JP2007198380A - タービンエンジン構成要素および高融点金属コア - Google Patents

タービンエンジン構成要素および高融点金属コア Download PDF

Info

Publication number
JP2007198380A
JP2007198380A JP2007013229A JP2007013229A JP2007198380A JP 2007198380 A JP2007198380 A JP 2007198380A JP 2007013229 A JP2007013229 A JP 2007013229A JP 2007013229 A JP2007013229 A JP 2007013229A JP 2007198380 A JP2007198380 A JP 2007198380A
Authority
JP
Japan
Prior art keywords
cooling
turbine engine
engine component
metal core
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007013229A
Other languages
English (en)
Inventor
Francisco J Cunha
ジェイ.クンハ フランシスコ
William Abdel-Messeh
アブデルーメッセー ウィリアム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of JP2007198380A publication Critical patent/JP2007198380A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/26Antivibration means not restricted to blade form or construction or to blade-to-blade connections or to the use of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/185Two-dimensional patterned serpentine-like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

【課題】冷却が改善されたタービンエンジン構成要素を提供する。
【解決手段】このタービンエンジン構成要素は、前縁、後縁、正圧面、負圧面、根部、および先端部を有するエアフォイル部と、エアフォイル部の壁部内に設けられた少なくとも1つの冷却回路と、を含む。この少なくとも1つの冷却回路は、根部と先端部の間を延びる少なくとも1つの通路を有する。この少なくとも1つの通路は、アスペクト比が2:1以下であり、好ましくはほぼ1である。
【選択図】 図4

Description

本発明は、冷却が改善されたタービンエンジン構成要素および冷却通路を形成するための高融点金属コアに関する。
あるタイプのエンジンの回転数は、大型の商用ターボファンエンジンに比べて非常に高い。その結果、タービンブレードなどのタービンエンジン構成要素の冷却回路を通る主流は、二次的なコリオリの力および回転浮力の影響を受ける。主冷却流の速度プロファイルは、冷却通路の後縁に向かっている。アスペクト比が3:1の、径方向外向きに流れる冷却通路では、冷却流が逆流する可能性が高く、これは不十分な熱伝達性能に通じる。したがって、冷却通路のアスペクト比をできるだけ1に近く維持することが極めて重要である。これは、主流の逆流および不十分な熱伝達性能を回避するために必要である。
様々な小型エンジンの用途で現在使用されている冷却機構がある。これらの設計のための冷却技術は従来、非常に成功を収めてきたものの、耐久性に関しては頂点に達してしまった。すなわち、優れた冷却効率を達成するために、これらの設計は、乱流を生じさせるトリップストリップ、形状づけられたフィルム孔、ペデスタル、フィルムの前の前縁でのインピンジメント、および二重インピンジメント型後縁など、多くの冷却強化特徴部を採り入れてきた。これらの設計について、全体的冷却効率を、図1に示す耐久性マップに記入することができる。ただし、横座標は全体的冷却効率パラメータであり、縦座標はフィルム効率パラメータである。記入された線は、0〜1の対流効率の値に対応する。全体的冷却効率は、ブレードの耐久性設計にとって重要なパラメータである。その最大値は1であり、これは金属の温度が冷媒の温度と同程度に低いことを意味する。これは達成不可能である。最小値は0であり、このとき金属の温度は、ガスの相対温度と同じ高さである。一般的に、従来の冷却設計では、全体的冷却効率は約0.50である。フィルム効率パラメータは、フィルムで完全に覆われたときの1と、フィルムが完全に消失しフィルムの痕跡がないときのフィルム0(ゼロ)との間にある。
対流効率は、ブレード冷却回路の熱吸収(heat pick−up)すなわち性能の測度である。一般的に、高度な冷却設計では、高い対流効率を目標にしている。しかし、冷却回路による熱吸収能力とブレードに対するフィルム冷却保護を特徴付ける冷媒温度との間のバランスとしてトレードオフが必要とされる。こうしたトレードオフは通常、対流効率の向上に好都合である。高度な設計では、目標は、図1に示されるように、全体的冷却効率が0.8以上になるようにフィルムパラメータおよび対流効率を設計することである。この図から、フィルムパラメータが0.3から0.5まで上昇し、対流効率は0.2から0.6まで上昇したことがわかる。全体的冷却効率が0.5から0.8まで上昇するので、同じ外部熱負荷で冷却流量を約40%だけ減らすことができる。これは、タービン効率および全体的サイクル性能を向上させるのに特に重要である。
本発明によれば、アスペクト比をできるだけ1に近く維持する冷却通路を有する小型回路冷却システムが提供される。
(ここではまとめて全体的冷却効率という)(1)フィルム保護の向上、(2)熱吸収の向上、および(3)エアフォイル部の金属温度の低下を同時に達成する手段を有する冷却機構も提供される。これは、高融点金属コア技術を使用することによって達成することができる。
本発明によれば、タービンエンジン構成要素は、概して、前縁、後縁、正圧面、負圧面、根部、および先端部を有するエアフォイル部と、エアフォイル部の壁部内に設けられた少なくとも1つの冷却回路と、を備える。この少なくとも1つの冷却回路は、根部と先端部の間を延びる少なくとも1つの通路を有し、この少なくとも1つの通路は、アスペクト比が2:1より小さく、好ましくはほぼ1である。
さらに本発明によれば、エアフォイル部の壁部内に少なくとも1つの冷却回路を形成するための高融点金属コアが提供される。この高融点金属コアは、概して、管状部を有し、この管状部は、アスペクト比が2:1以下であり、好ましくはほぼ1である。
アスペクト比が1の小型回路冷却の他の詳細、ならびにそれに伴う他の目的および利点は、以下の詳細な説明および添付の図面に記述されている。だたし、同様の参照番号は、同様の要素を示す。
次に図2および図3を参照すると、タービンブレードやベーンなどのタービンエンジン構成要素10が示されている。この構成要素10は、エアフォイル部12と、プラットフォーム14と、取付部16と、を有する。このエアフォイル部12は、前縁18と、後縁20と、正圧面22と、負圧面24と、根部19と、先端部21と、を有する。このタービンエンジン構成要素10は、ニッケル基超合金など、当該技術で知られているどんな適当な材料から形成してもよい。
次に図4を参照すると、タービンエンジン構成要素10用の冷却システムが示されている。この冷却システムは、フィルム冷却スロット28を有する1つまたは複数の正圧面側冷却回路すなわち通路26を含む。この冷却回路すなわち通路26および各回路すなわち通路26と関連するフィルム冷却スロット28は、1つまたは複数のタブ32を有する高融点金属コア30を使用して形成することができる。図4から明らかなように、冷却回路すなわち通路26は、好ましくはエアフォイル部の壁部34内に形成される。フィルム冷却スロット28は、冷却流体がエアフォイル部12の正圧面22の上を流れるようにする。各冷却回路すなわち通路26は、好ましくはエアフォイル部12の先端部21と根部19の間を延びる。
エアフォイル部12の正圧面22は、さらに複数の形状づけられた孔36を備えることができる。こうした孔36は、当該技術で知られた適当な従来技術を使用して形成することができる。
エアフォイル部12はまた、後縁冷却小型回路38を備えることができる。エアフォイル部12は、後縁冷却小型回路38および冷却通路26に冷却流体を供給するための第1の供給キャビティ40を有することができる。
エアフォイル部12の負圧面24は、1つまたは複数の冷却回路すなわち通路42を備えることができる。この冷却回路すなわち通路42は、高融点金属コア技術を使用して形成することができ、本明細書で以下に説明するように、蛇行した形状にすることができる。図4から明らかにできるように、冷却回路すなわち通路42は、エアフォイル部12の負圧面24を形成する壁部44内に配置され、先端部21と根部19の間を延びる。各冷却回路すなわち通路42は、高融点金属コア30のタブ要素32によって形成することができる少なくとも1つのフィルム冷却スロット45を有することができる。
エアフォイル部12の前縁18は、複数のフィルム冷却孔46を備えることができる。この冷却孔46は、当該技術で知られたどんな適当な技術によって形成してもよい。エアフォイル部12は、冷却流体を冷却回路すなわち通路42およびフィルム冷却孔46に供給するための第2の供給キャビティ48を有することができる。
次に図5を参照すると、負圧面側壁部44に埋め込むことができる蛇行形状の冷却回路すなわち通路42が示されている。図に示されるように、この冷却通路42は、冷却流体が第2の供給キャビティ48から流入することのできる第1のレッグ部52と、中間レッグ部54と、出口レッグ部56と、を有することができる。この第1のレッグ部52は、先端部折返し部58を介して中間レッグ部54と連結され、中間レッグ部54は、根部折返し部60を介して出口レッグ部56に連結される。それぞれのレッグ部52、54、56は、熱吸収すなわち対流効率を向上させるための複数のペデスタル61を備えることができる。
本発明の好ましい実施形態では、各レッグ部52、54、56は、アスペクト比が約2:1またはそれより小さく、最も好ましくはアスペクト比がほぼ1である。本明細書では、「アスペクト比」は幅と高さの比である。これを達成するには、各レッグ部52、54、56の断面を円形とすることができる。あるいは、各レッグ部52、54、56の断面を正方形としてもよい。
エアフォイル部12は、冷却流体を前縁フィルム冷却孔46に供給するための供給キャビティ62を含むこともできる。
図2で明らかなように、正圧面側冷却流体フィルムは、フィルムスロット28から広い範囲を覆うように広がる。図3で明らかなように、負圧面側冷却流体フィルムも、フィルムスロット45から広い範囲を覆うように広がる。
広い範囲を覆う冷却流体フィルムは、好ましくは高融点金属コア30の1つまたは複数のタブ32を使用して作製されるスロット28、45によって達成することができる。熱吸収または対流効率は、熱伝達強化機構としての多くの折返し部およびペデスタル61による周辺部の冷却によって達成することができる。フィルムの覆う範囲が広いことと熱吸収能力の改善があいまって、全体的冷却効率の向上すなわちエアフォイル部の金属温度の低下という冷却技術の飛躍をもたらす。このことを利用して、冷却流を減らしまたは部品の耐用年数を延ばすことができる。
小型エンジンの用途における回転数は、大型の商用ターボファンに比べて非常に高くなる、すなわち16,000RPMに対して40,000RPMとなる可能性がある。その結果、冷却小型回路を通る主流は、二次的なコリオリの力および回転浮力の影響を受けることがある。回転環境では、主流の速度プロファイルは、冷却通路の後縁に向かっている。径方向外向きに流れる冷却通路では、アスペクト比が約3:1の場合に冷却通路で冷却流が逆流する可能性が高いことがいくつかの研究で示されてきた。したがって、高融点金属コア技術を用いて形成された冷却通路のアスペクト比をできるだけ1に近く維持することが重要である。これは、主流の逆流および不十分な熱伝達性能を避けるためである。主流の逆流が生じた場合には、エアフォイル部の金属温度は高くなり、そのため時期尚早の酸化、疲労およびクリープをもたらす。
上述のように、冷却回路すなわち通路42の様々なレッグ部52、54、56は、高融点金属コア30を使用して形成することができる。この高融点金属コア30は、通路42の所望の形状に一致する蛇行形状とすることができる。蛇行形状の高融点金属コアが使用される場合、高融点金属コア30は、レッグ部52、54、56を形成する3つの管状部70を有することができる。図6に示されるように、各管状部70は、断面が円形でよい。あるいは、図8に示すように、管状部70’は断面が正方形でよい。断面が円形または正方形の管状部を使用することにより、アスペクト比が1に近い冷却通路内のレッグ部が得られる。レッグ部54、56を形成する高融点金属コア部70は、最終的にフィルム冷却スロット45を形成する1つまたは複数のタブ要素32を有することができる。高融点金属コア部70が2つ以上のタブ要素32を有する場合、これらのタブ要素32は、切り欠き72によって離間することができる。これにより、離間されたフィルム冷却スロット45が得られる。図7は、レッグ部52、54、56の断面が円形である冷却回路すなわち通路42を示す。図9は、レッグ部52、54、56それぞれの断面が正方形である冷却回路すなわち通路42を示す。
高融点金属コア30は、当該技術で知られている適当な高融点金属材料から形成することができる。例えば、高融点金属コア30は、モリブデンまたはモリブデン合金から形成することができる。
図6および図8に示された前述の高融点金属コア技術を使用して、正圧面側壁部34内の冷却回路すなわち通路26を形成することができる。図6および図8に示すように断面が円形または正方形の高融点金属コア部70は、冷却回路すなわち通路26を形成することができる。このコア部70と一体に形成されたタブ要素32を曲げて、スロット28を形成することができる。
通路42、26およびフィルム冷却スロット45、28は、高融点金属コア30を鋳型内に配置しそれらをワックスで適切な位置に固定することによって形成することができる。供給キャビティ40、48ならびにエアフォイル部12の他の中心コアキャビティがあるならそれも形成するために、シリカ製コア要素を鋳型内に配置することができる。コア要素が配置された後、溶融金属を鋳型に注入し、それを凝固させエアフォイル部12の壁部および外部表面を形成する。壁部および外部表面が形成された後、シリカコア要素および高融点コア要素は取り除かれる。このシリカコア要素および高融点コア要素は、当該技術で知られる適当な技術を用いて取り除くことができる。冷却通路26、42が形成された後、当該技術で知られる適当な技術を用いて、ペデスタル61を形成することができる。
本発明による小型回路冷却システムは、全体的冷却効率を向上させる。全体的冷却効率が0.5から0.8に上がるので、従来の設計と同じ外部熱負荷で冷却流量を約40%だけ減らすことができる。このことは、タービン効率および全体的サイクル性能を向上させるために特に重要である。冷却システムは、金属の温度を下げながらフィルム保護および熱吸収を向上させる手段を有する。このことを、本明細書では全てまとめて全体的冷却効率という。
従来の冷却から優れた冷却へ、さらに小型回路冷却へと全体的冷却効率が高くなる経路を示す耐久性マップである。 タービンエンジン構成要素およびエアフォイル部の正圧面を示す図である。 図2のタービンエンジン構成要素およびエアフォイル部の負圧面を示す図である。 タービンエンジン構成要素のエアフォイル部の、図2の線4−4に沿った断面図である。 エアフォイル部の壁部内の冷却通路の断面図である。 アスペクト比がほぼ1の冷却通路を形成するための高融点金属コアを示す図である。 図6の高融点金属コアによって形成される冷却通路を示す図である。 アスペクト比がほぼ1の冷却通路を形成するための他の高融点金属コアを示す図である。 図8の高融点金属コアによって形成される冷却通路を示す図である。
符号の説明
12…エアフォイル部
22…正圧面
24…負圧面
26…正圧面側冷却回路
28,45…フィルム冷却スロット
34,44…壁部
36…孔
38…後縁冷却小型回路
40,62…供給キャビティ
42…負圧面側冷却回路
46…フィルム冷却孔

Claims (18)

  1. 前縁、後縁、正圧面、負圧面、根部、および先端部を有するエアフォイル部と、
    前記エアフォイル部の壁部内に設けられた少なくとも1つの冷却回路と、を備え、
    前記少なくとも1つの冷却回路が、前記根部と前記先端部の間を延びる少なくとも1つの通路を有し、
    前記少なくとも1つの通路のアスペクト比が約2:1以下であるタービンエンジン構成要素。
  2. 前記アスペクト比が実質的に1である請求項1に記載のタービンエンジン構成要素。
  3. 前記通路のそれぞれの断面が実質的に円形である請求項1に記載のタービンエンジン構成要素。
  4. 前記通路のそれぞれの断面が実質的に正方形である請求項1に記載のタービンエンジン構成要素。
  5. 前記壁部が、前記負圧面の一部を形成する壁部を含む請求項1に記載のタービンエンジン構成要素。
  6. 前記壁部が、前記正圧面の一部を形成する壁部を含む請求項1に記載のタービンエンジン構成要素。
  7. 前記少なくとも1つの冷却回路が、複数の相互連結された通路を有する蛇行した形状であり、前記各通路のアスペクト比が実質的に1である請求項1に記載のタービンエンジン構成要素。
  8. 前記通路のうち少なくとも2つが、それと一体に形成された複数の冷却スロットを有する請求項7に記載のタービンエンジン構成要素。
  9. 正圧面側壁部内に少なくとも1つの追加の冷却回路をさらに備え、
    前記少なくとも1つの冷却回路がそれぞれ、冷却流体を前記エアフォイル部の前記正圧面の全体にわたって分配するための関連する複数のフィルム冷却スロットを有する請求項1に記載のタービンエンジン構成要素。
  10. 後縁冷却小型回路と、
    前記少なくとも1つの追加の冷却回路および前記後縁冷却小型回路に冷却流体を供給するための供給キャビティと、
    をさらに備える請求項9に記載のタービンエンジン構成要素。
  11. 前記エアフォイル部の前記前縁に設けられた複数の冷却孔と、
    冷却流体を前記前縁冷却孔および前記少なくとも1つの冷却回路に供給するための供給キャビティと、
    をさらに備える請求項1に記載のタービンエンジン構成要素。
  12. 前記少なくとも1つの冷却回路は、熱吸収を向上させる手段を有する請求項1に記載のタービンエンジン構成要素。
  13. 前記熱吸収向上手段が、前記少なくとも1つの冷却回路内に設けられた複数のペデスタルを含む請求項12に記載のタービンエンジン構成要素。
  14. タービンエンジン構成要素のエアフォイル部の壁部内に通路を形成するための高融点金属コアであって、
    管状部を備え、前記管状部のアスペクト比が2:1以下である高融点金属コア。
  15. 前記アスペクト比が実質的に1である請求項14に記載の高融点金属コア。
  16. 前記管状部の断面が円形である請求項14に記載の高融点金属コア。
  17. 前記管状部の断面が正方形である請求項14に記載の高融点金属コア。
  18. 前記管状部に一体形成された複数のタブ要素をさらに備える請求項14に記載の高融点金属コア。
JP2007013229A 2006-01-25 2007-01-24 タービンエンジン構成要素および高融点金属コア Pending JP2007198380A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/339,921 US8177506B2 (en) 2006-01-25 2006-01-25 Microcircuit cooling with an aspect ratio of unity

Publications (1)

Publication Number Publication Date
JP2007198380A true JP2007198380A (ja) 2007-08-09

Family

ID=37807857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007013229A Pending JP2007198380A (ja) 2006-01-25 2007-01-24 タービンエンジン構成要素および高融点金属コア

Country Status (6)

Country Link
US (1) US8177506B2 (ja)
EP (1) EP1813774A3 (ja)
JP (1) JP2007198380A (ja)
KR (1) KR20070078052A (ja)
SG (1) SG134213A1 (ja)
TW (1) TW200728592A (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2442873T3 (es) * 2008-03-31 2014-02-14 Alstom Technology Ltd Perfil aerodinámico de turbina de gas
US8157527B2 (en) 2008-07-03 2012-04-17 United Technologies Corporation Airfoil with tapered radial cooling passage
US8572844B2 (en) 2008-08-29 2013-11-05 United Technologies Corporation Airfoil with leading edge cooling passage
US8303252B2 (en) 2008-10-16 2012-11-06 United Technologies Corporation Airfoil with cooling passage providing variable heat transfer rate
US8109725B2 (en) 2008-12-15 2012-02-07 United Technologies Corporation Airfoil with wrapped leading edge cooling passage
US8167558B2 (en) * 2009-01-19 2012-05-01 Siemens Energy, Inc. Modular serpentine cooling systems for turbine engine components
US8347947B2 (en) * 2009-02-17 2013-01-08 United Technologies Corporation Process and refractory metal core for creating varying thickness microcircuits for turbine engine components
US8753083B2 (en) * 2011-01-14 2014-06-17 General Electric Company Curved cooling passages for a turbine component
US8714927B1 (en) 2011-07-12 2014-05-06 United Technologies Corporation Microcircuit skin core cut back to reduce microcircuit trailing edge stresses
US9279331B2 (en) * 2012-04-23 2016-03-08 United Technologies Corporation Gas turbine engine airfoil with dirt purge feature and core for making same
US10100646B2 (en) * 2012-08-03 2018-10-16 United Technologies Corporation Gas turbine engine component cooling circuit
US9404654B2 (en) * 2012-09-26 2016-08-02 United Technologies Corporation Gas turbine engine combustor with integrated combustor vane
EP2964888B1 (en) * 2013-03-04 2019-04-03 Rolls-Royce North American Technologies, Inc. Method for making gas turbine engine ceramic matrix composite airfoil
US10370978B2 (en) 2015-10-15 2019-08-06 General Electric Company Turbine blade
US10443398B2 (en) 2015-10-15 2019-10-15 General Electric Company Turbine blade
US10208605B2 (en) 2015-10-15 2019-02-19 General Electric Company Turbine blade
US10174620B2 (en) 2015-10-15 2019-01-08 General Electric Company Turbine blade
US10767502B2 (en) 2016-12-23 2020-09-08 Rolls-Royce Corporation Composite turbine vane with three-dimensional fiber reinforcements
US11486259B1 (en) 2021-11-05 2022-11-01 General Electric Company Component with cooling passage for a turbine engine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3849025A (en) 1973-03-28 1974-11-19 Gen Electric Serpentine cooling channel construction for open-circuit liquid cooled turbine buckets
JPS59160002A (ja) 1983-03-02 1984-09-10 Toshiba Corp 冷却タ−ビン翼
US5690472A (en) 1992-02-03 1997-11-25 General Electric Company Internal cooling of turbine airfoil wall using mesh cooling hole arrangement
US5484258A (en) 1994-03-01 1996-01-16 General Electric Company Turbine airfoil with convectively cooled double shell outer wall
GB9901218D0 (en) 1999-01-21 1999-03-10 Rolls Royce Plc Cooled aerofoil for a gas turbine engine
US6174133B1 (en) * 1999-01-25 2001-01-16 General Electric Company Coolable airfoil
US6478535B1 (en) * 2001-05-04 2002-11-12 Honeywell International, Inc. Thin wall cooling system
US6637500B2 (en) 2001-10-24 2003-10-28 United Technologies Corporation Cores for use in precision investment casting
US6705831B2 (en) 2002-06-19 2004-03-16 United Technologies Corporation Linked, manufacturable, non-plugging microcircuits
US7011502B2 (en) 2004-04-15 2006-03-14 General Electric Company Thermal shield turbine airfoil

Also Published As

Publication number Publication date
TW200728592A (en) 2007-08-01
SG134213A1 (en) 2007-08-29
US20070172355A1 (en) 2007-07-26
US8177506B2 (en) 2012-05-15
EP1813774A2 (en) 2007-08-01
EP1813774A3 (en) 2010-11-10
KR20070078052A (ko) 2007-07-30

Similar Documents

Publication Publication Date Title
JP2007198380A (ja) タービンエンジン構成要素および高融点金属コア
US8220522B2 (en) Peripheral microcircuit serpentine cooling for turbine airfoils
JP2007205352A (ja) 小型エンジン用のタービンエンジンコンポーネント、およびその設計方法
JP2008019861A (ja) タービンエンジン構成要素
JP4416287B2 (ja) 内部冷却翼形部品並びに冷却方法
JP2008144760A (ja) タービンエンジン構成要素およびそのエアフォイル部を形成する方法
KR20060057508A (ko) 선단부에 인접한 보조 냉각 채널을 갖는 에어포일
JP2007170379A (ja) タービンエンジンブレードおよびその冷却方法
JP2008138675A (ja) タービンエンジンコンポーネントおよびその製造方法
JP2007218257A (ja) タービンブレード、タービンロータアセンブリ及びタービンブレードのエアフォイル
JP2006083859A (ja) タービンの動翼プラットフォームを冷却する装置および方法
JP2004308659A (ja) タービン要素およびタービンブレードの製造方法
JP2007146835A (ja) タービンエンジン構成要素およびタービンエンジン構成要素の作製方法
JP2005337260A (ja) ロータブレードおよびロータブレードの冷却方法
JP2008025569A (ja) 冷却用微細回路、タービンエンジン部品、および耐熱性金属コアを形成する方法
JP2005337259A (ja) ロータブレード
JP2008032006A (ja) 径方向に分割された蛇行微細回路
JP2008064087A (ja) ダスト孔ドーム式ブレード
US8572844B2 (en) Airfoil with leading edge cooling passage
JP4664335B2 (ja) 正圧面特徴部を用いた蛇行微細回路冷却
JP2007146842A (ja) ターボ機械の移動ブレードのための中央冷却回路
JP2008032008A (ja) 高温ガス移行のための蛇行微細回路
WO2014108318A1 (en) Blade for a turbomachine
JP2000034902A (ja) ガスタービン冷却動翼
WO2014106598A1 (en) Blade for a turbomachine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100209