JP2007198988A - Measuring method and device of surface shape error - Google Patents

Measuring method and device of surface shape error Download PDF

Info

Publication number
JP2007198988A
JP2007198988A JP2006019941A JP2006019941A JP2007198988A JP 2007198988 A JP2007198988 A JP 2007198988A JP 2006019941 A JP2006019941 A JP 2006019941A JP 2006019941 A JP2006019941 A JP 2006019941A JP 2007198988 A JP2007198988 A JP 2007198988A
Authority
JP
Japan
Prior art keywords
error
deformed
design value
shape
surface shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006019941A
Other languages
Japanese (ja)
Inventor
Koji Tenjinbayashi
孝二 天神林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006019941A priority Critical patent/JP2007198988A/en
Publication of JP2007198988A publication Critical patent/JP2007198988A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device capable of inspecting a shape error from a design value of a component or a product in various manufacturing industries, easily and highly accurately in the noncontact state, by enabling measurement of a surface shape error of an inspection object. <P>SOLUTION: When the surface shape of the inspection object has no error to a design value, a projection lattice designed beforehand so that a projected deformed lattice image becomes linear is projected by a projector onto the object surface having an actual error, and the acquired deformed lattice image is analyzed. Hereby, even in the case of an object having a step or a groove or having a steep undulation, the surface shape error of an actual measuring object having an error can be measured and inspected highly accurately in the noncontact state by determining easily the order of the deformed lattice, and by preventing the line width of the deformed lattice from being widened and preventing brightness of the deformed lattice image from being weakened. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、検査対象が有する表面形状の設計値に応じて創生した格子を検査対象に投影することにより、その表面形状の誤差を容易にかつ高精度に計測する方法および装置に関するものである。   The present invention relates to a method and apparatus for easily and accurately measuring an error of a surface shape by projecting a lattice created according to a design value of the surface shape of the inspection object onto the inspection object. .

従来の表面形状誤差の計測方法および装置としては、検査すべき表面形状を持つ対象に直線格子を投影し、投影された変形格子像から当該表面形状を計測(格子投影法と呼ばれている。特許文献1、2参照。)し、それから表面形状の設計値を差し引くことによって誤差を求める方法および装置があった。   As a conventional surface shape error measuring method and apparatus, a linear grid is projected onto an object having a surface shape to be inspected, and the surface shape is measured from a projected deformed grid image (called a grid projection method). Patent Documents 1 and 2), and then there was a method and apparatus for obtaining an error by subtracting the design value of the surface shape from it.

特開平7−208950号公報JP-A-7-208950 特開平8−2014844号公報JP-A-8-2014844

従来の通常の格子投影法によって段差や溝を持った対象の形状の誤差を計測する場合、対象に投影された格子像(変形格子像と呼ばれている)が段差や溝の前後において不連続となるために格子の次数の判別がつかず、したがって形状誤差が正しく測定できないことがあった。   When measuring the error of the shape of a target with a step or groove using the conventional normal grid projection method, the lattice image projected on the target (called a deformed lattice image) is discontinuous before and after the step or groove. Therefore, the order of the grid cannot be determined, and therefore the shape error may not be measured correctly.

また、従来の通常の格子投影法では、勾配の急な形状部分に直線格子を投影した場合、変形格子の線幅が広がってかつ輝度が弱くなるために格子像が読み取れず、計測が困難な場合があった。   Also, in the conventional normal grid projection method, when a straight grid is projected onto a steeply shaped part, the line width of the deformed grid widens and the luminance becomes weak, so the grid image cannot be read and measurement is difficult. There was a case.

本発明は上記従来の問題点を解決し、段差や溝を持ったり起伏が激しい形状を持った対象の形状誤差を計測する場合でも変形格子の次数を容易に定めることができ、また変形格子の線幅が太くなったり、その結果格子の像の輝度が弱くなったりしない格子投影法による形状誤差計測方法および装置を提供するものである。   The present invention solves the above-mentioned conventional problems, and can easily determine the order of the deformed grid even when measuring the shape error of a target having a step, a groove, or a shape with severe undulations. It is an object of the present invention to provide a shape error measuring method and apparatus using a grid projection method in which the line width is not increased and as a result the brightness of the grid image is not decreased.

本発明は上記課題を解決するために、計測対象の表面形状が設計値と比べて誤差の無い場合に前記計測対象の表面に投影された変形格子像が平行な直線群となるようにあらかじめ計算して創生した投影格子を、設計値に従って製造された実際の計測対象の表面にプロジェクタで投影することによって生じた変形格子像を解析することによって、前記設計値に従って製造された実際の計測対象の表面形状誤差を計測することを特徴とする形状誤差計測方法特徴とする形状誤差計測方法を提供する。   In order to solve the above problems, the present invention calculates in advance so that the deformed grid image projected on the surface of the measurement object becomes a parallel straight line group when the surface shape of the measurement object has no error compared to the design value. By analyzing the deformed grid image generated by projecting the projection grating created in this way onto the surface of the actual measurement object manufactured according to the design value, the actual measurement object manufactured according to the design value is analyzed. There is provided a shape error measuring method characterized by a shape error measuring method characterized by measuring a surface shape error.

さらに、計測対象の表面形状が設計値と比べて誤差の無い場合に前記計測対象の表面に投影された変形格子像が平行な直線群となるようにあらかじめ計算して創生した投影格子を、設計値に従って製造された実際の計測対象の表面にプロジェクタで投影することによって生じた変形格子像を目視などによってモニターすることによって、前記誤差を持った実際の計測対象の表面形状誤差を検査することを特徴とする形状誤差検査方法を提供する。   Furthermore, when the surface shape of the measurement target has no error compared to the design value, a projection grid created and created in advance so that the deformed grid image projected on the surface of the measurement target becomes a parallel straight line group, Inspecting the surface shape error of the actual measurement object having the above error by visually monitoring the deformed grid image generated by projecting on the surface of the actual measurement object manufactured according to the design value. A shape error inspection method is provided.

さらに、計測対象の表面形状が設計値と比べて誤差の無い場合に当該計測対象の表面に投影された変形格子像が平行な直線群となるようにあらかじめ計算して創生した投影格子を液晶パネルに書き込み、設計値に従って製造された実際の計測対象の表面に前記液晶パネルに書き込まれた投影格子をプロジェクタで投影することによって生じた変形格子像をビデオカメラで取り込んで計算機で解析することにより、前記誤設計値に従って製造された実際の計測対象の表面形状誤差を計測することを特徴とする形状誤差計測装置を提供する。   In addition, when the surface shape of the measurement target has no error compared to the design value, a liquid crystal projection lattice created by calculating in advance so that the deformed lattice image projected on the surface of the measurement target becomes a parallel straight line group. By writing a deformed grid image generated by projecting the projection grid written on the liquid crystal panel on the surface of the actual measurement object written according to the design value written on the panel with a video camera and analyzing it with a computer The present invention provides a shape error measuring apparatus for measuring a surface shape error of an actual measurement object manufactured according to the erroneous design value.

さらに、計測対象の表面形状が設計値と比べて誤差の無い場合に当該計測対象の表面に投影された変形格子像が平行な直線群となるようにあらかじめ計算して創生した投影格子を液晶パネルに書き込み、設計値と比べて誤差を持った実際の計測対象の表面に前記液晶パネルに書き込まれたパターンをプロジェクタで投影することによって生じた変形格子像をモニターすることによって、前記誤差を持った実際の計測対象の表面形状誤差を検査することを特徴とする形状誤差検査装置を提供する。   In addition, when the surface shape of the measurement target has no error compared to the design value, a liquid crystal projection lattice created by calculating in advance so that the deformed lattice image projected on the surface of the measurement target becomes a parallel straight line group. By writing on the panel and monitoring the deformed grid image generated by projecting the pattern written on the liquid crystal panel onto the surface of the actual measurement object that has an error compared to the design value, the error is obtained. A shape error inspection apparatus characterized by inspecting a surface shape error of an actual measurement object is provided.

本発明は、検査する対象の表面形状が設計値に対して誤差が無い場合に、投影された変形格子像が平行な直線群となるようにあらかじめ設計された投影格子を、実際の誤差を持った対象の表面にプロジェクタで投影するという原理に基づくため、段差や溝を持っていたり、起伏の激しい形状を持った対象でも、変形格子の次数を容易に定めることができ、また変形格子の線幅が広がらず、かつ変形格子の像の輝度が弱くならないため、変形格子の位置が正確に読み取れ、複雑な形状の対象に対しても形状誤差を容易にかつ高精度に計測できる。   In the present invention, when the surface shape of the object to be inspected has no error with respect to the design value, a projection grating designed in advance so that the projected deformed grating image becomes a group of parallel straight lines has an actual error. Because it is based on the principle of projecting onto the surface of a target object, the order of the deformed grid can be easily determined even for objects with steps, grooves, or undulating shapes. Since the width is not widened and the brightness of the image of the deformed grating does not become weak, the position of the deformed grating can be read accurately, and a shape error can be easily and accurately measured even for a complex shaped object.

本発明に係る表面形状計誤差の計測方法および装置を実施するため最良の形態について、実施例に基づき、図面を参照して以下に説明する。   The best mode for carrying out the surface shape meter error measuring method and apparatus according to the present invention will be described below with reference to the drawings based on the embodiments.

図1は、本発明に係る表面形状誤差の計測装置の実施例の概要を示すものである。表面形状誤差の計測装置1は、光源2と、投影レンズ3と、投影格子マスク(液晶パネルなど)4と、ビデオカメラ5と、液晶パネル制御用および形状誤差データ解析用コンピュータ6と、計測対象7とから構成される。   FIG. 1 shows an outline of an embodiment of a surface shape error measuring apparatus according to the present invention. A surface shape error measuring apparatus 1 includes a light source 2, a projection lens 3, a projection grating mask (liquid crystal panel, etc.) 4, a video camera 5, a liquid crystal panel control and shape error data analysis computer 6, and a measurement target. 7.

光源からの光はレンズによって広げられ、投影格子マスク(ここでは液晶パネル)を照明する。液晶パネルには、あらかじめ計測対象の形状の設計値と光学系の配置から計算された投影格子(以下、形状補正型投影格子と呼ぶ)が計測制御用コンピュータによって書き込まれている。   The light from the light source is spread by the lens and illuminates the projection grating mask (here, the liquid crystal panel). In the liquid crystal panel, a projection grid (hereinafter referred to as a shape correction type projection grid) calculated in advance from the design value of the shape to be measured and the arrangement of the optical system is written by a measurement control computer.

この形状補正型投影格子はレンズ系によって拡大されるなどして、対象表面に投影され、形状誤差によってわずかに歪んだ変形格子(以下、誤差変形格子と呼ぶ)を生成する。
この誤差変形格子をビデオカメラで読み取り、コンピュータによって誤差変形格子の位置とその格子次数が決定され、対象の形状誤差が求まる。
The shape correction type projection grating is enlarged by a lens system, is projected onto the target surface, and generates a deformed grating (hereinafter referred to as an error deformed grating) slightly distorted by a shape error.
The error deformation grid is read by a video camera, and the position of the error deformation grid and the order of the grid are determined by a computer, and the shape error of the object is obtained.

図2(a)は、従来の投影格子マスクの一例を示したものである。等間隔Dの直線状の格子から成っており、格子はA1からA8までの8本とした。それに対して図2(b)は本発明で用いる形状補正型の投影格子マスクの一例を示している。このマスクから発生する形状補正型格子は、高さがhで幅がwで長さがlの段差を持つ形状の誤差を計測するための投影格子である。 FIG. 2A shows an example of a conventional projection grating mask. And consist linear grating of equally spaced D 0, the grid was eight A1 through A8. On the other hand, FIG. 2B shows an example of a shape correction type projection grating mask used in the present invention. The shape correction type grating generated from this mask is a projection grating for measuring an error of a shape having a step having a height of h, a width of w, and a length of l.

図2(b)のC4とC5の格子はA4とA5の格子位置からそれぞれΔDが量だけずれた位置にあって段差形状を補正している。これを段差表面に投影することによって、検査対象の段差が設計値どおりに製作されていて誤差が無ければ、得られる変形格子像は等間隔の直線状になる。 The grids C4 and C5 in FIG. 2B are at positions where ΔD 0 is shifted by an amount from the grid positions of A4 and A5, respectively, and the step shape is corrected. By projecting this onto the surface of the step, if the step to be inspected is manufactured according to the design value and there is no error, the resulting deformed lattice image becomes a straight line with equal intervals.

図3(a)は、図2(a)で示されているような従来の直線等間隔の格子を入射角θの方向から、高さがhで幅がwで長さがlの段差を持つ対象に投影している様子を示す。ここで変形格子像はビデオラメラによって正面(図3(a)の上方)から観測されている。   FIG. 3A shows a step having a height of h, a width of w and a length of 1 from the direction of the incident angle θ of a conventional linearly equidistant lattice as shown in FIG. This shows how the image is projected onto the target. Here, the deformed lattice image is observed from the front (above FIG. 3A) by the video lamella.

得られる変形格子像は図3(b)のように、段差の部分の格子(D4とD5)が対応する次数の格子(B4とB5)から大きく隔たることになる。このため、一般に対象の形状が段差や溝を持ったり、起伏が激しいために多くの投影格子数が必要とされる場合であると、得られる変形格子像の格子の次数は判別がつかなくなって形状の計測が困難になる。   As shown in FIG. 3B, the obtained deformed lattice image is largely separated from the lattices (B4 and B5) of the corresponding order in the stepped portions (D4 and D5). For this reason, in general, when the shape of the target has a step or a groove, or when a large number of projection lattices are required due to severe undulations, the lattice order of the obtained deformed lattice image cannot be distinguished. Measurement of the shape becomes difficult.

これに対して図4(a)は、高さがhで幅がwで長さがlの段差を持つ対象に、図2(b)で示されているような形状補正型投影格子を投影した場合を示す。ここで変形格子はビデオカメラによって正面から観測されている。得られる変形格子像は図4(b)のように、段差の部分に形状誤差が無ければ、段差部分の変形格子(D4とD5)が、段差の無い部分の変形格子(B4とB5)と完全に一致する。   On the other hand, FIG. 4A projects a shape-corrected projection grating as shown in FIG. 2B onto an object having a step having a height of h, a width of w, and a length of l. Shows the case. Here, the deformed grating is observed from the front by a video camera. As shown in FIG. 4B, the obtained deformed lattice image has a stepped portion of the deformed lattice (D4 and D5) and a stepped portion of the deformed lattice (B4 and B5) if there is no shape error in the stepped portion. Match exactly.

実際の誤差計測では、段差の部分に形状誤差があるが、そのずれは誤差分だけであるため、従来の変形格子像である図3(b)のずれ量dに比べて充分小さい。したがって、一般に対象の形状が段差や溝を持ったり、起伏が激しいために多くの投影格子数が必要とされる場合でも、格子の次数の判別が容易につき、形状の計測が困難になることは無い。   In actual error measurement, there is a shape error in the step portion, but the shift is only the error, and is sufficiently smaller than the shift amount d in FIG. Therefore, even if the shape of the target generally has a step or a groove, or a large number of projection grids are required due to severe undulations, it is easy to determine the order of the grid and it is difficult to measure the shape. No.

ここで、式を用いて計測される誤差量を定量的に求めてみる。まず図2(a)のような等間隔Dの直線群マスクによって生成される投影格子を、図3(a)のように入射角θの方向から、高さがhで幅がwで長さがlの段差を持つ対象に投影するという従来の格子投影法によって段差形状を計測する場合を考える。 Here, the error amount measured using the equation is quantitatively obtained. First, a projection grating generated by a straight line group mask with an equal interval D 0 as shown in FIG. 2A is long from height of h and width w from the direction of the incident angle θ as shown in FIG. Consider a case where a step shape is measured by a conventional grid projection method in which projection is performed on an object having a height difference of l.

この時の変形格子像は、図3(b)となり、段差のある部分と無い部分でdの位置ずれを生じる。このdを実測することによって段差の高さhは次式で求められる。
h=d/{(D/D−1}1/2....(1)
ここでDpは段差の無い部分に平行な平面に投影された変形格子像の間隔であり、
=D/cosθ....(2)
の関係がある。
The deformed lattice image at this time is as shown in FIG. 3B, and a positional deviation of d occurs between a portion with a step and a portion without a step. By measuring this d, the height h of the step is obtained by the following equation.
h = d / {(D p / D 0 ) 2 −1} 1/2 . . . . (1)
Here, Dp is the interval between the deformed lattice images projected on a plane parallel to the stepless portion,
D p = D 0 / cos θ. . . . (2)
There is a relationship.

次に、本発明における形状補正型投影格子(図2(b))を、高さがhで幅がwで長さがlで、さらに形状誤差Δhを持つ段差対象に投影する場合を考える。   Next, consider a case where the shape correction type projection grating (FIG. 2B) according to the present invention is projected onto a step target having a height h, a width w, a length l, and a shape error Δh.

すなわち、この場合に形状補正型投影格子(図2(b))は、計算によると、段差上に投影される投影格子(図4(a)のC4とC5)が段差の無い投影格子(図4(a)のA4とA5)に対して
ΔD=h/{(D/D +1}1/2....(3)
の距離だけ、離れていなければならない。
In other words, in this case, according to the calculation, the shape correction type projection grating (FIG. 2B) is a projection grating (C4 and C5 in FIG. 4A) projected onto the step difference. 4 (a) A4 and A5), ΔD 0 = h / {(D p / D 0 ) 2 +1} 1/2 . . . . (3)
Must be separated by a distance.

このずれの方向は従来の方法による変形格子像である図3(b)と逆の方向となる。このようにすると、対象物が設計値に対して誤差が無い場合、得られる変形格子像は平行直線群になり、誤差がある場合は、得られる変形格子像は、その誤差分だけずれた状態になる。これによって誤差の有無が一目瞭然となり、部品などの良否の判定が容易にできる。
また誤差量も式(1)をそのまま用いてから容易に計算できる。
The direction of this shift is opposite to that shown in FIG. 3B, which is a modified lattice image obtained by the conventional method. In this way, when the object has no error with respect to the design value, the obtained deformed lattice image becomes a parallel straight line group, and when there is an error, the obtained deformed lattice image is shifted by the error. become. As a result, the presence / absence of an error becomes obvious at a glance, and it is possible to easily determine whether parts are good or bad.
Further, the error amount can be easily calculated after using the equation (1) as it is.

すなわち、形状補正型変形格子像において観測されるずれ量をΔdとすると段差の高さ誤差Δhは
Δh=Δd/{(D/D−1}1/2....(4)
と求まる。
That is, if the amount of deviation observed in the shape-corrected deformed lattice image is Δd, the height error Δh of the step is Δh = Δd / {(D p / D 0 ) 2 −1} 1/2 . . . . (4)
It is obtained.

本発明のもっとも重要な利点は、通常誤差量Δhはhに比べて明らかに小さいと考えられるので、変形格子に不連続があってもその次数を容易に決定できることである。すなわち変形格子に不連続がある場合、その次数はそこに最も近い格子の次数と一致すると判断できる。これによって形状誤差を誤ることなく正確に求めることができる。これは従来の通常の格子投影法では成しえなかったことである。   The most important advantage of the present invention is that the normal error amount Δh is considered to be clearly smaller than h, and therefore the order can be easily determined even if there is a discontinuity in the deformed grid. That is, if there is a discontinuity in the deformed grid, it can be determined that the order matches the order of the nearest grid. As a result, the shape error can be accurately obtained without error. This is not possible with the conventional normal grid projection method.

また、従来の格子投影法では、急な勾配の形状部分に投影された変形格子は格子の線幅が広くなり、かつ格子像の強度が弱くなって変形格子の位置を正確に読み取れなかった。本発明では、形状誤差のみを変形格子像として検出するので、変形格子像の線幅が広がらず、したがって格子像の強度が弱くなることもなく、変形格子像の位置を正確に読み取ることができる。これも本発明の大きな利点である。   Further, in the conventional grating projection method, the deformed grating projected onto the steeply shaped shape portion has a wide line width and the intensity of the grating image is weak, and the position of the deformed grating cannot be read accurately. In the present invention, since only the shape error is detected as a deformed lattice image, the line width of the deformed lattice image is not widened, and therefore the strength of the lattice image is not weakened, and the position of the deformed lattice image can be read accurately. . This is also a great advantage of the present invention.

本発明は、計測対象の設計値に対する形状誤差を計測・検査することを目的とした方法および装置に関するものであるが、形状も容易に求めることができる。すなわち本発明によって計測された形状誤差を設計値に加算することによって形状が求められることになる。   The present invention relates to a method and apparatus for measuring and inspecting a shape error with respect to a design value of a measurement target, but the shape can be easily obtained. That is, the shape is obtained by adding the shape error measured by the present invention to the design value.

以上、本発明の最良の形態を実施例に基づいて説明したが、本発明はこのような実施例に限定されることなく、特許請求の範囲記載における技術的事項の範囲内で、いろいろな実施例があることは言うまでもない。   The best mode of the present invention has been described based on the embodiments. However, the present invention is not limited to such embodiments, and various implementations can be made within the scope of the technical matters described in the claims. It goes without saying that there are examples.

以上の構成から成る本発明によれば、検査対象が有する表面形状の設計値に応じて創生した格子を検査対象に投影することにより、その表面形状の誤差を容易にかつ高精度に計測することができるから、例えば金型によって作られる部品の形状検査等の分野に適用するときわめて有用である。すなわち、金型の設計値から金型加工される部品形状の設計値を計算し、それに基づいて創生した投影格子をプロジェクタによって実際に製造された部品に投影することによって生じた変形格子像の平行直線格子像のゆがみから形状誤差を容易にかつ高精度に計測および検査できる。   According to the present invention having the above configuration, an error in the surface shape can be easily and accurately measured by projecting a lattice created according to the design value of the surface shape of the inspection target onto the inspection target. Therefore, the present invention is extremely useful when applied to the field of shape inspection of parts made by a mold, for example. That is, the design value of the part shape to be processed by the mold is calculated from the design value of the mold, and the projection grid created based on the calculated value is projected onto the part actually manufactured by the projector. The shape error can be measured and inspected easily and accurately from the distortion of the parallel straight grid image.

本発明に係る表面形状誤差の計測装置の概要を示す図である。It is a figure which shows the outline | summary of the measuring device of the surface shape error based on this invention. 従来の通常の投影格子(a)と本発明に係る形状補正型投影格子(b)とを比較するための図である。It is a figure for comparing the conventional normal projection grating | lattice (a) and the shape correction type | mold projection grating | lattice (b) based on this invention. 従来の通常の格子投影の光学系(a)と変形格子像(b)を示す図である。It is a figure which shows the conventional optical system (a) of a normal grating | lattice projection, and a deformation | transformation grating | lattice image (b). 本発明に係る形状補正型格子投影の光学系(a)と誤差変形格子像(b)を示す図である。It is a figure which shows the optical system (a) of a shape correction type | mold grating | lattice projection based on this invention, and an error deformation | transformation grating | lattice image (b).

符号の説明Explanation of symbols

1 表面形状誤差の計測装置
2 光源
3 投影レンズ
4 投影格子マスク(液晶パネル)
5 ビデオカメラ
6 投影格子マスク(液晶パネル)制御用および形状誤差データ解析用コンピュータ
7 計測対象
DESCRIPTION OF SYMBOLS 1 Surface shape error measuring device 2 Light source 3 Projection lens 4 Projection grating mask (liquid crystal panel)
5 Video camera 6 Projection grating mask (liquid crystal panel) control and shape error data analysis computer 7 Measurement object

Claims (4)

計測対象の表面形状が設計値と比べて誤差の無い場合に前記計測対象の表面に投影された変形格子像が平行な直線群となるようにあらかじめ計算して創生した投影格子を、設計値に従って製造された実際の計測対象の表面にプロジェクタで投影することによって生じた変形格子像を解析することによって、前記設計値に従って製造された実際の計測対象の表面形状誤差を計測することを特徴とする形状誤差計測方法。   When the surface shape of the measurement target has no error compared to the design value, the projection grid created by calculating in advance so that the deformed grid image projected on the surface of the measurement target becomes a group of parallel lines is used as the design value. Measuring a surface shape error of an actual measurement object manufactured according to the design value by analyzing a deformed grid image generated by projecting on a surface of the actual measurement object manufactured according to Shape error measurement method to do. 計測対象の表面形状が設計値と比べて誤差の無い場合に前記計測対象の表面に投影された変形格子像が平行な直線群となるようにあらかじめ計算して創生した投影格子を、設計値に従って製造された実際の計測対象の表面にプロジェクタで投影することによって生じた変形格子像をモニターすることによって、前記誤差を持った実際の計測対象の表面形状誤差を検査することを特徴とする形状誤差検査方法。   When the surface shape of the measurement target has no error compared to the design value, the projection grid created by calculating in advance so that the deformed grid image projected on the surface of the measurement target becomes a group of parallel lines is used as the design value. A shape characterized by inspecting a surface shape error of an actual measurement object having the error by monitoring a deformed grid image generated by projecting with a projector onto the surface of the actual measurement object manufactured according to Error inspection method. 計測対象の表面形状が設計値と比べて誤差の無い場合に当該計測対象の表面に投影された変形格子像が平行な直線群となるようにあらかじめ計算して創生した投影格子を液晶パネルに書き込み、設計値に従って製造された実際の計測対象の表面に前記液晶パネルに書き込まれた投影格子をプロジェクタで投影することによって生じた変形格子像をビデオカメラで取り込んで計算機で解析することにより、前記誤設計値に従って製造された実際の計測対象の表面形状誤差を計測することを特徴とする形状誤差計測装置。   When the surface shape of the measurement target has no error compared to the design value, a projection grid created and created in advance so that the deformed grid image projected on the measurement target surface becomes a group of parallel straight lines is displayed on the liquid crystal panel. By writing, using a video camera, a deformed grid image generated by projecting a projection grid written on the liquid crystal panel onto the surface of an actual measurement target manufactured according to the writing and design values, and analyzing with a computer, A shape error measuring apparatus for measuring a surface shape error of an actual measurement object manufactured according to an erroneous design value. 計測対象の表面形状が設計値と比べて誤差の無い場合に当該計測対象の表面に投影された変形格子像が平行な直線群となるようにあらかじめ計算して創生した投影格子を液晶パネルに書き込み、設計値と比べて誤差を持った実際の計測対象の表面に前記液晶パネルに書き込まれたパターンをプロジェクタで投影することによって生じた変形格子像をモニターすることによって、前記誤差を持った実際の計測対象の表面形状誤差を検査することを特徴とする形状誤差検査装置。
When the surface shape of the measurement target has no error compared to the design value, a projection grid created and created in advance so that the deformed grid image projected on the measurement target surface becomes a group of parallel straight lines is displayed on the liquid crystal panel. Actually with the above error by monitoring the deformed lattice image generated by projecting the pattern written on the liquid crystal panel on the surface of the actual measurement object that has an error compared with the writing and design value A shape error inspection apparatus characterized by inspecting a surface shape error of a measurement object.
JP2006019941A 2006-01-30 2006-01-30 Measuring method and device of surface shape error Pending JP2007198988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006019941A JP2007198988A (en) 2006-01-30 2006-01-30 Measuring method and device of surface shape error

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006019941A JP2007198988A (en) 2006-01-30 2006-01-30 Measuring method and device of surface shape error

Publications (1)

Publication Number Publication Date
JP2007198988A true JP2007198988A (en) 2007-08-09

Family

ID=38453730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006019941A Pending JP2007198988A (en) 2006-01-30 2006-01-30 Measuring method and device of surface shape error

Country Status (1)

Country Link
JP (1) JP2007198988A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101544959B1 (en) 2014-01-24 2015-08-19 (주)기흥기계 Using a sample of large bearings precision measurement system
CN110095084A (en) * 2019-05-21 2019-08-06 苏州泰润达发动机零部件有限公司 A method of spherical surface profile is measured based on optical secondary member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06337207A (en) * 1993-05-28 1994-12-06 Toppan Printing Co Ltd Bright line image forming method and apparatus for measuring three-dimensional shape
JP2002250613A (en) * 2001-02-27 2002-09-06 Ricoh Co Ltd Optical three-dimensional shape measurement system
JP2006023133A (en) * 2004-07-06 2006-01-26 Fuji Xerox Co Ltd Instrument and method for measuring three-dimensional shape

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06337207A (en) * 1993-05-28 1994-12-06 Toppan Printing Co Ltd Bright line image forming method and apparatus for measuring three-dimensional shape
JP2002250613A (en) * 2001-02-27 2002-09-06 Ricoh Co Ltd Optical three-dimensional shape measurement system
JP2006023133A (en) * 2004-07-06 2006-01-26 Fuji Xerox Co Ltd Instrument and method for measuring three-dimensional shape

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101544959B1 (en) 2014-01-24 2015-08-19 (주)기흥기계 Using a sample of large bearings precision measurement system
CN110095084A (en) * 2019-05-21 2019-08-06 苏州泰润达发动机零部件有限公司 A method of spherical surface profile is measured based on optical secondary member

Similar Documents

Publication Publication Date Title
JP6507653B2 (en) Inspection apparatus and control method of inspection apparatus
US8671366B2 (en) Estimating shape based on comparison between actual waveform and library in lithography process
US8110800B2 (en) Scanning electron microscope system and method for measuring dimensions of patterns formed on semiconductor device by using the system
CN106052591B (en) Measuring device, measurement method, system and article production method
KR20170070218A (en) Automated pattern fidelity measurement plan generation
JP2004109106A (en) Method and apparatus for inspecting surface defect
EP3594618A1 (en) Three-dimensional shape measurement device, three-dimensional shape measurement method, and program
US20160267668A1 (en) Measurement apparatus
JP5288297B2 (en) Method for measuring the end shape of a threaded tube
KR101982347B1 (en) Apparatus and Method for Detecting Defects in Auto Repair System
US9229337B2 (en) Setting method of exposure apparatus, substrate imaging apparatus and non-transitory computer-readable storage medium
TW201527741A (en) Block-to-block reticle inspection
JP2011099821A (en) Method and device for measuring optical shape of plate material
JP2007198988A (en) Measuring method and device of surface shape error
JP2012127675A (en) Method and apparatus for evaluating front-surface shape
TWI496111B (en) Bent pin inspection method
JP3672884B2 (en) Pattern inspection method, pattern inspection apparatus, and mask manufacturing method
US20160034632A1 (en) Position measuring method, misplacement map generating method, and inspection system
JPH0875542A (en) Method for measuring quantity of light for display pixel, and method and apparatus for inspecting display screen
JP2009300137A (en) Line sensor elevation angle measuring apparatus by image processing
EP3070432A1 (en) Measurement apparatus
JP2008196892A (en) Three-dimensional dimension measuring device and three-dimensional dimension measuring program
KR20110001150A (en) Apparatus and method for measuring cd uniformity of patterns in photomask
US20170124688A1 (en) Image processor, image processing method, and measuring apparatus
JP2009258248A (en) Pattern size measuring method for photomask, and photomask

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080327

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100909

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130