JP2007198324A - Cylinder direct-injection type spark ignition internal combustion engine - Google Patents

Cylinder direct-injection type spark ignition internal combustion engine Download PDF

Info

Publication number
JP2007198324A
JP2007198324A JP2006019938A JP2006019938A JP2007198324A JP 2007198324 A JP2007198324 A JP 2007198324A JP 2006019938 A JP2006019938 A JP 2006019938A JP 2006019938 A JP2006019938 A JP 2006019938A JP 2007198324 A JP2007198324 A JP 2007198324A
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
valve
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006019938A
Other languages
Japanese (ja)
Inventor
Akikazu Sakai
亮和 酒井
Katsuaki Uchiyama
克昭 内山
Taizo Horigome
泰三 堀込
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006019938A priority Critical patent/JP2007198324A/en
Publication of JP2007198324A publication Critical patent/JP2007198324A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To quickly activate a catalyst when an engine is cool and avoid the deterioration of the primary peak of HC. <P>SOLUTION: When the internal combustion engine for which the early increase in the temperature of a catalytic converter is requested is started in a cool state, the ignition timing ADV is largely retarded, a first fuel injection I1 is performed during the compression stroke at a rather low fuel pressure, and a second fuel injection I2 is performed at the time 10 to 20° CA before the ignition timing ADV during the expansion stroke. A compact air-fuel mixture lump is formed near an ignition plug by the first spray, and a richer air-fuel mixture lump is locally formed on the inside thereof by the second spray and ignited. Robustness against variations for each cycle is increased and the occurrence of HC in a quench area and a clevis is reduced. A fuel injection valve is disposed on the exhaust valve side and injects a fuel to the intake valve side. Since the unburned HC produced near the exhaust valve is reduced, the primary peak of HC the instant the exhaust valve is opened is reduced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、筒内に燃料を直接に噴射する筒内直接噴射式火花点火内燃機関に関し、特に、排気系の触媒コンバータの早期昇温(早期活性化)が要求される冷間始動時などにおける噴射時期および点火時期の制御に関する。   The present invention relates to an in-cylinder direct injection type spark ignition internal combustion engine that directly injects fuel into a cylinder, and in particular, at a cold start in which early temperature rise (early activation) of an exhaust system catalytic converter is required. It relates to control of injection timing and ignition timing.

特許文献1には、筒内直接噴射式火花点火内燃機関の触媒暖機方法として、排気浄化用の触媒コンバータが活性温度よりも低い未暖機状態のときに、吸気行程から点火時期にかけての期間内で、部分的な空燃比の濃淡を有する混合気を燃焼室内に形成する後期噴射と、この後期噴射より前に燃料を噴射して、後期噴射の燃料と後期噴射の燃焼とで延焼可能な、理論空燃比よりもリーンな空燃比の混合気を燃焼室内に生成する早期噴射と、の少なくとも2回の分割噴射を行い、かつ点火時期をMBT点より所定量リタードさせるとともに、機関の無負荷領域では点火時期を圧縮上死点よりも前に設定し、無負荷領域を除く低速低負荷領域では点火時期を圧縮上死点以降までリタードさせる技術が記載されている。上記後期噴射は、圧縮行程の中期以降、例えば120°BTDC〜45°BTDCに行われる。   In Patent Document 1, as a catalyst warm-up method for a direct injection spark-ignition internal combustion engine, a period from the intake stroke to the ignition timing when the exhaust gas catalytic converter is in an unwarmed state lower than the activation temperature. In this case, it is possible to spread the fuel by the late injection in which the air-fuel mixture having a partial air-fuel ratio concentration is formed in the combustion chamber, the fuel is injected before this late injection, and the fuel of the late injection and the combustion of the late injection And at least two split injections of early injection for generating an air-fuel mixture leaner than the stoichiometric air-fuel ratio in the combustion chamber, and retarding the ignition timing by a predetermined amount from the MBT point, and no engine load A technique is described in which the ignition timing is set before the compression top dead center in the region, and the ignition timing is retarded until the compression top dead center in the low speed and low load region excluding the no-load region. The latter-stage injection is performed, for example, at 120 ° BTDC to 45 ° BTDC after the middle of the compression stroke.

また、特許文献2は、本出願人が先に提案したものであって、高圧燃料噴射の噴霧エネルギによる筒内の乱れを利用することで、点火時期を圧縮上死点後までリタードした燃焼を安定的に得るようにした技術が記載されており、その一つの例として、1回目の燃料噴射を圧縮行程後期に行い、2回目の燃料噴射を膨張行程の点火の直前に行うことが開示されている。
特許第3325230号公報 特開2005−214039号公報
Further, Patent Document 2 was previously proposed by the present applicant, and uses combustion in the cylinder due to the spray energy of high-pressure fuel injection to retard the ignition timing until after compression top dead center. As an example, it is disclosed that the first fuel injection is performed in the latter half of the compression stroke, and the second fuel injection is performed immediately before the ignition of the expansion stroke. ing.
Japanese Patent No. 3325230 Japanese Patent Laid-Open No. 2005-214039

しかしながら、特許文献1では、主に、1回目の燃料噴射(早期噴射)を吸気行程中に行い、2回目の燃料噴射(後期噴射)を圧縮行程中の120°BTDC〜45°BTDCに行っているため、燃焼安定性が低く、特に、無負荷領域では、点火時期を圧縮上死点前(BTDC点火)としている。従って、点火時期のリタードによる排温上昇やHCの低減を十分に達成することができない。   However, in Patent Document 1, the first fuel injection (early injection) is performed during the intake stroke, and the second fuel injection (late injection) is performed from 120 ° BTDC to 45 ° BTDC during the compression stroke. Therefore, the combustion stability is low. In particular, in the no-load region, the ignition timing is set to before compression top dead center (BTDC ignition). Therefore, the exhaust temperature rise and the HC reduction due to the ignition timing retard cannot be sufficiently achieved.

しかも、1回目の噴射を吸気行程中に行うと、燃焼室内のクエンチ領域やクレビスに燃料が入り込み、HCの発生源となる。   In addition, if the first injection is performed during the intake stroke, the fuel enters the quench region and the clevis in the combustion chamber and becomes a source of HC generation.

また上記従来技術では、燃焼が不安定化することから、燃焼室内にHCが多く生成され、排気弁が開いたときに排気ポートへ流出する、いわゆる一次ピークにおけるHC濃度が高くなる、という不具合がある。特に、この一次ピークのHC量は、燃料噴射時期を遅角することに伴い、燃焼室容積が小さくなった状態で燃料が噴射されることから壁面に付着する燃料量が増え、その結果、さらに増加する傾向となる。つまり、点火時期の遅角により排気温度が高くなっても、逆にHC増加が生じる虞がある。   Further, in the above prior art, since the combustion becomes unstable, a large amount of HC is generated in the combustion chamber, and when the exhaust valve is opened, the HC concentration at the so-called primary peak that flows out to the exhaust port increases. is there. In particular, the amount of HC at the primary peak is increased as the fuel injection timing is retarded, so that the amount of fuel adhering to the wall surface increases because the fuel is injected with the combustion chamber volume being reduced. It tends to increase. That is, even if the exhaust gas temperature increases due to the retard of the ignition timing, there is a possibility that HC increases conversely.

一方、特許文献2においては、1回目の燃料噴射を圧縮行程後期に行い、2回目の燃料噴射を膨張行程の点火の直前に行うが、2回目の燃料噴射による筒内の乱れに依存して燃焼が成立するので、高い燃圧が要求される。その結果、燃焼が相対的(燃圧が低い場合に比べて)に早くなり、排気温度の上昇さらにはこれに関連するHCの低減の点で、なお改善の余地があった。   On the other hand, in Patent Document 2, the first fuel injection is performed in the latter half of the compression stroke, and the second fuel injection is performed immediately before the ignition of the expansion stroke. However, depending on the in-cylinder turbulence due to the second fuel injection, Since combustion is established, a high fuel pressure is required. As a result, combustion is relatively fast (compared to the case where the fuel pressure is low), and there is still room for improvement in terms of an increase in exhaust temperature and a reduction in HC associated therewith.

本発明は、このような実状を踏まえて、触媒の早期活性化およびHC低減などのための超リタード燃焼での燃焼安定性を改善するとともに、HCの一次ピークを抑制することを目的としている。   The present invention is based on such a situation, and aims to improve combustion stability in superretarded combustion for early activation of the catalyst and reduction of HC and to suppress the primary peak of HC.

この発明は、筒内に直接燃料を噴射する燃料噴射弁および点火プラグを備え、所定の運転状態のとき、例えば触媒コンバータの冷機時のような排気ガス温度の昇温が必要な場合などに、点火時期を圧縮上死点後に設定した超リタード燃焼を行う筒内直接噴射式火花点火内燃機関において、
超リタード燃焼時には、圧縮行程中に1回目の燃料噴射を行い、点火プラグ近傍の燃焼室の一部にリッチな混合気を形成するとともに、
局部的にさらにリッチな混合気が点火時期に点火プラグに到達するように点火時期から所定期間先行したタイミングでかつ膨張行程中に2回目の燃料噴射を行い、
点火プラグ近傍の燃焼室の一部に2段階の成層混合気を形成した状態で点火することを特徴としている。
The present invention includes a fuel injection valve and a spark plug for directly injecting fuel into a cylinder, and in a predetermined operation state, for example, when it is necessary to raise the exhaust gas temperature, such as when the catalytic converter is cold, In the in-cylinder direct injection spark ignition internal combustion engine that performs super retard combustion with the ignition timing set after compression top dead center,
During super retard combustion, the first fuel injection is performed during the compression stroke to form a rich air-fuel mixture in a part of the combustion chamber near the spark plug,
A second fuel injection is performed during the expansion stroke at a timing preceding the ignition timing by a predetermined period so that a locally richer air-fuel mixture reaches the ignition plug at the ignition timing,
The ignition is performed in a state where a two-stage stratified mixture is formed in a part of the combustion chamber in the vicinity of the spark plug.

そして、さらに、噴射された燃料による混合気が、燃焼室の中で吸気弁寄りに相対的に多く偏在するように構成されている。   Further, the fuel / air mixture by the injected fuel is configured to be relatively unevenly distributed closer to the intake valve in the combustion chamber.

すなわち、この発明では、燃料噴射の噴霧エネルギに依存せずに、比較的低い燃圧での2回の燃料噴射によって、燃焼室内にコンパクトな成層混合気を形成する。そして、特に、点火時期においては、2回目の燃料噴射の噴霧によって局部的にリッチな混合気塊が点火プラグ近傍に存在し、その周囲を囲んで、1回目の燃料噴射による理論空燃比よりはリッチでかつ点火プラグ付近よりは希薄な混合気塊が存在した状態となる。つまり、濃度が2段階に異なるコンパクトな成層混合気を形成し、この状態で点火を行う。なお、1回目の燃料噴射による混合気は、燃焼室全体には拡散しないようにすることが望ましい。   That is, in the present invention, a compact stratified mixture is formed in the combustion chamber by two fuel injections at a relatively low fuel pressure without depending on the spray energy of the fuel injection. In particular, at the ignition timing, a locally rich air-fuel mixture is present in the vicinity of the spark plug due to the spray of the second fuel injection, and surrounds the periphery of the spark plug rather than the stoichiometric air-fuel ratio by the first fuel injection. A rich and lean air-fuel mixture exists near the spark plug. That is, a compact stratified mixture having two different concentrations is formed, and ignition is performed in this state. It is desirable that the air-fuel mixture produced by the first fuel injection does not diffuse throughout the combustion chamber.

このような燃焼方式によれば、サイクル毎の微小な回転数の変化や微小な負荷の変化などに対し安定した燃焼が可能である。そして、2回の燃料噴射をいずれも筒内圧の高い場に比較的低い燃圧で噴射するので、噴霧がコンパクトとなって、クエンチ領域やクレビスに入りにくく、従って、HCの発生が抑制される。また、比較的低い燃圧の利用が可能となることから、燃焼速度を抑制でき、排気温度の上昇やHCの低減の上で有利となる。   According to such a combustion method, stable combustion is possible with respect to a minute change in rotational speed or a minute load change for each cycle. Since both fuel injections are performed at a relatively low fuel pressure in a place where the in-cylinder pressure is high, the spray becomes compact and hardly enters the quench region or the clevis, thus suppressing the generation of HC. In addition, since a relatively low fuel pressure can be used, the combustion speed can be suppressed, which is advantageous in increasing the exhaust temperature and reducing HC.

また図17は、一般的な筒内直接噴射式火花点火内燃機関におけるHC排出濃度(排気ポートでの濃度)の特性と、その排出メカニズムを示したものであり、図示するように、排気ポートでのHC濃度は、排気行程の初期(排気弁の開き始め)における一次ピークと、排気行程の末期(排気弁が閉じる直前)における二次ピークと、を有する。一次ピークは、図(a)に示すように、燃焼室内の排気弁近傍に存在していた未燃HCが、排気弁の開弁の瞬間に排気ポート側へ流出するものである。また二次ピークは、図(b)に示すように、ピストン冠面やボア壁面に付着していた燃料やクレビス内の未燃成分が、ピストンにより押し出されることにより、HC濃度が高くなるものである。   FIG. 17 shows the characteristics of the HC emission concentration (concentration at the exhaust port) in a general direct injection spark-ignition internal combustion engine and its exhaust mechanism. As shown in FIG. The HC concentration has a primary peak at the beginning of the exhaust stroke (beginning to open the exhaust valve) and a secondary peak at the end of the exhaust stroke (just before the exhaust valve is closed). As shown in FIG. 1A, the primary peak is that unburned HC existing in the vicinity of the exhaust valve in the combustion chamber flows out to the exhaust port side at the moment when the exhaust valve is opened. As shown in Fig. 2 (b), the secondary peak increases the HC concentration when unburned components in the piston crown and bore walls and unburned components in the clevis are pushed out by the piston. is there.

本発明では、噴射された燃料による混合気が、燃焼室の中で吸気弁寄りに相対的に多く偏在するため、膨張行程末期における排気弁近傍の未燃HCが少なくなり、排気弁の開き始めに生じるHC濃度の一次ピークが抑制される。   In the present invention, since the air-fuel mixture due to the injected fuel is relatively unevenly distributed near the intake valve in the combustion chamber, unburned HC near the exhaust valve at the end of the expansion stroke is reduced, and the exhaust valve starts to open. Is suppressed.

噴射された燃料を燃焼室の中で吸気弁寄りに相対的に多く偏在させることは、燃料噴射弁の位置や燃料噴霧の方向あるいはピストン頂部の構成等の種々の手段によって達成し得る。   A relatively large amount of injected fuel near the intake valve in the combustion chamber can be achieved by various means such as the position of the fuel injection valve, the direction of fuel spray, or the configuration of the piston top.

この発明によれば、点火時期を圧縮上死点後に設定した超リタード燃焼の燃焼安定性が向上し、例えば冷間始動の際に、排気温度の上昇により触媒の早期活性化およびHC低減を達成することができる。特に、噴射された燃料による混合気が吸気弁寄りに多く偏在するため、排気弁の開き始めにおけるHC濃度の一次ピークを抑制することができる。   According to the present invention, the combustion stability of the super retard combustion in which the ignition timing is set after the compression top dead center is improved. For example, at the time of cold start, early activation of the catalyst and reduction of HC are achieved by increasing the exhaust temperature. can do. In particular, since the air-fuel mixture due to the injected fuel is unevenly distributed closer to the intake valve, the primary peak of the HC concentration at the start of opening of the exhaust valve can be suppressed.

以下、この発明の一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、この発明が適用される筒内直接噴射式火花点火内燃機関のシステム構成を示す構成説明図である。   FIG. 1 is a configuration explanatory view showing a system configuration of a direct injection type spark ignition internal combustion engine to which the present invention is applied.

この内燃機関1のピストン2により形成される燃焼室3には、吸気弁(図示せず)を介して吸気通路4が接続され、かつ排気弁(図示せず)を介して排気通路5が接続されている。上記吸気通路4には、吸入空気量を検出するエアフロメータ6が配設されているとともに、制御信号によりアクチュエータ8を介して開度制御される電子制御スロットル弁7が配設されている。排気通路5には、排気浄化用の触媒コンバータ10が配設されているとともに、その上流側および下流側にそれぞれ空燃比センサ11,12が設けられており、さらに、上流側の空燃比センサ11と並んで、触媒コンバータ10入口側での排気温度を検出する排気温度センサ13が設けられている。   An intake passage 4 is connected to the combustion chamber 3 formed by the piston 2 of the internal combustion engine 1 via an intake valve (not shown), and an exhaust passage 5 is connected via an exhaust valve (not shown). Has been. The intake passage 4 is provided with an air flow meter 6 for detecting the amount of intake air, and an electronically controlled throttle valve 7 whose opening degree is controlled via an actuator 8 by a control signal. The exhaust passage 5 is provided with a catalytic converter 10 for purifying exhaust gas, and air-fuel ratio sensors 11 and 12 are provided on the upstream side and the downstream side, respectively. Further, the upstream air-fuel ratio sensor 11 is provided. Is provided with an exhaust gas temperature sensor 13 for detecting the exhaust gas temperature at the inlet side of the catalytic converter 10.

燃焼室3の中央頂上部には、点火プラグ14が配置されている。また、燃焼室3の排気通路5側の側部に、該燃焼室3内に燃料を直接噴射する燃料噴射弁15が配置されている。この燃料噴射弁15には、高圧燃料ポンプ16およびプレッシャレギュレータ17によって所定圧力に調圧された燃料が、高圧燃料通路18を介して供給されている。従って、各気筒の燃料噴射弁15が制御パルスにより開弁することで、その開弁期間に応じた量の燃料が噴射される。なお、19は、燃圧を検出する燃圧センサ、20は、上記高圧燃料ポンプ16へ燃料を送る低圧燃料ポンプである。   A spark plug 14 is disposed at the central top of the combustion chamber 3. A fuel injection valve 15 that directly injects fuel into the combustion chamber 3 is disposed on the side of the combustion chamber 3 on the exhaust passage 5 side. The fuel that has been regulated to a predetermined pressure by the high-pressure fuel pump 16 and the pressure regulator 17 is supplied to the fuel injection valve 15 via the high-pressure fuel passage 18. Therefore, when the fuel injection valve 15 of each cylinder is opened by the control pulse, an amount of fuel corresponding to the valve opening period is injected. Reference numeral 19 denotes a fuel pressure sensor that detects the fuel pressure, and 20 denotes a low-pressure fuel pump that sends fuel to the high-pressure fuel pump 16.

また内燃機関1には、機関冷却水温を検出する水温センサ21が設けられているとともに、クランク角を検出するクランク角センサ22が設けられている。さらに、運転者によるアクセルペダル踏み込み量を検出するアクセル開度センサ23が設けられている。   In addition, the internal combustion engine 1 is provided with a water temperature sensor 21 for detecting the engine cooling water temperature and a crank angle sensor 22 for detecting a crank angle. Further, an accelerator opening sensor 23 is provided for detecting the amount of depression of the accelerator pedal by the driver.

上記内燃機関1の燃料噴射量や噴射時期、点火時期、等は、コントロールユニット25によって制御される。このコントロールユニット25には、上述した各種のセンサ類の検出信号が入力されている。コントロールユニット25は、これらの入力信号により検出される機関運転条件に応じて、燃焼方式つまり均質燃焼とするか成層燃焼とするかを決定するとともに、これに合わせて、電子制御スロットル弁7の開度、燃料噴射弁15の燃料噴射時期および燃料噴射量、点火プラグ14の点火時期、等を制御する。   The fuel injection amount, injection timing, ignition timing, etc. of the internal combustion engine 1 are controlled by the control unit 25. The control unit 25 receives detection signals from the various sensors described above. The control unit 25 determines the combustion method, that is, the homogeneous combustion or the stratified combustion, in accordance with the engine operating conditions detected by these input signals, and according to this, the electronic control throttle valve 7 is opened. The fuel injection timing and fuel injection amount of the fuel injection valve 15, the ignition timing of the spark plug 14, and the like are controlled.

暖機完了後においては、通常の成層燃焼運転ないしは均質燃焼運転が行われる。例えば、低速低負荷側の所定の領域では、通常の成層燃焼運転として、圧縮行程の適宜な時期に燃料噴射が行われ、かつ圧縮上死点前の時期に点火が行われる。燃料噴霧は点火プラグ14近傍に層状に集められ、これにより、例えば空燃比をリーンとした成層燃焼が実現される。また、高速高負荷側の所定の領域では、通常の均質燃焼運転として、吸気行程中に燃料噴射が行われ、かつ圧縮上死点前のMBT点近傍において点火が行われる。この場合は、燃料は筒内で均質な混合気となる。   After completion of warm-up, normal stratified combustion operation or homogeneous combustion operation is performed. For example, in a predetermined region on the low speed and low load side, as normal stratified combustion operation, fuel injection is performed at an appropriate time in the compression stroke, and ignition is performed at a time before the compression top dead center. The fuel spray is collected in a layered manner in the vicinity of the spark plug 14, thereby realizing, for example, stratified combustion with a lean air-fuel ratio. Further, in a predetermined region on the high speed and high load side, as normal homogeneous combustion operation, fuel injection is performed during the intake stroke, and ignition is performed in the vicinity of the MBT point before the compression top dead center. In this case, the fuel becomes a homogeneous mixture in the cylinder.

本発明は、触媒コンバータ10の早期昇温が要求される内燃機関1の冷間始動時において、排気温度を高温とするように、超リタード燃焼を行うものであり、以下、この超リタード燃焼の燃料噴射時期および点火時期を図2に基づいて説明する。   The present invention performs super retard combustion so that the exhaust gas temperature becomes high at the time of cold start of the internal combustion engine 1 where early temperature rise of the catalytic converter 10 is required. The fuel injection timing and ignition timing will be described with reference to FIG.

図2は、超リタード燃焼の際の燃料噴射時期および点火時期の一実施例を示しており、点火時期ADVは、排気温度を十分に高く得るために、10°〜50°ATDCに設定される。つまり、期間Bは、10°〜50°CAである。また、圧縮行程中に1回目の燃料噴射I1を行い、かつ膨張行程中に2回目の燃料噴射I2を行う。1回目の燃料噴射I1は、点火プラグ14近傍の燃焼室3の一部に拡がったリッチな混合気を形成するためのものであり、その燃料噴射時期(詳しくは燃料噴射開始時期)から点火時期ADVまでの期間Cが、例えば50°〜140°CAに設定される。つまり、この1回目の燃料噴射I1による燃料噴霧が、燃焼室3内にある程度拡散するものの、過度に拡散しないように、その燃料噴射時期が設定される。期間Cが過度に長いと、燃料噴霧が拡散し過ぎ、クエンチ領域やクレビス内に燃料成分が入ってしまう。   FIG. 2 shows an example of the fuel injection timing and ignition timing during super retard combustion, and the ignition timing ADV is set to 10 ° to 50 ° ATDC in order to obtain a sufficiently high exhaust temperature. . That is, the period B is 10 ° to 50 ° CA. Further, the first fuel injection I1 is performed during the compression stroke, and the second fuel injection I2 is performed during the expansion stroke. The first fuel injection I1 is for forming a rich air-fuel mixture that spreads in a part of the combustion chamber 3 in the vicinity of the spark plug 14, and from the fuel injection timing (specifically, the fuel injection start timing) to the ignition timing. The period C until ADV is set to 50 ° to 140 ° CA, for example. In other words, the fuel injection timing is set so that the fuel spray by the first fuel injection I1 diffuses in the combustion chamber 3 to some extent but does not diffuse excessively. When the period C is excessively long, the fuel spray is excessively diffused, and the fuel component enters the quench region or the clevis.

そして、膨張行程中の2回目の燃料噴射I2は、局部的にさらにリッチな混合気塊が点火時期ADVにおいてちょうど点火プラグ14に到達するように、点火時期ADVから所定期間Aだけ先行したタイミングに行われる。この燃料噴射時期(詳しくは燃料噴射開始時期)から点火時期ADVまでの期間Aは、基本的に燃料噴射弁15から点火プラグ14までの距離に相関するが、例えば、10°〜20°CAである。   Then, the second fuel injection I2 during the expansion stroke is performed at a timing preceding the ignition timing ADV by a predetermined period A so that a locally richer air-fuel mixture reaches the ignition plug 14 at the ignition timing ADV. Done. The period A from the fuel injection timing (specifically, the fuel injection start timing) to the ignition timing ADV basically correlates with the distance from the fuel injection valve 15 to the spark plug 14, for example, 10 ° to 20 ° CA. is there.

なお、このとき、空燃比(2回の噴射による燃焼室全体の平均的空燃比)は、理論空燃比ないしはこれよりも若干リーン(16〜17程度)に設定される。これにより、HCの後燃えに必要な必要十分な量の酸素が確保される。   At this time, the air-fuel ratio (the average air-fuel ratio of the entire combustion chamber by two injections) is set to the stoichiometric air-fuel ratio or slightly lean (about 16 to 17). Thereby, a necessary and sufficient amount of oxygen necessary for the afterburning of HC is ensured.

また、燃料噴霧のエネルギによる乱れに依存せずに燃焼を行うので、燃圧としては、後述するように燃焼が成立する範囲内で、比較的低い燃圧が用いられる。   Further, since combustion is performed without depending on the disturbance due to the energy of the fuel spray, a relatively low fuel pressure is used as the fuel pressure within a range where combustion is established as will be described later.

上記のように燃料噴射を行うことにより、点火時期ADVにおいては、図3に示すように、点火プラグ14を囲む2段階の濃度を有するコンパクトな成層混合気が形成される。つまり、1回目の燃料噴射I1によって、理論空燃比よりもリッチな第1の混合気塊が符号31で示すように点火プラグ14近傍の燃焼室3の一部に形成され、その内側に、2回目の燃料噴射I2による、さらにリッチな第2の混合気塊が符号32に示すように点火プラグ14近傍に局部的に形成される。2回の燃料噴射は、いずれも上死点近傍の筒内圧が高い場に向かって行われ、かつ燃圧も比較的低いので、いずれの噴霧もコンパクトなものとなり、第1の混合気塊31の外側は、基本的に燃料が拡散していない新気の層となる。そして、このように成層化した状態で点火プラグ14により第2の混合気塊32に点火が行われ、比較的に緩慢に燃焼が行われる。   By performing the fuel injection as described above, at the ignition timing ADV, as shown in FIG. 3, a compact stratified air-fuel mixture having a two-stage concentration surrounding the spark plug 14 is formed. That is, by the first fuel injection I1, a first air-fuel mixture richer than the stoichiometric air-fuel ratio is formed in a part of the combustion chamber 3 in the vicinity of the spark plug 14 as indicated by reference numeral 31, and 2 A richer second air-fuel mixture resulting from the second fuel injection I2 is locally formed in the vicinity of the spark plug 14 as indicated by reference numeral 32. Both fuel injections are performed toward a field where the in-cylinder pressure in the vicinity of the top dead center is high and the fuel pressure is relatively low. The outside is basically a fresh air layer where fuel is not diffused. Then, in this state of stratification, the second air-fuel mixture 32 is ignited by the spark plug 14 and combustion is performed relatively slowly.

この本発明の方式のリタード燃焼では、1回目の燃料噴射I1の噴射時期は、燃焼安定性つまり失火率やトルク変動に殆ど影響せず、また2回目の燃料噴射I2の噴射時期の変動が失火率やトルク変動に与える影響も小さい。   In the retarded combustion according to the method of the present invention, the injection timing of the first fuel injection I1 hardly affects the combustion stability, that is, the misfire rate and torque fluctuation, and the fluctuation of the injection timing of the second fuel injection I2 is misfired. The effect on the rate and torque fluctuation is small.

図4は、膨張行程噴射つまり2回目の燃料噴射I2の噴射時期が最適噴射時期から変化した場合の失火率およびトルク変動の変化を示しており、実施例の特性では、噴射時期が多少変化しても、失火率やトルク変動が急激に悪化しない。これに対し、膨張行程中に1回に全量を噴射する参考例の特性では、その噴射時期が最適噴射時期から僅かでも変化すると、失火率やトルク変動が急激に悪化してしまう。   FIG. 4 shows the change in misfire rate and torque fluctuation when the expansion stroke injection, that is, the injection timing of the second fuel injection I2 is changed from the optimal injection timing. In the characteristics of the embodiment, the injection timing slightly changes. However, the misfire rate and torque fluctuation do not deteriorate rapidly. On the other hand, in the characteristics of the reference example in which the entire amount is injected at a time during the expansion stroke, if the injection timing changes even slightly from the optimal injection timing, the misfire rate and torque fluctuation are rapidly deteriorated.

従って、本発明のものでは、サイクル毎の微小な回転数の変化や微小な負荷の変化などにより2回目の燃料噴射I2の噴射時期の最適値が変化しても、失火率やトルク変動が増大することがなく、安定した燃焼が得られる。つまりサイクル変化に対するロバスト性が高いものとなる。   Therefore, in the present invention, even if the optimum value of the injection timing of the second fuel injection I2 changes due to a minute change in the rotational speed or a minute load for each cycle, the misfire rate and torque fluctuation increase. Stable combustion can be obtained. In other words, the robustness against cycle changes is high.

また、本発明では、混合気がコンパクトとなり、クエンチ領域やクレビスに燃料成分が入り込まないので、これらの箇所から発生するHCが低減する。   Further, in the present invention, the air-fuel mixture becomes compact and the fuel component does not enter the quench region or the clevis, so that HC generated from these portions is reduced.

さらに、図5の(a)に示すように、本発明の燃焼方式では、燃圧を低くしても燃焼の悪化(例えばトルク変動)が少なく、他方、燃圧を低くすることで、(b)に示すように、排気温度がより高く得られ、かつこれに伴って、(c)に示すように、HC排出量が低減する。これは、燃圧を低くすることで、燃焼が遅くなり、より遅くまで燃焼が行われるためである。従って、本発明では、燃焼が成立する範囲内で、燃圧を低くすることが望ましい。これにより、排気温度がより高く得られ、かつHCがより低減する。   Further, as shown in FIG. 5 (a), in the combustion method of the present invention, even if the fuel pressure is lowered, the deterioration of combustion (for example, torque fluctuation) is small, and on the other hand, by reducing the fuel pressure, As shown in the figure, the exhaust gas temperature is higher, and accordingly, as shown in (c), the HC emission amount is reduced. This is because by lowering the fuel pressure, the combustion becomes slower and the combustion is performed later. Therefore, in the present invention, it is desirable to reduce the fuel pressure within a range where combustion is established. As a result, the exhaust temperature can be increased and HC can be further reduced.

一方、上記の燃焼終了後、排気弁が開いた瞬間に、未燃HCが排気ポートへ流出し、いわゆる一次ピークとなるが、上記実施例の構成では、燃焼室3の排気弁側の側部に設けられた燃料噴射弁15から吸気弁側へ向かって燃料が噴射されるので、図3に示したように、混合気が吸気弁側に相対的に多く偏在し、排気弁側に存在する燃料の割合が相対的に少なくなる。そのため、膨張行程末期に燃焼室3内に生じる未燃のHCは、吸気弁寄りに多く存在し、排気弁側は相対的に少なくなる。従って、排気弁が開いた瞬間に排気ポート側へ流出する未燃HCが減少し、HC濃度の一次ピークが低減する。   On the other hand, the unburned HC flows out into the exhaust port at the moment when the exhaust valve is opened after the end of the combustion, and becomes a so-called primary peak. In the configuration of the above embodiment, the side portion of the combustion chamber 3 on the exhaust valve side Since the fuel is injected from the fuel injection valve 15 provided in the engine toward the intake valve side, as shown in FIG. 3, the air-fuel mixture is relatively unevenly distributed on the intake valve side and exists on the exhaust valve side. The proportion of fuel is relatively low. Therefore, a large amount of unburned HC generated in the combustion chamber 3 at the end of the expansion stroke exists near the intake valve, and the exhaust valve side is relatively small. Accordingly, the unburned HC flowing out to the exhaust port side at the moment when the exhaust valve is opened is reduced, and the primary peak of the HC concentration is reduced.

次に、上記のように混合気を吸気弁側に多く偏在させるための燃料噴射弁15等の配置の異なる実施例を説明する。   Next, embodiments in which the fuel injection valve 15 and the like are arranged differently so that the air-fuel mixture is largely distributed on the intake valve side as described above will be described.

図6の実施例においては、1つの気筒に対し、一対の吸気弁41と一対の排気弁42とが設けられており、これらの4つの弁に囲まれた燃焼室3天井面中央部に、燃料噴射弁15が配置されているとともに、該燃料噴射弁15に隣接して点火プラグ14が配置されている。上記燃料噴射弁15からは、ピストン2頂部へ向かってシリンダ軸線に沿うように燃料が噴射される。より具体的には、燃焼室天井面において、シリンダ軸線cよりも一対の排気弁42寄りに偏って燃料噴射弁15先端が位置し、かつ一対の吸気弁41寄りに偏って点火プラグ14が位置する。上記燃料噴射弁15は、その中心軸線mと同軸状に円錐形の噴霧が形成される一般的な構成であって、先端位置に対し基端側が排気弁42寄りとなるように、中心軸線mがシリンダ軸線cに対し傾斜した姿勢でシリンダヘッド4に取り付けられている。従って、燃料噴射方向は、吸気弁41側へ傾斜しており、上述のように機関冷機時に圧縮上死点付近で噴射された燃料は、燃焼室3の中で、吸気弁41寄りに相対的に多く偏在し、排気弁42側に存在する燃料の割合は相対的に少なくなる。   In the embodiment of FIG. 6, a pair of intake valves 41 and a pair of exhaust valves 42 are provided for one cylinder, and in the center of the ceiling surface of the combustion chamber 3 surrounded by these four valves, A fuel injection valve 15 is disposed, and a spark plug 14 is disposed adjacent to the fuel injection valve 15. From the fuel injection valve 15, fuel is injected along the cylinder axis toward the top of the piston 2. More specifically, on the combustion chamber ceiling, the tip of the fuel injection valve 15 is located closer to the pair of exhaust valves 42 than the cylinder axis c, and the spark plug 14 is located closer to the pair of intake valves 41. To do. The fuel injection valve 15 has a general configuration in which a conical spray is formed coaxially with the center axis m thereof, and the center axis m so that the base end side is closer to the exhaust valve 42 with respect to the tip position. Is attached to the cylinder head 4 in a posture inclined with respect to the cylinder axis c. Therefore, the fuel injection direction is inclined toward the intake valve 41 side, and the fuel injected near the compression top dead center when the engine is cold as described above is relatively close to the intake valve 41 in the combustion chamber 3. The ratio of the fuel present on the exhaust valve 42 side is relatively small.

そのため、前述した実施例と同じく、排気弁42が開いた瞬間に排気ポート43側へ流出する未燃HCが減少し、HC濃度の一次ピークが低減する。   Therefore, as in the above-described embodiment, unburned HC flowing out to the exhaust port 43 side at the moment when the exhaust valve 42 is opened is reduced, and the primary peak of the HC concentration is reduced.

なお、上記構成では、燃料噴射弁15先端が排気弁42寄りに偏って位置しているため、均質燃焼運転として吸気弁41が開いている吸気行程中に燃料を噴射した際に、燃料噴霧が吸気弁41の弁頭部に衝突することがない。従って、この吸気弁41への燃料付着による均質燃焼運転時のHC悪化が回避される。   In the above configuration, since the tip of the fuel injection valve 15 is biased toward the exhaust valve 42, the fuel spray is injected when the fuel is injected during the intake stroke in which the intake valve 41 is open as a homogeneous combustion operation. There is no collision with the valve head of the intake valve 41. Therefore, the deterioration of HC during the homogeneous combustion operation due to the fuel adhering to the intake valve 41 is avoided.

次に、図7に示す実施例では、燃焼室3に臨む燃料噴射弁15の先端位置が、シリンダ軸線c上に位置している。燃料噴射弁15の中心軸線mは図6の実施例と同様に傾斜しており、従って、圧縮上死点付近で噴射された燃料は、上記実施例と同様に、吸気弁41寄りに多く偏在する。なお、この場合、点火プラグ14の位置としては、図示するように燃料噴射弁15よりも吸気弁41側に配置してもよく、あるいは、燃料噴射弁15よりも排気弁42側に配置してもよい。   Next, in the embodiment shown in FIG. 7, the tip position of the fuel injection valve 15 facing the combustion chamber 3 is located on the cylinder axis c. The central axis m of the fuel injection valve 15 is inclined in the same manner as in the embodiment of FIG. 6, so that the fuel injected near the compression top dead center is unevenly distributed closer to the intake valve 41 as in the above embodiment. To do. In this case, the position of the ignition plug 14 may be arranged closer to the intake valve 41 than the fuel injection valve 15 as shown, or may be arranged closer to the exhaust valve 42 than the fuel injection valve 15. Also good.

次に、図8に示す実施例は、図6、図7の実施例と同様に傾斜した姿勢で取り付けられる燃料噴射弁15の先端位置を、シリンダ軸線cよりもさらに吸気弁41寄りに配置したものである。この場合、点火プラグ14は、燃料噴射弁15よりも排気弁42側に配置される。   Next, in the embodiment shown in FIG. 8, the tip position of the fuel injection valve 15 attached in an inclined posture is arranged closer to the intake valve 41 than the cylinder axis c in the same manner as the embodiments of FIGS. Is. In this case, the spark plug 14 is disposed closer to the exhaust valve 42 than the fuel injection valve 15.

また、図9に示す実施例は、燃料噴射弁15の中心軸線mがシリンダ軸線cに一致するように、燃料噴射弁15が燃焼室3の中心に垂直に配置されているとともに、燃料が吸気弁41寄りへ多く偏在するように、噴霧中心軸線fが、燃料噴射弁15の中心軸線mに対し吸気弁41側へ傾斜している。つまり、円錐形の噴霧が燃料噴射弁15自体に対して斜めに噴射される構成となっている。この場合、点火プラグ14は、図示していないが、燃料噴射弁15よりも吸気弁41側に配置してもよく、排気弁42側に配置してもよい。   Further, in the embodiment shown in FIG. 9, the fuel injection valve 15 is arranged perpendicularly to the center of the combustion chamber 3 so that the center axis m of the fuel injection valve 15 coincides with the cylinder axis c, and the fuel is taken into the intake air. The spray center axis f is inclined toward the intake valve 41 side with respect to the center axis m of the fuel injection valve 15 so as to be unevenly distributed closer to the valve 41. That is, the conical spray is injected obliquely with respect to the fuel injection valve 15 itself. In this case, although not shown, the spark plug 14 may be disposed closer to the intake valve 41 than the fuel injection valve 15 or may be disposed closer to the exhaust valve 42.

図10に示す実施例は、図9の実施例と同じく、燃料噴射弁15の中心軸線mがシリンダ軸線cに一致するように、燃料噴射弁15が燃焼室3の中心に垂直に配置されているものであって、特に、噴霧内の燃料分布が不均一となる形式の燃料噴射弁15が用いられ、これを利用して、燃料が吸気弁41寄りへ多く偏在するように構成されている。   In the embodiment shown in FIG. 10, as in the embodiment of FIG. 9, the fuel injection valve 15 is arranged perpendicularly to the center of the combustion chamber 3 so that the center axis m of the fuel injection valve 15 coincides with the cylinder axis c. In particular, a fuel injection valve 15 of a type in which the fuel distribution in the spray is non-uniform is used, and by using this, fuel is unevenly distributed closer to the intake valve 41. .

一つの例としては、図11(a),(b)に示すように、先端面15aに多数の微細な噴孔15bを配置した公知のマルチホール型燃料噴射弁を用い、その噴孔15bを一方の側に多く配置することによって、細い噴霧Fからなる燃料の分布を偏らせることができる。   As an example, as shown in FIGS. 11 (a) and 11 (b), a known multi-hole type fuel injection valve in which a large number of fine injection holes 15b are arranged on the front end surface 15a is used. By arranging a large amount on one side, the distribution of the fuel composed of the fine spray F can be biased.

また、他の例としては、図12(a),(b)に示すように、噴孔部分の形状を異形とすることで、断面C字形の噴霧Fを形成するようにした公知の燃料噴射弁15を用いることができる。このものでは、燃料噴射弁15の中心軸線mに直交する面b−bでの噴霧の断面における燃料の分布が、C字形の中央部に多く偏ったものとなる。従って、吸気弁41寄りに燃料を多く偏らせることができる。   As another example, as shown in FIGS. 12 (a) and 12 (b), a known fuel injection in which a spray F having a C-shaped cross section is formed by making the shape of the injection hole portion irregular. A valve 15 can be used. In this case, the fuel distribution in the cross section of the spray on the plane bb orthogonal to the central axis m of the fuel injection valve 15 is largely biased toward the C-shaped central portion. Therefore, a large amount of fuel can be biased toward the intake valve 41.

次に、図13の実施例は、燃料噴射弁15を、その中心軸線mがシリンダ軸線cと平行になるように、かつシリンダ軸線cから排気弁42側に偏って位置するように、配置したものである。そして、図11あるいは図12で説明した構成の燃料噴射弁15を用いることで、燃料が吸気弁41寄りに多く偏在するようになっている。この実施例では、燃料噴射弁15が吸気弁41から離れて位置するので、図6の実施例で説明したように、吸気行程噴射の際に、吸気弁41の弁頭部に噴霧が衝突することがない。   Next, in the embodiment of FIG. 13, the fuel injection valve 15 is arranged so that the center axis m thereof is parallel to the cylinder axis c and is offset from the cylinder axis c to the exhaust valve 42 side. Is. Then, by using the fuel injection valve 15 having the configuration described with reference to FIG. 11 or FIG. 12, a large amount of fuel is unevenly distributed near the intake valve 41. In this embodiment, since the fuel injection valve 15 is located away from the intake valve 41, the spray collides with the valve head of the intake valve 41 during the intake stroke injection as described in the embodiment of FIG. There is nothing.

次に、図14の実施例は、燃料噴射弁15を、その中心軸線mがシリンダ軸線cと平行になるように、かつシリンダ軸線cから吸気弁41側に偏って位置するように、配置したものである。噴霧中心軸線は燃料噴射弁15の中心軸線mと一致している。従って、燃料が吸気弁41寄りに多く偏在する。   Next, in the embodiment of FIG. 14, the fuel injection valve 15 is arranged so that the center axis m thereof is parallel to the cylinder axis c and is offset from the cylinder axis c toward the intake valve 41. Is. The spray center axis coincides with the center axis m of the fuel injection valve 15. Therefore, a large amount of fuel is unevenly distributed closer to the intake valve 41.

次に、ピストン2の頂部の形状の工夫によって、圧縮上死点後に噴射された燃料が吸気弁41寄りに相対的に多く偏在するように構成した実施例について説明する。   Next, an embodiment in which the fuel injected after the compression top dead center is relatively unevenly distributed closer to the intake valve 41 by devising the shape of the top of the piston 2 will be described.

図15の実施例は、ピストン2の頂部の吸気弁41側にキャビティ45が形成されているとともに、排気弁42側に、該排気弁42に近接する凸部46が形成されているものであって、特に、凸部46頂面と排気弁42側の燃焼室3天井面との間には、スキッシュによる噴霧引き込み効果が生じない程度の比較的大きな間隙47が設けられている。この実施例では、燃焼室3の中心に位置する燃料噴射弁15から垂直に噴射された燃料噴霧は、キャビティ45の底面に衝突して吸気弁41側へ反射する。これにより、吸気弁41側に多く偏在する。   In the embodiment of FIG. 15, a cavity 45 is formed on the top side of the piston 2 on the intake valve 41 side, and a convex portion 46 close to the exhaust valve 42 is formed on the exhaust valve 42 side. In particular, a relatively large gap 47 is provided between the top surface of the convex portion 46 and the ceiling surface of the combustion chamber 3 on the exhaust valve 42 side so as not to cause a spray drawing effect by squish. In this embodiment, the fuel spray injected vertically from the fuel injection valve 15 located at the center of the combustion chamber 3 collides with the bottom surface of the cavity 45 and is reflected to the intake valve 41 side. Thereby, many are unevenly distributed in the intake valve 41 side.

また図16の実施例は、ピストン2の頂部の略中央部にキャビティ45が形成されているとともに、吸気弁41側に位置する凸部46の頂面が、吸気弁41側の燃焼室3天井面との間でスキッシュエリアを構成するように、互いに近接する構成となっている。この実施例では、ピストン2が上死点から下降する際に、吸気弁41側のスキッシュエリアによって引き込み効果が生じ、上死点後にキャビティ45へ向けて噴射された燃料噴霧が吸気弁41側へ引き寄せられる。これにより、吸気弁41側に相対的に多くの燃料が偏在する。   In the embodiment of FIG. 16, a cavity 45 is formed in the substantially central portion of the top of the piston 2, and the top surface of the convex portion 46 located on the intake valve 41 side is the ceiling of the combustion chamber 3 on the intake valve 41 side. It is the structure which mutually adjoins so that a squish area may be comprised between surfaces. In this embodiment, when the piston 2 descends from the top dead center, a pulling effect is produced by the squish area on the intake valve 41 side, and the fuel spray injected toward the cavity 45 after the top dead center moves to the intake valve 41 side. Gravitate. Thereby, a relatively large amount of fuel is unevenly distributed on the intake valve 41 side.

本発明に係る内燃機関全体のシステム構成を示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 本発明の超リタード燃焼の燃料噴射時期および点火時期を示す特性図。The characteristic view which shows the fuel injection timing and ignition timing of the super retard combustion of this invention. 燃焼室内に形成される成層混合気の状態を示す説明図。Explanatory drawing which shows the state of the stratified mixture formed in a combustion chamber. 膨張行程噴射の噴射時期と(a)トルク変動および(b)失火率との関係を示す特性図。The characteristic view which shows the relationship between the injection timing of expansion stroke injection, (a) torque fluctuation, and (b) misfire rate. 燃圧と、(a)トルク変動、(b)排気温度、(c)HC排出量、との関係を示す特性図。The characteristic view which shows the relationship between a fuel pressure, (a) torque fluctuation, (b) exhaust temperature, (c) HC discharge | emission amount. 燃料噴射弁および点火プラグの配置の異なる実施例を示す断面図。Sectional drawing which shows the Example from which arrangement | positioning of a fuel injection valve and a spark plug differs. 燃料噴射弁先端位置をシリンダ軸線c上とした実施例の断面図。Sectional drawing of the Example which made the fuel injection valve front-end | tip position the cylinder axis line c. 燃料噴射弁先端位置を吸気弁寄りとした実施例の断面図。Sectional drawing of the Example which made the fuel injection valve front-end | tip position close to the intake valve. 噴霧中心軸線が燃料噴射弁の中心軸線に対し傾斜した実施例の断面図。Sectional drawing of the Example which the spray center axis line inclined with respect to the center axis line of a fuel injection valve. 噴霧内の燃料分布を不均一とした実施例の断面図。Sectional drawing of the Example which made the fuel distribution in spray non-uniform | heterogenous. 燃料分布が不均一となる燃料噴射弁の一例の説明図であり、(a)は噴霧を側方から見た説明図、(b)は正面から見た説明図。It is explanatory drawing of an example of the fuel injection valve from which fuel distribution becomes non-uniform | heterogenous, (a) is explanatory drawing which looked at the spray from the side, (b) is explanatory drawing seen from the front. 燃料分布が不均一となる燃料噴射弁の他の例の説明図であり、(a)は噴霧を側方から見た説明図、(b)はb−b線に沿った噴霧の断面図。It is explanatory drawing of the other example of the fuel injection valve from which fuel distribution becomes non-uniform | heterogenous, (a) is explanatory drawing which looked at the spray from the side, (b) is sectional drawing of the spray along the bb line. 燃料噴射弁を排気弁寄りに配置した実施例の断面図。Sectional drawing of the Example which has arrange | positioned the fuel injection valve near the exhaust valve. 燃料噴射弁を吸気弁寄りに配置した実施例の断面図。Sectional drawing of the Example which has arrange | positioned the fuel injection valve near the intake valve. ピストン頂部の形状により燃料を吸気弁寄りに多く偏在させるようにした一実施例を示す断面図。FIG. 3 is a cross-sectional view showing an embodiment in which a large amount of fuel is unevenly distributed closer to the intake valve depending on the shape of the piston top. ピストン頂部の形状により燃料を吸気弁寄りに多く偏在させるようにした他の実施例を示す断面図。Sectional drawing which shows the other Example which made it unevenly distribute fuel near the intake valve by the shape of the piston top part. 一般的な筒内直接噴射式火花点火内燃機関におけるHC排出濃度の特性を、その排出メカニズムとともに示した特性図。The characteristic view which showed the characteristic of HC discharge concentration in the general direct injection type spark ignition internal combustion engine with the discharge mechanism.

符号の説明Explanation of symbols

3…燃焼室
10…触媒コンバータ
14…点火プラグ
15…燃料噴射弁
25…コントロールユニット
3 ... Combustion chamber 10 ... Catalytic converter 14 ... Spark plug 15 ... Fuel injection valve 25 ... Control unit

Claims (11)

