatus
JPH07261010A (en) * 1994-03-18 1995-10-13 Shimadzu Corp Replica diffraction grating
JP2002350611A (en) * 2001-05-25 2002-12-04 Canon Inc High reflection silver mirror and reflection type optical parts
JP2004219995A (en) * 2002-12-26 2004-08-05 Nippon Electric Glass Co Ltd Reflecting mirror
JP2004247072A (en) * 2003-02-10 2004-09-02 Funai Electric Co Ltd Planer light source device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8564773B2 (en) 2008-05-15 2013-10-22 Hamamatsu Photonics K.K. Spectroscopy module
US8804118B2 (en) 2008-05-15 2014-08-12 Hamamatsu Photonics K.K. Spectral module
WO2009139327A1 (en) * 2008-05-15 2009-11-19 浜松ホトニクス株式会社 Method for manufacturing spectrometer
US8013993B2 (en) 2008-05-15 2011-09-06 Hamamatsu Photonics K.K. Spectroscopy module
US8604412B2 (en) 2008-05-15 2013-12-10 Hamamatsu Photonics K.K. Spectral module and method for manufacturing spectral module
US8027034B2 (en) 2008-05-15 2011-09-27 Hamamatsu Photonics K.K. Method for manufacturing spectroscopy module, and spectroscopy module
US8035814B2 (en) 2008-05-15 2011-10-11 Hamamatsu Photonics K.K. Spectroscopy module
JP2009300420A (en) * 2008-05-15 2009-12-24 Hamamatsu Photonics Kk Spectroscope manufacturing method
US8139214B2 (en) 2008-05-15 2012-03-20 Hamamatsu Photonics K.K. Spectroscopy module, and method for manufacturing the same
US8742320B2 (en) 2008-05-15 2014-06-03 Hamamatsu Photonics K.K. Spectral module and method for manufacturing spectral module
EP2287579A4 (en) * 2008-05-15 2014-04-16 Hamamatsu Photonics Kk Method for manufacturing spectrometer
US8040507B2 (en) 2008-05-15 2011-10-18 Hamamatsu Photonics K.K. Spectrometer
EP2287579A1 (en) * 2008-05-15 2011-02-23 Hamamatsu Photonics K.K. Method for manufacturing spectrometer
US8018591B2 (en) 2008-05-15 2011-09-13 Hamamatsu Photonics K.K. Spectroscopy module
JP2012150370A (en) * 2011-01-21 2012-08-09 Hitachi High-Technologies Corp Diffraction grating, capillary array electrophoresis apparatus, liquid chromatograph, spectrophotometer, and biochemical autoanalyzer
WO2012108457A1 (en) 2011-02-08 2012-08-16 浜松ホトニクス株式会社 Optical element and method of manufacturing same
US9360599B2 (en) 2011-02-08 2016-06-07 Hamamatsu Photonics K.K. Optical element and method of manufacturing same
JP2014514737A (en) * 2011-03-16 2014-06-19 カール ツァイス レーザー オプティックス ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of manufacturing a reflective optical component for an EUV projection exposure apparatus and components of this type
US9541685B2 (en) 2011-03-16 2017-01-10 Carl Zeiss Smt Gmbh Method for producing a reflective optical component for an EUV projection exposure apparatus and component of this type
JP2013092756A (en) * 2011-10-06 2013-05-16 Canon Inc Echelle diffraction grating, excimer laser, echelle diffraction grating manufacturing method and argon fluoride excimer laser
JP2014032368A (en) * 2012-08-06 2014-02-20 Hamamatsu Photonics Kk Optical element and manufacturing method thereof
WO2014024565A1 (en) 2012-08-06 2014-02-13 浜松ホトニクス株式会社 Optical element, and method for producing same
US9594197B2 (en) 2012-08-06 2017-03-14 Hamamatsu Photonics K.K. Optical element, and method for producing same
TWI607247B (en) * 2012-08-06 2017-12-01 Hamamatsu Photonics Kk Optical element and its manufacturing method
US10386552B2 (en) 2012-08-06 2019-08-20 Hamamatsu Photonics K.K. Optical element, and method for producing same

Also Published As

Publication number Publication date
JP4811032B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP4811032B2 (en) Reflective replica optical element
TWI621904B (en) Projector, electronic device having projector and associated manufacturing method
TWI638470B (en) Optoelectronic modules that have shielding to reduce light leakage or stray light, and fabrication methods for such modules
KR101020634B1 (en) Manufacturing method of lens having nanopattern
US5575878A (en) Method for making surface relief profilers
JP6510548B2 (en) Method of manufacturing mold of curved surface diffraction grating, method of manufacturing curved surface diffraction grating, curved surface diffraction grating, and optical device
US20100246018A1 (en) Lens having antireflection and light absorbing films and lens array including such lens
Chidambaram et al. High fidelity 3D thermal nanoimprint with UV curable polydimethyl siloxane stamps
JPS6147902A (en) Manufacture of diffraction grating
JP2013214627A (en) Master template for nanoimprint and manufacturing method of replica template
Chen et al. Soft mold-based hot embossing process for precision imprinting of optical components on non-planar surfaces
KR102209564B1 (en) Patterned stamp manufacturing method, patterned stamp imprinting method and imprinted article
JP2007101799A (en) Transmission optical element
US8154794B2 (en) Imaging lens and method of manufacturing the same
US7501035B2 (en) Method of manufacturing replica diffraction grating
JP6281592B2 (en) Manufacturing method of replica template
KR101751683B1 (en) manufacturing method of elastomeric nano structure
JP5303889B2 (en) Replica diffraction grating
JPS62161532A (en) Manufacture of plastic lens and so on
JP2011059185A (en) Base material for microlens array, method of manufacturing the same, forming die for base material for microlens array, and microlens array
US20100244291A1 (en) Imprinting method for making optical components
JP2005128181A (en) Method of manufacturing aspheric optical element
JP4407290B2 (en) Manufacturing method of mold for optical component
CN101875532B (en) Manufacturing method of lens mould
US20220168978A1 (en) Wafer alignment features

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110506

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

R151 Written notification of patent or utility model registration

Ref document number: 4811032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees