JP2007192801A - Measuring method of elasticity using sound wave - Google Patents

Measuring method of elasticity using sound wave Download PDF

Info

Publication number
JP2007192801A
JP2007192801A JP2006286898A JP2006286898A JP2007192801A JP 2007192801 A JP2007192801 A JP 2007192801A JP 2006286898 A JP2006286898 A JP 2006286898A JP 2006286898 A JP2006286898 A JP 2006286898A JP 2007192801 A JP2007192801 A JP 2007192801A
Authority
JP
Japan
Prior art keywords
sound
measurement object
elasticity
measurement
microphone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006286898A
Other languages
Japanese (ja)
Inventor
Kazuyasu Tamano
和保 玉野
Koji Aoyama
弘司 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima Industrial Promotion Organization
Original Assignee
Hiroshima Industrial Promotion Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima Industrial Promotion Organization filed Critical Hiroshima Industrial Promotion Organization
Priority to JP2006286898A priority Critical patent/JP2007192801A/en
Publication of JP2007192801A publication Critical patent/JP2007192801A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02827Elastic parameters, strength or force

Abstract

<P>PROBLEM TO BE SOLVED: To provide measuring method of elasticity which can visually clarify any external environmental condition subtly affecting nonlinear elasticity of an elastomer, such as humidity, temperature or sunshine impact to building materials or vegetables, effects of fatigue, stress or food subtly changing elasticity of human skin, etc., and also can derive a noncontact measurement of these external environmental conditions from measurement of reflected sound to easily be quantifiable. <P>SOLUTION: The system used for this measuring method is designed so that sound wave is emitted towards a measurement object 1 from a speaker 2 in location separated from the measurement object 1, reflected sound from it is received and analyzed in microphone 3 positioned away from the measurement object 1, to quantify any effect of external factors such as temperature, humidity, etc. on elasticity of the measurement object 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、野菜の湿度、温度など保存条件による鮮度測定、遮音建材の湿度、温度、日射など環境条件に対する特性変化測定、可塑材料の熱特性の測定、人の皮膚の老化診断など、広く弾性特性を持つ素材の特性変化測定、診断に適用する音波を用いた弾性特性の測定方法に関する。   The present invention has a wide range of elasticity, such as freshness measurement according to storage conditions such as humidity and temperature of vegetables, measurement of characteristic changes to environmental conditions such as humidity, temperature and solar radiation of sound insulation building materials, measurement of thermal characteristics of plastic materials, aging diagnosis of human skin, etc. The present invention relates to a method for measuring a change in characteristics of a material having characteristics and a method for measuring an elastic characteristic using sound waves applied to diagnosis.

従来、野菜の鮮度診断、人の皮膚の老化診断、可塑材料の熱特性や遮音建材の湿度、温度、日射などの環境条件に対する特性変化は視覚や応力測定で定性的に評価され、非接触で変化の諸要因に対する因果を明確にする詳細な計測方法は社会ニーズに十分応えることができていない。その中で、200Hz付近の振動を発生させる振動子を野菜に接触させ、それを透過した振動の波形変化から野菜の鮮度を評価しようとする試みや、空気の衝撃波を人の皮膚に当てて皮膚にできたくぼみのレーザー光反射強度の変化から人の皮膚の老化を診断するなどの新規診断法への黎明が見られているが、これを弾性体の非線形弾性特性にもとづくカオティックな応答として信号処理し定性、定量評価するまでには至っていないし、ましてそれを簡便な非接触計測方法として確立されていなかった。
特開2004―188213号公報 特開2001−137240号公報
Traditionally, vegetable freshness diagnostics, human skin aging diagnostics, thermal properties of plastic materials and changes in environmental properties such as humidity, temperature, and solar radiation of sound insulation building materials have been qualitatively evaluated by visual and stress measurements, and without contact Detailed measurement methods that clarify the cause and effect of various factors of change have not fully met social needs. Among them, an oscillator that generates vibrations near 200 Hz is brought into contact with vegetables, and attempts are made to evaluate the freshness of vegetables from changes in the waveform of vibrations that have passed through them. There is evidence of a new diagnostic method, such as diagnosing aging of human skin, from the change in the reflected light intensity of the laser light in the hollow, which is signaled as a chaotic response based on the nonlinear elastic properties of the elastic body. No qualitative or quantitative evaluation has been achieved, and it has not been established as a simple non-contact measurement method.
JP 2004-188213 A JP 2001-137240 A

たとえば、弾性の非線形特性をもとに野菜を透過した振動の波形変化から野菜の鮮度を評価しようとする試みでは、視覚や応力変化だけでは、野菜の経時変化は計測できても、その鮮度としての温度、湿度、日射など保存条件の諸要因との関係の評価には至っていないし、皮膚の老化評価についても空気の衝撃波により形成されたくぼみの復帰変化をレーザー光の反射測定で計測できているが、経時変化や変化率の提示にとどまっている問題点がある。   For example, in an attempt to evaluate the freshness of a vegetable from the change in the waveform of vibration that has passed through the vegetable based on the nonlinear characteristics of elasticity, even if the change over time of the vegetable can be measured by visual and stress changes alone, Evaluation of the relationship between various factors of storage conditions such as temperature, humidity, and solar radiation has not been achieved, and for skin aging evaluation, the return change of the depression formed by the shock wave of air can be measured by reflection measurement of laser light. However, there is a problem that it is only presenting changes over time and rate of change.

上記課題の解決の方法として、本発明では非線形特性をもつ弾性体に外部から振動を与えると、弾性体からの応答はカオティックになり、それは弾性体の非線形性の微小な変化で、応答信号波形が大きく変化することで、X−Y直交座標表示装置でこの信号をX軸上で、これに位相遅れを与えた信号をY軸上で変化させ重ね合わすと、同じ軌道を通らないループ状の2次元図形、いわゆるアトラクタと呼ばれる、ある座標を中心とする非再帰軌道図形が大きく変化することから、弾性体の非線形弾性特性に微小変化を与える外的環境条件、たとえば建材や野菜に対する湿度、温度、日照の影響、人の皮膚の弾性特性に微小変化を与える疲労、ストレス、食物などの影響を視覚で明確に判定できることで、これを反射音響の測定から非接触で計測しようとするものである。   As a method of solving the above problem, in the present invention, when an elastic body having nonlinear characteristics is subjected to vibration from the outside, the response from the elastic body becomes chaotic, which is a minute change in the nonlinearity of the elastic body, and the response signal waveform. When this signal is changed on the X-axis and the signal to which the phase lag is given is changed on the Y-axis and superimposed on the XY rectangular coordinate display device, the loop shape does not pass through the same trajectory. A non-recursive orbit figure centered on a certain coordinate called a so-called attractor changes greatly, so external environment conditions that give minute changes to the nonlinear elastic properties of elastic bodies, such as humidity and temperature for building materials and vegetables The effect of sunlight, fatigue that gives minute changes to human skin elasticity, stress, food, and other effects can be clearly determined visually. It is intended to.

本発明は弾力特性を計測される測定対象物と、該測定対象物に離間して配置され可聴周波数の音波を出力するスピーカーと、前記測定対象物からの反射音を収集するマイクロフォンとを備え、前記マイクロフォンからの反射音をAD変換して、カオティックな非周期的変化の図形を表示装置に表示して非接触測定により測定対象物の弾性特性を測定する特徴がある。   The present invention includes a measurement object whose elasticity characteristics are measured, a speaker that is disposed apart from the measurement object and outputs sound waves having an audible frequency, and a microphone that collects reflected sound from the measurement object. The reflected sound from the microphone is AD-converted, a chaotic non-periodic change figure is displayed on a display device, and the elastic characteristic of the measurement object is measured by non-contact measurement.

また、本発明では前記可聴周波数の音波は交互にパルス状に出力されて前記測定対象物に加え、その反射音を切り出して結合した受音波形を用いて前記表示装置にカオティックな非周期的変化の図形を表示することを特徴とする。   Further, in the present invention, the sound wave of the audible frequency is alternately output in a pulse shape and added to the measurement object, and the reflected sound is cut out and coupled to the display device using a chaotic aperiodic change. The figure is displayed.

更に、本発明では前記マイクロフォンは前記スピーカーの前面に同軸状に配置して前記測定対象物からの反射音を切り出して収集することを特徴とする。   Furthermore, the present invention is characterized in that the microphone is coaxially arranged on the front surface of the speaker, and the reflected sound from the measurement object is cut out and collected.

更に、本発明では前記表示装置としてX―Y直交座標表示装置を用い、前記受音波形とその位相遅れ処理後の信号をそれぞれの座標に加えて描くアトラクタの変化で前記測定対象物の弾性特性を測定することを特徴とする。   Further, in the present invention, an XY orthogonal coordinate display device is used as the display device, and the elastic characteristics of the measurement object are determined by a change in the attractor drawn by adding the received wave shape and the signal after the phase delay processing to the respective coordinates. Is measured.

更に、本発明では前記位相遅れ処理は3サンプル期間とすることを特徴とする。   Furthermore, the present invention is characterized in that the phase delay processing is performed for three sample periods.

本発明によれば、これまで定性的で経時的にしか表示できなかった、たとえば野菜の湿度、温度など保存条件による鮮度測定、遮音建材の湿度、温度、日射など環境条件に対する特性変化測定、可塑材料の熱特性の測定、人の皮膚の老化診断などを非接触で従来以上に精密に計測評価できる。   According to the present invention, qualitative and can only be displayed over time, for example, freshness measurement under storage conditions such as humidity and temperature of vegetables, measurement of characteristic changes with respect to environmental conditions such as humidity, temperature and solar radiation of sound insulation materials, plasticity Non-contact measurement and evaluation of thermal characteristics of materials and aging diagnosis of human skin can be performed more precisely than ever.

また、本発明では音波を利用することで非接触、食品や生体に無害で、しかも装置がスピーカーとマイクロフォン、に加え、アナログデジタル変換器とパソコン、近年ではアナログデジタル変換器はパソコンに組み込んでコンパクトに構成できることから、装置が簡素で携帯が容易であることから、野菜の収穫評価する現場や建設現場にも可搬できる高い適用性がある。   In the present invention, sound waves are used for non-contact, harmless to food and living bodies, and in addition to a speaker and a microphone, the device is an analog-digital converter and a personal computer. In recent years, an analog-digital converter is built into a personal computer and is compact. Therefore, since the apparatus is simple and easy to carry, there is a high applicability that it can be transported to the site where the harvest of vegetables is evaluated and the construction site.

更に、本発明ではマイクロフォンからの出力波形から作った反射波期間取り出し結合波形を用いて、埋め込み次元は2、遅れ時間τ=3サンプルを採用したアトラクタを表示できるので、弾性体の特性をX―Y直交座標表示装置にアトラクタの図形を分かりやすく表示できる。   Furthermore, in the present invention, an attractor using a reflected wave period extraction combined waveform made from an output waveform from a microphone and using an embedded dimension of 2 and a delay time τ = 3 samples can be displayed. The attractor figure can be displayed in an easy-to-understand manner on the Y rectangular coordinate display device.

更に、本発明ではアトラクタの作図を遅れ時間τ=3サンプル期間にすることで、アトラクタに最も変化が表れたものが表示できる。   Furthermore, in the present invention, by drawing the attractor to the delay time τ = 3 sample periods, it is possible to display the attractor with the most change.

以下、本発明の実施の形態における、音波の非線形応答による弾性体の特性計測法ならびにそれを具現化した簡便計測装置を、図面にもとづき説明する。   Hereinafter, a method for measuring characteristics of an elastic body based on a nonlinear response of sound waves and a simple measuring apparatus embodying the same will be described with reference to the drawings.

本実施の形態においては、図1に示す石膏ボードや合板などの測定対象物1を対象とし、音波の送受から最適とした2msの方形波信号を20ms毎に発振器6により発生させ、それを遮音ボックス4内の、スピーカー2で音波にして測定対象物1に投射し、弾性体である測定対象物1の表面に振動を起させ、そのときの測定対象物1の表面からの反射音を遮音隔壁5でスピーカー2からの発生音を遮断するように配置されたマイクロフォン3で受音し、信号をアナログデジタル変換器9でデジタル変換後、パソコン10で、アトラクタを描かせ、測定対象物1の諸要因による変化を図形より評価するように構成する。   In this embodiment, the measurement object 1 such as a plaster board or plywood shown in FIG. 1 is targeted, and a 2 ms square wave signal optimized from the transmission and reception of sound waves is generated by the oscillator 6 every 20 ms, and the sound insulation is performed. A sound wave is projected from the speaker 2 in the box 4 to the measurement object 1 and is caused to vibrate on the surface of the measurement object 1 which is an elastic body, and the reflected sound from the surface of the measurement object 1 at that time is sound-insulated. The sound is received by the microphone 3 arranged so as to block the sound generated from the speaker 2 by the partition wall 5, the signal is digitally converted by the analog-to-digital converter 9, the attractor is drawn by the personal computer 10, and the measurement object 1 It is configured to evaluate changes due to various factors from figures.

本発明に関わるアトラクタの表示は、測定対象物からの図2に示す反射音8を、マイクロフォン3で受音し、その信号をアナログデジタル変換器9でデジタル信号12に変換後、それをそのまま信号表示用直交座標画面の横軸14、すなわちX軸に加えるとともに、受音信号を図2の位相遅延器11で受音信号よりτ秒送らせ(13)、それを図2の信号表示用直交座標画面の縦軸15、すなわちY軸に加え、信号の軌道図形を図2のアトラクタ16のように描かせ、計測対象の弾性特性に影響を与える諸要因の影響を、アトラクタを表示する信号変化の軌道図形として評価できるように構成する。   The attractor according to the present invention displays the reflected sound 8 shown in FIG. 2 from the object to be measured by the microphone 3, converts the signal to the digital signal 12 by the analog-digital converter 9, and outputs the signal as it is. 2 is added to the horizontal axis 14 of the display orthogonal coordinate screen, that is, the X-axis, and the received sound signal is sent from the received signal by τ seconds by the phase delay unit 11 of FIG. In addition to the vertical axis 15 of the coordinate screen, that is, the Y axis, a signal trajectory figure is drawn as the attractor 16 in FIG. 2, and the influence of various factors that affect the elastic characteristics of the measurement target is displayed. It is configured so that it can be evaluated as an orbital figure.

次に、具体的な実験方法および条件を図3を参照して説明する。実験は無響室ではなく一般の教室で行った。縦が600cm、横が700cm、高さが280cmの教室を用いて、スピーカー3、マイクロフォン2および測定対象物1を床からの高さ104cmに並べ、スピーカー3の前面に同軸方向にマイクロフォン2を配置し、両者の先端部を44cm離間させ、マイクロフォン2の先端部と測定対象物1とを60cm離間して配置している。教室の壁面とスピーカー3、マイクロフォン2および測定対象物1は十分に離間させて、スピーカー3からの音波が測定対象物1からの反射音がマイクロフォン2に到達するまでに教室の壁面から反射してマイクロフォン2に収集されないように配慮している。図3は教室を天井側から見た上面図である。なお、図3の配置は図1に示す配置とは異なっているが、種々の配置が考えられる。   Next, specific experimental methods and conditions will be described with reference to FIG. The experiment was conducted in a general classroom, not in an anechoic room. Using a classroom with a height of 600 cm, a width of 700 cm, and a height of 280 cm, the speaker 3, the microphone 2 and the measurement object 1 are arranged at a height of 104 cm from the floor, and the microphone 2 is arranged coaxially on the front surface of the speaker 3. Then, the tip portions of both are separated by 44 cm, and the tip portion of the microphone 2 and the measurement object 1 are arranged by 60 cm apart. The classroom wall and the speaker 3, the microphone 2 and the measurement object 1 are sufficiently separated from each other, and the sound wave from the speaker 3 is reflected from the classroom wall until the reflected sound from the measurement object 1 reaches the microphone 2. Consideration is given so that it is not collected by the microphone 2. FIG. 3 is a top view of the classroom as viewed from the ceiling. 3 is different from the arrangement shown in FIG. 1, various arrangements are possible.

測定対象物1としてはボード紙、木、発泡スチロール、アルミニウムシート、野菜(キャベツ、大根)を用いた。   As the measurement object 1, board paper, wood, polystyrene foam, aluminum sheet, and vegetables (cabbage, radish) were used.

X−Y直交座標表示装置としては市販のノートパソコンを用い、発振器6はオーディオキャプチャを用い、マイクロフォン2は鋭指向性コンデンサマイクロフォンを用い、スピーカー3はウーハーを用いた。アナログデジタル変換器9ではサンプリング周波数44.1kHz、量子化ビット数を16ビットとしている。   A commercially available notebook personal computer was used as the XY rectangular coordinate display device, an audio capture was used as the oscillator 6, a sharp directivity condenser microphone was used as the microphone 2, and a woofer was used as the speaker 3. The analog-digital converter 9 has a sampling frequency of 44.1 kHz and a quantization bit number of 16 bits.

続いて、図4を参照してスピーカーからの出力音波(プローブ波)を説明する。出力音波は図4に示すように、20msecごとにパルス幅2msecの繰り返しのパルス状波形を用いる。すなわち、音波出力期間2msecと無音期間18msecが交互にパルス状態で出力される。音波は測定対象物の固有振動領域である可聴周波数のものが選択され、2msの方形波パルスを20ms毎に発生させたものを用いた。音波は測定対象物の固有振動領域にあるので、発生させた方形波パルスの急激な変化で測定対象物の測定対象物の非線形弾性特性を誘起させ、弾性の細かな変化を評価でき、分かりやすいアトラクタが得られるためである。   Next, an output sound wave (probe wave) from the speaker will be described with reference to FIG. As shown in FIG. 4, the output sound wave uses a repeated pulse waveform having a pulse width of 2 msec every 20 msec. That is, the sound wave output period 2 msec and the silence period 18 msec are alternately output in a pulse state. A sound wave having an audible frequency that is a natural vibration region of the measurement object is selected, and a 2 ms square wave pulse is generated every 20 ms. Since the sound wave is in the natural vibration region of the measurement object, the nonlinear elastic characteristic of the measurement object of the measurement object is induced by the sudden change of the generated square wave pulse, and the minute change in elasticity can be evaluated, making it easy to understand This is because an attractor is obtained.

更に、図5および図6を参照してアトラクタを表示するために用いる反射波期間取り出し結合波形について説明する。   Further, the reflected wave period extraction combined waveform used for displaying the attractor will be described with reference to FIGS. 5 and 6. FIG.

反射波はτ秒後にマイクロフォンへ到来する。   The reflected wave arrives at the microphone after τ seconds.

τ=距離 60cm×2/音速340000cm・sec−1=3.5msec
この計算式から反射波は3.5msecでマイクロフォンに収集されることになる。
τ = distance 60 cm × 2 / sound speed 340000 cm · sec −1 = 3.5 msec
From this calculation formula, the reflected wave is collected in the microphone in 3.5 msec.

図5はマイクロフォンからの実際の出力波形を示している。aで示された部分が音波出力期間であり、反射波が到来する時間である3.5msec後の2msecの期間、すなわちbで示された部分の出力波形を取り出して順次結合することにより図6に示す反射波期間取り出し結合波形を作成している。   FIG. 5 shows an actual output waveform from the microphone. A portion indicated by a is a sound wave output period, and a time period of 2 msec after 3.5 msec, which is a time when a reflected wave arrives, that is, an output waveform of a portion indicated by b is taken out and sequentially combined. The reflected wave period extraction combined waveform shown in FIG.

図6(a)は測定対象物が何も置かれていない場合であり、反射波が含まれていない状態であります。この波形と他の波形を比べると測定対象物からの反射により波形が複雑に変化をしていることが分かる。また、同じ測定対象物でも連続した波形が微妙に変化しており、同じ波形の繰り返しではないことも分かる。   Fig. 6 (a) shows a case where no measurement object is placed, and no reflected wave is included. When this waveform is compared with other waveforms, it can be seen that the waveform changes in a complicated manner due to reflection from the measurement object. It can also be seen that the continuous waveform changes slightly even for the same object to be measured, and is not a repetition of the same waveform.

図6(b)は乾燥状態のボード紙、図6(c)は濡れた状態のボード紙、図6(d)はアルミニウムシート、図6(e)は木板、図6(f)は発泡スチロール、図6(g)葉キャベツ、図6(h)は大根の反射波期間取り出し結合波形を示している。   6 (b) is a dry board, FIG. 6 (c) is a wet board, FIG. 6 (d) is an aluminum sheet, FIG. 6 (e) is a wooden board, FIG. 6 (f) is a polystyrene foam, FIG. 6G shows a leaf cabbage, and FIG. 6H shows a combined waveform extracted from the reflected wave period of the radish.

図6に示した反射波期間取り出し結合波形をもとにアトラクタの作図について説明する。   Drawing of the attractor will be described based on the reflected wave period extraction combined waveform shown in FIG.

反射音波形の時系列データx(t)から、横軸をx(t)、縦軸をx(t+τ)とし、
v(t)=(x(t)、x(t+τ))
で示される時間遅れによるアトラクタv(t)を作図する。tはサンプル数を示し、τは遅れ時間を示している。波形の結合時に生じる不連続点はアトラクタに影響しないように処理している。
From the time series data x (t) of the reflected sound waveform, the horizontal axis is x (t), the vertical axis is x (t + τ),
v (t) = (x (t), x (t + τ))
The attractor v (t) due to the time delay shown in FIG. t indicates the number of samples, and τ indicates the delay time. Discontinuous points that occur when combining waveforms are processed so as not to affect the attractor.

図7に図6に示した反射波期間取り出し結合波形を用いて、埋め込み次元は2、遅れ時間τ=3サンプルを採用したアトラクタを示す。遅れ時間τ=3サンプルとは3つ後のpパルスのサンプリング時の数値を使用する意味であり、遅れ時間τ=3サンプル期間にアトラクタに最も変化が表れたものである。   FIG. 7 shows an attractor employing the reflected wave period extraction combined waveform shown in FIG. 6 and employing an embedding dimension of 2 and a delay time τ = 3 samples. The delay time τ = 3 samples means that the numerical value at the time of sampling of the third p pulse is used, and the change appears most in the attractor during the delay time τ = 3 sample periods.

図7(a)は測定対象物が何も置かれていない場合、図7(b)は乾燥状態のボード紙、図7(c)は濡れた状態のボード紙、図7(d)はアルミニウムシート、図7(e)は木板、図7(f)は発泡スチロール、図7(g)葉キャベツ、図7(h)は大根のアトラクタを示している。このアトラクタは左下部分および右上部分に材質による弾性特性の変化が著しく現れている。アトラクタの変化を定量化するにはアトラクタの穴の数、巻き数、さらには3次元表示したときの図形の体積などが考えられる。   FIG. 7A shows a case where no measurement object is placed, FIG. 7B shows a dry board, FIG. 7C shows a wet board, and FIG. 7D shows aluminum. 7 (e) shows a wooden board, FIG. 7 (f) shows a polystyrene foam, FIG. 7 (g) a leaf cabbage, and FIG. 7 (h) shows a radish attractor. In this attractor, changes in elastic properties due to the material remarkably appear in the lower left part and the upper right part. In order to quantify the change of the attractor, the number of holes of the attractor, the number of windings, and the volume of the figure when three-dimensionally displayed can be considered.

材質の柔らかさを基準に考えると、濡れた状態のボード紙>キャベツ>アルミニウムシート>発泡スチロール>大根>乾燥状態のボード紙>木板の順番であるが、アトラクタは
柔らかいほど右上部分に表れる巻き数が多くなることが分かる。また、左下部分の巻きの大きさにも材質の柔らかさに応じて変化が出ている。
Considering the softness of the material as a standard, the board is in the order of wet board paper, cabbage, aluminum sheet, polystyrene foam, radish, dry board paper, and wood board. You can see that it increases. In addition, the winding size of the lower left part also changes depending on the softness of the material.

本発明は音波を測定対象物に投射して得られる振動による非線形弾性特性を測定することで、野菜の湿度、温度など保存条件による鮮度測定、遮音建材の湿度、温度、日射など環境条件に対する特性変化測定、可塑材料の熱特性の測定、人の皮膚の老化診断など、広く弾性特性を持つ素材の特性変化測定、診断に適用できる。   The present invention measures non-linear elastic characteristics due to vibration obtained by projecting sound waves onto a measurement object, thereby measuring freshness measurement under storage conditions such as vegetable humidity and temperature, and characteristics with respect to environmental conditions such as humidity, temperature and solar radiation of sound insulation building materials. It can be applied to the measurement and diagnosis of material properties with a wide range of elastic properties such as change measurement, measurement of thermal properties of plastic materials, and aging diagnosis of human skin.

本発明の音波の非線形応答による弾性体の特性計測装置構成を説明する斜視図である。It is a perspective view explaining the characteristic measuring apparatus structure of the elastic body by the nonlinear response of the sound wave of this invention. 本発明のアトラクタを表示した弾性体の諸要因による影響評価方法を説明する図である。It is a figure explaining the influence evaluation method by the various factors of the elastic body which displayed the attractor of this invention. 本発明の測定方法を説明する上面図である。It is a top view explaining the measuring method of the present invention. 本発明のスピーカーからの出力音波を示す特性図である。It is a characteristic view which shows the output sound wave from the speaker of this invention. 本発明の実際のマイクロフォンからの出力波形からの反射波の取り出しを説明する特性図である。It is a characteristic view explaining extraction of the reflected wave from the output waveform from the actual microphone of the present invention. (a)〜(h)は本発明のアトラクタを表示するために用いる反射波期間取り出し結合波形について説明する波形図である。(A)-(h) is a wave form diagram explaining the reflected wave period extraction combined waveform used in order to display the attractor of this invention. (a)〜(h)は本発明のアトラクタを説明する波形図である。(A)-(h) is a wave form diagram explaining the attractor of this invention.

符号の説明Explanation of symbols

1・・・測定対象物(たとえば、建材ボード)
2・・・スピーカー
3・・・マイクロフォン
4・・・遮音ボックス
5・・・遮音隔壁
6・・・発振器
7・・・測定対象物への投射音
8・・・測定対象物からの反射音
9・・・アナログ・デジタル変換器
10・・パソコン
11・・位相遅延器(遅延時間τ秒)
12・・受音信号
13・・受音信号よりτ秒遅らさせた信号
14・・信号表示用直交座標画面の横軸(X軸)
15・・信号表示用直交座標画面の縦軸(Y軸)
16・・アトラクタを表示する信号変化の軌道図形
1. Measurement object (for example, building material board)
DESCRIPTION OF SYMBOLS 2 ... Speaker 3 ... Microphone 4 ... Sound insulation box 5 ... Sound insulation partition 6 ... Oscillator 7 ... Projection sound to measurement object 8 ... Reflection sound from measurement object 9 ... Analog / digital converter 10 ・ ・ PC 11 ・ ・ Phase delay (delay time τ seconds)
12 .... Sound reception signal 13 .... Signal delayed by .tau. Seconds from sound reception signal 14..Horizontal axis (X axis) of signal display Cartesian coordinate screen
15 .. Vertical axis (Y axis) of Cartesian coordinate screen for signal display
16 .... Orbital figure of signal change to display attractor

Claims (5)

弾力特性を計測される測定対象物と、
該測定対象物に離間して配置され可聴周波数の音波を出力するスピーカーと、
前記測定対象物からの反射音を収集するマイクロフォンとを備え、
前記マイクロフォンからの反射音をAD変換して、カオティックな非周期的変化の図形を表示装置に表示して非接触測定により測定対象物の弾性特性を測定することを特徴とする音波を用いた弾性特性の測定方法。
An object to be measured for elasticity characteristics;
A speaker that is spaced apart from the object to be measured and outputs sound waves having an audible frequency;
A microphone that collects reflected sound from the measurement object;
Elasticity using sound waves, characterized in that the reflected sound from the microphone is AD-converted, a chaotic non-periodic change figure is displayed on a display device, and the elastic characteristic of the measurement object is measured by non-contact measurement How to measure characteristics.
前記可聴周波数の音波は交互にパルス状に出力されて前記測定対象物に加え、その反射音を切り出して結合した受音波形を用いて前記表示装置にカオティックな非周期的変化の図形を表示することを特徴とする請求項1に記載の音波を用いた弾性特性の測定方法。   The sound wave of the audible frequency is alternately output in the form of a pulse, and in addition to the object to be measured, a graphic of chaotic aperiodic change is displayed on the display device using a received sound wave shape obtained by cutting out and reflecting the reflected sound. The method for measuring elastic characteristics using sound waves according to claim 1. 前記マイクロフォンは前記スピーカーの前面に同軸状に配置して前記測定対象物からの反射音を切り出して収集することを特徴とする請求項1に記載の音波を用いた弾性特性の測定方法。   2. The method for measuring elastic characteristics using sound waves according to claim 1, wherein the microphone is coaxially arranged on the front surface of the speaker and cuts out and collects reflected sound from the measurement object. 前記表示装置としてX―Y直交座標表示装置を用い、前記受音波形とその位相遅れ処理後の信号をそれぞれの座標に加えて描くアトラクタの変化で前記測定対象物の弾性特性を測定することを特徴とする請求項2に記載の音波を用いた弾性特性の測定方法。   An XY rectangular coordinate display device is used as the display device, and the elastic characteristic of the measurement object is measured by a change of an attractor drawn by adding the received wave shape and a signal after phase delay processing to the respective coordinates. The method for measuring elastic properties using sound waves according to claim 2. 前記位相遅れ処理は3サンプル期間とすることを特徴とする請求項4に記載の音波を用いた弾性特性の測定方法。   5. The method for measuring elastic characteristics using sound waves according to claim 4, wherein the phase delay processing is performed for three sample periods.
JP2006286898A 2005-12-19 2006-10-20 Measuring method of elasticity using sound wave Pending JP2007192801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006286898A JP2007192801A (en) 2005-12-19 2006-10-20 Measuring method of elasticity using sound wave

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005364272 2005-12-19
JP2006286898A JP2007192801A (en) 2005-12-19 2006-10-20 Measuring method of elasticity using sound wave

Publications (1)

Publication Number Publication Date
JP2007192801A true JP2007192801A (en) 2007-08-02

Family

ID=38448603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006286898A Pending JP2007192801A (en) 2005-12-19 2006-10-20 Measuring method of elasticity using sound wave

Country Status (1)

Country Link
JP (1) JP2007192801A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101806778A (en) * 2010-03-05 2010-08-18 北京工业大学 Method for non-linear ultrasonic online detection of early fatigue damage to metal material
WO2013061949A1 (en) 2011-10-25 2013-05-02 Kurosawa Ryo Medical treatment device and medical treatment method
JP2018114244A (en) * 2017-01-20 2018-07-26 花王株式会社 Skin condition evaluation method
JP2018114246A (en) * 2017-01-20 2018-07-26 花王株式会社 Skin condition evaluation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101806778A (en) * 2010-03-05 2010-08-18 北京工业大学 Method for non-linear ultrasonic online detection of early fatigue damage to metal material
WO2013061949A1 (en) 2011-10-25 2013-05-02 Kurosawa Ryo Medical treatment device and medical treatment method
JP2018114244A (en) * 2017-01-20 2018-07-26 花王株式会社 Skin condition evaluation method
JP2018114246A (en) * 2017-01-20 2018-07-26 花王株式会社 Skin condition evaluation method

Similar Documents

Publication Publication Date Title
US8300840B1 (en) Multiple superimposed audio frequency test system and sound chamber with attenuated echo properties
JP5606234B2 (en) Sound equipment
EP1605258A3 (en) Device and method for sonic inspection of micro structures
JP2007192801A (en) Measuring method of elasticity using sound wave
CN104215694A (en) Acoustic insulation testing device for fabric
JP2006349628A (en) Quality evaluation device for concrete structure and quality evaluation method for concrete structure
Kastelein et al. Hearing thresholds of a harbor porpoise (Phocoena phocoena) for sweeps (1–2 kHz and 6–7 kHz bands) mimicking naval sonar signals
US6728661B1 (en) Nondestructive acoustic method and device, for the determination of detachments of mural paintings
JP2019196973A (en) Non-contact acoustic analysis system and non-contact acoustic analysis method
Del Vescovo et al. Assessment of fresco detachments through a non-invasive acoustic method
JP6886890B2 (en) Decay time analysis methods, instruments, and programs
JP2004333199A (en) Apparatus and method for determining abnormal sound
JP4899049B2 (en) Method and apparatus for measuring the viscosity of fruits and vegetables
JP2007333545A (en) Sound absorption characteristic measuring method and sound absorption characteristic measuring apparatus
EP2913644A2 (en) Portable device for measuring the acoustic reflectivity coefficient in situ
Brandon et al. An experimental investigation into the topological stability of a cracked cantilever beam
Bogomolov et al. Analysis of the uncertainty of acoustic measurements at various angles of incidence of acoustic waves on a measuring microphone
Bietz et al. Investigations to determine the dynamic stiffness of elastic insulating materials
JP2002054999A (en) Sound wave generation detecting device, environmental state measuring device and method
JP2004333200A (en) Apparatus and method for determining abnormal sound and program
WO2023210083A1 (en) Abnormality detection device, abnormality detection method, and program
Mahn et al. Measurement of the airborne and resonant radiation efficiencies
Jacobsen Sound intensity and its measurement
JP2021081212A (en) Diagnosis method for structure
Haac et al. Experimental characterization of the vibro-acoustic response of a simple residential structure to a simulated sonic boom