JP2007196158A - Membrane module washing method for membrane separation for fe-, cr-, and resist-containing water - Google Patents

Membrane module washing method for membrane separation for fe-, cr-, and resist-containing water Download PDF

Info

Publication number
JP2007196158A
JP2007196158A JP2006019121A JP2006019121A JP2007196158A JP 2007196158 A JP2007196158 A JP 2007196158A JP 2006019121 A JP2006019121 A JP 2006019121A JP 2006019121 A JP2006019121 A JP 2006019121A JP 2007196158 A JP2007196158 A JP 2007196158A
Authority
JP
Japan
Prior art keywords
membrane
cleaning
resist
washing
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006019121A
Other languages
Japanese (ja)
Inventor
Kozo Shimizu
浩三 志水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2006019121A priority Critical patent/JP2007196158A/en
Publication of JP2007196158A publication Critical patent/JP2007196158A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane washing method for efficiently washing and removing chromium oxide, iron oxide and resist attached to the membrane surface of a membrane module for a membrane separation apparatus for Fe-, Cr- and resist-containing water, and keeping the membrane performance high over a long period of time. <P>SOLUTION: The membrane module washing method for the membrane separation apparatus for Fe-, Cr- and resist-containing water comprises a first washing step for washing the membrane module with NaOH solution, and a second washing step for washing with acid. In the second washing step, the acid solution may be replaced once or twice or more during the step to wash the membrane again with a new acid solution. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液晶ディスプレイやプラズマディスプレイ等の製造工場や半導体工場等から排出されるFe、Cr及びレジスト含有水を処理する膜分離装置の膜モジュールの膜面に付着した酸化クロム、酸化鉄及びレジストを効率的に洗浄除去して、長期間にわたって膜性能を高く維持するための膜の洗浄方法に関する。   The present invention relates to chromium oxide, iron oxide, and resist adhered to the membrane surface of a membrane module of a membrane separation apparatus that processes Fe, Cr, and resist-containing water discharged from manufacturing factories such as liquid crystal displays and plasma displays, and semiconductor factories. The present invention relates to a film cleaning method for efficiently cleaning and removing the film to maintain the film performance high over a long period of time.

膜分離処理は、各種排水処理や浄水処理等の分野において広く採用されている。ところで、液晶ディスプレイやプラズマディスプレイ等の製造工場や半導体工場等からの排水には、Fe及びCr等の金属成分の他に、樹脂等のレジスト成分が含まれており、膜面への酸化鉄や酸化クロムの析出や、さらにはレジスト成分の付着等によりファウリングが生じ、膜の透過性能が低下する。   Membrane separation treatment is widely adopted in fields such as various wastewater treatment and water purification treatment. By the way, waste water from manufacturing factories such as liquid crystal displays and plasma displays, semiconductor factories, etc. contains resist components such as resins in addition to metal components such as Fe and Cr, and iron oxide on the film surface. Fouling occurs due to the deposition of chromium oxide and the adhesion of resist components, and the permeation performance of the membrane decreases.

そこで、酸化クロム、酸化鉄等が付着した場合には、塩酸、硫酸等の酸で膜モジュールを洗浄する。しかしながら、レジスト成分は酸では容易に除去できないため、膜の透過性能を十分に回復できないという問題点があった。このため、従来は酸化剤である次亜塩素酸ソーダ溶液による洗浄を行い膜面に付着したレジストを酸化して除去した後、塩酸等による洗浄により、酸化鉄や酸化クロムを除去する、というサイクルを1回又は2回以上行っていた。   Therefore, when chromium oxide, iron oxide or the like adheres, the membrane module is washed with an acid such as hydrochloric acid or sulfuric acid. However, since the resist component cannot be easily removed with an acid, there is a problem that the permeation performance of the film cannot be sufficiently recovered. For this reason, a cycle of cleaning with an oxidizing agent sodium hypochlorite solution to oxidize and remove the resist adhering to the film surface, and then removing iron oxide and chromium oxide by cleaning with hydrochloric acid or the like. Was performed once or twice or more.

上述したような次亜塩素酸ソーダ(酸化剤)と酸との併用により、膜性能を回復することが可能であるが、その後の本発明者の研究の結果、酸化剤である次亜塩素酸ソーダと鉄とが並存すると、鉄と塩素との触媒作用により膜素材が劣化しやすく、膜寿命が短くなることがわかった。   Although the membrane performance can be recovered by the combined use of sodium hypochlorite (oxidant) and an acid as described above, hypochlorous acid as an oxidant as a result of subsequent research by the present inventors. It was found that when soda and iron coexist, the membrane material tends to deteriorate due to the catalytic action of iron and chlorine, and the membrane life is shortened.

本発明は、上記課題に鑑みてなされたものであり、Fe、Cr及びレジスト含有水の膜分離装置における膜モジュールの膜面に付着した酸化クロム、酸化鉄及びレジストを効率的に洗浄除去して、長期間にわたって膜性能を高く維持するための膜の洗浄方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and efficiently removes chromium oxide, iron oxide and resist adhering to the membrane surface of the membrane module in the membrane separator for Fe, Cr and resist-containing water. Another object of the present invention is to provide a film cleaning method for maintaining high film performance over a long period of time.

上記課題を解決するために、本発明のFe、Cr及びレジスト含有水の膜分離処理用の膜モジュールの洗浄方法は、NaOH溶液による第1の洗浄工程と、酸による第2の洗浄工程とを有することを特徴とする(請求項1)。   In order to solve the above-described problems, the membrane module cleaning method for membrane separation treatment of Fe, Cr and resist-containing water according to the present invention includes a first cleaning step using an NaOH solution and a second cleaning step using an acid. (Claim 1).

鉄、クロムは水中で酸化されて酸化物を形成して膜面に析出し、またレジストは膜面に付着する。これらのうち、金属酸化物はアルカリには溶解しないが、NaOH溶液で処理した後、酸で処理することにより酸溶解が急激に進む。一方、レジスト成分は酸には溶解しないが、アルカリには溶解する。そこで、上記発明(請求項1)においては、まずNaOH溶液で膜モジュールを洗浄することでレジストを除去するとともにアルカリ領域とし、続いて酸で処理することで酸性領域に転じて処理することにより、鉄、クロムの酸化物を溶解除去する。これらの洗浄においては、酸化剤としての次亜塩素酸ソーダを使用しないので、鉄と塩素との触媒反応により、膜の劣化をきたすことがない。   Iron and chromium are oxidized in water to form oxides and deposit on the film surface, and the resist adheres to the film surface. Among these, the metal oxide does not dissolve in the alkali, but the acid dissolution proceeds rapidly by treating with the NaOH solution and then treating with the acid. On the other hand, the resist component does not dissolve in acid, but dissolves in alkali. Therefore, in the above invention (invention 1), by first removing the resist by washing the membrane module with a NaOH solution and making it into an alkaline region, and then treating with an acid, turning to the acidic region, Dissolve and remove iron and chromium oxides. Since these washings do not use sodium hypochlorite as an oxidant, the membrane does not deteriorate due to the catalytic reaction between iron and chlorine.

なお、本発明が適用される分離膜は特に制限されるものではなく、逆浸透膜やナノ濾過膜にも使用できるが、特に限外濾過膜(UF膜)、精密濾過膜(MF膜)に好適に用いることができる。また、膜の素材も特に限定されるものではないが、PTFE(ポリテトラフルオロエチレン)等のフッ素系の膜に好適に使用できる。   The separation membrane to which the present invention is applied is not particularly limited, and can be used for reverse osmosis membranes and nanofiltration membranes, but particularly for ultrafiltration membranes (UF membranes) and microfiltration membranes (MF membranes). It can be used suitably. The material of the membrane is not particularly limited, but can be suitably used for a fluorine-based membrane such as PTFE (polytetrafluoroethylene).

上記発明(請求項1)においては、前記NaOH溶液の濃度が、2質量%以上であることが好ましい(請求項2)。これにより、レジストを確実に除去することができる。   In the said invention (invention 1), it is preferable that the density | concentration of the said NaOH solution is 2 mass% or more (invention 2). Thereby, a resist can be removed reliably.

上記発明(請求項1,2)においては、前記第2の洗浄工程において、途中で酸溶液を1回又は2回以上入れ替えて、新しい酸溶液で再び膜洗浄することが好ましい(請求項3)。このように、NaOH溶液による第1の洗浄工程後の第2の洗浄工程において、酸溶液を長時間保持すると溶解した金属イオンが滞留してくるため、洗浄効果が経時とともに低下してくるが、酸溶液を交換することで、溶解した金属イオンが新しい酸溶液中に拡散するようになり、膜内への金属イオンの浸透が防止され、洗浄効果が向上し、付着した鉄やクロムは十分に除去されることになる。   In the above inventions (Inventions 1 and 2), in the second cleaning step, it is preferable that the acid solution is replaced once or twice or more and the membrane is washed again with a new acid solution (Invention 3). . Thus, in the second cleaning step after the first cleaning step with the NaOH solution, the dissolved metal ions stay when the acid solution is held for a long time, so that the cleaning effect decreases with time. By exchanging the acid solution, the dissolved metal ions diffuse into the new acid solution, preventing the penetration of metal ions into the membrane, improving the cleaning effect, and adhering iron and chromium are sufficient Will be removed.

上記発明(請求項1〜3)においては、前記第1の洗浄工程及び第2の洗浄工程を2サイクル以上繰り返すことが好ましい(請求項4)。このように、膜面の汚れの度合いや洗浄による膜性能の回復に応じて、第1及び第2の洗浄工程を複数回繰り返すことで、Fe、Cr及びレジストを十分に除去することができる。   In the said invention (Invention 1-3), it is preferable to repeat the said 1st washing | cleaning process and 2nd washing | cleaning process 2 cycles or more (Invention 4). Thus, Fe, Cr, and the resist can be sufficiently removed by repeating the first and second cleaning steps a plurality of times according to the degree of contamination of the film surface and the recovery of the film performance by the cleaning.

本発明のFe、Cr及びレジスト含有水の膜分離処理用の膜モジュールの洗浄方法によれば、次亜塩素酸ソーダ等の酸化剤を使用することがないため、膜素材に悪影響を及ぼすことがなく、効率的に膜を洗浄することができ、長期間にわたって膜性能を高く維持することができる。また、酸化剤を使用していないので、クロムが過度に酸化されるおそれもないという効果も奏する。   According to the method for cleaning a membrane module for membrane separation treatment of Fe, Cr and resist-containing water according to the present invention, an oxidizing agent such as sodium hypochlorite is not used, which may adversely affect the membrane material. Therefore, the membrane can be efficiently cleaned, and the membrane performance can be maintained high over a long period of time. Moreover, since no oxidizing agent is used, there is an effect that chromium is not likely to be excessively oxidized.

以下、本発明のFe、Cr及びレジスト含有水の膜分離処理用の膜モジュールの洗浄方法の一実施形態を詳細に説明する。
本実施形態に係る洗浄方法は、Fe、Cr及びレジストを含有する水、例えば、液晶ディスプレイやプラズマディスプレイ等の製造工場、半導体工場等からの排水を膜分離処理する膜モジュールを、定期的に、又は膜の分離性能が所定値を下回った時点で、NaOH溶液にて洗浄し(第1の洗浄工程)、続いて酸にて洗浄する(第2の洗浄工程)。
Hereinafter, an embodiment of a method for cleaning a membrane module for membrane separation treatment of Fe, Cr and resist-containing water of the present invention will be described in detail.
The cleaning method according to the present embodiment periodically includes a membrane module that performs membrane separation processing of water containing Fe, Cr, and a resist, for example, a manufacturing factory such as a liquid crystal display or a plasma display, and wastewater from a semiconductor factory, Alternatively, when the membrane separation performance falls below a predetermined value, the membrane is washed with an NaOH solution (first washing step), and then washed with an acid (second washing step).

NaOH溶液による洗浄(第1の洗浄工程)において、洗浄に用いるNaOH溶液としては、2質量%以上の濃度のNaOH水溶液を用いることが好ましい。NaOH水溶液の濃度が2質量%未満では、膜面に付着したレジストを十分に除去できないおそれがある。特に、十分なレジストの除去効果を得るには3質量%以上の濃度のNaOH水溶液を用いるのが好ましい。   In the cleaning with the NaOH solution (first cleaning step), it is preferable to use an aqueous NaOH solution having a concentration of 2% by mass or more as the NaOH solution used for the cleaning. If the concentration of the NaOH aqueous solution is less than 2% by mass, the resist adhering to the film surface may not be sufficiently removed. In particular, in order to obtain a sufficient resist removing effect, it is preferable to use an aqueous NaOH solution having a concentration of 3% by mass or more.

第1の洗浄工程の洗浄時間は、0.1時間〜5時間が好ましく、特に0.5時間〜2時間が好ましい。洗浄時間が0.1時間未満では、十分なレジストの除去効果が得られないおそれがあり、洗浄時間が5時間を超えてもそれ以上の洗浄効果が得られないばかりか、洗浄工程が全体として長時間となり作業効率が低下するおそれがある。   The cleaning time in the first cleaning step is preferably 0.1 hour to 5 hours, and particularly preferably 0.5 hour to 2 hours. If the cleaning time is less than 0.1 hour, a sufficient resist removal effect may not be obtained. If the cleaning time exceeds 5 hours, no further cleaning effect can be obtained. There is a risk that work efficiency may be reduced due to a long time.

なお、第1の洗浄工程における洗浄方法は、NaOH溶液を膜モジュールの一次側に注入して保持する浸漬洗浄方式であってもよいし、膜モジュールの被処理水導入口又は濃縮水取出口から一次側にNaOH溶液を導入し、濃縮水取出口又は被処理水導入口から取り出して循環させる循環洗浄方式であってもよい。   The cleaning method in the first cleaning step may be an immersion cleaning method in which an NaOH solution is injected and held on the primary side of the membrane module, or from the treated water inlet or the concentrated water outlet of the membrane module. A circulating cleaning method may be employed in which the NaOH solution is introduced into the primary side, and is taken out from the concentrated water outlet or the treated water inlet and circulated.

NaOH溶液による洗浄後、酸による洗浄を行う(第2の洗浄工程)。酸化鉄、酸化クロムは、アルカリに溶解せず酸に溶解するが、本実施形態のようにNaOH溶液で処理した後に酸で処理することにより、酸化鉄や酸化クロムの酸溶解が急激に進み、より効果的に酸化鉄や酸化クロムを溶解させることができる。   After washing with NaOH solution, washing with acid is performed (second washing step). Iron oxide and chromium oxide are not dissolved in alkali but dissolved in acid, but by treating with an acid after treating with NaOH solution as in this embodiment, acid dissolution of iron oxide and chromium oxide proceeds rapidly, Iron oxide and chromium oxide can be dissolved more effectively.

この酸洗浄に用いる酸としては、塩酸、硫酸等の鉱酸を用いることができ、その濃度は0.5〜5質量%、好ましくは1〜3質量%、特に好ましくは2質量%程度である。   As the acid used for this acid cleaning, mineral acids such as hydrochloric acid and sulfuric acid can be used, and the concentration thereof is 0.5 to 5% by mass, preferably 1 to 3% by mass, particularly preferably about 2% by mass. .

また、酸による第2の洗浄工程の洗浄時間は0.1時間〜5時間程度、特に0.5時間〜2時間とすればよい。洗浄時間が0.1時間未満では、十分な鉄及びクロムの除去効果が得られないおそれがあり、洗浄時間が5時間を超えてもそれ以上の洗浄効果が得られないばかりか、洗浄工程が全体として長時間となり作業効率が低下するおそれがある。   In addition, the cleaning time of the second cleaning step using acid may be about 0.1 to 5 hours, particularly 0.5 to 2 hours. If the cleaning time is less than 0.1 hour, there is a possibility that sufficient iron and chromium removal effect may not be obtained. Even if the cleaning time exceeds 5 hours, no further cleaning effect can be obtained, As a whole, the work efficiency may be reduced due to a long time.

この第2の洗浄工程では、途中で酸溶液を1回又は2回以上入れ替えて、新しい酸溶液で再び膜洗浄するのが好ましい。酸溶液を交換することで、溶解した金属イオンが新しい酸溶液中に拡散するようになり、膜内への金属イオンの浸透を防止し、洗浄効果が向上する。   In the second cleaning step, it is preferable to replace the acid solution once or twice or more and clean the membrane again with a new acid solution. By exchanging the acid solution, the dissolved metal ions diffuse into the new acid solution, preventing the metal ions from penetrating into the membrane and improving the cleaning effect.

この酸溶液の交換は、第2の洗浄工程の洗浄時間を均等に配分するように行えばよく、例えば、第2の洗浄工程の全体の洗浄時間が1時間であって、酸溶液を1回交換する場合には、第2の洗浄工程における洗浄開始から30分経過後に1回交換すればよい。なお、酸溶液の交換回数は2回以上としてもよいが、あまり交換頻度を多くしてもそれに見合う洗浄効果の向上が得られないばかりかコストの増加を招くので、1回の酸溶液で30分程度は洗浄するのが望ましい。   The replacement of the acid solution may be performed so that the cleaning time of the second cleaning step is evenly distributed. For example, the entire cleaning time of the second cleaning step is 1 hour, and the acid solution is changed once. In the case of replacement, the replacement may be performed once after 30 minutes from the start of cleaning in the second cleaning step. The acid solution may be replaced two or more times. However, even if the replacement frequency is increased too much, not only the cleaning effect corresponding to the replacement frequency is increased, but also the cost is increased. It is desirable to wash about a minute.

この酸溶液による洗浄方法も、上述した第1の洗浄工程における浸漬洗浄方式、循環洗浄方式のいずれであってもよい。酸洗浄後は、必要に応じて処理水、原水、水道水、工水等による仕上げ洗浄を行ってから運転を再開する。   This acid solution cleaning method may be either the immersion cleaning method or the circulation cleaning method in the first cleaning step described above. After the acid cleaning, if necessary, finish cleaning with treated water, raw water, tap water, industrial water, etc. and then restart the operation.

上述したような本実施形態の洗浄パターンは、図1に示す通りである。なお、図1中において、「NaOH洗浄」は、NaOH水溶液による洗浄を意味し、「酸交換」は、酸溶液を新しいものに交換することを意味する。基本的には、図1(1)に示すようにNaOH洗浄後、酸洗浄を行えばよいが、(2)に示すように酸洗浄の途中で酸溶液を新しいものに交換して、酸洗浄を続けて複数回(2回)行うのが好ましい。特に、膜面の汚れがひどく、透過水量の回復が低いときには、(3)に示すように上記(2)のサイクルを2回、又は3回以上繰り返すことができる。   The cleaning pattern of this embodiment as described above is as shown in FIG. In FIG. 1, “NaOH cleaning” means cleaning with an aqueous NaOH solution, and “acid exchange” means exchanging the acid solution for a new one. Basically, acid cleaning may be performed after NaOH cleaning as shown in FIG. 1 (1). However, as shown in (2), the acid solution is replaced with a new one in the middle of acid cleaning, and acid cleaning is performed. It is preferable to carry out a plurality of times (twice) continuously. In particular, when the membrane surface is very dirty and the permeated water recovery is low, the cycle of (2) can be repeated twice or three times or more as shown in (3).

上記実施形態においては、酸又はアルカリによる洗浄工程の途中において、洗浄を一時中断して市水等を通水し、透過水量と膜透過差圧とを測定し、膜性能の回復具合をチェックしたり、併せて酸洗浄液の交換の要否や交換時期を判断したりしてもよい。   In the above embodiment, in the middle of the acid or alkali cleaning step, the cleaning is temporarily suspended and the city water is passed, the amount of permeated water and the membrane permeation differential pressure are measured, and the recovery of the membrane performance is checked. In addition, it may be determined whether or not the acid cleaning liquid needs to be replaced and the replacement timing.

〔実施例1〕
鉄、クロム及びレジストを含む排水中からこれらを除去する目的で、膜モジュールとして日東電工社製のMF膜を用いた膜分離装置で膜分離処理を行っている系において、膜のファウリングにより膜(新膜での透過水量:7m/hr at 0.1MPa)の透過水量が1.8m/hrとなったときに、まず、3質量%NaOH水溶液により1時間洗浄し(第1の洗浄工程)、続いて2.5質量%HCl溶液により、30分ごとにHCl溶液を交換して1時間洗浄した(第2の洗浄工程)。これら第1の洗浄工程及び第2の洗浄工程を2回繰り返したところ、透過水量は大幅に回復した。
[Example 1]
For the purpose of removing these from waste water containing iron, chromium and resist, in a system in which membrane separation processing is performed with a membrane separation apparatus using an MF membrane manufactured by Nitto Denko Corporation as a membrane module, membranes are formed by membrane fouling. When the permeated water amount of the new membrane (7 m 3 / hr at 0.1 MPa) reached 1.8 m 3 / hr, first, it was washed with a 3% by mass NaOH aqueous solution for 1 hour (first washing Step), followed by washing with a 2.5% by mass HCl solution every 30 minutes, replacing the HCl solution for 1 hour (second washing step). When the first washing step and the second washing step were repeated twice, the permeated water amount was greatly recovered.

〔比較例1〕
鉄、クロム及びレジストを含む排水中からこれらを除去する目的で、膜モジュールとして日東電工社製のMF膜を用いた膜分離装置で膜分離処理を行っている系において、膜のファウリングにより膜(新膜での透過水量:7m/hr at0.1MPa)の透過水量が2.8m/hrとなったときに、まず、0.5質量%NaClO水溶液により50分洗浄を行い、続いて2.5質量%HCl溶液により50分洗浄を行った。その後さらに、0.5質量%NaClO水溶液により50分洗浄し、HCl溶液により50分ごとにHCl溶液を交換して100分洗浄したところ、透過水量は大幅に回復した。
[Comparative Example 1]
For the purpose of removing these from waste water containing iron, chromium and resist, in a system in which membrane separation processing is performed with a membrane separation apparatus using an MF membrane manufactured by Nitto Denko Corporation as a membrane module, membranes are formed by membrane fouling. (Permeated water amount in new membrane: 7 m 3 / hr at 0.1 MPa) When the permeated water amount reached 2.8 m 3 / hr, first, washing was performed with a 0.5 mass% NaClO aqueous solution for 50 minutes, and then Washing was performed for 50 minutes with a 2.5 mass% HCl solution. Thereafter, the plate was further washed with a 0.5 mass% NaClO aqueous solution for 50 minutes, and the HCl solution was replaced with an HCl solution every 50 minutes and washed for 100 minutes.

これらの実施例1及び比較例1の洗浄方法における、洗浄時間と膜の透過水量との関係は図2に示す通りであり、本発明の方法によれば、次亜塩素酸を用いることなく、従来の方法(次亜塩素酸を用いた洗浄方法)と同程度以上の洗浄効果が得られることが確認された。   In the cleaning methods of these Example 1 and Comparative Example 1, the relationship between the cleaning time and the amount of permeated water of the membrane is as shown in FIG. 2, and according to the method of the present invention, without using hypochlorous acid, It was confirmed that a cleaning effect equivalent to or higher than the conventional method (cleaning method using hypochlorous acid) was obtained.

また、上述した実施例1及び比較例1の膜モジュールの洗浄を180回行ったところ、実施例1の洗浄方法では、膜モジュール自体に異常は見られずに透過水量は回復したが、比較例1の洗浄方法では、膜モジュールのスキン層(PTFE製)と支持層(PP製)とを接着するバインダー(不織布層,PP+PE製)が劣化し、スキン層と支持層とが分離していた。このことから、本発明の方法によれば、膜の劣化が少ないことが確認された。これは、膜モジュールの洗浄に次亜塩素酸ソーダを使用していないためであると考えられる。   Moreover, when the membrane module of Example 1 and Comparative Example 1 described above was washed 180 times, in the cleaning method of Example 1, the amount of permeated water recovered without any abnormality in the membrane module itself, but the Comparative Example In the cleaning method 1, the binder (nonwoven fabric layer, made of PP + PE) for bonding the skin layer (made of PTFE) and the support layer (made of PP) of the membrane module was deteriorated, and the skin layer and the support layer were separated. From this, it was confirmed that there was little deterioration of the film according to the method of the present invention. This is probably because sodium hypochlorite is not used for cleaning the membrane module.

本発明の膜モジュールの洗浄方法を示す工程図である。It is process drawing which shows the washing | cleaning method of the membrane module of this invention. 実施例1及び比較例1の膜モジュールの洗浄方法による膜洗浄の効果を示すグラフである。It is a graph which shows the effect of the membrane cleaning by the cleaning method of the membrane module of Example 1 and Comparative Example 1.

Claims (4)

NaOH溶液による第1の洗浄工程と、
酸による第2の洗浄工程と
を有することを特徴とするFe、Cr及びレジスト含有水の膜分離処理用の膜モジュールの洗浄方法。
A first washing step with NaOH solution;
A method for cleaning a membrane module for membrane separation treatment of Fe, Cr and resist-containing water, comprising a second cleaning step using an acid.
前記NaOH溶液の濃度が、2質量%以上であることを特徴とする請求項1に記載のFe、Cr及びレジスト含有水の膜分離処理用の膜モジュールの洗浄方法。   The concentration method of the said NaOH solution is 2 mass% or more, The washing | cleaning method of the membrane module for the membrane separation process of Fe, Cr, and a resist containing water of Claim 1 characterized by the above-mentioned. 前記第2の洗浄工程において、途中で酸溶液を1回又は2回以上入れ替えて、新しい酸溶液で再び膜洗浄することを特徴とする請求項1又は2に記載のFe、Cr及びレジスト含有水の膜分離処理用の膜モジュールの洗浄方法。   3. The Fe, Cr, and resist-containing water according to claim 1, wherein in the second cleaning step, the acid solution is replaced once or twice in the middle, and the film is cleaned again with a new acid solution. Method for cleaning membrane module for membrane separation treatment. 前記第1の洗浄工程及び第2の洗浄工程を2サイクル以上繰り返すことを特徴とする請求項1〜3のいずれかに記載のFe、Cr及びレジスト含有水の膜分離処理用の膜モジュールの洗浄方法。
The said 1st washing | cleaning process and the 2nd washing | cleaning process are repeated 2 cycles or more, The washing | cleaning of the membrane module for the film separation process of Fe, Cr, and a resist containing water in any one of Claims 1-3 characterized by the above-mentioned. Method.
JP2006019121A 2006-01-27 2006-01-27 Membrane module washing method for membrane separation for fe-, cr-, and resist-containing water Pending JP2007196158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006019121A JP2007196158A (en) 2006-01-27 2006-01-27 Membrane module washing method for membrane separation for fe-, cr-, and resist-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006019121A JP2007196158A (en) 2006-01-27 2006-01-27 Membrane module washing method for membrane separation for fe-, cr-, and resist-containing water

Publications (1)

Publication Number Publication Date
JP2007196158A true JP2007196158A (en) 2007-08-09

Family

ID=38451281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006019121A Pending JP2007196158A (en) 2006-01-27 2006-01-27 Membrane module washing method for membrane separation for fe-, cr-, and resist-containing water

Country Status (1)

Country Link
JP (1) JP2007196158A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104624056A (en) * 2015-02-09 2015-05-20 浙江理工大学 Method for cleaning waste polytetrafluoroethylene hollow fiber membranes and tubular membranes
CN105710106A (en) * 2016-01-20 2016-06-29 合肥市吴山固体废物处置有限责任公司 Treatment method for chromium-containing waste

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576732A (en) * 1991-09-24 1993-03-30 Nitto Denko Corp Tubular filter
JPH08229363A (en) * 1995-03-02 1996-09-10 Nomura Micro Sci Co Ltd Membrane separation
JPH08243361A (en) * 1995-03-08 1996-09-24 Kurita Water Ind Ltd Membrane separation device
JP2000033237A (en) * 1998-07-21 2000-02-02 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for producing pure water
JP2000202255A (en) * 1999-01-19 2000-07-25 Suido Kiko Kaisha Ltd Cleaning liquid of permeable membrane and cleaning method thereof
JP2001219039A (en) * 2000-02-09 2001-08-14 Kurita Water Ind Ltd Leaning method of membrane module
JP2004000886A (en) * 2002-04-26 2004-01-08 Toray Ind Inc Method for washing separation membrane
JP2004154707A (en) * 2002-11-07 2004-06-03 Mitsubishi Rayon Co Ltd Method for washing separation membrane
JP2004298680A (en) * 2003-03-28 2004-10-28 Asahi Eng Co Ltd Method for treating used photoresist developer
JP2004305948A (en) * 2003-04-09 2004-11-04 Ebara Corp Washing method for separation membrane, and detergent
JP2005131630A (en) * 2003-10-29 2005-05-26 Huabang Electronic Co Ltd Method for washing reverse osmosis membrane, and waste water recovering method using this method
JP2005224671A (en) * 2004-02-10 2005-08-25 Kurita Water Ind Ltd Method for washing permeable membrane

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576732A (en) * 1991-09-24 1993-03-30 Nitto Denko Corp Tubular filter
JPH08229363A (en) * 1995-03-02 1996-09-10 Nomura Micro Sci Co Ltd Membrane separation
JPH08243361A (en) * 1995-03-08 1996-09-24 Kurita Water Ind Ltd Membrane separation device
JP2000033237A (en) * 1998-07-21 2000-02-02 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for producing pure water
JP2000202255A (en) * 1999-01-19 2000-07-25 Suido Kiko Kaisha Ltd Cleaning liquid of permeable membrane and cleaning method thereof
JP2001219039A (en) * 2000-02-09 2001-08-14 Kurita Water Ind Ltd Leaning method of membrane module
JP2004000886A (en) * 2002-04-26 2004-01-08 Toray Ind Inc Method for washing separation membrane
JP2004154707A (en) * 2002-11-07 2004-06-03 Mitsubishi Rayon Co Ltd Method for washing separation membrane
JP2004298680A (en) * 2003-03-28 2004-10-28 Asahi Eng Co Ltd Method for treating used photoresist developer
JP2004305948A (en) * 2003-04-09 2004-11-04 Ebara Corp Washing method for separation membrane, and detergent
JP2005131630A (en) * 2003-10-29 2005-05-26 Huabang Electronic Co Ltd Method for washing reverse osmosis membrane, and waste water recovering method using this method
JP2005224671A (en) * 2004-02-10 2005-08-25 Kurita Water Ind Ltd Method for washing permeable membrane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104624056A (en) * 2015-02-09 2015-05-20 浙江理工大学 Method for cleaning waste polytetrafluoroethylene hollow fiber membranes and tubular membranes
CN105710106A (en) * 2016-01-20 2016-06-29 合肥市吴山固体废物处置有限责任公司 Treatment method for chromium-containing waste
CN105710106B (en) * 2016-01-20 2018-05-04 安徽浩悦环境科技有限责任公司 The method for the treatment of of wastes produced containing chromium

Similar Documents

Publication Publication Date Title
JP2007130523A (en) Membrane washing method for water treatment system
JP2005087887A (en) Membrane washing method
WO2010142673A1 (en) Methods for cleaning a porous polymeric membrane and a kit for cleaning a porous polymeric membrane
JPWO2008120509A1 (en) Cleaning agent for separation membrane, method for producing the cleaning agent, and cleaning method
JP2011031121A (en) Desalination apparatus and washing method of pretreatment membrane of desalination apparatus
CN111217425A (en) Cleaning method of immersed ultrafiltration membrane
JP2004000886A (en) Method for washing separation membrane
JP4850467B2 (en) Cleaning method for membrane deaerator
JP2007196158A (en) Membrane module washing method for membrane separation for fe-, cr-, and resist-containing water
JP2002361054A (en) Method for washing membrane filtration apparatus
JP6540154B2 (en) Reverse osmosis membrane cleaning method
JP5237164B2 (en) Filtration membrane cleaning method
JP4631287B2 (en) Permeation membrane cleaning method
JP2011104504A (en) Washing method of water treatment facility
JP2004154707A (en) Method for washing separation membrane
JP2007014829A (en) On-line washing method
JP3024693B2 (en) Cleaning method for separation membrane for water treatment
JP6122314B2 (en) Membrane cleaning method
JP2013034938A (en) Method for washing membrane module
JP2002113336A (en) Method of cleaning membrane filtration device and water treatment apparatus
JPH11662A (en) Demineralization apparatus and method for boiler water
JP4835033B2 (en) Membrane cleaning method
Kowalik-Klimczak et al. Regeneration of spent caustic and acidic cleaning baths using a pilot membrane system
KR20140128841A (en) Apparatus for Cross cleaning water of membrane module and the operating method thereof
KR20180065787A (en) Cleaning method for reuse of waste reverse osmosis membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081226

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20101117

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

A131 Notification of reasons for refusal

Effective date: 20120201

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130130