筒内に直接燃料を噴射する燃料噴射弁および点火プラグを備え、所定の運転状態のときに、点火時期を圧縮上死点後に設定した超リタード燃焼を行う筒内直接噴射式火花点火内燃機関において、
超リタード燃焼時には、圧縮行程中に1回目の燃料噴射を行い、点火プラグ近傍の燃焼室の一部にリッチな混合気を形成するとともに、
局部的にさらにリッチな混合気が点火時期に点火プラグに到達するように点火時期から所定期間先行したタイミングでかつ膨張行程中に2回目の燃料噴射を行い、
点火プラグ近傍の燃焼室の一部に2段階の成層混合気を形成した状態で点火するように構成され、
さらに、噴射された燃料による混合気が、燃焼室の中で吸気弁寄りに相対的に多く偏在するように構成されていることを特徴とする筒内直接噴射式火花点火内燃機関。
An in-cylinder direct injection spark ignition internal combustion engine that includes a fuel injection valve that directly injects fuel into a cylinder and an ignition plug, and performs super retard combustion with ignition timing set after compression top dead center in a predetermined operating state ,
During super retard combustion, the first fuel injection is performed during the compression stroke to form a rich air-fuel mixture in a part of the combustion chamber near the spark plug,
A second fuel injection is performed during the expansion stroke at a timing preceding the ignition timing by a predetermined period so that a locally richer air-fuel mixture reaches the ignition plug at the ignition timing,
It is configured to ignite in a state where a two-stage stratified mixture is formed in a part of the combustion chamber near the spark plug,
Further, the direct injection type spark ignition internal combustion engine is characterized in that the air-fuel mixture by the injected fuel is configured to be relatively unevenly distributed closer to the intake valve in the combustion chamber.
超リタード燃焼における点火時期は、圧縮上死点後10°〜50°CAであることを特徴とする請求項1に記載の筒内直接噴射式火花点火内燃機関。   The in-cylinder direct injection spark ignition internal combustion engine according to claim 1, wherein the ignition timing in the super retard combustion is 10 ° to 50 ° CA after compression top dead center. 2回目の燃料噴射の噴射開始時期から点火時期までの期間が10°〜20°CAであることを特徴とする請求項1または2に記載の筒内直接噴射式火花点火内燃機関。   The in-cylinder direct injection spark ignition internal combustion engine according to claim 1 or 2, wherein a period from an injection start timing of the second fuel injection to an ignition timing is 10 ° to 20 ° CA. 1回目の燃料噴射の噴射開始時期から点火時期までの期間が50°〜140°CAであることを特徴とする請求項1〜3のいずれかに記載の筒内直接噴射式火花点火内燃機関。   The in-cylinder direct injection spark ignition internal combustion engine according to any one of claims 1 to 3, wherein a period from an injection start timing to an ignition timing of the first fuel injection is 50 ° to 140 ° CA. 超リタード燃焼における空燃比は、理論空燃比もしくは若干リーンであることを特徴とする請求項1〜4のいずれかに記載の筒内直接噴射式火花点火内燃機関。   The in-cylinder direct injection spark ignition internal combustion engine according to any one of claims 1 to 4, wherein the air-fuel ratio in super retarded combustion is a stoichiometric air-fuel ratio or slightly lean. 所定の運転状態として、排気ガス温度の昇温が要求されたときに、上記超リタード燃焼を実行することを特徴とする請求項1〜5のいずれかに記載の筒内直接噴射式火花点火内燃機関。   The in-cylinder direct injection spark ignition internal combustion engine according to any one of claims 1 to 5, wherein the super retard combustion is executed when a temperature increase of the exhaust gas is required as a predetermined operation state. organ. 燃焼が成立する範囲内で低い燃圧を用いることを特徴とする請求項1〜6のいずれかに記載の筒内直接噴射式火花点火内燃機関。   The direct injection spark ignition internal combustion engine according to any one of claims 1 to 6, wherein a low fuel pressure is used within a range where combustion is established. 上記燃料噴射弁が、燃焼室の排気弁側の側部に配置されており、吸気弁側へ向かって燃料を噴射することを特徴とする請求項1〜7のいずれかに記載の筒内直接噴射式火花点火内燃機関。   The in-cylinder direct according to any one of claims 1 to 7, wherein the fuel injection valve is disposed on a side of the combustion chamber on the exhaust valve side and injects fuel toward the intake valve side. Injection spark ignition internal combustion engine. 上記燃料噴射弁が、燃焼室天井面中央部に配置され、ピストン頂部へ向かって燃料を噴射するとともに、燃料噴射方向が吸気弁側へ向かうように、上記燃料噴射弁の中心軸線が、シリンダ軸線に対し傾斜していることを特徴とする請求項1〜7のいずれかに記載の筒内直接噴射式火花点火内燃機関。   The fuel injection valve is disposed at the center of the combustion chamber ceiling surface and injects fuel toward the top of the piston, and the central axis of the fuel injection valve is a cylinder axis so that the fuel injection direction is toward the intake valve. The in-cylinder direct injection spark ignition internal combustion engine according to any one of claims 1 to 7, wherein the internal combustion engine is inclined with respect to the cylinder. 上記燃料噴射弁が、燃焼室天井面中央部に配置され、ピストン頂部へ向かって燃料を噴射するとともに、燃料噴射方向が吸気弁側へ向かうように、上記燃料噴射弁の中心軸線に対し、噴霧中心軸線が傾斜していることを特徴とする請求項1〜7のいずれかに記載の筒内直接噴射式火花点火内燃機関。   The fuel injection valve is disposed at the center of the combustion chamber ceiling surface, and injects fuel toward the top of the piston, and sprays with respect to the central axis of the fuel injection valve so that the fuel injection direction is toward the intake valve. The in-cylinder direct injection spark ignition internal combustion engine according to any one of claims 1 to 7, wherein a central axis is inclined. 上記燃料噴射弁が、燃焼室天井面中央部に配置され、ピストン頂部へ向かって燃料を噴射するとともに、燃料が吸気弁寄りに多く偏在するように、燃料噴射弁の中心軸線に直交する噴霧の断面における燃料の分布が不均一となっていることを特徴とする請求項1〜7のいずれかに記載の筒内直接噴射式火花点火内燃機関。
The fuel injection valve is disposed at the center of the combustion chamber ceiling surface, and injects fuel toward the piston top, and sprays orthogonal to the central axis of the fuel injection valve so that the fuel is unevenly distributed closer to the intake valve. The in-cylinder direct injection spark ignition internal combustion engine according to any one of claims 1 to 7, wherein the fuel distribution in the cross section is non-uniform.
JP2006019938A 2006-01-30 2006-01-30 Cylinder direct-injection type spark ignition internal combustion engine Pending JP2007198324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006019938A JP2007198324A (en) 2006-01-30 2006-01-30 Cylinder direct-injection type spark ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006019938A JP2007198324A (en) 2006-01-30 2006-01-30 Cylinder direct-injection type spark ignition internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007198324A true JP2007198324A (en) 2007-08-09

Family

ID=38453154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006019938A Pending JP2007198324A (en) 2006-01-30 2006-01-30 Cylinder direct-injection type spark ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007198324A (en)

Similar Documents

Publication Publication Date Title
US6318074B1 (en) Control device for direct injection engine
US6345499B1 (en) Catalyst light-off method and device for direct injection engine
US7096853B2 (en) Direct fuel injection/spark ignition engine control device
US7104249B2 (en) Direct fuel injection/spark ignition engine control device
JP2002188486A (en) Self-ignition type engine and its control device
JP4650126B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JP4379286B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4643967B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4492399B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device and control method
JP4631725B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006250050A (en) Controller of cylinder direct injection type spark ignition internal combustion engine
JP2006177179A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP2007192235A (en) Control device and method for spark ignition internal combustion engine
JP4281647B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4631724B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4389831B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2008075533A (en) Control device and control method for cylinder direct injection type spark ignition internal combustion engine
JP2007198324A (en) Cylinder direct-injection type spark ignition internal combustion engine
JP5195383B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JP4385916B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4311300B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006266119A (en) Control device for in-cylinder direct injection type spark ignition internal combustion engine
JP2006037792A (en) Cylinder direct injection type spark ignition internal combustion engine
JP2006112364A (en) Control device of cylinder direct injection type spark ignition internal combustion engine
JP4155242B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller