JP2007197773A - Rolling bearing, hub unit bearing, and manufacturing method for the same - Google Patents

Rolling bearing, hub unit bearing, and manufacturing method for the same Download PDF

Info

Publication number
JP2007197773A
JP2007197773A JP2006017970A JP2006017970A JP2007197773A JP 2007197773 A JP2007197773 A JP 2007197773A JP 2006017970 A JP2006017970 A JP 2006017970A JP 2006017970 A JP2006017970 A JP 2006017970A JP 2007197773 A JP2007197773 A JP 2007197773A
Authority
JP
Japan
Prior art keywords
mass
content
flange
carbon
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006017970A
Other languages
Japanese (ja)
Inventor
Yasuyuki Shimizu
康之 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006017970A priority Critical patent/JP2007197773A/en
Publication of JP2007197773A publication Critical patent/JP2007197773A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily manufacture an inner member and an outer member of a hub unit bearing, and an outer race and an inner race with a flange integrated therewith in a cold working manner while ensuring the strength of the flange and the performance as a rolling bearing. <P>SOLUTION: A rolling bearing and a hub unit bearing is formed of a material after annealing a steel material having the composition consisting of, by mass, ≥0.20% and ≤0.45% carbon (C), ≥0.10% and ≤1.20% chromium (Cr), ≤0.50% silicon (Si), ≤1.50% manganese (Mn), and the balance iron (Fe) with inevitable impurities. This material is cold-worked in a substantially final shape, and nitrided so that the total content of carbon and nitrogen of a surface layer part is ≥0.50%, and the hardness of the surface layer part is ≥Hv260. Then, a raceway surface is hardened, and subjected to the finishing process such as grinding. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、外輪または内輪にフランジが一体成形されている転がり軸受、およびハブユニット軸受(車軸を内嵌するハブの外周面に内輪軌道が形成され、車輪側部材を固定するフランジが前記ハブに一体化された内側部材と、車体側部材を固定するフランジが外輪に一体に形成された外側部材と、転動体を備えた軸受)に関する。   The present invention relates to a rolling bearing in which a flange is integrally formed with an outer ring or an inner ring, and a hub unit bearing (an inner ring raceway is formed on an outer peripheral surface of a hub for fitting an axle, and a flange for fixing a wheel side member is formed on the hub. The present invention relates to an integrated inner member, an outer member in which a flange for fixing a vehicle body side member is formed integrally with an outer ring, and a bearing provided with rolling elements.

近年、自動車の燃費を向上するために、軽量化を目的とした車輪支持用軸受のユニット化が進んでいる。図1は、ユニット化された車輪支持用軸受(ハブユニット軸受)の一例を示す断面図である。このユニットは、内側部材1と、内輪10と、外側部材2と、玉(転動体)3と、保持器4とで構成され、玉3が転動する軌道を二列備えている。
内側部材1は、軌道11aを有する内輪11、車軸を内嵌するハブ12、および車輪側部材8を固定するフランジ13が一体化されたものである。内輪10は軌道10aを有し、内側部材1のフランジ13とは反対側の端部に設けた凹部14に外嵌されている。これらの軌道11a,11bが二列の内輪軌道を成している。
In recent years, in order to improve the fuel efficiency of automobiles, unitization of wheel support bearings for the purpose of weight reduction has been advanced. FIG. 1 is a cross-sectional view showing an example of a unitized wheel support bearing (hub unit bearing). This unit includes an inner member 1, an inner ring 10, an outer member 2, a ball (rolling element) 3, and a cage 4, and has two rows of tracks on which the balls 3 roll.
The inner member 1 is formed by integrating an inner ring 11 having a track 11a, a hub 12 into which an axle is fitted, and a flange 13 for fixing the wheel side member 8. The inner ring 10 has a raceway 10a and is externally fitted into a recess 14 provided at the end of the inner member 1 opposite to the flange 13. These tracks 11a and 11b form two rows of inner ring tracks.

外側部材2は、二列の軌道21a,21bを有する外輪21と、車体の懸架装置(車体側部材)を固定するボルト穴22aが形成されたフランジ22とが一体に形成されたものである。
このような複雑な形状を有する内側部材(フランジおよびハブ付き内輪)1および外側部材(フランジ付き外輪)2は、従来、0.5質量%程度の炭素を含有する中炭素鋼(S35C等)からなる素材を用い、熱間鍛造で所定形状に加工した後、軌道面の表層部を高周波焼入れにより硬化させ、次いで旋削、穿孔、研削等を行うことで製造されている。
The outer member 2 is formed integrally with an outer ring 21 having two rows of raceways 21a and 21b and a flange 22 in which a bolt hole 22a for fixing a vehicle suspension device (vehicle body side member) is formed.
An inner member (an inner ring with a flange and a hub) 1 and an outer member (an outer ring with a flange) 2 having such a complicated shape are conventionally made of medium carbon steel (such as S35C) containing about 0.5% by mass of carbon. After the material is processed into a predetermined shape by hot forging, the surface layer portion of the raceway surface is hardened by induction hardening, and then turning, drilling, grinding, and the like are performed.

近年、製造コストを低減させることを目的として、これらの部材を鋼管または鋼板を用いた冷間加工により、略最終形状にすることが提案されている(下記の特許文献1〜4参照)。
特開2003−25803号公報 特許第3352226号公報 特開平9−151950号公報 特開平7−317777号公報
In recent years, for the purpose of reducing the manufacturing cost, it has been proposed that these members have a substantially final shape by cold working using a steel pipe or a steel plate (see Patent Documents 1 to 4 below).
JP 2003-25803 A Japanese Patent No. 3352226 JP-A-9-151950 JP 7-317777 A

ハブユニット軸受の内側部材および外側部材を製造する際に、冷間加工で略最終形状にするためには、炭素含有率が0.50〜0.55質量%の中炭素鋼からなる素材では加工性が悪い。これに対して、炭素含有率が0.20〜0.45質量%の低炭素鋼からなる素材を用いると、冷間加工性は良くなるが、フランジの強度や転がり軸受としての性能が低下する。   When manufacturing the inner member and outer member of the hub unit bearing, it is processed with a material made of medium carbon steel having a carbon content of 0.50 to 0.55 mass% in order to obtain a substantially final shape by cold working. The nature is bad. On the other hand, when a material made of low carbon steel having a carbon content of 0.20 to 0.45 mass% is used, the cold workability is improved, but the strength of the flange and the performance as a rolling bearing are lowered. .

本発明は、このようなハブユニット軸受の内側部材および外側部材や、フランジが一体化されている外輪および内輪を、フランジの強度や転がり軸受としての性能を確保しながら、冷間加工で容易に製造できるようにすることを課題とする。   The present invention facilitates cold working of the inner and outer members of such a hub unit bearing and the outer ring and inner ring integrated with the flange while ensuring the strength of the flange and the performance as a rolling bearing. An object is to enable manufacture.

上記課題を解決するために、本発明では、ハブユニット軸受の内側部材(車軸を内嵌するハブの外周面に内輪軌道が形成され、車輪側部材を固定するフランジが前記ハブに一体化された部材)、ハブユニット軸受の外側部材(車体側部材を固定するフランジが外輪に一体に形成された部材)、外輪にフランジが一体に形成されたフランジ付き外輪、内輪にフランジが一体に形成されたフランジ付き内輪を、以下の方法で作製する。   In order to solve the above-described problems, in the present invention, an inner member of a hub unit bearing (an inner ring raceway is formed on an outer peripheral surface of a hub for fitting an axle, and a flange for fixing a wheel side member is integrated with the hub. Member), an outer member of the hub unit bearing (a member in which a flange for fixing a vehicle body side member is formed integrally with the outer ring), an outer ring with a flange in which the flange is formed integrally with the outer ring, and a flange is formed integrally with the inner ring. A flanged inner ring is produced by the following method.

先ず、炭素(C)の含有率が0.20質量%以上0.45質量%以下、クロム(Cr)の含有率が0.10質量%以上1.20質量%以下、珪素(Si)の含有率が0.50質量%以下、マンガン(Mn)の含有率が1.50質量%以下で、残部が鉄(Fe)および不可避不純物元素である鉄鋼材料からなり、焼鈍処理が施された後の素材を用いる。この素材を、冷間加工により略最終形状とした後に、窒化処理を施して、表層部の炭素と窒素の合計含有率を0.50質量%以上にするとともに、表層部の硬さをHv260以上とする。次いで、軌道面を焼き入れ硬化した後に、研削等の仕上げ工程を行う。   First, the carbon (C) content is 0.20% by mass or more and 0.45% by mass or less, the chromium (Cr) content is 0.10% by mass or more and 1.20% by mass or less, and silicon (Si) is contained. The rate is 0.50% by mass or less, the content of manganese (Mn) is 1.50% by mass or less, and the balance is made of a steel material that is iron (Fe) and inevitable impurity elements, and after the annealing treatment is performed Use material. This material is made into a substantially final shape by cold working and then subjected to nitriding treatment so that the total content of carbon and nitrogen in the surface layer portion is 0.50% by mass or more, and the hardness of the surface layer portion is Hv 260 or more. And Next, after the raceway surface is quenched and hardened, a finishing process such as grinding is performed.

この方法によれば、ハブユニット軸受の内側部材および外側部材、フランジが一体化されている外輪および内輪を、フランジの強度や転がり軸受としての性能を確保しながら、冷間加工で容易に製造することができる。よって、この方法で得られた内側部材および/または外側部材を備えたハブユニット軸受と、フランジが一体化されている外輪および/または内輪を備えた転がり軸受は、低コストで得られ、フランジの耐久性が優れ、転がり軸受としての性能に優れたものとなる。   According to this method, the inner and outer members of the hub unit bearing, the outer ring and the inner ring in which the flange is integrated are easily manufactured by cold working while ensuring the strength of the flange and the performance as a rolling bearing. be able to. Therefore, the hub unit bearing having the inner member and / or the outer member obtained by this method and the rolling bearing having the outer ring and / or inner ring in which the flange is integrated can be obtained at low cost, and the flange The durability is excellent and the performance as a rolling bearing is excellent.

以下に、各数値限定の理由について説明する。
〔素材をなす鉄鋼材料の炭素含有率:0.20質量%以上0.45質量%以下〕
炭素含有率が0.45質量%を超えると、素材の冷間加工性が低下する。また、フランジに割れが発生し易くなる。好ましくは0.40質量%以下とする。これについては、下記の[発明の実施の形態]に詳述している。
一方、炭素含有率が0.20質量%未満であると、表層部の炭素と窒素の合計含有率を0.50質量%以上とするための窒化処理にかかる時間が長くなって、製造コストが高くなる。
Below, the reason for each numerical limitation will be described.
[Carbon content of steel material constituting the material: 0.20 mass% to 0.45 mass%]
When the carbon content exceeds 0.45% by mass, the cold workability of the material is lowered. Further, cracks are likely to occur in the flange. Preferably it is 0.40 mass% or less. This is described in detail in [Embodiments of the Invention] below.
On the other hand, when the carbon content is less than 0.20% by mass, the time required for the nitriding treatment to make the total content of carbon and nitrogen in the surface layer part 0.50% by mass or more becomes longer, and the production cost is increased. Get higher.

〔素材をなす鉄鋼材料のクロム含有率:0.10質量%以上1.20質量%以下〕
クロム(Cr)は、炭化物形成元素であり、鋼の硬さを向上させる。また、焼き入れ性を向上させる作用も有する。クロムの含有率が0.10質量%未満であるとこれらの作用が実質的に得られない。
一方、クロムはフェライトを強化する作用があり、クロムの含有率が1.20質量%を超えると、冷間加工性が低下する。
[Chromium content of steel material: 0.10 mass% or more and 1.20 mass% or less]
Chromium (Cr) is a carbide forming element and improves the hardness of steel. It also has the effect of improving hardenability. If the chromium content is less than 0.10% by mass, these effects cannot be substantially obtained.
On the other hand, chromium has an effect of strengthening ferrite, and when the chromium content exceeds 1.20% by mass, cold workability is lowered.

〔素材をなす鉄鋼材料の珪素含有率:0.50質量%以下〕
珪素(Si)の含有率が0.50質量%を超えると、フェライトに固溶して変形抵抗が増大し、冷間加工性が低下する。好ましくは0.40質量%以下、より好ましくは0.35質量%以下とする。
なお、珪素の存在により転がり疲労寿命の向上作用が得られるため、0.1質量%以上含有していることが好ましい。
[Silicon content of steel material: 0.50% by mass or less]
If the content of silicon (Si) exceeds 0.50% by mass, the solid solution dissolves in ferrite and the deformation resistance increases, and the cold workability decreases. Preferably it is 0.40 mass% or less, More preferably, it is 0.35 mass% or less.
In addition, since the improvement effect of a rolling fatigue life is acquired by presence of silicon, it is preferable to contain 0.1 mass% or more.

〔素材をなす鉄鋼材料のマンガン含有率:1.50質量%以下〕
マンガン(Mn)の含有率が1.50質量%を超えると、フェライトに固溶して変形抵抗が増大し、冷間加工性が低下する。好ましくは0.90質量%以下とする。
なお、マンガンは製鋼時に脱酸剤として添加され、焼き入れ性を向上する作用を有するため、0.30質量%以上含有していることが好ましい。
なお、モリブデン(Mo)も、焼き入れ性を向上させる作用を有するが、過剰に添加すると冷間加工性が低下するため、モリブデンを0.20質量%以下の範囲で含有していることが好ましい。
[Manganese content of steel material: 1.50% by mass or less]
When the content of manganese (Mn) exceeds 1.50% by mass, the solid solution dissolves in ferrite and deformation resistance increases, and cold workability decreases. Preferably it is 0.90 mass% or less.
In addition, since manganese is added as a deoxidizer during steelmaking and has an effect of improving hardenability, it is preferable to contain 0.30% by mass or more.
Molybdenum (Mo) also has the effect of improving the hardenability, but if added excessively, the cold workability is lowered, so it is preferable to contain molybdenum in the range of 0.20% by mass or less. .

〔表層部の炭素と窒素の合計含有率〔C+N〕:0.50質量%以上〕
これについては、下記の[発明の実施の形態]に詳述している。また、初期析出物であるフェライトの発生を抑制し、窒化処理にかかる時間を短縮するためには、表層部の〔C+N〕を1.20質量%以下とすることが好ましく、0.80質量%以下とすることがより好ましく、0.60質量%以下とすることが更に好ましい。
[Total content of carbon and nitrogen in the surface layer portion [C + N]: 0.50% by mass or more]
This is described in detail in [Embodiments of the Invention] below. Further, in order to suppress the generation of ferrite as an initial precipitate and reduce the time required for the nitriding treatment, the [C + N] of the surface layer portion is preferably 1.20% by mass or less, and 0.80% by mass. More preferably, it is more preferably 0.60% by mass or less.

〔焼き入れしない表層部の硬さ:Hv260以上〕
表層部の硬さをHv260以上とすることによりフランジ強度が十分なものとなる。ただし、ハブユニット軸受の内側部材(フランジおよびハブ付き内輪)の場合、別部材の内輪(図1の符号10)をハブ(図1の符号12)の先端に「かしめ」で固定するため、良好な「かしめ」性能を得るためにはHv500以下とすることが好ましい。
[Hardness of surface layer portion not quenched: Hv 260 or more]
By setting the hardness of the surface layer portion to Hv 260 or more, the flange strength is sufficient. However, in the case of the inner member of the hub unit bearing (inner ring with flange and hub), the inner ring (reference numeral 10 in FIG. 1) of another member is fixed to the tip of the hub (reference numeral 12 in FIG. 1) by “caulking”, so that it is good. In order to obtain excellent “caulking” performance, Hv is preferably 500 or less.

なお、本発明の方法では、冷間加工により略最終形状とした後に、窒化処理、軌道面の焼き入れ硬化、仕上げ加工を行うため、従来品のS53Cを用いた熱間鍛造品のように、窒化処理後にボルト穴をドリルで穿孔する必要がない。よって、焼き入れしない表層部をHv260以上の硬さにすることができる。   In addition, in the method of the present invention, after forming a substantially final shape by cold working, nitriding treatment, quenching hardening of the raceway surface, and finishing work are performed, like a hot forged product using the conventional product S53C, There is no need to drill bolt holes after nitriding. Therefore, the surface layer portion that is not quenched can be made harder than Hv260.

本発明の方法によれば、ハブユニット軸受の内側部材および外側部材、フランジが一体化されている外輪および内輪を、フランジの強度や転がり軸受としての性能を確保しながら、冷間加工で容易に製造できるため、耐久性に優れ、転がり軸受としての性能に優れたハブユニット軸受および転がり軸受が低コストで得られる。   According to the method of the present invention, the inner member and the outer member of the hub unit bearing, the outer ring and the inner ring in which the flange is integrated can be easily processed by cold working while ensuring the strength of the flange and the performance as a rolling bearing. Since it can be manufactured, a hub unit bearing and a rolling bearing excellent in durability and performance as a rolling bearing can be obtained at low cost.

以下、本発明の実施形態について説明する。
下記の表1に示すNo. A〜Rの鋼からなる板材(板厚9mmの鋼板)に対して球状化焼鈍を行った。また、焼鈍後の鋼板を試験片の形状に切り出して、硬さ(HRB:ロックウエルB硬度)を測定した。また、焼鈍後の鋼板を直径150mmの円板状に切り出して、図2に示す(a)〜(e)の各工程を経て、図1の内側部材1の略最終形状の成形品50を100個ずつ作製し、フランジ13に割れが発生していた数を調べた。また、図2(d)に示す状態とするためのプレス成形時に、変形抵抗を測定した。
Hereinafter, embodiments of the present invention will be described.
Spheroidizing annealing was performed on a plate material (steel plate having a thickness of 9 mm) made of steel No. A to R shown in Table 1 below. Moreover, the steel plate after annealing was cut out into the shape of the test piece, and hardness (HRB: Rockwell B hardness) was measured. Moreover, the steel plate after annealing is cut out into a disk shape having a diameter of 150 mm, and after the steps (a) to (e) shown in FIG. Individual pieces were produced, and the number of cracks in the flange 13 was examined. In addition, the deformation resistance was measured at the time of press forming to obtain the state shown in FIG.

これらの試験結果を表1に併せて示す。また、これらの結果をまとめたグラフを、図3および4に示す。図3は、鋼の炭素含有率と変形抵抗との関係を示すグラフである。図4は、鋼の炭素含有率とフランジの割れ発生率との関係を示すグラフである。   These test results are also shown in Table 1. Moreover, the graph which put together these results is shown in FIG. FIG. 3 is a graph showing the relationship between the carbon content of steel and the deformation resistance. FIG. 4 is a graph showing the relationship between the carbon content of steel and the crack occurrence rate of the flange.

〔成形品50の作製方法〕
図2(a)の符号5は、焼鈍後の鋼板を切り出して得られた円板状の素材を示す。この素材5を深絞り加工することにより、図2(b)に示すように、丸い底が付いた円筒容器で開口部にフランジを有する形状の中間成形品51を得る。
[Method for producing molded product 50]
The code | symbol 5 of Fig.2 (a) shows the disk-shaped raw material obtained by cutting out the steel plate after annealing. By deep-drawing the material 5, as shown in FIG. 2 (b), an intermediate molded product 51 having a cylindrical shape with a round bottom and having a flange at the opening is obtained.

次に、図2(c)に示すように、中間成形品51の底をピアス加工により丸く打ち抜いて、穴52を開ける。符号53は、ピアス工程で除去された部分である。
次に、略最終形状とするためのオス型とメス型を用いてプレス成形を行う。これにより、図2(d)に示すように、外周面にフランジ13と内輪軌道11aと別部材の内輪を嵌める凹部14が形成され、内周面がハブ12の内側形状12aにされる。
Next, as shown in FIG. 2 (c), the bottom of the intermediate molded product 51 is punched out round by piercing to open a hole 52. Reference numeral 53 denotes a portion removed by the piercing process.
Next, press molding is performed using a male mold and a female mold to obtain a substantially final shape. As a result, as shown in FIG. 2 (d), a recess 14 is formed on the outer peripheral surface to fit the flange 13, the inner ring raceway 11 a, and the inner ring of another member, and the inner peripheral surface is formed into the inner shape 12 a of the hub 12.

次に、図2(e)に示すように、ピアス工程とトリム工程を行って、フランジ13にボルト穴13aと薄肉部13bを形成する。符号54は、ピアス工程で除去された部分であり、符号55はトリム工程で除去された部分である。これにより、内側部材1の略最終形状となった成形品50が得られる。   Next, as shown in FIG. 2E, a piercing process and a trimming process are performed to form bolt holes 13a and thin portions 13b in the flange 13. Reference numeral 54 denotes a portion removed in the piercing process, and reference numeral 55 denotes a portion removed in the trimming process. Thereby, the molded product 50 having the substantially final shape of the inner member 1 is obtained.

Figure 2007197773
Figure 2007197773

図3のグラフから分かるように、使用する鋼の炭素含有率が高いほど変形抵抗が高くなるため、冷間加工性に優れている。特に、炭素含有率が0.40質量%以下であると、変形抵抗を750MPa以下にすることができる。一方、図4のグラフから分かるように、炭素含有率が0.45質量%を超えると、フランジに割れが発生する。   As can be seen from the graph of FIG. 3, the higher the carbon content of the steel used, the higher the deformation resistance, so the cold workability is excellent. In particular, when the carbon content is 0.40 mass% or less, the deformation resistance can be 750 MPa or less. On the other hand, as can be seen from the graph of FIG. 4, when the carbon content exceeds 0.45 mass%, the flange is cracked.

次に、前述の方法で得られた図2(e)に示す成形品50であって、鋼A〜G,Lからなる素材で形成されたサンプル(下記の表2に示すNo. 1〜9)を用意した。そして、No. 1〜6のサンプルについては、下記の方法で窒化処理を行った後に、下記の方法で軌道面に対する高周波焼き入れを行った。No. 7〜9のサンプルについては、窒化処理を行わないで軌道面に対する高周波焼き入れを行った。   Next, it is the molded product 50 shown in FIG. 2 (e) obtained by the above-described method, and is a sample (No. 1-9 shown in Table 2 below) formed of a material made of steels A to G, L. ) Was prepared. And about the sample of No. 1-6, after performing the nitriding process by the following method, induction hardening with respect to the track surface was performed by the following method. The samples No. 7 to 9 were subjected to induction hardening on the raceway surface without performing nitriding treatment.

次に、研削等の仕上げ加工を行って、図1の内側部材1の形状に仕上げた。このようにして得られたNo. 1〜9の内側部材1と、No. 1の内側部材1と同じ鋼を用い同じ方法で作製した外側部材2および内輪10、SUJ2製で通常の熱処理が施された玉3、合成樹脂製の保持器4を用いて、図1のハブユニット軸受を組み立て、下記の方法で転がり寿命試験とフランジ強度試験を行った。また、これらの試験の前に、内側部材1のフランジの硬さ(Hv)と表層部の炭素と窒素の合計含有率〔C+N〕を測定した。   Next, finishing such as grinding was performed to finish the inner member 1 in FIG. The inner member 1 of No. 1 to 9 thus obtained, the outer member 2 and the inner ring 10 made by the same method using the same steel as the inner member 1 of No. 1, and a normal heat treatment made of SUJ2. The hub unit bearing shown in FIG. 1 was assembled using the balls 3 and the cage 4 made of synthetic resin, and a rolling life test and a flange strength test were performed by the following methods. Moreover, before these tests, the hardness (Hv) of the flange of the inner member 1 and the total content [C + N] of carbon and nitrogen in the surface layer portion were measured.

これらの結果も下記の表2に併せて示す。また、これらの結果をまとめたグラフを、図5および6に示す。図5は、表層部の炭素と窒素の合計含有率〔C+N〕と転がり寿命(相対値)との関係を示すグラフである。図6は、素材をなす鋼の炭素含有率とフランジ強度(相対値)との関係を示すグラフである。   These results are also shown in Table 2 below. Moreover, the graph which put together these results is shown in FIG. FIG. 5 is a graph showing the relationship between the total content of carbon and nitrogen [C + N] and rolling life (relative value) in the surface layer portion. FIG. 6 is a graph showing the relationship between the carbon content of the steel constituting the material and the flange strength (relative value).

〔窒化処理〕
アンモニアガスを主成分としたガス中に570℃で3〜10時間保持した後に、50℃/分以上の冷却速度で冷却する。
〔転がり寿命試験〕
No. 1〜9のハブユニット軸受を回転試験機に取り付けて、内側部材1のフランジ13にラジアル荷重7000Nとアキシアル荷重5000Nを付与して、回転速度300min-1で内側部材1のハブ12に嵌めた軸を回転させた。回転中に内側部材1および外側部材2に生じる振動を測定し、この振動測定値からフレーキングの発生を検出した。そして、フレーキングの発生を検出するまでの回転回数を調べてこれを転がり寿命とし、No. 7の値を「1」とした相対値を算出した。
〔Nitriding treatment〕
After being held at 570 ° C. for 3 to 10 hours in a gas containing ammonia gas as a main component, it is cooled at a cooling rate of 50 ° C./min or more.
[Rolling life test]
The hub unit bearings of No. 1 to 9 are attached to the rotation testing machine, and a radial load of 7000 N and an axial load of 5000 N are applied to the flange 13 of the inner member 1 and fitted to the hub 12 of the inner member 1 at a rotational speed of 300 min −1. The shaft was rotated. The vibration generated in the inner member 1 and the outer member 2 during the rotation was measured, and the occurrence of flaking was detected from the vibration measurement value. Then, the number of rotations until the occurrence of flaking was detected was examined, and this was regarded as the rolling life, and the relative value was calculated with the value of No. 7 being “1”.

〔フランジ強度試験〕
No. 1〜9のハブユニット軸受をそれぞれ50体用意した。各ハブユニット軸受を回転試験機に取り付けて、内側部材1のフランジ13にアキシアル荷重6000Nと所定のラジアル荷重を付与して、回転速度400min-1で内側部材1のハブ12に嵌めた軸を50時間回転させた。その後に、フランジ13のハブ12に対する付け根の部分に、クラックが発生しているかどうかを調べた。
この試験を、サンプルNo. 毎に50体用意したハブユニット軸受について、ラジアル荷重を5000Nから9600Nまで変化させて行った。そして、サンプルNo. 毎にクラックが発生するラジアル荷重の最小値を調べて、これをフランジ強度とし、No. 7の値を「1」とした相対値を算出した。
[Flange strength test]
50 hub unit bearings No. 1 to 9 were prepared. Each hub unit bearing is attached to a rotation testing machine, an axial load of 6000 N and a predetermined radial load are applied to the flange 13 of the inner member 1, and a shaft fitted to the hub 12 of the inner member 1 is rotated at a rotational speed of 400 min −1. Rotated for hours. Thereafter, it was examined whether or not a crack occurred at the base portion of the flange 13 with respect to the hub 12.
This test was carried out by changing the radial load from 5000 N to 9600 N for the hub unit bearings prepared for each sample number. And the minimum value of the radial load which a crack generate | occur | produces for every sample No. was investigated, this was made into flange strength, and the relative value which set the value of No. 7 to "1" was computed.

Figure 2007197773
Figure 2007197773

図5のグラフから分かるように、表層部の〔C+N〕が高いほど転がり寿命が長くなり、表層部の〔C+N〕が0.50質量%以上であるNo. 1〜6の内側部材1を備えたハブユニット軸受では、従来品であるNo. 7の内側部材1を備えたハブユニット軸受と同等以上の寿命が得られる。また、図6のグラフから分かるように、素材をなす鋼の炭素含有率が0.20質量%以上0.45質量%以下であるNo. 1〜6の内側部材1は、従来品であるNo. 7の内側部材1よりもフランジ強度が高い。   As can be seen from the graph of FIG. 5, the higher the surface layer portion [C + N], the longer the rolling life, and the surface layer portion [C + N] includes No. 1 to 6 inner members 1 of 0.50 mass% or more. In addition, the life of the hub unit bearing is equal to or longer than that of the hub unit bearing having the inner member 1 of No. 7 which is a conventional product. Moreover, as can be seen from the graph of FIG. 6, the inner members 1 of Nos. 1 to 6 in which the carbon content of the steel constituting the material is 0.20% by mass or more and 0.45% by mass or less are conventional Nos. The flange strength is higher than that of the inner member 1 in FIG.

なお、この実施形態では図1に示すハブユニット軸受について述べているが、このハブユニット軸受の内側部材1はフランジ付き内輪に含まれ、外側部材2はフランジ付き外輪であるため、この実施形態は、請求項1〜4に係る全ての発明の実施形態に相当する。   In this embodiment, the hub unit bearing shown in FIG. 1 is described. However, since the inner member 1 of this hub unit bearing is included in the flanged inner ring and the outer member 2 is a flanged outer ring, this embodiment is This corresponds to all embodiments of the present invention according to claims 1 to 4.

ハブユニット軸受の形状の一例を示す断面図である。It is sectional drawing which shows an example of the shape of a hub unit bearing. 実施形態で採用したハブユニット軸受の内側部材の作製方法を説明する図である。It is a figure explaining the manufacturing method of the inner member of the hub unit bearing employ | adopted by embodiment. 鋼の炭素含有率と変形抵抗との関係を示すグラフである。It is a graph which shows the relationship between the carbon content rate and deformation resistance of steel. 鋼の炭素含有率とフランジの割れ発生率との関係を示すグラフである。It is a graph which shows the relationship between the carbon content rate of steel, and the crack generation rate of a flange. 表層部の炭素と窒素の合計含有率〔C+N〕と転がり寿命(相対値)との関係を示すグラフである。It is a graph which shows the relationship between the total content rate [C + N] of carbon and nitrogen of a surface layer part, and a rolling lifetime (relative value). 素材をなす鋼の炭素含有率とフランジ強度(相対値)との関係を示すグラフである。It is a graph which shows the relationship between the carbon content rate of the steel which makes a raw material, and flange strength (relative value).

符号の説明Explanation of symbols

1 内側部材
10 内輪
10a 内輪軌道
11a 内輪軌道
11 内輪
12 ハブ
12a ハブの内側形状
13 フランジ
13a フランジのボルト穴
13b フランジの薄肉部
14 内輪を嵌める凹部
2 外側部材
21 外輪
21a 軌道溝
21b 軌道溝
22a 懸架装置(車体側部材)を固定するボルト穴
22 フランジ
3 玉(転動体)
4 保持器
5 素材
50 内側部材の略最終形状となった成形品
51 中間成形品
52 穴
8 車輪側部材
DESCRIPTION OF SYMBOLS 1 Inner member 10 Inner ring 10a Inner ring track 11a Inner ring track 11 Inner ring 12 Hub 12a Inner shape of hub 13 Flange 13a Flange bolt hole 13b Thin wall portion of flange 14 Recessed portion for fitting inner ring 2 Outer member 21 Outer ring 21a Track groove 21b Track groove 22a Suspension groove Bolt hole for fixing the device (vehicle body side member) 22 Flange 3 Ball (rolling element)
4 Cage 5 Material 50 Molded product having substantially final shape of inner member 51 Intermediate molded product 52 Hole 8 Wheel side member

Claims (4)

外輪にフランジが一体に形成されたフランジ付き外輪、または内輪にフランジが一体に形成されたフランジ付き内輪を、備えた転がり軸受の製造方法であって、
前記フランジ付き外輪またはフランジ付き内輪を、
炭素(C)の含有率が0.20質量%以上0.45質量%以下、クロム(Cr)の含有率が0.10質量%以上1.20質量%以下、珪素(Si)の含有率が0.50質量%以下、マンガン(Mn)の含有率が1.50質量%以下で、残部が鉄(Fe)および不可避不純物元素である鉄鋼材料からなり、焼鈍処理が施された後の素材を、冷間加工により略最終形状とした後に、窒化処理を施して、表層部の炭素と窒素の合計含有率を0.50質量%以上にするとともに、表層部の硬さをHv(ビッカース硬さ)260以上とし、次いで、軌道面を焼き入れ硬化した後に、研削等の仕上げ工程を行うことで得ることを特徴とする転がり軸受の製造方法。
A method of manufacturing a rolling bearing comprising a flanged outer ring in which a flange is integrally formed with an outer ring, or a flanged inner ring in which a flange is integrally formed with an inner ring,
The flanged outer ring or flanged inner ring,
The carbon (C) content is 0.20 mass% to 0.45 mass%, the chromium (Cr) content is 0.10 mass% to 1.20 mass%, and the silicon (Si) content is 0.50% by mass or less, manganese (Mn) content is 1.50% by mass or less, the balance is made of iron (Fe) and an inevitable impurity element steel material, and the material after annealing is applied. Then, after forming a substantially final shape by cold working, nitriding is performed to make the total content of carbon and nitrogen in the surface layer portion 0.50% by mass or more, and the hardness of the surface layer portion is Hv (Vickers hardness) ) 260 or more, and then, after hardening and hardening the raceway surface, it is obtained by performing a finishing process such as grinding.
車軸を内嵌するハブの外周面に内輪軌道が形成され、車輪側部材を固定するフランジが前記ハブに一体化された内側部材と、
車体側部材を固定するフランジが外輪に一体に形成された外側部材と、転動体と、を備えたハブユニット軸受の製造方法であって、
前記内側部材および外側部材の少なくともいずれかを、
炭素(C)の含有率が0.20質量%以上0.45質量%以下、クロム(Cr)の含有率が0.10質量%以上1.20質量%以下、珪素(Si)の含有率が0.50質量%以下、マンガン(Mn)の含有率が1.50質量%以下で、残部が鉄(Fe)および不可避不純物元素である鉄鋼材料からなり、焼鈍処理が施された後の素材を、冷間加工により略最終形状とした後に、窒化処理を施して、表層部の炭素と窒素の合計含有率を0.50質量%以上とするとともに、表層部の硬さをHv260以上とし、次いで軌道面を焼き入れ硬化した後に、研削等の仕上げ工程を行うことで得ることを特徴とするハブユニット軸受の製造方法。
An inner ring raceway is formed on the outer peripheral surface of the hub that internally fits the axle, and a flange that fixes the wheel side member is integrated with the hub; and
A hub unit bearing manufacturing method comprising: an outer member in which a flange for fixing a vehicle body side member is formed integrally with an outer ring; and a rolling element,
At least one of the inner member and the outer member,
The carbon (C) content is 0.20 mass% to 0.45 mass%, the chromium (Cr) content is 0.10 mass% to 1.20 mass%, and the silicon (Si) content is 0.50% by mass or less, manganese (Mn) content is 1.50% by mass or less, the balance is made of iron (Fe) and an inevitable impurity element steel material, and the material after annealing is applied. Then, after making the substantially final shape by cold working, nitriding treatment is performed, the total content of carbon and nitrogen in the surface layer portion is 0.50 mass% or more, the hardness of the surface layer portion is Hv260 or more, A hub unit bearing manufacturing method obtained by performing a finishing process such as grinding after quenching and hardening a raceway surface.
外輪にフランジが一体に形成されたフランジ付き外輪、または内輪にフランジが一体に形成されたフランジ付き内輪を備えた転がり軸受であって、
前記フランジ付き外輪またはフランジ付き内輪は、
炭素(C)の含有率が0.20質量%以上0.45質量%以下、クロム(Cr)の含有率が0.10質量%以上1.20質量%以下、珪素(Si)の含有率が0.50質量%以下、マンガン(Mn)の含有率が1.50質量%以下で、残部が鉄(Fe)および不可避不純物元素である鉄鋼材料からなり、焼鈍処理が施された後の素材を、冷間加工により略最終形状とした後に、窒化処理を施して、表層部の炭素と窒素の合計含有率を0.50質量%以上とするとともに、表層部の硬さをHv260以上とし、次いで軌道面を焼き入れ硬化した後に、研削等の仕上げ工程を行うことで得られたものであることを特徴とする転がり軸受。
A rolling bearing having a flanged outer ring in which a flange is formed integrally with an outer ring, or a flanged inner ring in which a flange is formed integrally with an inner ring,
The flanged outer ring or flanged inner ring is
The carbon (C) content is 0.20 mass% to 0.45 mass%, the chromium (Cr) content is 0.10 mass% to 1.20 mass%, and the silicon (Si) content is 0.50% by mass or less, manganese (Mn) content is 1.50% by mass or less, the balance is made of iron (Fe) and an inevitable impurity element steel material, and the material after annealing is applied. Then, after making the substantially final shape by cold working, nitriding treatment is performed, the total content of carbon and nitrogen in the surface layer portion is 0.50 mass% or more, the hardness of the surface layer portion is Hv260 or more, A rolling bearing obtained by quenching and hardening a raceway surface and then performing a finishing process such as grinding.
車軸を内嵌するハブの外周面に内輪軌道が形成され、車輪側部材を固定するフランジが前記ハブに一体化された内側部材と、
車体側部材を固定するフランジが外輪に一体に形成された外側部材と、転動体と、を備えたハブユニット軸受であって、
前記内側部材および外側部材の少なくともいずれかは、
炭素(C)の含有率が0.20質量%以上0.45質量%以下、クロム(Cr)の含有率が0.10質量%以上1.20質量%以下、珪素(Si)の含有率が0.50質量%以下、マンガン(Mn)の含有率が1.50質量%以下で、残部が鉄(Fe)および不可避不純物元素である鉄鋼材料からなり、焼鈍処理が施された後の素材を、冷間加工により略最終形状とした後に、窒化処理を施して、表層部の炭素と窒素の合計含有率を0.50質量%以上とするとともに、表層部の硬さをHv260以上とし、次いで軌道面を焼き入れ硬化した後に、研削等の仕上げ工程を行うことで得られたものであることを特徴とするハブユニット軸受。
An inner ring raceway is formed on the outer peripheral surface of the hub that internally fits the axle, and a flange that fixes the wheel side member is integrated with the hub; and
A hub unit bearing comprising an outer member in which a flange for fixing a vehicle body side member is formed integrally with an outer ring, and a rolling element,
At least one of the inner member and the outer member is
The carbon (C) content is 0.20 mass% to 0.45 mass%, the chromium (Cr) content is 0.10 mass% to 1.20 mass%, and the silicon (Si) content is 0.50% by mass or less, manganese (Mn) content is 1.50% by mass or less, the balance is made of iron (Fe) and an inevitable impurity element steel material, and the material after annealing is applied. Then, after making the substantially final shape by cold working, nitriding treatment is performed, the total content of carbon and nitrogen in the surface layer portion is 0.50 mass% or more, the hardness of the surface layer portion is Hv260 or more, A hub unit bearing obtained by quenching and hardening the raceway surface and then performing a finishing process such as grinding.
JP2006017970A 2006-01-26 2006-01-26 Rolling bearing, hub unit bearing, and manufacturing method for the same Pending JP2007197773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006017970A JP2007197773A (en) 2006-01-26 2006-01-26 Rolling bearing, hub unit bearing, and manufacturing method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006017970A JP2007197773A (en) 2006-01-26 2006-01-26 Rolling bearing, hub unit bearing, and manufacturing method for the same

Publications (1)

Publication Number Publication Date
JP2007197773A true JP2007197773A (en) 2007-08-09

Family

ID=38452657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006017970A Pending JP2007197773A (en) 2006-01-26 2006-01-26 Rolling bearing, hub unit bearing, and manufacturing method for the same

Country Status (1)

Country Link
JP (1) JP2007197773A (en)

Similar Documents

Publication Publication Date Title
JP2006200700A (en) Rolling bearing device for supporting wheel
US8596875B2 (en) Bearing constituent member and process for producing the same, and rolling bearing having bearing constituent member
JP2013164093A (en) Manufacturing method of race for thrust needle bearing
JP2009192071A (en) Roller bearing
JP5392099B2 (en) Rolling sliding member and manufacturing method thereof
JP4998054B2 (en) Rolling bearing
WO2008059617A1 (en) Bearing device for wheel
JP2008285725A (en) Rolling member, rolling bearing, and method for manufacturing rolling member
JP5598016B2 (en) Manufacturing method of thrust trace of needle thrust bearing
JP2007100126A (en) Rolling member and ball bearing
JP2006124780A (en) Rolling and sliding part and manufacturing method therefor
JP2019039044A (en) Rolling slide member and rolling bearing
JP2011190921A (en) Thrust roller bearing
JP5668283B2 (en) Manufacturing method of rolling sliding member
JP2007239072A (en) Rolling member manufacturing method, and rolling bearing manufacturing method
JP2008308743A (en) Rolling member for machine tool, and rolling bearing for machine tool
JP2007107647A (en) Rolling bearing device for supporting wheel
JP5597976B2 (en) Bearing constituent member, method for manufacturing the same, and rolling bearing provided with the bearing constituent member
JP2007197773A (en) Rolling bearing, hub unit bearing, and manufacturing method for the same
JP5853409B2 (en) Manufacturing method of rolling bearing
JP2006046353A (en) Wheel supporting hub bearing unit
JP2006226373A (en) Rolling bearing unit for supporting wheel
JP2006153188A (en) Roller bearing system for supporting wheel
JP5263862B2 (en) Machine Tools
JP2005273698A (en) Self-aligning roller bearing