JP2007197916A - Base-isolated structure - Google Patents

Base-isolated structure Download PDF

Info

Publication number
JP2007197916A
JP2007197916A JP2006014692A JP2006014692A JP2007197916A JP 2007197916 A JP2007197916 A JP 2007197916A JP 2006014692 A JP2006014692 A JP 2006014692A JP 2006014692 A JP2006014692 A JP 2006014692A JP 2007197916 A JP2007197916 A JP 2007197916A
Authority
JP
Japan
Prior art keywords
seismic isolation
foundation
sliding
floor
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006014692A
Other languages
Japanese (ja)
Other versions
JP4137127B2 (en
Inventor
Mitsuo Miyazaki
光生 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dynamic Design Inc Japan
Original Assignee
Dynamic Design Inc Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynamic Design Inc Japan filed Critical Dynamic Design Inc Japan
Priority to JP2006014692A priority Critical patent/JP4137127B2/en
Publication of JP2007197916A publication Critical patent/JP2007197916A/en
Application granted granted Critical
Publication of JP4137127B2 publication Critical patent/JP4137127B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a base-isolated building, which dispenses with a double foundation as the demerit of the base-isolated building, and a clearance in the outer peripheral section of the building. <P>SOLUTION: A first layer floor surface (foundation-side structure) of the building is constructed in such a manner as to be integrated with ground. A sliding plate of a sliding bearing is arranged upward on the top surface of the first layer floor surface, and the sliding bearing with a rotary mechanism is arranged in the column base part of an upper structure directly above the sliding plate. An upside floor surface for connecting the respective column base parts together is constructed; many rolling bearings or sliding bearings are interposed between the upside floor surface and the foundation-side structure; and the self-weight of the upside floor surface and a live load on it are borne by the foundation-side structure. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、地盤と構造物の間に免震装置(各種の積層ゴム、すべり系支承、転がり系支承等を含む)を配置して、構造物を大地震時の強い地震動から保護する免震構造物に関するものである。   The present invention provides a seismic isolation device (including various laminated rubbers, sliding bearings, rolling bearings, etc.) between the ground and the structure to protect the structure from strong earthquake motion during a large earthquake. It relates to structures.

免震構造は、大地震時の強い地震動に対して構造物の揺れそのものを低減できるので、建物の構造骨組みの耐震安全性が高まるだけでなく、内部の家具や設備備品など収容物の転倒や落下・衝突の危険性が下がり、建物全体の耐震安全性を飛躍的に高めることができる。   The seismic isolation structure can reduce the vibration of the structure itself against strong earthquake motion during a large earthquake, so it not only increases the seismic safety of the structural framework of the building, but also prevents the fall of contained items such as internal furniture and equipment. The risk of falling / collision is reduced, and the seismic safety of the entire building can be dramatically improved.

免震構造物は、地盤もしくは基礎構造体と上部構造体の間に積層ゴムなどの免震装置を配置した免震層を構成し、免震層の水平剛性を上部構造体各層の水平剛性よりも格段に低く設定する。   The seismic isolation structure is composed of a seismic isolation layer in which a base rubber or base structure and an upper structure are provided with seismic isolation devices such as laminated rubber. The horizontal stiffness of the seismic isolation layer is determined by the horizontal stiffness of each layer of the upper structure. Is also set to be significantly lower.

免震構造物に地震動が作用すると、水平変形が免震層に集中し、上部構造体各層は一塊りとなってゆっくり振動する。免震層の抵抗力を低く設定しているため、免震層の抵抗力以上の地震力は上部構造体には伝達されず、その結果、構造物の応答加速度も小さくなり、建物も内部収容物も共に安全に保護することが可能となる。   When seismic motion acts on the seismic isolation structure, horizontal deformation concentrates on the seismic isolation layer, and each layer of the upper structure vibrates slowly. Since the seismic isolation layer resistance is set low, seismic force greater than that of the seismic isolation layer is not transmitted to the superstructure, resulting in a reduced response acceleration of the structure and the building being housed inside. Both things can be safely protected.

免震構造物のアイデアは既に100年以上前から提案されていたが、わが国においては1985年以降、実際の免震建物が建設されるようになった。比較的新しい最近の免震構造建物の提案としては、例えば、特許文献1〜3に示されるようなものがある。
これらの特許文献および図6(1)に示されているとおり、これまでの免震構造建物は、先ず杭や地盤の上に基礎を作り、その上に免震装置3を配置してその装置によって上部建物を支持しており、2重基礎方式を採用して、地盤側の基礎と上部建物の間にクリアランス6を設けて建物を地盤から分離する構成(以下「基礎免震」と呼ぶ)としている(特許文献1〜3参照)。
The idea of seismic isolation structures has already been proposed for more than 100 years, but in 1985, actual seismic isolation buildings began to be built in Japan. As proposals of relatively new recent seismic isolation structure buildings, for example, there are those shown in Patent Documents 1 to 3.
As shown in these patent documents and FIG. 6 (1), the conventional seismic isolation structure building first forms a foundation on a pile or the ground, and places the seismic isolation device 3 thereon, and the device. The upper building is supported by the structure, adopting the double foundation method, and providing the clearance 6 between the foundation on the ground side and the upper building to separate the building from the ground (hereinafter referred to as “base seismic isolation”) (See Patent Documents 1 to 3).

それ以外の免震層の構成方法としては、図6(2)や図7(1)のように地下階や地上階の柱15の柱頭部に免震装置3を配置する方法(以下「柱頭免震」と呼ぶ)、図7(2)のように地下階と地上階の間に免震層を挟む方法などが実用化されている。
また地上階の中間に免震層を挟んだり、地上階の柱の中間に免震装置を配置する場合もあり、これらの「基礎免震」以外のものを「中間階免震」と総称している。
特開平10−002126号公報 特開平11−152928号公報 特開2000−297559号公報
As another method of constructing the seismic isolation layer, as shown in FIGS. 6 (2) and 7 (1), the seismic isolation device 3 is arranged on the column head of the column 15 on the basement floor or the ground floor (hereinafter referred to as the “capital”). A method of sandwiching a base isolation layer between an underground floor and a ground floor as shown in FIG. 7 (2) has been put into practical use.
In some cases, a base isolation layer is placed in the middle of the ground floor, or a base isolation device is placed between the pillars on the ground floor. ing.
JP-A-10-002126 JP 11-152928 A JP 2000-297559 A

大地震に対する優れた安全性能を提供できるにも拘わらず、免震構造の採用事例が極く一部に限られているのは、在来耐震構造建物に対して免震構造建物は短所も併せ持っているためである。その主たる短所とは、次の2点である。
(1)建設コストが在来耐震構造よりも高くなること。
(2)建築計画上の難しさがあること。
Despite being able to provide excellent safety performance against large earthquakes, the use of seismic isolation structures is limited to only a part of them. This is because. The main disadvantages are the following two points.
(1) The construction cost is higher than that of conventional seismic structures.
(2) There are difficulties in architectural planning.

上記(1)の免震構造建物においてコストアップとなる主要因は、次の諸点である。
イ)免震装置の製造費用が高いこと。
ロ)免震層を構成するために、基礎免震では2重基礎が必要になり、構造躯体が1層分増加すること。
ハ)柱頭免震では2重基礎は省略可能であるが、免震装置の大きな水平変形を許容できる耐火被覆が必要となる。
ニ)免震構造としての水平移動を確保するために、建物周囲にクリアランスを設ける必要があり、そのために、擁壁、建物周囲や連結部のエクスパンションジョイント、フレキシブル配管継手等に費用がかかること。
The main factors that increase the cost of the base-isolated structure (1) are the following points.
B) The manufacturing cost of the seismic isolation device is high.
B) In order to construct a seismic isolation layer, the base isolation requires a double foundation, and the structure frame must be increased by one layer.
C) Although double foundations can be omitted in stigma-based isolation, a fireproof coating that can tolerate large horizontal deformation of the seismic isolation device is required.
D) In order to ensure horizontal movement as a seismic isolation structure, it is necessary to provide clearance around the building. For this reason, the retaining wall, the expansion joints around the building and the connecting part, flexible piping joints, etc. must be expensive.

上記段落0007の(2)の建築計画上の難点は、主として上記(1)のニ)に関わることである。即ち、建物全周に渡って周囲地盤との間にクリアランスを必要とするため、クリアランス部を通過する動線上、地震時に発生する±数十センチメートルの相対変位を水平2方向に許容できるエキスパンションジョイントを必要とすることである。
特に、近年では建物へのアクセス部はバリアフリーを必要とする場合が多く、鉛直段差のない動線連結部を実現するために複雑な納まりの連結金物を設けることになり、コストアップの原因にもなっている。
The difficulty in the architectural plan of paragraph 0007 (2) above is mainly related to the above (1) d). In other words, since a clearance is required between the entire circumference of the building and the surrounding ground, an expansion joint that allows a relative displacement of ± several tens of centimeters generated in the event of an earthquake on the flow line passing through the clearance part in two horizontal directions. Is that you need.
In particular, in recent years, the access part to buildings often requires barrier-free, and in order to realize a flow line connection part without a vertical step, a complicated fitting hardware is provided, which increases the cost. It is also.

また、免震構造建物が地下階を有する場合、免震装置を基礎部(地下階の下)に配置すると、建物周囲のクリアランスを確保するためには、建物全周の地下外壁の外側に自立型擁壁を設ける必要が生じ、土圧によりその擁壁は極めて厚い壁厚となってコストアップに拍車を掛けることになる。   In addition, if the seismic isolation structure has an underground floor, the seismic isolation device is placed on the foundation (under the basement floor), so that it can stand on the outside of the basement outer wall around the building to ensure clearance around the building. It is necessary to provide a mold retaining wall, and the retaining wall becomes extremely thick due to earth pressure, which increases the cost.

そこで本発明は、これまで免震建物には必須と考えられていた「建物周囲の免震クリアランス部を必要としない基礎免震」を実現するものであり、これまでの基礎免震で必要とされていた擁壁やエクスパンションジョイント等を不要とするものである。   Therefore, the present invention realizes the “basic seismic isolation that does not require the seismic isolation clearance around the building”, which has been considered essential for seismically isolated buildings, and is necessary for the conventional base isolation. This eliminates the need for retaining walls and expansion joints.

本発明は以上の点を解決するため次の構成を採用する。
〈構成1〉
地盤に接触して構築された基礎側構造体と、上記基礎側構造体の上に配置され、柱と梁で構成される1層以上の上部構造体と、上記基礎側構造体の、上記上部構造体の柱が乗る位置およびその周囲に、すべり面が上向きとされ、かつ周囲床面と同一レベルになるように配置されたすべり支承のすべり板と、上記すべり板の直上に位置する上記上部構造体の柱の最下部に、上記すべり板のすべり面に対向して下向きに配置されたすべり支承のスライダーと、上記上部構造体の柱の最下部にすべり支承を配置していない一部の柱に配置されて水平方向の変位を復元する復元装置とを備えたことを特徴とする免震構造物。
The present invention adopts the following configuration in order to solve the above points.
<Configuration 1>
A foundation-side structure constructed in contact with the ground; an upper structure of one or more layers arranged on the foundation-side structure and composed of columns and beams; and the upper portion of the foundation-side structure The sliding plate of the sliding support that is positioned so that the sliding surface is facing upward and at the same level as the surrounding floor surface at and around the position where the pillar of the structure rides, and the upper part that is located directly above the sliding plate The slider of the sliding bearing that is placed downward facing the sliding surface of the sliding plate at the bottom of the structure column, and some of the sliding supports that are not arranged at the bottom of the column of the upper structure A base-isolated structure comprising a restoration device arranged on a column and restoring a horizontal displacement.

構成1における「基礎側構造体」は、地盤面下もしくは地表面付近において地盤に接触して一体化された基礎構造体もしくはその上部に一体に構築された下部構造体を含むものである。また、「上部構造体」は、基礎側構造体の上に柱や梁等で構成される1層以上の建築構造物を含むものである。
免震構造物では、地盤の地震動を構造物に直接伝達しないことが第一の必要条件である。そのため、これまでは図6(1)に示すように、地盤内に大きなプール状窪みを作り、ここに免震装置を配置して、その上に構造物を載せることを基本構成としてきた。免震装置としては、周知の各種の積層ゴム、すべり支承、転がり支承等が使用される。
構造物は免震装置以外には、構造物の底部も周囲も地盤とは完全に分離されており、地震時に地盤と構造物間に相対変位が発生しても地盤側とは接触しないだけの充分なクリアランスを確保することが重要な必要条件=絶対条件とされてきた。
The “foundation-side structure” in Configuration 1 includes a foundation structure that is integrated in contact with the ground below or near the ground surface, or a lower structure that is integrally constructed on top of the foundation structure. Further, the “upper structure” includes one or more building structures composed of pillars, beams, etc. on the foundation side structure.
In seismic isolation structures, the first requirement is not to transmit ground motion directly to the structure. Therefore, until now, as shown in FIG. 6 (1), the basic configuration has been to create a large pool-like depression in the ground, place a seismic isolation device here, and place a structure on it. As the seismic isolation device, various well-known laminated rubbers, sliding bearings, rolling bearings and the like are used.
In addition to seismic isolation devices, the bottom and surroundings of the structure are completely separated from the ground, and even if relative displacement occurs between the ground and the structure during an earthquake, it does not touch the ground side. Ensuring sufficient clearance has been an important requirement = an absolute condition.

本発明も免震構造を目的とするものであるから、地震動の入力絶縁を図ることに相違はないが、これまで入力絶縁のために設けていた空間=「免震層」を作らないことが最大の特徴である。   Since the present invention is also intended for a seismic isolation structure, there is no difference in seismic input isolation, but the space previously provided for input isolation = “seismic isolation layer” may not be created. It is the biggest feature.

即ち、基礎および最下層床面(基礎側構造物)は従来の耐震構造と同様に地盤と一体化して構築する。その基礎側構造体の上面にすべり面を構成し、その直上の上部構造体柱の最下部(=柱脚部)に免震装置(すべり支承スライダー)を配置する。   That is, the foundation and the lowermost floor surface (foundation side structure) are constructed integrally with the ground in the same manner as the conventional earthquake-resistant structure. A slip surface is formed on the upper surface of the foundation-side structure, and a seismic isolation device (slide support slider) is arranged at the lowest part (= column base) of the upper structure column immediately above.

上部構造体の柱脚部にすべり支承を配置することにより、第2層以上を免震構造とすることができ、第1層(最下階)が地盤と一体化されているので、地盤との間に免震用クリアランスを構築する必要がない。この基本構成により、地盤と構造物の間に空間としての免震層を構築することなく、免震構造物を実現することができる。   By placing sliding bearings on the column base of the upper structure, the second and higher layers can be seismically isolated, and the first layer (the bottom floor) is integrated with the ground. There is no need to build a seismic isolation clearance during the period. With this basic configuration, it is possible to realize a base isolation structure without building a base isolation layer as a space between the ground and the structure.

また基礎側構造体上面のすべり面は周囲の床スラブ面と同一レベルに構成している。この条件により、万一設計想定を超える過大な地震入力があった場合にも、上部建物が免震装置から脱落することがなく、免震構造物全体の安全性が維持されるフェールセーフ機能を備えた免震構造物となっている。   The sliding surface on the upper surface of the foundation side structure is configured at the same level as the surrounding floor slab surface. Due to this condition, even if there is an excessive earthquake input exceeding the design assumption, the fail-safe function that maintains the safety of the entire base isolation structure without the upper building falling off the base isolation device. It is a seismically isolated structure.

〈構成2〉
地盤に接触して構築された基礎側構造体と、上記基礎側構造体の上に配置され、柱と梁で構成される1層以上の上部構造体と、上記基礎側構造体の、上記上部構造体の柱が乗る位置およびその周囲に、すべり面が上向きとされ、かつ周囲床面と同一レベルになるように配置されたすべり支承のすべり板と、上記すべり板の直上に位置する上記上部構造体の柱の最下部に、上記すべり板のすべり面に対向して下向きに配置されたすべり支承のスライダーと、上記基礎側構造体もしくは基礎側構造体に固定された支持部材と上記上部構造体もしくは上部構造体に固定された連結部材との間に配置された、水平方向の変位を復元する復元装置とを備えたことを特徴とする免震構造物。
<Configuration 2>
A foundation-side structure constructed in contact with the ground; an upper structure of one or more layers arranged on the foundation-side structure and composed of columns and beams; and the upper portion of the foundation-side structure The sliding plate of the sliding support that is positioned so that the sliding surface is facing upward and at the same level as the surrounding floor surface at and around the position where the pillar of the structure rides, and the upper part that is located directly above the sliding plate A slider of a sliding support disposed at the lowermost part of the pillar of the structure and facing downwards on the sliding surface of the sliding plate, the support member fixed to the base side structure or the base side structure, and the upper structure A seismic isolation structure, comprising: a restoring device that restores a horizontal displacement, disposed between the body and a connecting member fixed to the upper structure.

構成2における「支持部材」は、例えば、図2(2)に示される支持柱15、あるいは図5(2)に示される支持柱71である。また、「連結部材」は、例えば、図2(2)に示される接合用フーチング43、あるいは図5(2)に示す連結部73である。   The “support member” in the configuration 2 is, for example, the support column 15 shown in FIG. 2 (2) or the support column 71 shown in FIG. 5 (2). Further, the “connecting member” is, for example, the joining footing 43 shown in FIG. 2 (2) or the connecting portion 73 shown in FIG. 5 (2).

〈構成3〉
構成1又は2に記載の免震構造物において、上記すべり支承には回転機構付きすべり支承もしくは弾性すべり支承を採用し、上記復元装置には積層ゴム系免震装置を採用していることを特徴とする免震構造物。
<Configuration 3>
In the seismic isolation structure according to Configuration 1 or 2, the sliding bearing employs a sliding bearing with a rotation mechanism or an elastic sliding bearing, and the restoring device employs a laminated rubber-based seismic isolation device. Seismic isolation structure.

構成3は、本発明の最も一般的な免震装置構成を示したものであり、柱脚部に配置するすべり支承には回転機構付きすべり支承もしくは弾性すべり支承を採用する。   Configuration 3 shows the most common seismic isolation device configuration of the present invention, and a sliding bearing with a rotation mechanism or an elastic sliding bearing is adopted as the sliding bearing arranged on the column base.

すべり支承を取り付ける柱は、第2層から下向きに片持ち方式となっているため、その先端に該当する柱脚部には水平力による回転角が発生する。
従ってこの柱脚部に配置されるすべり支承はこの柱の回転角を吸収できることが必要であり、その為に回転機構付きのすべり支承、もしくは回転を吸収可能な弾性支承部が直列結合された弾性すべり支承を採用することが必要である。
Since the column to which the sliding bearing is attached is a cantilever system downward from the second layer, a rotation angle due to a horizontal force is generated at the column base corresponding to the tip of the column.
Therefore, it is necessary for the slide bearings arranged on this column base to be able to absorb the rotation angle of this column, and for this purpose, a slide bearing with a rotation mechanism or an elastic bearing that can absorb rotation is connected in series. It is necessary to adopt a sliding bearing.

第2層以上の免震建物全体の復元力を負担する装置としては、積層ゴム系支承(天然ゴム系積層ゴム、鉛プラグ入り積層ゴム、錫プラグ入り積層ゴム、高減衰積層など)を採用することができる。   As a device that bears the restoring force of the seismically isolated building of the second and higher layers, laminated rubber bearings (natural rubber laminated rubber, laminated rubber with lead plug, laminated rubber with tin plug, high damping laminated, etc.) are adopted. be able to.

〈構成4〉
構成1乃至3のいずれかに記載の免震構造物において、上記上部構造体の柱脚部同士を連結する床面を設けており、該床面は床板単独、もしくは床板および柱にピン接合された床梁で構成されており、該床板もしくは床梁と上記基礎側構造体の間にすべり支承もしくは転がり支承を配置していることを特徴とする免震構造物。
<Configuration 4>
The seismic isolation structure according to any one of Configurations 1 to 3, wherein a floor surface that connects the column base portions of the upper structure is provided, and the floor surface is pinned to the floor plate alone or to the floor plate and the column. A seismic isolation structure, characterized in that a sliding bearing or a rolling bearing is disposed between the floor plate or floor beam and the foundation side structure.

構成1および2では、第1層の床面が地盤と一体化されているため、この第1層の床上に配置される収容物は、免震構造の恩恵(応答加速度低減効果)を受けることができない。   In configurations 1 and 2, since the floor surface of the first layer is integrated with the ground, the objects placed on the floor of the first layer receive the benefits (response acceleration reduction effect) of the seismic isolation structure. I can't.

この課題を解決するには、免震装置の上部の柱脚部を梁で連結し、基礎側構造体の上に基礎側構造体に接触しないように床面を構築すればよい。
しかし、免震装置の直上位置に柱脚を連結する剛接合の梁を設けることは、結局、免震装置上下に二つの床面を有する免震層を構築することになる。その工事手順も基礎構造体→免震装置設置→上部構造体第1層梁・床工事とならざるを得ず、従来の免震構造物と同じ構成となり、本発明のメリットを殺してしまうことになる。
In order to solve this problem, the column bases at the top of the seismic isolation device may be connected by a beam, and the floor surface may be constructed on the foundation side structure so as not to contact the foundation side structure.
However, providing a rigidly-connected beam that connects the column bases directly above the seismic isolation device results in the construction of a seismic isolation layer having two floor surfaces above and below the seismic isolation device. The construction procedure must also be the foundation structure → seismic isolation device installation → upper structure first layer beam / floor construction, and it will have the same configuration as the conventional seismic isolation structure, which will kill the merit of the present invention. become.

本発明の特徴とメリットは、免震装置の直上位置に地震力を負担する骨組み、即ち柱に剛接合された梁を不要としている点にある。このメリットを活かしながら、且つ第1層床面にも免震効果を発生させるために、構成3は、全く新しい発想でこの課題を解決している。即ち、基礎側構造体の上面にもう一つの床面(以後「上側床面」と呼ぶ)を構成するが、その「上側床面の自重およびその上部の積載荷重は基礎側構造体に支持させる」のである。   The features and merits of the present invention are that a frame that bears the seismic force at a position directly above the seismic isolation device, that is, a beam rigidly joined to the column is unnecessary. In order to make use of this merit and to generate a seismic isolation effect on the first floor, the configuration 3 solves this problem with a completely new idea. That is, another floor surface (hereinafter referred to as “upper floor surface”) is formed on the upper surface of the foundation-side structure, and the “self-weight of the upper floor surface and the load on the upper portion thereof are supported by the foundation-side structure. "

但し、上側床面を基礎側構造体の上に載せるだけでは大きな摩擦力が発生し、建物全体の免震効果を殺しかねないので、基礎側構造体と上側床面の間に転がり支承もしくはすべり支承を介在させて上側床面の水平方向摩擦力を低減する。   However, if the upper floor is simply placed on the foundation structure, a large frictional force is generated, which may kill the seismic isolation effect of the entire building, so rolling support or sliding between the foundation side structure and the upper floor is possible. The horizontal frictional force on the upper floor is reduced through the support.

そして、その上側床面は柱脚部に配置されたすべり支承直上の柱脚部と連結する。また上側床面を支持する梁を設ける場合には、梁端部は柱脚部にピン接合するか、もしくはすべり支承か転がり支承で基礎側構造体に支持させる。   And the upper floor surface is connected with the column base part on the slide support arrange | positioned at the column base part. When a beam for supporting the upper floor surface is provided, the beam end is pin-joined to the column base, or is supported on the foundation side structure by a sliding bearing or a rolling bearing.

以上の構成により、第1層の床面から免震構造の恩恵を享受することができるし、また第1層の上側床面の摩擦力を調整することにより、免震層全体の水平抵抗力およびエネルギー吸収性能(減衰性能)を調整することが可能となる。   With the above configuration, it is possible to enjoy the benefits of the seismic isolation structure from the floor surface of the first layer, and by adjusting the frictional force of the upper floor surface of the first layer, the horizontal resistance force of the entire base isolation layer In addition, the energy absorption performance (attenuation performance) can be adjusted.

また、上側床面の重量を基礎側構造体で支持しているので、上側床面の厚さを極めて小さく薄い床とすることができ、2重床を構成しながら階高の損失も殆ど生じない。この効果は特に後述するとおり、既存建物を免震構造により改修(免震レトロフィット)する場合に大きなメリットを発揮する。   Moreover, since the weight of the upper floor surface is supported by the foundation side structure, the thickness of the upper floor surface can be made extremely small and a thin floor can be formed, and there is almost no loss in floor height while constituting a double floor. Absent. As will be described later, this effect is particularly advantageous when renovating an existing building with a base isolation structure (base isolation retrofit).

〈構成5〉
構成1乃至4のいずれかに記載の免震構造物において、上記基礎側構造体が杭と浮基礎との併用基礎構造(以後「パイルドラフト基礎構造」という)を採用していることを特徴とする免震構造物。
<Configuration 5>
In the seismic isolation structure according to any one of Configurations 1 to 4, the foundation-side structure employs a combined foundation structure of a pile and a floating foundation (hereinafter referred to as “pile raft foundation structure”). Seismic isolation structure.

本発明の最大の特徴は、第1層(=基礎側構造体)を地盤と一体に構築できることにある。従って、地盤が軟弱の場合、柱直下を杭基礎で支持することは当然の選択であるが、第1層の鉛直荷重(基礎側構造体および第1層上側床面の自重および積載荷重)はその直下の地盤に直接支持させるのが合理的であり、それに最も適した基礎構造方式として摩擦杭と浮基礎との併用基礎構造である「パイルドラフト基礎構造」を採用することが合理的である。
また第1層重量を地盤に支持させることにより、免震装置および杭の支持重量が低減されるので、両者をより経済的に設計することが可能になる。
The greatest feature of the present invention is that the first layer (= foundation side structure) can be constructed integrally with the ground. Therefore, when the ground is soft, it is a natural choice to support the pillar directly below the pile foundation, but the vertical load of the first layer (the weight of the foundation side structure and the first layer upper floor and the load) It is reasonable to support it directly on the ground directly below it, and it is reasonable to adopt the “pile raft foundation structure” that is the combined foundation structure of friction pile and floating foundation as the most suitable foundation structure method .
Moreover, since the support weight of a seismic isolation apparatus and a pile is reduced by making 1st layer weight support on the ground, it becomes possible to design both more economically.

〈構成6〉
構成1乃至5のいずれかに記載の免震構造物において、上記基礎側構造体を支持する杭頭部に杭頭ピン接合、杭頭回転ばね接合もしくは杭頭半剛接合のいずれかを採用していることを特徴とする免震構造物。
<Configuration 6>
In the seismic isolation structure according to any one of configurations 1 to 5, any one of a pile head pin joint, a pile head rotary spring joint, or a pile head semi-rigid joint is employed for a pile head that supports the foundation side structure. Seismic isolation structure characterized by

地盤が軟弱で、柱直下が杭基礎で支持されている場合、地震時には地層が水平せん断変形するために杭も傾斜することになる。基礎側構造体の地中梁により杭頭を剛接合した場合、杭頭部および地中梁に大きな杭頭モーメントが発生するために、杭も地中梁も大きな部材断面が必要になるだけでなく、これが杭頭部と地中梁の接合部を回転させ、その直上に配置されているすべり支承のすべり板をも傾斜させることになる。すべり板が傾斜すると、すべり性能の復元力特性に影響を与え、すべり抵抗力が方向によって異なることになる。
このすべり性能への影響を小さくするためには、杭頭部をその上部の基礎側構造体に完全ピン接合することが最も好ましく、完全ピン接合までは至らなくても半剛接合などとして、杭頭接合の固定度をできる限り低減させることが必要である。
杭頭部を完全ピン接合させる杭頭接合装置(例えばBP−CAPと呼ばれる装置)は既に開発・実用化されているので、それらを利用すればよい。
When the ground is soft and the part directly below the column is supported by a pile foundation, the pile also tilts due to the horizontal shear deformation of the stratum during an earthquake. When the pile head is rigidly connected by the underground beam of the foundation side structure, a large pile head moment is generated in the pile head and the underground beam, so only a large member cross section is required for both the pile and the underground beam. However, this rotates the joint between the pile head and the underground beam, and the sliding plate of the sliding support arranged just above it also tilts. When the slip plate is inclined, the restoring force characteristic of the slip performance is affected, and the slip resistance force varies depending on the direction.
In order to reduce the impact on the sliding performance, it is most preferable to completely pin-join the pile head to the upper foundation side structure. It is necessary to reduce the degree of fixation of the head joint as much as possible.
Pile head joining devices (for example, a device called BP-CAP) for completely pin-joining the pile heads have already been developed and put to practical use.

〈構成7〉
基礎もしくは地下構造体が地盤に接触して構築されている既存の耐震構造物において、地上1階床スラブ以下の部分を構成1乃至構成6のいずれかに記載の免震構造物の基礎側構造体とみなし、1階柱の柱脚部を切断して前記すべり支承のスライダーを取り付け、その下側の1階床スラブに前記すべり板を配置し、前記すべり支承を取り付けない柱の中間部、もしくは前記基礎側構造体に固定された支持部材と前記上部構造体に固定された連結部材の間に水平方向の変位を復元する前記復元装置を配置することにより、構成1乃至構成6に記載の免震構造物と同じ建物構成に改修・変更したことを特徴とする免震構造物。
<Configuration 7>
The base-side structure of the seismic isolation structure according to any one of Configurations 1 to 6 in the existing seismic structure in which the foundation or underground structure is constructed in contact with the ground Consider the body, cut the column base of the first floor pillar and attach the slider of the sliding support, place the sliding plate on the first floor slab below it, the middle part of the pillar without the sliding support, Alternatively, by disposing the restoring device that restores a horizontal displacement between a supporting member fixed to the foundation-side structure and a connecting member fixed to the upper structure, A base-isolated structure that has been modified and changed to the same building structure as the base-isolated structure.

本発明の構成は、既存構造物にも適用可能である。既存の耐震構造物を免震構造化するためには、従来は基礎下を掘削し、地中において構造物を支えるアンダーピニングを行いながら免震装置を取り付けるという困難な工事が必要であったが、本発明の免震構造構成を適用すれば、地上部において、しかも最も工事の行いやすい1階柱脚部において免震装置を配置できるので、免震化工事が格段に容易に行える。   The configuration of the present invention can also be applied to existing structures. In order to make an existing seismic structure seismic isolation structure, conventionally, it was necessary to dig under the foundation and install a seismic isolation device while underpinning to support the structure in the ground. If the seismic isolation structure of the present invention is applied, the seismic isolation device can be placed on the ground floor and on the first floor column base where the construction is most easily performed, so that the seismic isolation work can be performed much more easily.

以下、本発明を、実施例を示す図面に基づいて説明する。   Hereinafter, the present invention will be described with reference to the drawings illustrating embodiments.

図1は、本発明の基本構成である構成1を説明するもので、図1(1)は本発明の免震構造建物全体の断面構成を、図1(2)は図1(1)に○印を付けた柱脚部に配置された回転機構付きすべり型免震装置2の取付部近傍の断面詳細図を示している。
実施例1の免震構造物は、地盤1に接触して構築された基礎側構造体の梁(地中梁)13、床スラブ14と、この基礎側構造体の上に配置され、柱と梁で構成される1層以上の上部構造体4と、基礎側構造体の、上部構造体の柱が乗る位置およびその周囲に、すべり面が上向きとされ、かつ周囲床面と同一レベルになるように配置されたすべり支承のすべり板23と、上記すべり板の直上に位置する上記上部構造体の柱の最下部に、上記すべり板のすべり面に対向して下向きに配置された回転機構付きすべり型免震装置(すべり支承)2のスライダー21と、上部構造体の柱の最下部にすべり支承を配置していない一部の柱に配置されて水平方向の変位を復元する復元装置3とを備えている。
FIG. 1 illustrates the basic configuration 1 of the present invention. FIG. 1 (1) is a cross-sectional configuration of the entire seismic isolation structure of the present invention, and FIG. 1 (2) is FIG. 1 (1). The cross-sectional detail figure of the attachment part vicinity of the sliding type seismic isolation device 2 with a rotation mechanism arrange | positioned at the column base part which attached | subjected (circle) is shown.
The base-isolated structure of Example 1 is arranged on a foundation side structure beam (underground beam) 13 and a floor slab 14 constructed in contact with the ground 1, and arranged on the foundation side structure. The upper surface 4 of one or more layers composed of beams and the position of the base structure on which the pillars of the upper structure ride and the periphery of the upper structure 4 are on the same level as the surrounding floor surface. The sliding plate 23 of the sliding bearing arranged in the above manner, and the rotating mechanism arranged downward facing the sliding surface of the sliding plate at the lowermost part of the column of the upper structure located immediately above the sliding plate A slider 21 of a sliding type seismic isolation device (sliding bearing) 2, and a restoring device 3 which is arranged on a part of the pillars where the sliding bearing is not arranged at the bottom of the upper structure pillar and restores a horizontal displacement; It has.

図1(1)に示すとおり、本発明では基礎側構造体が従来の耐震構造建物と同様に地盤1と一体化して構築できるので、基礎免震構造でありながら2重基礎が不要となっており、単純明快な建物構成が実現されている。   As shown in FIG. 1 (1), in the present invention, the foundation side structure can be integrated with the ground 1 in the same manner as a conventional earthquake-resistant structure building, so that a double foundation is not required even though it is a basic seismic isolation structure. A simple and clear building structure is realized.

また図1(2)は本発明の回転機構付きすべり型免震装置2が配置されている柱脚部付近の拡大断面図であるが、すべり板23が周囲の床面14の上面と同一レベルに配置されているので、万一設計想定を超える地震動が作用して、免震装置のすべり変位が大きくなった場合にも建物には何の異常も発生せず、建物の安全性が確保されている。即ち、本発明はフェールセーフ機能を備えた免震構造物となっている。   FIG. 1 (2) is an enlarged cross-sectional view of the vicinity of the column base portion where the sliding type seismic isolation device 2 with a rotating mechanism of the present invention is disposed. The sliding plate 23 is at the same level as the upper surface of the surrounding floor surface 14. Therefore, even if the seismic motion exceeding the design assumption acts and the sliding displacement of the seismic isolation device becomes large, no abnormality will occur in the building, ensuring the safety of the building. ing. That is, the present invention is a seismic isolation structure having a fail-safe function.

図1(1)に示すとおり、免震装置の上部の柱41は、2階床から下向きに突出した片持ち(カンティレバー)の柱となっている。従って、免震装置の働きによりこの柱に作用する水平地震力(柱のせん断力)は小さくなるものの、その水平力により柱には水平変形が生じるために、柱脚部は傾斜することになる。
すべり支承のすべり材22をこの柱の底面に直結すると、柱の傾斜によりスライダーのすべり材22と床に固定されているすべり板23間に傾斜角が発生するので、正常なすべり運動ができなくなる。それを避ける為に、図1(2)に示すように、すべり支承のスライダー21には回転機構(柱脚部の傾斜吸収機構)を備えたものか、その機能を発揮できる弾性すべり支承のいずれかとする必要がある。
As shown in FIG. 1A, the upper column 41 of the seismic isolation device is a cantilever column protruding downward from the second floor. Therefore, although the horizontal seismic force (column shearing force) acting on this column is reduced by the function of the seismic isolation device, the column base is inclined because the horizontal force causes horizontal deformation of the column. .
If the sliding member 22 of the sliding support is directly connected to the bottom surface of the column, an inclination angle is generated between the sliding member 22 of the slider and the sliding plate 23 fixed to the floor due to the inclination of the column, and thus normal sliding movement cannot be performed. . In order to avoid this, as shown in FIG. 1 (2), either the slider 21 of the sliding bearing is provided with a rotating mechanism (an inclination absorbing mechanism of the column base) or an elastic sliding bearing capable of performing its function. It is necessary to do it.

図1(2)は免震装置の下側に杭頭部の接合方法も示している。地震時には地盤自体が水平せん断変形するので、杭10は地盤1による強制変形を受けて杭頭部が傾斜することになる。この時、杭頭部を地中梁と剛結合しておくと杭頭部に大きな曲げモーメントが発生し、この曲げモーメントが地中梁にも伝達されるため、地中梁も大きな曲げ耐力が必要となり、また杭の上部に配置されているすべり板23自体を傾斜させることになる。すべり板23が傾斜するとすべり性能が下り坂方向には抵抗力が小さく、上り坂方向には抵抗力が増大することになり、すべり性能に方向性が発生するので免震構造として好ましくない。   Fig. 1 (2) also shows a method of joining the pile heads on the lower side of the seismic isolation device. Since the ground itself undergoes horizontal shear deformation during an earthquake, the pile 10 is subjected to forced deformation by the ground 1 and the pile head is inclined. At this time, if the pile head is rigidly connected to the underground beam, a large bending moment is generated at the pile head, and this bending moment is transmitted to the underground beam. This is necessary, and the sliding plate 23 itself disposed on the top of the pile is inclined. When the slip plate 23 is inclined, the slip performance is less preferable in the downhill direction, and the resistance force is increased in the uphill direction, and the direction of the slip performance is generated, which is not preferable as a seismic isolation structure.

そこで本発明は、すべり板直下の杭頭部11は完全ピン接合とするか、弾性回転ばね接合、あるいは半剛接合を採用し、杭頭部と地中梁との接合剛性、即ち杭頭固定度をできる限り小さくする接合方法を採用する。これが本発明の構成6である。杭頭完全ピン接合を採用すれば、地盤に水平変位が発生した場合でも、杭頭部傾斜の影響を受けることなく、すべり板23は水平に維持され、正常なすべり性能を発揮することが可能となる。   Therefore, in the present invention, the pile head 11 directly below the sliding plate is completely pin-joined, or adopts elastic rotary spring joining or semi-rigid joining, and the joining rigidity between the pile head and the underground beam, that is, pile head fixing. Adopt a joining method that makes the degree as small as possible. This is configuration 6 of the present invention. If the pile head complete pin joint is adopted, even if horizontal displacement occurs in the ground, the sliding plate 23 is maintained horizontal without being affected by the inclination of the pile head, and normal sliding performance can be exhibited. It becomes.

図2は、本発明におけるすべり支承と復元装置の配置方法を示す実施例を示している。図2(1)は、すべり支承2を建物中柱の柱脚部に配置し、復元装置としての積層ゴム系支承3を建物外周柱の中央部付近に配置する場合である。すべり支承2の水平力は小さいので、柱脚部に配置しても柱頭部の曲げモーメントはあまり大きくならず、設計は難しくない。
一方、復元材としての積層ゴム3の負担する水平力は大きな値となる可能性があるので、柱の高さ中央部付近に配置するのが、上部構造体および基礎側構造体の両者にとって最も効率的で、柱断面を小さく設計できる。
FIG. 2 shows an embodiment showing the arrangement method of the sliding support and the restoring device in the present invention. FIG. 2 (1) shows a case where the sliding support 2 is arranged at the column base of the pillar in the building and the laminated rubber bearing 3 as a restoring device is arranged near the center of the building outer peripheral pillar. Since the horizontal force of the sliding support 2 is small, the bending moment of the column head does not become so large even if it is arranged on the column base, and the design is not difficult.
On the other hand, since the horizontal force borne by the laminated rubber 3 as the restoring material may be large, it is most important for both the upper structure and the foundation side structure to be arranged near the center of the column height. It is efficient and the column cross section can be designed small.

図2(2)は、建物の第1層の柱全数の柱脚部にすべり支承2を配置し、復元装置3には建物重量を支持させずに、2階床の直下に配置する方法を示している。
すなわち、水平方向の変位を復元する復元装置3は、基礎側構造体に固定された支持柱15と上部構造体に固定された接合用フーチング43との間に設けられている。復元装置としての積層ゴム系支承3を支持する支持柱15を基礎側構造体から立ち上げ、2階の床梁直下で上部構造体に接合用フーチング43を設けて接合している。支持柱15の平面位置は、建物内部でも建物外部でも良いが、建物全体のねじれ抵抗力を高めるために、できる限り建物の外周部に配置することが好ましい。
2 (2) shows a method in which the sliding support 2 is arranged on the column bases of all the columns of the first layer of the building, and the restoring device 3 is arranged directly below the second floor without supporting the building weight. Show.
That is, the restoring device 3 that restores the displacement in the horizontal direction is provided between the support column 15 fixed to the base side structure and the joining footing 43 fixed to the upper structure. A support column 15 that supports the laminated rubber bearing 3 as a restoring device is raised from the base-side structure, and a bonding footing 43 is provided and bonded to the upper structure just below the floor beam on the second floor. The planar position of the support column 15 may be inside the building or outside the building, but it is preferable that the support column 15 be arranged on the outer periphery of the building as much as possible in order to increase the torsion resistance of the entire building.

図3は、構成4の実施例4を示す断面図である。図4(1)は柱脚部を連結する梁52を配置し、その上に上側床面51を設けている。復元装置用の積層ゴム3も柱脚部に配置されているので、その部分の梁端部を上方に折り曲げて、積層ゴムの変形と干渉しないようにしている。本発明では、この梁の端部は柱にピン接合される必要があるので、免震装置を取り付けた後で設置するのに都合がよい。その梁設置後に、床面が構築されるが、その一部は免震装置の点検・確認が容易なように部分的に取り外し可能にしておく。   FIG. 3 is a sectional view showing Example 4 of Configuration 4. In FIG. 4A, a beam 52 connecting the column bases is arranged, and an upper floor 51 is provided thereon. Since the laminated rubber 3 for the restoring device is also arranged at the column base, the beam end portion of that portion is bent upward so as not to interfere with the deformation of the laminated rubber. In this invention, since the edge part of this beam needs to be pin-joined to a pillar, it is convenient to install after attaching a seismic isolation apparatus. After the installation of the beam, the floor will be built, but part of it will be partially removable so that the seismic isolation device can be easily inspected and confirmed.

図3(2)は、復元装置としての積層ゴム系支承3が柱の中央高さ付近に取り付けられている場合を示したもので、この場合、復元装置の下側柱15は基礎側構造体であるので、免震床5と接合することはできない。そのため、梁52の端部にすべり支承もしくは転がり支承を配置して梁端部の鉛直荷重を基礎側構造体に支持させ、積層ゴム下側の柱15と免震床5の間には水平相対変位が可能のように隙間(クリアランス)が確保されている。   FIG. 3 (2) shows a case where the laminated rubber bearing 3 as a restoring device is attached near the center height of the column. In this case, the lower column 15 of the restoring device is the foundation side structure. Therefore, it cannot be joined to the seismic isolation floor 5. Therefore, a sliding bearing or a rolling bearing is disposed at the end of the beam 52 so that the vertical load at the end of the beam is supported by the foundation side structure, and the horizontal relative between the pillar 15 below the laminated rubber and the base isolation floor 5 is A gap (clearance) is secured so that the displacement is possible.

図4は、構成4の実施例5を示す図である。図4(1)はその全体構成の断面図を示しており、各柱41の1階柱脚を連結する床面5を設けているが、それを支持する梁は設けない方法である。図4(2)および(3)は、図4(1)の床面5の○印部の拡大断面図である。   FIG. 4 is a diagram illustrating Example 5 of Configuration 4. In FIG. FIG. 4 (1) shows a cross-sectional view of the entire configuration, in which a floor surface 5 is provided for connecting the first-stage column bases of the columns 41, but a beam for supporting it is not provided. 4 (2) and 4 (3) are enlarged cross-sectional views of the circled portion of the floor surface 5 in FIG. 4 (1).

図4(2)は、床面51の下に多数のボ−ルベアリング53(転動体)を配置することにより、床面の鉛直荷重を基礎側構造体で支持しながら、水平方向の抵抗力を無くする方法である。ボ−ルベアリングによる転がり摩擦係数μはμ=0.01〜0.001程度であり、水平抵抗力は殆ど無視できると考えてよい。転動体53の位置を一定間隔に保持するために、転動体は位置保持装置ホルダー54の中に収容されている。   In FIG. 4B, by arranging a large number of ball bearings 53 (rolling elements) under the floor surface 51, the horizontal resistance force can be increased while supporting the vertical load on the floor surface by the foundation-side structure. It is a way to eliminate. The rolling friction coefficient μ due to the ball bearing is about μ = 0.01 to 0.001, and it can be considered that the horizontal resistance can be almost ignored. In order to hold the positions of the rolling elements 53 at regular intervals, the rolling elements are accommodated in a position holding device holder 54.

図4(3)は、床面を多数のすべり支承で支持する方法であり、すべり材56を基礎側構造体側の床スラブ14に固定し、上部の床の下面をすべり板として利用するものである。この上部床の底面55には、防錆性能の高いすべり面としての性能と上部床の支持型枠の両性能を併せ持つものとしてステンレス鋼板の採用等が適切である。このステンレス鋼板のすべり板の上に、適切な床仕上げを行うことにより、用途に適した第1層床面51を構成することができる。すべり材56とすべり板55の組合せにより、すべり摩擦係数をμ=0.01〜0.15程度の範囲で設定可能であり、免震層全体の抵抗力と減衰性能(エネルギー吸収性能)を好ましい値に調整することができる。   FIG. 4 (3) is a method of supporting the floor surface with a large number of sliding supports, in which the sliding material 56 is fixed to the floor slab 14 on the foundation side structure side, and the lower surface of the upper floor is used as a sliding plate. is there. For the bottom surface 55 of the upper floor, it is appropriate to use a stainless steel plate or the like as having both the performance as a slip surface having high rust prevention performance and the performance of the support mold of the upper floor. By performing appropriate floor finishing on this stainless steel plate, the first layer floor surface 51 suitable for the application can be configured. By combining the sliding material 56 and the sliding plate 55, the sliding friction coefficient can be set in a range of about μ = 0.01 to 0.15, and the resistance and damping performance (energy absorption performance) of the seismic isolation layer as a whole are preferable. Can be adjusted to the value.

図5は、本発明の免震構造構成を既存建物に適用した場合の構成7の実施例である。図5(1)は、既存建物1階の中柱の柱脚部を切断し、ここにスベリ支承2を配置し、建物外柱の中央部付近を切断して復元装置としての積層ゴム系支承3を配置している。その後、1階柱脚部を繋ぐ免震床面51を構築するが、復元装置3の支持柱15の周囲には水平変位用のクリアランスを確保しておく。   FIG. 5 is an example of configuration 7 when the seismic isolation structure of the present invention is applied to an existing building. Fig. 5 (1) shows a laminated rubber bearing as a restoration device by cutting the column base of the middle pillar of the first floor of the existing building, placing the sliding support 2 here, and cutting the vicinity of the center of the outer pillar of the building. 3 is arranged. After that, the seismic isolation floor surface 51 connecting the first floor column bases is constructed, and a clearance for horizontal displacement is secured around the support column 15 of the restoring device 3.

図5(2)は、既存建物1階の全ての柱の柱脚部にスベリ支承2を配置し、復元装置としての積層ゴム系支承3は、建物外周部付近に新しく取付用柱71および装置上部の連結部72〜73を追加して取り付けた場合である。この方法では、1階柱脚部を繋ぐ免震床面51を平面全体に渡って構築できるメリットがある。この方法では、復元装置が鉛直荷重を支持していないので、建物重量に合わせて最適の水平剛性を有する積層ゴムを採用することが可能で免震周期の設定を自由に行えるだけでなく、復元装置が建物の外側に配置されるので、建物全体の捩れ振動の抑制効果も更に高まることになる。   In FIG. 5 (2), the sliding bearings 2 are arranged on the column bases of all the columns on the first floor of the existing building, and the laminated rubber bearing 3 as a restoring device is newly installed in the vicinity of the outer periphery of the building. This is a case where upper connecting portions 72 to 73 are additionally attached. In this method, there is an advantage that the seismic isolation floor 51 connecting the first floor column bases can be constructed over the entire plane. In this method, since the restoring device does not support the vertical load, it is possible to adopt a laminated rubber with the optimal horizontal rigidity according to the building weight, and not only can the seismic isolation cycle be set freely, but also the restoration. Since the device is arranged outside the building, the effect of suppressing the torsional vibration of the entire building is further enhanced.

耐震構造の既存建築物を免震構造に耐震改修する従来の方法は、既存建物の基礎部を掘削し、建物床下の狭い地下空間で基礎や杭頭部付近に免震装置を挿入するという大変手間のかかる難しい工事を行う必要があった。本発明の実施例6・7の方法では、既存建物の免震化工事を最も工事を行い易い地上1階の床直上で施工できるので、従来の免震化工法に比較して格段に工事が容易で効率的となり、工事費も格段に経済的となる。   The conventional method of seismic retrofitting existing seismic structures to seismic isolation structures involves excavating the foundations of existing buildings and inserting seismic isolation devices near the foundation and pile heads in a narrow underground space under the building floor. It was necessary to perform difficult and time-consuming work. In the methods of Examples 6 and 7 of the present invention, the seismic isolation work for the existing building can be performed directly on the floor of the first floor above the ground, which is the easiest to carry out. It becomes easy and efficient, and construction costs are much more economical.

免震構造建物は、日本では昭和60(1985)年から建設され始め、既に20年の歴史を有しているが、2005年末現在においてもその総数はビル建築で僅かに1500棟程度に過ぎない、その主原因は、段落0007,8に書いたとおり、(1)初期建設費が在来耐震構造よりも高くなること、(2)建築計画上の難しさがあることの2点にある。   Seismic isolation structures have been built in Japan since 1985 and have already been in use for 20 years, but as of the end of 2005, the total number of buildings was only about 1500. As described in paragraphs 0007 and 8, the main causes are (1) the initial construction cost is higher than that of the conventional earthquake-resistant structure, and (2) the difficulty in building planning.

本発明は、そのコストアップの要因であった従来方式の2重基礎を設けることなく地盤との絶縁を可能とし、また免震建築計画上の困難さの最大要因である建物周囲のエクスパンションジョイント部を不要にしたものである。
本発明により、免震建物の構成が単純明快に改良され、設計が格段に容易になると同時に、コストアップ問題も大きく改善されることになった。また本発明は既存構造物の免震構造改修工事も格段に容易にできるものである。
本発明により、新築工事・既存建物改修の両者を含めて、安全性能の高い免震構造建物の普及が促進するものと期待できる。
The present invention makes it possible to insulate from the ground without providing a double foundation of the conventional method, which was the cause of the cost increase, and the expansion joint portion around the building which is the greatest factor in the difficulty in seismic isolation building planning Is unnecessary.
According to the present invention, the structure of the base-isolated building is simply and clearly improved, the design becomes much easier, and at the same time, the cost increase problem is greatly improved. Further, the present invention can remarkably easily perform seismic isolation structure repair work for existing structures.
The present invention can be expected to promote the spread of seismic isolation structures with high safety performance, including both new construction and renovation of existing buildings.

本発明の実施例1の免震構造物の基本構成を示す図で、 (1)免震建物全体の構成を示す断面図、 (2)同図の○印部の柱脚部に配置されるすべり支承周囲の拡大断面図 である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the basic composition of the seismic isolation structure of Example 1 of this invention, (1) Sectional drawing which shows the structure of the whole seismic isolation building, (2) It arrange | positions at the column base part of (circle) part of the figure It is an expanded sectional view around a sliding bearing. 実施例2および実施例3の各免震構造物を示す図で、 (1)復元装置としての積層ゴム支承が柱の高さ中央付近に配置されている場合の免震構造物を示す断面図、 (2)全ての柱脚部にすべり支承が配置され、復元装置は建物重量を支持せずに取り付けられている場合の免震構造物を示す断面図である。It is a figure which shows each seismic isolation structure of Example 2 and Example 3, (1) Sectional drawing which shows a seismic isolation structure when the laminated rubber support as a restoring device is arrange | positioned in the height center vicinity. (2) It is sectional drawing which shows a seismic isolation structure when a slide support is arrange | positioned at all the column base parts, and the decompression | restoration apparatus is attached without supporting the building weight. 実施例4の免震構造物を示す図で、 (1)柱脚部を連結する梁が設けられており、その上に第1層の床面が構成されており、復元装置も柱脚位置に配置されている場合の免震構造物を示す断面図、 (2)(1)と同様であるが、復元装置が柱の高さ中央部付近に配置されている場合の免震構造物を示す断面図である。It is a figure which shows the seismic isolation structure of Example 4. (1) The beam which connects a column base part is provided, the floor surface of the 1st layer is comprised on it, and a decompression | restoration apparatus is also a column base position Sectional view showing the seismic isolation structure when it is placed in (2) Similar to (1), but the seismic isolation structure when the restoration device is placed near the center of the column height It is sectional drawing shown. 実施例5の免震構造物を示す図で、 (1)第1層の柱脚部を連結する床面を構成しているが、それを支持する梁は設けず、床の鉛直荷重を下側の基礎側構造体で支持する場合の、建物全体を示す断面図、 (2)上側床面と下側の基礎側構造体の間に、多数の転動体(ボールベアリング)を配置する場合の、同図床面を示す拡大断面図、 (3)上側床面の底面をすべり板面とし、その下に基礎側構造体に固定された多数のすべり材を配置する場合の、同図床面を示す拡大断面図である。It is a figure which shows the seismic isolation structure of Example 5. (1) Although the floor surface which connects the column base part of the 1st layer is comprised, the beam which supports it is not provided, but the floor vertical load is lowered. Sectional view showing the entire building when supported by the foundation side structure on the side. (2) When a large number of rolling elements (ball bearings) are arranged between the upper floor surface and the lower foundation side structure. Fig. 3 is an enlarged cross-sectional view showing the floor surface of the same figure. (3) The floor surface of the same figure when the bottom surface of the upper floor surface is a sliding plate surface and a number of sliding materials fixed to the foundation side structure are arranged below it. FIG. 既存の耐震構造建物に本発明を適用して免震構造改修を行う実施例を示す図で、 (1)中柱柱脚部にすべり支承、外柱の高さ中央付近に復元用積層ゴム支承を配置する場合の免震構造物を示す断面図、 (2)全ての既存柱の柱脚部にすべり支承を取付け、復元装置は建物重量を支持せずに新たな取付柱と取付部材を設けて取り付ける場合の免震構造物を示す断面図である。It is the figure which shows the execution example where the present invention is applied to the existing seismic structure building and the seismic isolation structure is renovated. (1) Sliding bearing at the middle column base and the laminated rubber bearing for restoration near the center of the outer column Cross-sectional view showing the seismic isolation structure when installing the door. (2) Sliding bearings are attached to the column bases of all existing columns, and the restoration device does not support the building weight and provides new mounting columns and mounting members. It is sectional drawing which shows a seismic isolation structure in the case of attaching. 従来の免震構造物の構成を示す図で、 (1)2重基礎を構成して免震装置を配置する基礎免震構造の基本構成を示す断面図、 (2)地下階の柱頭部に免震装置を配置する中間階免震の例を示す断面図である。It is a figure showing the composition of a conventional seismic isolation structure, (1) A cross-sectional view showing the basic composition of a basic seismic isolation structure that configures a double foundation and places a seismic isolation device, (2) It is sectional drawing which shows the example of the middle floor seismic isolation which arrange | positions a seismic isolation apparatus. 従来の免震構造物の構成を示す図で、 (1)1階の柱頭部に免震装置を配置する中間階免震の例を示す断面図、 (2)地下階と1階の間に免震層を設ける中間階免震の例を示す断面図である。It is a figure showing composition of the conventional seismic isolation structure, (1) Sectional drawing which shows the example of the middle floor seismic isolation which arranges a seismic isolation device in the head of the first floor, (2) Between the basement and the first floor It is sectional drawing which shows the example of the middle floor seismic isolation which provides a base isolation layer.

符号の説明Explanation of symbols

1 :地盤
10:杭
11:杭頭接合部(杭頭接合装置)
12:杭頭部基礎フーチング
13:基礎側構造体の梁(地中梁)
14:基礎側構造体の床スラブ
15:基礎側構造体の免震装置取付用支持柱
2 :回転機構付きすべり型免震装置
21:スライダー
22:すべり材
23:すべり板
3 :復元用免震装置(積層ゴム系支承)
4 :上部構造体
41:上部構造体の柱
42:上部構造体の梁
43:上部構造体の免震装置用フーチング
5 :免震装置直上レベル後付け床
51:上側床面
52:上側床面を支持する梁
53:上側床面用転動体(ボールベアリング)
54:同上用位置ホルダー
55:上側床面底部のすべり板
56:上側床面支持用すべり材
6 :免震用水平変形クリアランス
7 :耐震改修用既存建物
71:耐震回収用免震装置取付柱
72:耐震回収用免震装置取付梁
73:耐震回収用免震装置取付フーチング
74:耐震回収用免震装置取付地中梁
8 :既存構造物
1: Ground 10: Pile 11: Pile head joint (pile head joint device)
12: Pile head foundation footing 13: Beam of foundation side structure (underground beam)
14: Floor slab of foundation-side structure 15: Support column for base-side structure base isolation device 2: Sliding seismic isolation device with rotating mechanism 21: Slider 22: Sliding material 23: Sliding plate 3: Base isolation for restoration Equipment (laminated rubber bearing)
4: Upper structure 41: Upper structure column 42: Beam of upper structure 43: Footing for seismic isolation device of upper structure 5: Retrofitted floor just above seismic isolation device 51: Upper floor surface 52: Upper floor surface Supporting beam 53: Rolling element for upper floor (ball bearing)
54: Position holder for the above-mentioned 55: Sliding plate at the bottom of the upper floor 56: Sliding material for supporting the upper floor 6: Horizontal deformation clearance for seismic isolation 7: Existing building for seismic retrofit 71: Seismic isolation mounting column 72 for seismic recovery : Seismic isolation device mounting beam for seismic recovery 73: Seismic isolation device mounting footing for seismic recovery 74: Seismic isolation device base beam for seismic recovery 8: Existing structure

Claims (7)

地盤に接触して構築された基礎側構造体と、
前記基礎側構造体の上に配置され、柱と梁で構成される1層以上の上部構造体と、
前記基礎側構造体の、前記上部構造体の柱が乗る位置およびその周囲に、すべり面が上向きとされ、かつ周囲床面と同一レベルになるように配置されたすべり支承のすべり板と、
前記すべり板の直上に位置する前記上部構造体の柱の最下部に、前記すべり板のすべり面に対向して下向きに配置されたすべり支承のスライダーと、
前記上部構造体の柱の最下部にすべり支承を配置していない一部の柱に配置されて水平方向の変位を復元する復元装置とを備えたことを特徴とする免震構造物。
A foundation-side structure constructed in contact with the ground;
One or more upper structures that are arranged on the foundation-side structure and are composed of columns and beams;
A sliding plate of a sliding support disposed at a position where the pillar of the upper structure rides on and around the base side structure, with a sliding surface facing upward and at the same level as the surrounding floor surface;
A slider of a sliding support disposed at the lowest part of the column of the upper structure located directly above the sliding plate, and facing downward to the sliding surface of the sliding plate;
A seismic isolation structure, comprising: a restoring device that restores a horizontal displacement by being arranged on a part of a column that is not provided with a sliding support at the lowest part of the column of the upper structure.
地盤に接触して構築された基礎側構造体と、
前記基礎側構造体の上に配置され、柱と梁で構成される1層以上の上部構造体と、
前記基礎側構造体の、前記上部構造体の柱が乗る位置およびその周囲に、すべり面が上向きとされ、かつ周囲床面と同一レベルになるように配置されたすべり支承のすべり板と、
前記すべり板の直上に位置する前記上部構造体の柱の最下部に、前記すべり板のすべり面に対向して下向きに配置されたすべり支承のスライダーと、
前記基礎側構造体もしくは基礎側構造体に固定された支持部材と前記上部構造体もしくは上部構造体に固定された連結部材との間に配置された、水平方向の変位を復元する復元装置とを備えたことを特徴とする免震構造物。
A foundation-side structure constructed in contact with the ground;
One or more upper structures that are arranged on the foundation-side structure and are composed of columns and beams;
A sliding plate of a sliding support disposed at a position where the pillar of the upper structure rides on and around the base side structure, with a sliding surface facing upward and at the same level as the surrounding floor surface;
A slider of a sliding support disposed at the lowest part of the column of the upper structure located directly above the sliding plate, and facing downward to the sliding surface of the sliding plate;
A restoring device for restoring a horizontal displacement, disposed between the base-side structure or a support member fixed to the base-side structure and a connecting member fixed to the upper structure or the upper structure; A seismic isolation structure characterized by the provision.
請求項1又は請求項2に記載の免震構造物において、
前記すべり支承には回転機構付きすべり支承もしくは弾性すべり支承を採用し、
前記復元装置には積層ゴム系免震装置を採用していることを特徴とする免震構造物。
In the seismic isolation structure according to claim 1 or claim 2,
The sliding bearing adopts a sliding bearing with a rotation mechanism or an elastic sliding bearing,
A seismic isolation structure using a laminated rubber-based seismic isolation device as the restoration device.
請求項1乃至請求項3のいずれかに記載の免震構造物において、
前記上部構造体の柱脚部同士を連結する床面を設けており、
該床面は床板単独、もしくは床板および柱にピン接合された床梁で構成されており、
該床板もしくは床梁と前記基礎側構造体の間にすべり支承もしくは転がり支承を配置していることを特徴とする免震構造物。
In the seismic isolation structure according to any one of claims 1 to 3,
A floor surface for connecting the column base portions of the upper structure is provided;
The floor is composed of a floor plate alone, or a floor beam pinned to the floor plate and a pillar,
A seismic isolation structure, wherein a sliding bearing or a rolling bearing is disposed between the floor plate or floor beam and the foundation side structure.
請求項1乃至請求項4のいずれかに記載の免震構造物において、
前記基礎側構造体が杭と浮基礎との併用基礎構造(以後「パイルドラフト基礎構造」という)を採用していることを特徴とする免震構造物。
In the seismic isolation structure according to any one of claims 1 to 4,
A base-isolated structure in which the foundation-side structure employs a combined foundation structure of a pile and a floating foundation (hereinafter referred to as “pile raft foundation structure”).
請求項1乃至請求項5のいずれかに記載の免震構造物において、
前記基礎側構造体を支持する杭頭部に杭頭ピン接合、杭頭回転ばね接合もしくは杭頭半剛接合のいずれかを採用していることを特徴とする免震構造物。
In the seismic isolation structure according to any one of claims 1 to 5,
A seismic isolation structure, wherein a pile head pin joint, a pile head rotary spring joint, or a pile head semi-rigid joint is employed for a pile head that supports the foundation-side structure.
基礎もしくは地下構造体が地盤に接触して構築されている既存の耐震構造物において、地上1階床スラブ以下の部分を請求項1乃至請求項6のいずれかに記載の免震構造物の基礎側構造体とみなし、
1階柱の柱脚部を切断して前記すべり支承のスライダーを取り付け、その下側の1階床スラブに前記すべり板を配置し、
前記すべり支承を取り付けない柱の中間部、もしくは前記基礎側構造体に固定された支持部材と前記上部構造体に固定された連結部材の間に水平方向の変位を復元する前記復元装置を配置することにより、請求項1乃至請求項6に記載の免震構造物と同じ建物構成に改修・変更したことを特徴とする免震構造物。
The base of the seismic isolation structure according to any one of claims 1 to 6, wherein the base or the underground structure is constructed in contact with the ground, and the portion below the first-floor slab is on the ground. As a side structure,
Cut the column base of the 1st floor column and attach the slider of the slide support, and place the slide plate on the 1st floor slab below it,
The restoring device that restores a horizontal displacement is disposed between an intermediate portion of the column to which the sliding bearing is not attached, or a support member fixed to the foundation-side structure and a connecting member fixed to the upper structure. Therefore, the base-isolated structure has been modified and changed to the same building configuration as the base-isolated structure according to claim 1.
JP2006014692A 2006-01-24 2006-01-24 Seismic isolation structure Expired - Fee Related JP4137127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006014692A JP4137127B2 (en) 2006-01-24 2006-01-24 Seismic isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006014692A JP4137127B2 (en) 2006-01-24 2006-01-24 Seismic isolation structure

Publications (2)

Publication Number Publication Date
JP2007197916A true JP2007197916A (en) 2007-08-09
JP4137127B2 JP4137127B2 (en) 2008-08-20

Family

ID=38452782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006014692A Expired - Fee Related JP4137127B2 (en) 2006-01-24 2006-01-24 Seismic isolation structure

Country Status (1)

Country Link
JP (1) JP4137127B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015034436A (en) * 2013-08-09 2015-02-19 株式会社竹中工務店 Rebuilding method for new building, and new building
JP2017057621A (en) * 2015-09-16 2017-03-23 株式会社竹中工務店 Frame structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015034436A (en) * 2013-08-09 2015-02-19 株式会社竹中工務店 Rebuilding method for new building, and new building
JP2017057621A (en) * 2015-09-16 2017-03-23 株式会社竹中工務店 Frame structure

Also Published As

Publication number Publication date
JP4137127B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
JP5567094B2 (en) Long-period building
Saitta et al. Base isolation of buildings with curved surface sliders: Basic design criteria and critical issues
JP5406631B2 (en) Seismic isolation structure and seismic isolation structure
JP5621101B1 (en) Seismic foundation for buildings
JP4137127B2 (en) Seismic isolation structure
JP3677712B2 (en) Seismic isolation and control building
JP2010270474A (en) Vibration control structure
JP3728650B2 (en) Column base support structure and earthquake-resistant building
JPH09235894A (en) Aseismatic reinforcing structure for existing building
JP4391335B2 (en) Intermediate seismic isolation structure of existing buildings
JP5918282B2 (en) Long-period building
JP2002070358A (en) Base isolation device
JP4990729B2 (en) Seismic isolation building
JP2003155838A (en) Vibration-isolated structure of building
JP4439694B2 (en) High-damping frame of high-rise building
JP5727690B2 (en) Long-period building
JP4216235B2 (en) Renovation structure and support for existing buildings
JP2008280818A (en) Base isolation structure of building and building adopting the same
JP2017043988A (en) Vibration control building
JP2012233374A (en) Seismic reinforcement structure
JP2012233374A5 (en)
JP2011241602A (en) Wind-resistant ground base isolation structure using bearings and construction method thereof
JP5270739B2 (en) Seismic isolation structure for floor slabs
JP2662774B2 (en) Seismic isolation bearing structure for structures
JP2004278002A (en) Unit building with base-isolating device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R150 Certificate of patent or registration of utility model

Ref document number: 4137127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees