CN101806778A - Method for non-linear ultrasonic online detection of early fatigue damage to metal material - Google Patents

Method for non-linear ultrasonic online detection of early fatigue damage to metal material Download PDF

Info

Publication number
CN101806778A
CN101806778A CN 201010119536 CN201010119536A CN101806778A CN 101806778 A CN101806778 A CN 101806778A CN 201010119536 CN201010119536 CN 201010119536 CN 201010119536 A CN201010119536 A CN 201010119536A CN 101806778 A CN101806778 A CN 101806778A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
gt
lt
acoustic emission
signal
detection
Prior art date
Application number
CN 201010119536
Other languages
Chinese (zh)
Other versions
CN101806778B (en )
Inventor
何存富
吴斌
李佳锐
颜丙生
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

A method for the non-linear ultrasonic online detection of early fatigue damage to a metal material belongs to the field of nondestructive detection. The method comprises the following steps: determining an excitation signal parameter according to the thickness of a tested piece and inputting the parameter to an arbitrary function generator to generate a sound signal; determining a threshold value of an acoustic emission instrument according to the amplitude of a no-load noise signal; performing fatigue loading on the tested piece, continuously detecting an acoustic emission signal in real time with an acoustic emission sensor, amplifying the acoustic emission signal, inputting the acoustic emission signal into the acoustic emission instrument, and judging ring with the acoustic emission instrument when the amplitude of the acoustic emission signal exceeds the preset the threshold value of the acoustic emission instrument; detecting a non-linear ultrasonic signal at equal time interval if the acoustic emission instrument does not display the ring or the times of the continuous ring is not more than an empirical value; and stopping detection if the displayed ring times is more than the empirical value, because fatigue cracks are generated and develop. On the basis of non-linear ultrasonic nondestructive detection, the method of the invention introduces acoustic emission technique, so the method does not make incorrect judgment when detecting the early fatigue damage to the metal material and realizes continuous online detection.

Description

金属材料疲劳早期损伤非线性超声在线检测方法技术领域 Nonlinear Ultrasonic line detection TECHNICAL FIELD Fatigue damage to the metal material early

[0001] 本发明涉及一种利用非线性超声和声发射技术无损检测金属材料疲劳早期损伤的方法,属于无损检测领域。 [0001] The present invention relates to a method of using acoustic emission techniques nonlinear ultrasonic nondestructive testing of metal material fatigue damage earlier, it belongs to the field of nondestructive testing.

背景技术 Background technique

[0002] 机械零部件由于疲劳而断裂失效是一种非常普遍的现象,据估计,大约70%以上的机械零部件失效是由疲劳损伤所引起的。 [0002] Mechanical Components fracture failure due to fatigue is a very common phenomenon, it is estimated that about 70% or more of the mechanical component failure by fatigue damage caused. 在外载荷的作用下,金属零部件的疲劳寿命一般可分为三个阶段:早期的力学性能退化(位错群的大量产生以及驻留滑移带和微裂纹的形成)、损伤的起始与积累(微裂纹的成核长大和宏观裂纹的产生)以及最后的断裂失效。 Under the action of external loading, the fatigue life of the metal components can generally be divided into three phases: the early degradation of mechanical properties (large dislocation cluster formation and which reside slip bands and micro-cracks), and the initial injury accumulation (nucleation of microcracks and grow macroscopic crack) and finally fracture failure. 对于设计良好的结构元件来说,第一阶段一般占金属零部件整个疲劳寿命的60%〜80%。 For well-designed structural elements, the first stage generally accounts for 60% ~ 80% of the total life of metal parts. 因此,发展金属材料早期力学性能退化的有效检测和评价手段就显的十分重要。 Thus, the development of effective early detection and evaluation means metal on the mechanical properties significantly degraded very important. 现有的超声无损检测技术利用波的时程、声速和衰减等线性物理参数已经可以对构件寿命的第二和第三阶段进行有效的检测和评估。 Physical parameters of conventional linear ultrasonic nondestructive testing technique using the time course of the wave, and the like have velocity and attenuation can be effectively detecting and evaluating the third phase of the second member and the lifetime. 但是,上述线性物理参数对材料和结构早期力学性能退化很不敏感。 However, the physical parameters of said linear very sensitive to material degradation and mechanical properties of structures early.

[0003] 非线性超声无损检测方法利用声波在金属材料中传播时的非线性效应(即波形畸变、谐波产生等)可以对材料的早期疲劳损伤进行检测。 [0003] nonlinear ultrasonic nondestructive testing methods using nonlinear effect when the acoustic wave propagation in the metallic material (i.e., waveform distortion, harmonic generation, etc.) can be detected early material fatigue damage. 在疲劳早期,非线性系数β随疲劳周数的增加而增大。 In early fatigue, non-linear coefficient β increases with the number of weeks of fatigue increases. 但在疲劳后期由于疲劳裂纹的大量出现,β反而减小,且分散性增大,如果单独利用非线性超声方法对疲劳早期损伤进行检测,容易出现误判。 But in the latter due to the large fatigue fatigue cracks, but beta] is reduced, and the dispersion is increased, if the individual early fatigue damage is detected by nonlinear ultrasonic method, prone to false positives. 声发射技术作为一种“被动”探伤技术,可以通过对疲劳声发射信号的分析处理对疲劳裂纹进行连续监测,但声发射技术不能检测疲劳裂纹出现前的金属材料早期疲劳损伤情况。 AE technology as a "passive" detection technique, can be continuously monitored by evaluating the fatigue crack fatigue acoustic emission signals, the acoustic emission technology can not detect early fatigue damage of a metal material where fatigue cracks before. 为解决这一问题,采用非线性超声和声发射技术共同检测金属材料零部件的早期疲劳损伤。 To solve this problem, a technique common nonlinear ultrasonic acoustic emission detected early fatigue damage to the metal parts of the material.

发明内容 SUMMARY

[0004] 本发明的目的在于提出一种可靠的金属材料疲劳损伤检测方法,特别是针对疲劳早期损伤的无损检测方法。 [0004] The object of the present invention is to propose a reliable method for detecting a metallic material fatigue damage, especially damage to nondestructive testing methods for early fatigue. 该方法可以在不破坏被测零部件的情况下,利用非线性超声和声发射技术的配合有效检测金属零部件的疲劳损伤。 This method can be measured without destroying the parts, with the use of nonlinear ultrasonic acoustic emission technology to effectively detect fatigue damage metal parts.

[0005] 本发明提出的基于非线性超声和声发射技术无损检测金属材料早期疲劳损伤的方法,其基本原理在于: [0005] A method for transmitting an ultrasonic sound techniques based on nonlinear nondestructive testing of early fatigue damage metal material proposed by the present invention, the basic principle is:

[0006] 由于固体介质的非线性,单一频率正弦超声波将与固体介质间产生非线性相互作用,从而产生高次谐波,非线性系数β可以表征材料的非线性效应,定义为: [0006] Since the non-linear solid medium, single frequency sinusoidal ultrasonic wave generated with the nonlinear interactions between the solid medium, thereby producing higher harmonics, nonlinear coefficient β can characterize the material nonlinear effect, is defined as:

[0007] = ⑴ [0007] = ⑴

[0008] 其中k = ω/c为波数,ω为角频率,c为波速,A1和A2分别为基波和二次谐波幅值,为波传播的距离。 [0008] where k = ω / c is the wave number, [omega] is the angular frequency, c is wave velocity, A1, and A2 are amplitude of the fundamental wave and the second harmonic, a distance of wave propagation. 对于给定的频率和样品长度,通过对基波和二次谐波幅值的测量,就可以确定材料的超声非线性系数。 For a given sample length and frequency, and by measuring the second harmonic of the fundamental wave amplitude can be determined non-linear coefficient of the material of the ultrasound. 金属材料的非线性主要来自于位错、晶带滑移等微观缺陷。 Nonlinear metallic material mainly from dislocations, grain and other microscopic defects belt slippage. 不同疲劳损伤程度具有不同的微观缺陷组态,非线性系数的大小也不同,从而借助非线性系数来了解材料的早期疲劳损伤情况。 Different degrees of fatigue damage of microscopic defects having different configuration, the size of the nonlinear coefficient are different, so that by means of non-linear coefficient early fatigue damage to understand the material.

[0009] 如图5所示,在疲劳早期,非线性系数β随疲劳周数的增加而增大。 [0009] As shown in FIG. 5, early fatigue, non-linear coefficient β increases with the number of weeks of fatigue increases. 但在疲劳后期由于疲劳裂纹的大量出现,β反而减小,且分散性增大,如果单独利用非线性超声方法对金属材料的早期疲劳损伤进行检测,容易出现误判。 But in the latter due to the large fatigue fatigue cracks, but beta] is reduced, and the dispersion is increased, if the individual using the methods of nonlinear ultrasonic early fatigue damage to the metal material is detected, prone to false positives. 例如,图5中所示疲劳周数为12000周和29000周时的超声非线性系数近似相等,这样仅根据β的值将无法判断金属材料所处的疲劳阶段。 For example, the number of peripheral fatigue is shown in Figure 5 when the ultrasonic nonlinear coefficient approximately equal circumferential 12000 and 29000 weeks, and only in accordance with the value of β will not fatigue determination stage in which the metallic material.

[0010] 声发射(Acoustic Emission,简称AE)又称应力波发射,是指材料或物体内部因内部应力超过屈服极限而进入不可逆的塑性变形阶段或有裂纹形成和扩展、断裂时快速释放出应变能而产生瞬态应力波的现象。 [0010] AE (Acoustic Emission, referred to as AE), also known as stress wave emission, refers to a material or within the object due to internal stress exceeds the yield limit into the irreversible plastic deformation stage or crack formation and propagation, rapid release of strain at break can generate transient stress wave phenomenon. 声发射技术是用仪器检测、记录、分析声发射信号并利用声发射信号推断声发射源的技术,它是检测材料内微观过程(即裂纹开裂、扩展)的非常灵敏的技术。 Acoustic emission techniques are instruments detect, record, and analyze the acoustic emission signals using acoustic emission signal estimation technique acoustic emission source, which is detected within the micro-process material (i.e. crack initiation, expansion) is a very sensitive technique. 因为声发射信号来自材料本身的缺陷,是一种“被动”探伤技术,可以长期连续地在役监测工程结构主要部位缺陷的发展变化,对服役的工程结构几乎不会造成什么影响和妨碍。 Because the acoustic emission signals from defects in the material itself, is a "passive" detection technology, long-term continuous development and changes in the main part of the defect-service monitoring project structure, project structure serving almost will not cause any impact and interfere. 但声发射技术无法对产生疲劳裂纹前的早期阶段进行检测。 Acoustic emission techniques but can not be detected in an early stage before fatigue cracks.

[0011] 因此可以利用声发射技术监测疲劳裂纹的萌生和发展,非线性超声技术检测疲劳的早期阶段,即能解决非线性超声检测疲劳损伤的误判问题,又可以实现对金属材料零部件的疲劳全过程检测。 [0011] can be monitored using acoustic emission techniques fatigue crack initiation and development, the early stages of non-linear ultrasound detecting fatigue, i.e., can solve the problem of false detection of nonlinear ultrasonic fatigue damage, and can realize a metal material parts fatigue whole process of detection.

[0012] 本发明采用如下的技术方案。 [0012] The present invention adopts the following technical solution. 本装置主要包括非线性超声检测模块和声发射监测模块。 This device includes a detection module nonlinear ultrasonic acoustic emission monitoring module. 如图1所示,非线性超声检测模块主要有任意函数发生器1、功率放大器2、高能低通滤波器3、激励传感器4、接收传感器5、示波器6和计算机10 ;声发射监测模块主要有声发射传感器7、声发射前置放大器即AE前置放大器8、声发射仪9和计算机10。 1, the nonlinear ultrasonic detection module consists of the arbitrary function generator 1, the power amplifier 2, the high-energy low-pass filter 3, the excitation sensor 4, the receiving sensor 5, 6 oscilloscope and a computer 10; acoustic emission monitoring module main sound emission sensor 7, i.e. the acoustic emission AE preamplifier preamplifier 8, 9 and acoustic emission analyzer computer 10.

[0013] 各模块的功能如下: [0013] The functions of each module are as follows:

[0014] 非线性超声检测模块中任意函数发生器1可根据输入的被测试件参数和选择的激励频率、周期数和幅值自动生成Tone burst激励信号。 [0014] nonlinear ultrasonic detection module according to an arbitrary function generator 1 can be selected and the parameters of the test piece input excitation frequency, magnitude and number of cycles generated automatically Tone burst excitation signal. 功率放大器2将任意函数发生器1所产生的波形进行信号放大。 The power amplifier 2 arbitrary waveform generated by a function generator signal amplification. 高能低通滤波器3的功能则是在检测过程中滤除由功率放大器2射频门产生的高频谐波信号。 3 High Energy of low pass filter to filter out the harmonic signals are generated by a radio frequency power amplifier 2 is detected during door. 被放大的300V左右的高电压激励信号通过同轴电缆传至纵波激励传感器4。 Amplified high voltage of about 300V excitation transducer excitation signal transmitted through the coaxial cable 4 longitudinal wave. 通过激励传感器4激励信号被耦合入被测试件。 It is coupled into the test piece 4 through the sensor excitation signal excitation. 安装在另一侧的接收传感器5检测通过被测试件透射过来的弱电压超声信号,并送给示波器6进行显示和保存。 Receiving sensor 5 detects mounted on the other side is transmitted through the test piece over a weak ultrasonic signal voltage, and sent to an oscilloscope for display 6 and stored.

[0015] 声发射监测模块中声发射传感器7可以采集由被测试件产生的声发射信号。 [0015] Acoustic emission monitoring acoustic emission sensor module 7 may transmit collected sound signals generated by the test piece. 声发射信号经过AE前置放大器8放大后送入声发射仪9进行信号处理,当声发射信号幅值超过声发射仪预设的门槛值,声发射仪判定振铃。 AE AE signal after the preamplifier 8 9 amplifier into acoustic emission signal processing device, when the amplitude of the acoustic emission signal exceeds acoustic emission instrument preset threshold, determined acoustic emission analyzer ring.

[0016] 为了激励最强的信号,激励传感器4的中心频率和激励信号频率一致。 [0016] To excite the strongest signal, the center frequency of the excitation of the sensor 4 and the same excitation signal frequency. 为了接收到最强的二次谐波信号,接收传感器5的中心频率为激励传感器4中心频率的2倍。 To the strongest received second harmonic signal, the center frequency of the received sensor 5 is two times the excitation frequency of the sensor 4 center. 激励传感器4、接收传感器5和声发射传感器7通过耦合剂如凡士林等与被测试件接触。 4 excite the sensor, acoustic emission sensor to receive sensor 5 via a coupling agent such as 7 in contact with the test piece and vaseline.

[0017] 示波器6与计算机10是负责信号的接收、显示和处理。 [0017] 6 oscilloscope and computer 10 is responsible for receiving the signal, display and processing. 通过计算机10对声发射信号的处理和分析,可以判定疲劳裂纹是否出现。 Analysis of 10 by processing and computer acoustic emission signal, may determine whether the fatigue cracks appear. 通过计算机10对非线性超声信号进行处理,计算出超声非线性系数β,并依据β来了解被测试件的早期疲劳损伤情况。 The computer 10 through the nonlinear ultrasonic signal processing, to calculate the ultrasonic nonlinear coefficient β, and β according to understand the early fatigue damage of test piece.

[0018] 本发明提出的非线性超声和声发射检测方法是按以下步骤进行的: [0018] Nonlinear Ultrasonic acoustic emission detection method proposed by the present invention is carried out by the following steps:

[0019] 1)根据被测试件的厚度确定激励信号周期数、频率和幅值,为了减少仪器和随机因素产生的谐波干扰,取试件在厚度方向所能容纳的不与接收信号重叠的最大周期数作为正弦脉冲串信号周期数。 [0019] 1) The thickness of the test piece to determine the number of excitation signal cycles, frequency and amplitude, in order to reduce the harmonic interference generated by the instrument and random factors, taken in the thickness direction of the test piece can be accommodated in the reception signal does not overlap with Examples max_cycles sinusoidal burst signal period. 将所选激励信号参数输入任意函数发生器1生成所需单一音频信号。 Excitation signal parameters selected arbitrary function generator input required to generate a single audio signal. 根据空载时的噪声信号幅值确定声发射仪门槛值。 Acoustic emission threshold is determined based on the noise meter signal amplitude at no-load.

[0020] 2)根据图1所示搭建检测系统。 [0020] 2) Set up detection system 1 according to FIG.

[0021] 3)给被测试件进行疲劳加载,在被测试件疲劳过程中,由声发射传感器7连续实时检测声发射信号,并将声发射信号经由AE前置放大器8放大后输入声发射仪9进行处理分析,当声发射信号幅值超过声发射仪9预设的门槛值,声发射仪判定振铃。 [0021] 3) the test piece to fatigue loading, the fatigue process in the test piece, continuous real-time by the acoustic emission signal detecting sensor 7 transmitting acoustic and acoustic emission signals input via the acoustic emission AE instrument amplifying the preamplifier 8 9 for processing and analysis, when the AE signal exceeds the amplitude of the acoustic emission analyzer 9 preset threshold value, the acoustic emission determination apparatus ringing. 最终将数据存入计算机。 Ultimately transforming data into the computer.

[0022] 4)如果声发射仪9没有显示振铃或连续振铃次数没有超过实验确定的经验值,则等时间间隔检测非线性超声信号。 [0022] 4) if the acoustic emission analyzer 9 does not show ringing or experience value does not exceed the number of successive ring experimentally determined, the time interval other nonlinear ultrasonic detection signal.

[0023] 具体步骤如下: [0023] The specific steps are as follows:

[0024] 由函数发生器1产生的单一音频超声信号被送至功率放大器2进行放大后,通过高能低通滤波器3滤除由功率放大器产生的高频谐波信号,然后该信号被传输至激励传感器4,在被测试件中激励纵向超声波。 [0024] a single audio signal generated by the ultrasonic generator 1 is sent to function after the power amplifier 2 amplifies the low-pass filter 3 by high energy to remove high frequency harmonic signals generated by the power amplifier, then the signal is transmitted to the 4 excite the sensor, an ultrasonic excitation in the longitudinal direction of the test piece. 安装在另一侧的接收传感器5检测通过被测试件透射过来的弱电压超声信号,并送给示波器6进行显示和保存。 Receiving sensor 5 detects mounted on the other side is transmitted through the test piece over a weak ultrasonic signal voltage, and sent to an oscilloscope for display 6 and stored. 利用计算机10对示波器6保存的信号进行傅里叶变换,获取基波幅值A1和二次谐波幅值A2,并通过式(1)计算超声非线性系数β,依据β来了解被测试件的早期疲劳损伤情况。 Using the computer 10 to save oscilloscope 6 Fourier transform signal to acquire the second harmonic of the fundamental amplitude A1 and amplitude A2, and ultrasound nonlinear coefficient β by the formula (1) is calculated, based on the test pieces to understand β the early fatigue damage.

[0025] 每隔一定时间重复上述步骤来检测非线性超声信号。 [0025] The above steps are repeated at regular intervals to detect a nonlinear ultrasound signals.

[0026] 5)如果声发射仪9显示连续振铃次数超过了实验确定的经验值,表明有疲劳裂纹萌生和发展,结束检测。 [0026] 5) if 9 consecutive times Ringer acoustic emission instrument exceeds a experimentally determined empirical value, indicating fatigue crack initiation and development, end detection.

[0027] 本发明主要具有以下优点:(1)在非线性超声无损检测的基础上引入声发射技术使非线性超声在检测金属材料的早期疲劳损伤时不会出现误判;(2)采用非线性超声和声发射技术可以实现对金属材料零部件的疲劳全过程检测;(3)实现了对被测试件的连续在线检测。 [0027] The present invention has the following advantages: (1) introduction of nonlinear ultrasonic acoustic emission technology to misjudgment does not occur in the early detection of a metallic material fatigue damage based on the nonlinear ultrasonic nondestructive testing; (2) non- linear ultrasonic acoustic emission technology enables the whole process of detecting fatigue of parts of a metal material; (3) to achieve a continuous line of the test piece is detected.

附图说明 BRIEF DESCRIPTION

[0028] 图1检测装置原理图; [0028] FIG 1 Schematic detecting means;

[0029] 图中:1、函数发生器,2、功率放大器,3、高能低通滤波器,4、激励传感器,5、接收传感器,6、示波器,7、声发射传感器,8、AE前置放大器,9、声发射仪,10、计算机。 [0029] FIG: 1, the function generator 2, a power amplifier, 3, high-energy low-pass filter 4, the sensor excitation, 5, the receiving sensor, 6, oscilloscopes, 7, acoustic emission sensors, 8, AE front amplifier 9, the sound emission device 10, a computer.

[0030] 图2检测方法流程图; [0030] The detection method flowchart FIG 2;

[0031] 图3被测试件尺寸示意图; [0031] FIG. 3 is a schematic view of the size of the test piece;

[0032] 图4非线性超声检测信号图; [0032] FIG 4 FIG nonlinear ultrasonic detection signal;

[0033] (a)激励信号,(b)接收信号,(C)基波幅值,(d) 二次谐波幅值 [0033] (a) the excitation signal, (b) the received signal, (C) the fundamental amplitude, (d) the second harmonic amplitude

[0034] 图5非线性系数和疲劳周数关系曲线; [0034] FIG. 5 weeks nonlinear coefficient and fatigue curve;

具体实施方式 detailed description

[0035] 下面结合图1〜图5详细说明本实施例。 [0035] The following detailed description of the embodiment 5 in conjunction with FIG. 1 ~ FIG.

[0036] 如图3所示,本实验例中被测试件为厚7. 5mm,长150mm的AZ31镁合金狗骨板件。 [0036] As shown, in this Experimental Example 3 was thick test piece 7. 5mm, 150mm long dog bone of AZ31 magnesium alloy plate. 密度为1770kg/m3,纵波波速为5763m/s。 A density of 1770kg / m3, longitudinal wave velocity of 5763m / s. 屈服极限199MPa,强度极限259MPa。 Yield limit 199MPa, ultimate strength 259MPa. [0037] 1)根据激励传感器中心频率确定激励信号频率为5MHz,为了减少仪器和随机因素产生的谐波干扰,取试件在厚度方向所能容纳的不与接收信号重叠的最大周期数作为正弦脉冲串信号周期数,如图4(a)所示。 [0037] 1) The center frequency of the transducer excitation frequency of the excitation signal is determined 5MHz, in order to reduce the harmonic interference generated by the instrument and random factors, to take the maximum number of cycles of the specimen can be accommodated in the thickness direction does not overlap the reception signal as the sine the number of burst signal cycles, in FIG. 4 (a) shown in FIG. 一对中心频率分别为5MHz和IOMHz的Panametrics 窄带PZT超声探头作为激励和接收传感器。 A pair of central frequency of each of 5MHz and IOMHz Panametrics ultrasonic probe as PZT narrowband excitation and receiving transducer.

[0038] 2)选用R15声发射传感器和L0CAN320声发射仪。 [0038] 2) acoustic emission sensors and R15 selected L0CAN320 acoustic emission instrument. 根据空载时的噪声信号幅值确定声发射仪门槛值为40dB。 The amplitude of the noise signal when the load threshold is determined acoustic emission instrument 40dB. 声发射信号幅值超过40dB,声发射仪就判定振铃,根据实验经验如果发生5次连续振铃则认为试件已萌生疲劳裂纹。 Acoustic emission signal amplitude exceeds 40dB, it is determined that the ringing sound emission device, according to the experiment experience if 5 consecutive ring specimen has occurred is considered fatigue crack initiation.

[0039] 3)根据图1检测装置原理图搭建检测系统。 [0039] 3) The detection system built FIG detection principle of the device 1 of FIG. 利用MTS810材料疲劳实验机对被测试件进行疲劳加载,加载应力取屈服极限的士65% (士129MPa),疲劳频率10Hz。 MTS810 material fatigue testing machine using the test pieces for fatigue loading, loading stress yield limit taxi to take 65% (Shi 129MPa), fatigue frequency of 10Hz.

[0040] 4)由声发射传感器7连续实时检测声发射信号,并将声发射信号经由AE前置放大器8放大后输入声发射仪9进行处理分析,当声发射信号幅值超过40dB时声发射仪9判定振铃。 [0040] 4) continuous real-time detection of acoustic emission signals emitted by the acoustic sensor 7, and the acoustic emission signal processing and analysis via the pre-amplifier 8 amplifies an input AE AE instrument 9, when the AE signal exceeds the amplitude of the acoustic emission 40dB meter 9 determines the ringing. 最终将数据存入计算机。 Ultimately transforming data into the computer.

[0041] 5)如果声发射仪9没有显示振铃或连续振铃次数没有超过5次,则被测试件每疲劳300周检测一次非线性超声信号。 [0041] 5) if the acoustic emission analyzer 9 does not show ringing or the ringing frequency and no more than five consecutive times, the test pieces were checked once every 300 weeks fatigue nonlinear ultrasonic signal.

[0042] 具体步骤如下: [0042] The specific steps are as follows:

[0043] 由函数发生器1产生的单一音频超声信号如图4(a)所示,被送至功率放大器2进行放大后,通过高能低通滤波器3滤除由功率放大器产生的高频谐波信号,然后该信号被传输至激励传感器4,在被测试件中激励纵向超声波。 [0043] a single ultrasonic audio signal generated by the function generator 1 is shown in FIG 4 (a), the amplified is sent to the high frequency harmonics generated by the power amplifier 3 filtered by the low pass filter amplifier energetic 2 wave signal, then the signal is transmitted to excite the sensor 4, an ultrasonic excitation in the longitudinal direction of the test piece. 安装在另一侧的接收传感器5检测通过被测试件透射过来的弱电压超声信号如图4 (b)所示,并送给示波器6进行显示和保存。 Receiving sensor 5 detects mounted on the other side is transmitted through the test piece over a weak ultrasonic signal voltage of FIG. 4 (b), 6 and sent to an oscilloscope for display and storage. 利用计算机10对示波器6保存的信号进行傅里叶变换,获取频率在5MHz位置的基波幅值A1如图4(c)所示和频率在IOMHz位置的二次谐波幅值A2如图4(d)所示,并通过式(1)计算超声非线性系数β,绘出如图5所示的非线性系数和疲劳周数关系曲线。 Using the oscilloscope to save computer 10 Fourier transform signal 6, as shown in the amplitude of the fundamental acquisition frequency A1 5MHz position 4 (c) as shown in the second harmonic frequency and amplitude A2 IOMHz position 4 (d), and the nonlinear coefficient β calculated by the ultrasound formula (1), the number of nonlinear coefficient and peripheral fatigue curve plotted as shown in FIG. 5. 根据此曲线了解被测试件的早期疲劳损伤情况。 According to this curve is understood to be early fatigue damage of test piece.

[0044] 6)如果声发射仪9连续振铃次数超过5次,结束检测。 [0044] 6) if the acoustic emission analyzer 9 continuously more than 5 times the number of rings, end detection.

Claims (1)

  1. 金属材料疲劳早期损伤非线性超声在线检测方法,其特征在于,采用如下装置,该装置包括非线性超声检测模块和声发射监测模块;非线性超声检测模块依次包括有任意函数发生器、功率放大器、高能低通滤波器、被测试件、分别安装在被测试件两侧的激励传感器和接收传感器、示波器和计算机;声发射监测模块包括有安装在被测试件一侧的声发射传感器、声发射前置放大器、声发射仪;声发射仪也连接上述计算机;按以下步骤进行的:1)根据被测试件的厚度确定激励信号周期数、频率和幅值;将所选激励信号参数输入任意函数发生器生成单一音频信号;根据空载时的噪声信号幅值确定声发射仪门槛值;2)搭建上述包括非线性超声检测模块和声发射监测模块的装置;3)给被测试件进行疲劳加载,在被测试件疲劳过程中,由声发射传感器连续实时检测 Injury Early nonlinear ultrasonic fatigue-line detection method for a metal material, characterized in that, using the following means, the apparatus comprising a nonlinear ultrasonic acoustic emission monitoring module detecting module; nonlinear ultrasonic detection module comprises successively arbitrary function generator, a power amplifier, high-energy low-pass filter, the test pieces were mounted in the energized sensor and a sensor received on both sides of the test piece, oscilloscope and computer; acoustic emission monitoring module comprises a sound is mounted at one side of the test piece emission sensors, acoustic emission before amplifier, acoustic emission instrument; acoustic emission device is also connected to said computer; performed according to the following steps: 1) the thickness of the test piece to determine the number of excitation signal cycles, frequency and amplitude; excitation signal parameters selected arbitrary function generator input generate a single audio signal; determining the acoustic emission analyzer threshold based on the noise signal amplitude at no-load; 2) building said means comprises an ultrasonic detection module nonlinear acoustic emission monitoring module; 3) to be tested for fatigue loading member, fatigue test pieces being in the process, continuous real-time detection of acoustic emission sensors 发射信号,并将声发射信号经由声发射前置放大器放大后输入声发射仪进行处理分析,当声发射信号幅值超过声发射仪预设的门槛值,声发射仪判定振铃;将数据存入计算机;4)如果声发射仪没有显示振铃或连续振铃次数没有超过实验确定的经验值,则等时间间隔检测非线性超声信号;具体检测非线性超声信号步骤如下:由函数发生器产生的单一音频超声信号被送至功率放大器进行放大后,通过高能低通滤波器滤除由功率放大器产生的高频谐波信号,然后该信号被传输至激励传感器,在被测试件中激励纵向超声波;安装在另一侧的接收传感器检测通过被测试件透射过来的弱电压超声信号,并送给示波器进行显示和保存;利用计算机对示波器保存的信号进行傅里叶变换,获取基波幅值A1和二次谐波幅值A2,并通过式(1)计算超声非线性系数β,依据β来 Input acoustic emission analysis instrument for processing a transmission signal, and the acoustic emission signal amplified by the preamplifier AE, AE signal when the amplitude exceeds a preset threshold acoustic emission instrument value determined acoustic emission analyzer ring; the saved data into a computer; 4) If no acoustic emission display device ringing or no experience continuous ringing frequency exceeds an experimentally determined, the time interval other nonlinear ultrasonic detection signal; DETAILED nonlinear ultrasonic signal detection steps of: generating a function generator after a single audio signal is supplied to the ultrasonic power amplifier amplifies, filter out high frequency harmonic signals generated by the power amplifier through a low pass filter of high energy, then the signal is transmitted to excite the sensor, an ultrasonic excitation in the longitudinal direction of the test piece ; receiving sensor mounted on the other side of the detection is transmitted through the test piece over a weak ultrasonic signal voltage, and sent to an oscilloscope display and storage; computer storage oscilloscope by using Fourier transform signal to acquire fundamental amplitude A1 and the second harmonic amplitude A2, by the formula (1) ultrasonic nonlinear coefficient β is calculated according to β 解被测试件的早期疲劳损伤情况; <mrow> <mi>&beta;</mi> <mo>=</mo> <mn>8</mn> <mrow> <mo>(</mo> <mfrac> <msub> <mi>A</mi> <mn>2</mn> </msub> <msup> <msub> <mi>A</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mrow> <msup> <mi>k</mi> <mn>2</mn> </msup> <mi>x</mi> </mrow> </mfrac> </mrow>式(1)其中k=ω/c为波数,ω为角频率,c为波速,A1和A2分别为基波和二次谐波幅值,x为波传播的距离;5)如果声发射仪显示连续振铃次数超过了实验确定的经验值,表明有疲劳裂纹萌生和发展,结束检测。 Solutions are on the earlier fatigue damage of test piece; <mrow> <mi> & beta; </ mi> <mo> = </ mo> <mn> 8 </ mn> <mrow> <mo> (</ mo> < mfrac> <msub> <mi> A </ mi> <mn> 2 </ mn> </ msub> <msup> <msub> <mi> A </ mi> <mn> 1 </ mn> </ msub > <mn> 2 </ mn> </ msup> </ mfrac> <mo>) </ mo> </ mrow> <mfrac> <mn> 1 </ mn> <mrow> <msup> <mi> k </ mi> <mn> 2 </ mn> </ msup> <mi> x </ mi> </ mrow> </ mfrac> </ mrow> of formula (1) where k = ω / c is the wave number, ω is the angular frequency, c is wave velocity, A1, and A2 are amplitude of the fundamental wave and the second harmonic, x is the wave propagation distance; 5) if the acoustic emission analyzer continuously displays the number of rings exceeds the empirical value determined experimentally, show fatigue crack initiation and development, end detection.
CN 201010119536 2010-03-05 2010-03-05 Method for non-linear ultrasonic online detection of early fatigue damage of metal material CN101806778B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010119536 CN101806778B (en) 2010-03-05 2010-03-05 Method for non-linear ultrasonic online detection of early fatigue damage of metal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010119536 CN101806778B (en) 2010-03-05 2010-03-05 Method for non-linear ultrasonic online detection of early fatigue damage of metal material

Publications (2)

Publication Number Publication Date
CN101806778A true true CN101806778A (en) 2010-08-18
CN101806778B CN101806778B (en) 2011-07-27

Family

ID=42608668

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010119536 CN101806778B (en) 2010-03-05 2010-03-05 Method for non-linear ultrasonic online detection of early fatigue damage of metal material

Country Status (1)

Country Link
CN (1) CN101806778B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621227A (en) * 2012-04-25 2012-08-01 北京交通大学 Nonlinear ultrasonic evaluation method of metal material plating damage
CN102721741A (en) * 2012-06-18 2012-10-10 北京科技大学 Wind power blade damage monitoring and positioning system based on wireless acoustic emission sensor network
CN103226091A (en) * 2013-04-12 2013-07-31 中国石油天然气集团公司 High temperature high pressure acoustic emission electrochemistry simulation experiment apparatus capable of loading stress
CN103278567A (en) * 2013-05-13 2013-09-04 北京交通大学 Ultrasonic nondestructive evaluation of early-stage fatigue damage of bonding interface
CN103375421A (en) * 2012-04-30 2013-10-30 通用电气公司 System and method for monitoring the health of stator vanes
CN103713052A (en) * 2014-01-03 2014-04-09 国家电网公司 Method for measuring yield strength of Q345 low alloy steel by using nonlinear ultrasonic technique
CN103743636A (en) * 2014-01-16 2014-04-23 清华大学 Method for predicting fatigue crack propagation threshold value of welded joint
CN103940910A (en) * 2014-05-15 2014-07-23 厦门大学 Nonlinear ultrasonic heat treatment process evaluation and optimization method and device
CN103969337A (en) * 2014-05-07 2014-08-06 北京工业大学 Orientation identification method of ultrasonic array crack defects based on vector full-focusing imaging
CN104391046A (en) * 2014-11-17 2015-03-04 西安交通大学 Optimum rolling bearing lubricating grease amount determining method based on acoustic emission
CN104914163A (en) * 2015-06-20 2015-09-16 上海电机学院 Blade crack detecting method of wind driven generator
CN105164493A (en) * 2013-04-30 2015-12-16 韩国科学技术院 Apparatus for wirelessly diagnosing structure using nonlinear ultrasonic modulation technique and diagnosis method for assuring safety using same
CN105806944A (en) * 2016-03-16 2016-07-27 华中科技大学 Method and device for detecting fatigue damage of cable
CN105890792A (en) * 2014-08-28 2016-08-24 江苏万力机械股份有限公司 Temperature detection method suitable for fatigue damage of cutter
CN106461614A (en) * 2014-05-28 2017-02-22 汉阳大学校产学协力团 Device for evaluating deterioration and estimating strength by using ultrasound waves and method for evaluating deterioration and estimating strength by using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1793900A (en) * 2005-12-21 2006-06-28 上海宝钢工业检测公司 Detection method of closed surface fatigue crack
EP1793227A1 (en) * 2005-12-01 2007-06-06 General Electric Company Ultrasonic inspection system and method using a nonlinearity parameter
JP2007192801A (en) * 2005-12-19 2007-08-02 Hiroshima Industrial Promotion Organization Measuring method of elasticity using sound wave
US20080022773A1 (en) * 2006-07-25 2008-01-31 Mckenna Mark J Ultrasonic material monitor for determining a characteristic of the material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1793227A1 (en) * 2005-12-01 2007-06-06 General Electric Company Ultrasonic inspection system and method using a nonlinearity parameter
JP2007192801A (en) * 2005-12-19 2007-08-02 Hiroshima Industrial Promotion Organization Measuring method of elasticity using sound wave
CN1793900A (en) * 2005-12-21 2006-06-28 上海宝钢工业检测公司 Detection method of closed surface fatigue crack
US20080022773A1 (en) * 2006-07-25 2008-01-31 Mckenna Mark J Ultrasonic material monitor for determining a characteristic of the material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《固体火箭技术》 20081231 师小红等 金属构件疲劳微裂纹非线性超声检测 99-102 1 第31卷, 第1期 2 *
《第九届全国冲击动力学学术会议论文集》 20091231 颜丙生等 脉冲反转技术在非线性超声无损检测中的应用研究 711-715 1 , 2 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621227A (en) * 2012-04-25 2012-08-01 北京交通大学 Nonlinear ultrasonic evaluation method of metal material plating damage
CN103375421A (en) * 2012-04-30 2013-10-30 通用电气公司 System and method for monitoring the health of stator vanes
CN102721741A (en) * 2012-06-18 2012-10-10 北京科技大学 Wind power blade damage monitoring and positioning system based on wireless acoustic emission sensor network
CN102721741B (en) 2012-06-18 2014-05-28 北京科技大学 Wind power blade damage monitoring and positioning system based on wireless acoustic emission sensor network
CN103226091A (en) * 2013-04-12 2013-07-31 中国石油天然气集团公司 High temperature high pressure acoustic emission electrochemistry simulation experiment apparatus capable of loading stress
CN105164493B (en) * 2013-04-30 2018-02-23 韩国科学技术院 Nonlinear modulation structure using an ultrasonic diagnostic apparatus and a wireless security diagnostic method using the apparatus
CN105164493A (en) * 2013-04-30 2015-12-16 韩国科学技术院 Apparatus for wirelessly diagnosing structure using nonlinear ultrasonic modulation technique and diagnosis method for assuring safety using same
CN103278567A (en) * 2013-05-13 2013-09-04 北京交通大学 Ultrasonic nondestructive evaluation of early-stage fatigue damage of bonding interface
CN103713052A (en) * 2014-01-03 2014-04-09 国家电网公司 Method for measuring yield strength of Q345 low alloy steel by using nonlinear ultrasonic technique
CN103743636A (en) * 2014-01-16 2014-04-23 清华大学 Method for predicting fatigue crack propagation threshold value of welded joint
CN103743636B (en) * 2014-01-16 2015-11-18 清华大学 A method of predicting weld joint fatigue crack growth threshold method
CN103969337A (en) * 2014-05-07 2014-08-06 北京工业大学 Orientation identification method of ultrasonic array crack defects based on vector full-focusing imaging
CN103969337B (en) * 2014-05-07 2017-02-22 北京工业大学 A defect in the direction of the ultrasonic flaw type recognition based on the whole focus imaging array of vectors
CN106018553A (en) * 2014-05-15 2016-10-12 厦门大学 Device for evaluating and optimizing heat treatment technology based on nonlinear ultrasound
CN103940910A (en) * 2014-05-15 2014-07-23 厦门大学 Nonlinear ultrasonic heat treatment process evaluation and optimization method and device
CN103940910B (en) * 2014-05-15 2017-01-11 厦门大学 Method and apparatus for optimizing nonlinear ultrasonic evaluation heat treatment process
CN106018553B (en) * 2014-05-15 2018-06-08 厦门大学 Nonlinear Optimization of the ultrasonic assessment apparatus in the heat treatment process
CN106461614A (en) * 2014-05-28 2017-02-22 汉阳大学校产学协力团 Device for evaluating deterioration and estimating strength by using ultrasound waves and method for evaluating deterioration and estimating strength by using same
CN105890792A (en) * 2014-08-28 2016-08-24 江苏万力机械股份有限公司 Temperature detection method suitable for fatigue damage of cutter
CN104391046A (en) * 2014-11-17 2015-03-04 西安交通大学 Optimum rolling bearing lubricating grease amount determining method based on acoustic emission
CN104914163A (en) * 2015-06-20 2015-09-16 上海电机学院 Blade crack detecting method of wind driven generator
CN105806944A (en) * 2016-03-16 2016-07-27 华中科技大学 Method and device for detecting fatigue damage of cable

Also Published As

Publication number Publication date Type
CN101806778B (en) 2011-07-27 grant

Similar Documents

Publication Publication Date Title
Stephens et al. Waveforms and frequency spectra of acoustic emissions
Walker et al. Fatigue damage evaluation in A36 steel using nonlinear Rayleigh surface waves
Sung et al. Monitoring of impact damages in composite laminates using wavelet transform
Shah et al. Nondestructive evaluation of damaged concrete using nonlinear ultrasonics
Thiele et al. Air-coupled detection of nonlinear Rayleigh surface waves to assess material nonlinearity
CN102636303A (en) Method for measuring residual stress of thin plating layer based on surface ultrasonic waves
CN102095800A (en) System for testing ultrasonic dynamic burning rate of solid propellant
CN102183582A (en) Ultrasonic nondestructive testing device and method
Chen et al. Load-differential imaging for detection and localization of fatigue cracks using Lamb waves
CN101907607A (en) Method for detecting defect of porcelain strut insulator
CN102226783A (en) Device and method for detecting pipeline closed cracks based on vibro-acoustic modulation technology
Benmeddour et al. Experimental study of the A0 and S0 Lamb waves interaction with symmetrical notches
CN101509604A (en) Method and device for detecting and assessing deposit in metal pipe
Wentzell et al. Chemical acoustic emission analysis in the frequency domain
CN101539541A (en) Detection method of thick beam structure damage based on guide wave
Muravin Acoustic emission science and technology
CN103543206A (en) Method for carrying out ultrasonic inspection on residual stress of aluminium alloy pre-stretching board by water immersion
CN201051092Y (en) A sound and ultrasonic no damage detection device
CN2842393Y (en) Material internal-stress supersonic measuring device
CN102954914A (en) True triaxial test ultrasonic wave and acoustic emission testing system and testing method thereof
Pullin et al. Modal analysis of acoustic emission signals from artificial and fatigue crack sources in aerospace grade steel
CN101082602A (en) Method for measuring material acoustics non-linear coefficient using rayleigh surface wave
CN102262701A (en) Transmission parameters based on linear elastic fracture mechanics and acoustic manganese in-service bearing parts 16 Fatigue Crack ATLAS
Fukuda et al. Real time detection of second-harmonic components generated from plastic-deformed metal rod using double-layered piezoelectric transducer
CN102375031A (en) Device and method for testing sound absorbing performance of material

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted