JP2007187785A - Dual structured self-cleaning film having anti-reflection function, structure formed with this dual structure self-cleaning film, and its manufacturing method - Google Patents

Dual structured self-cleaning film having anti-reflection function, structure formed with this dual structure self-cleaning film, and its manufacturing method Download PDF

Info

Publication number
JP2007187785A
JP2007187785A JP2006004605A JP2006004605A JP2007187785A JP 2007187785 A JP2007187785 A JP 2007187785A JP 2006004605 A JP2006004605 A JP 2006004605A JP 2006004605 A JP2006004605 A JP 2006004605A JP 2007187785 A JP2007187785 A JP 2007187785A
Authority
JP
Japan
Prior art keywords
layer
sio
tio
self
cleaning film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006004605A
Other languages
Japanese (ja)
Inventor
Shinton Cho
▲しんとん▼ 張
Akira Fujishima
昭 藤嶋
Taketoshi Murakami
武利 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Original Assignee
Kanagawa Academy of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology filed Critical Kanagawa Academy of Science and Technology
Priority to JP2006004605A priority Critical patent/JP2007187785A/en
Publication of JP2007187785A publication Critical patent/JP2007187785A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dual structured self-cleaning film having both a self-cleaning function and an anti-reflection function, and provide a structure formed with this dual structure self-cleaning film and its manufacturing method. <P>SOLUTION: This method for manufacturing a structure formed with the dual self-cleaning film comprises sequentially depositing SiO<SB>2</SB>particles and a titanic acid nano-sheet by interposing cation polymer on a transparent substrate using electrostatic force. It calcinates it at a temperature for generating TiO<SB>2</SB>to remove the cation polymer and converts the titanic acid nano-sheet into TiO<SB>2</SB>to form a SiO<SB>2</SB>layer on the surface of the transparent substrate and to form a TiO<SB>2</SB>layer on the SiO<SB>2</SB>layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、セルフクリーニング機能と反射防止機能の両方を併せ持つ二重構造セルフクリーニング膜とこの二重構造セルフクリーニング膜が形成された構造体ならびに製造方法に関する。   The present invention relates to a dual structure self-cleaning film having both a self-cleaning function and an antireflection function, a structure on which the dual structure self-cleaning film is formed, and a manufacturing method.

TiOの酸化分解機能と超親水性が利用され、TiOがコーティングされた各種製品が市販されている。この製品では、TiOの酸化分解機能により、紫外線(UV)照射条件下で有機汚染物を分解し、また、表面に付着した微生物を殺すことができる。さらに、TiOの超親水性により、表面上の水滴を急速かつ完全に拡散させることができる(たとえば、特許文献1、2)。このような機能は、一般に、セルフクリーニング機能と呼ばれている。
特許第2756474号 特許第3717868号
Oxidative decomposition function and superhydrophilic of TiO 2 is utilized, various products where TiO 2 is coated are commercially available. In this product, the oxidative decomposition function of TiO 2 can decompose organic contaminants under ultraviolet (UV) irradiation conditions and kill microorganisms attached to the surface. Furthermore, due to the superhydrophilicity of TiO 2 , water droplets on the surface can be diffused rapidly and completely (for example, Patent Documents 1 and 2). Such a function is generally called a self-cleaning function.
Japanese Patent No. 2756474 Japanese Patent No. 3717868

TiOのコーティングはガラスやプラスチックなどの透明基材にも簡単に適用してセルフクリーニング機能を付与することが可能であると考えられる。 It is thought that the coating of TiO 2 can be easily applied to a transparent substrate such as glass or plastic to give a self-cleaning function.

しかしながら、実際には、TiOの屈折率nは大きく(アナターゼで約2.52、ルチルでは2.76)、これまでに開発されたコーティング技術では透明基材の表面反射を増強させてしまう。可視光での空気−ガラス界面における反射は約4%であるが、空気−TiO界面における反射は20%にも上る。太陽電池、照明器具、温室などへの応用を考慮すると、セルフクリーニング機能を持ちながらも、表面反射を低減させ、光透過率を大きくすることが望まれる。 However, in practice, the refractive index n of TiO 2 is large (about 2.52 for anatase and 2.76 for rutile), and the coating techniques developed so far enhance the surface reflection of the transparent substrate. The reflection at the air-glass interface with visible light is about 4%, but the reflection at the air-TiO 2 interface is as high as 20%. Considering application to solar cells, lighting fixtures, greenhouses, etc., it is desirable to reduce surface reflection and increase light transmittance while having a self-cleaning function.

本発明は、以上の通りの事情に鑑みてなされたものであり、セルフクリーニング機能と反射防止機能の両方を併せ持つ二重構造セルフクリーニング膜とこの二重構造セルフクリーニング膜が形成された構造体ならびに製造方法を提供することを課題としている。   The present invention has been made in view of the circumstances as described above, and has a double structure self-cleaning film having both a self-cleaning function and an antireflection function, a structure on which the double structure self-cleaning film is formed, and It is an object to provide a manufacturing method.

本発明は、上記の課題を解決するものとして、第1に、多孔性のSiO層の上にTiO層が形成されていることを特徴としている。 In order to solve the above problems, the present invention is characterized in that a TiO 2 layer is first formed on a porous SiO 2 layer.

本発明は、第2に、SiO層は二次元的に広がるSiO粒子の単層または該単層が積層した複層から形成されていることを特徴としている。 Secondly, the present invention is characterized in that the SiO 2 layer is formed from a single layer of SiO 2 particles that spreads two-dimensionally or a multilayer in which the single layers are laminated.

本発明は、第3に、TiOはチタン酸ナノシートから変換されたものであることを特徴としている。 Third, the present invention is characterized in that TiO 2 is converted from titanate nanosheets.

本発明は、第4に、TiO層はチタン酸ナノシートの単層または複層から変換されて形成されていることを特徴としている。 Fourthly, the present invention is characterized in that the TiO 2 layer is formed by converting from a single layer or multiple layers of titanate nanosheets.

本発明は、第5に、透明基板の表面に第1ないし第4の特徴を有する反射防止機能を持つ二重構造セルフクリーニング膜が形成されていることを特徴としている。   Fifth, the present invention is characterized in that a double structure self-cleaning film having an antireflection function having the first to fourth characteristics is formed on the surface of the transparent substrate.

本発明は、第6に、カチオンポリマーを介在させ、透明基板上にSiO粒子、チタン酸ナノシートを静電気力により順次沈着させ、TiOが生成する温度で焼成し、カチオンポリマーを除去するとともにチタン酸ナノシートをTiOに変換し、透明基板の表面にSiO層を形成させ、かつSiO層の上にTiO層を形成させることを特徴としている。 Sixth, the present invention includes a cationic polymer interposed, SiO 2 particles and titanic acid nanosheets are sequentially deposited on a transparent substrate by electrostatic force, and baked at a temperature at which TiO 2 is generated to remove the cationic polymer and titanium. It is characterized in that the acid nanosheet is converted to TiO 2 , a SiO 2 layer is formed on the surface of the transparent substrate, and a TiO 2 layer is formed on the SiO 2 layer.

本発明は、第7に、カチオンポリマーを介在させ、透明基板上にSiO粒子、チタン酸ナノシートを静電気力により順次沈着させ、TiOが生成する温度で焼成し、カチオンポリマーを除去するとともにチタン酸ナノシートをTiOに変換し、透明基板の表面にSiO層を形成させ、かつSiO層の上にTiO層を形成させた後、透明基板を除去することを特徴としている。 Seventh, the present invention includes a cationic polymer, SiO 2 particles and titanate nanosheets are sequentially deposited on a transparent substrate by electrostatic force, and baked at a temperature at which TiO 2 is generated to remove the cationic polymer and titanium. The acid nanosheet is converted to TiO 2 , a SiO 2 layer is formed on the surface of the transparent substrate, and after forming the TiO 2 layer on the SiO 2 layer, the transparent substrate is removed.

本発明によれば、上層のTiO層によりセルフクリーニング機能を保持しつつ、下層の多孔性SiO層によって反射防止機能を発現させ、表面反射を低減させることができる。反射防止機能を持つ二重構造セルフクリーニング膜が実現され、この二重構造セルフクリーニング膜は、ガラス、プラスチックなどの透明基材の表面にコーティングすることができ、このようにして反射防止機能を持つ二重構造セルフクリーニング膜が形成された構造体は、太陽電池、照明器具、温室などに応用可能となる。反射防止機能を持つ二重構造セルフクリーニング膜および構造体は、二重構造セルフクリーニング膜を構成する各層を静電気引力によって沈着させることにより容易に製造することができる。また、各層の厚みを精度よく制御することができる。 According to the present invention, while maintaining the self-cleaning function by the upper TiO 2 layer, the antireflection function can be exhibited by the lower porous SiO 2 layer and the surface reflection can be reduced. A double-structure self-cleaning film with anti-reflection function is realized, and this double-structure self-cleaning film can be coated on the surface of transparent substrates such as glass and plastic, thus having anti-reflection function The structure in which the double structure self-cleaning film is formed can be applied to solar cells, lighting fixtures, greenhouses, and the like. The double structure self-cleaning film and structure having an antireflection function can be easily manufactured by depositing each layer constituting the double structure self-cleaning film by electrostatic attraction. Moreover, the thickness of each layer can be controlled with high accuracy.

以下、実施例を示し、本発明の反射防止機能を持つ二重構造セルフコーティング膜とこの二重構造セルフコーティング膜が形成された構造体ならびに製造方法を詳しく説明する。   Hereinafter, the double structure self-coating film having an antireflection function according to the present invention, the structure on which the double structure self-coating film is formed, and the manufacturing method will be described in detail.

(材料の調製)
直鎖状四級アンモニウムポリカチオンであるPoly(diallyldimethyl ammonium)(PDDA)には市販品(Aldrich、409022、中程度MW)を使用し、2mg mL−1の濃度でそれ以上精製せず、0.1mol L−1のアンモニウム水を用いてpHを9.0に調整した。SiOコロイド水溶液(平均直径:17nm;Cataloid SI-40;Catalyst Chemical Co., Japan)を脱イオン水で希釈し、1mg mL−1(pH約9)の濃度にした。脱イオン水には比抵抗が約18MΩcmのものを用いた。
(Preparation of materials)
A commercially available product (Aldrich, 409022, medium MW) is used for poly (diallyldimethyl ammonium) (PDDA), which is a linear quaternary ammonium polycation, and it is not further purified at a concentration of 2 mg mL −1 . The pH was adjusted to 9.0 using 1 mol L −1 ammonium water. An aqueous SiO 2 colloid solution (average diameter: 17 nm; Cataloid SI-40; Catalyst Chemical Co., Japan) was diluted with deionized water to a concentration of 1 mg mL −1 (pH about 9). Deionized water having a specific resistance of about 18 MΩcm was used.

チタン酸ナノシートコロイド水溶液はSasakiの方法により0.08g L−1(pH約9)の濃度に調整した。CsCOとTiOの化学両論組成の混合物を800℃で20時間焼成し、セシウム・チタネート前駆体を作製する。得られたセシウム・チタネート前駆体の70gを1mol dm−3のHCl溶液2dmにより室温で処理する。この酸処理を24時間毎に新しい酸溶液で3度行う。得られた酸置換物を濾過、水洗浄、そして大気中で乾燥させる。得られたプロトン・チタネートを、0.0017mol dm−3のテトラブチルアンモニウム水酸化物溶液を用いて室温で10日間勢いよく振る。乳白色のコロイド状のサスペンションを得る。サスペンションは単一層の結晶を含む。
(二重構造膜および構造体の作製)
SiO粒子とチタン酸ナノシートはいずれも負に帯電している。一方、PDDA分子は正に帯電している。したがって、図1の模式図に示したように、交互に静電沈着を行うことによって、ガラスや石英などの透明基板上にSiO粒子層およびチタン酸ナノシートを形成することができる。チタン酸ナノシートは500℃で焼成すると、アナターゼ型のTiOに変換し、多孔性のSiO層上に高密度なTiO層が形成する。
The aqueous colloidal titanate sheet was adjusted to a concentration of 0.08 g L −1 (pH about 9) by the method of Sasaki. A mixture of the stoichiometric composition of Cs 2 CO 3 and TiO 2 is calcined at 800 ° C. for 20 hours to prepare a cesium titanate precursor. The 70g of the resulting cesium titanate precursor at room temperature with HCl solution 2 dm 3 of 1 mol dm -3. This acid treatment is performed three times with a fresh acid solution every 24 hours. The resulting acid substitute is filtered, washed with water, and dried in air. The obtained proton titanate is vigorously shaken at room temperature for 10 days using a 0.0017 mol dm −3 tetrabutylammonium hydroxide solution. A milky white colloidal suspension is obtained. The suspension includes a single layer of crystals.
(Production of double structure film and structure)
Both the SiO 2 particles and the titanate nanosheet are negatively charged. On the other hand, PDDA molecules are positively charged. Therefore, as shown in the schematic diagram of FIG. 1, by alternately performing electrostatic deposition, a SiO 2 particle layer and a titanate nanosheet can be formed on a transparent substrate such as glass or quartz. When the titanate nanosheet is fired at 500 ° C., it is converted into anatase TiO 2 , and a high-density TiO 2 layer is formed on the porous SiO 2 layer.

ガラスならびに石英基板を濃縮HSO/H(7:3v/v)溶液で洗浄した後、脱イオン水で洗った。洗浄した基板をPDDA溶液、SiOコロイド溶液中に交互に5分間ずつ浸漬した。各溶液に浸漬する前には基板を水で洗浄した。 The glass and quartz substrate were washed with a concentrated H 2 SO 4 / H 2 O 2 (7: 3 v / v) solution and then with deionized water. The cleaned substrate was alternately immersed for 5 minutes in PDDA solution and SiO 2 colloid solution. Prior to immersion in each solution, the substrate was washed with water.

複層(PDDA/SiO(6回にわたり交互に浸漬したもの)を基板上に作製した。次いで、基板をPDDA溶液ならびにチタン酸ナノシートコロイド溶液中に交互に浸漬した。この後、500℃で1時間焼成してPDDAを除去し、チタン酸ナノシートをアナターゼ型のTiOに変換した。
(セルフクリーニング機能)
焼成して得たTiO−SiO二重構造膜の表面を、オクタドデシルリン酸(ODP)を用いて修飾した。オクタドデシルリン酸は和光純薬工業(株)より購入し、ヘプタンとイソプロパノール(1000:5v/v)(いずれも和光純薬工業(株)より購入、精製なし)の混合溶媒に溶解して1mMのODP溶液とした。このODP溶液にTiO−SiO二重構造膜が形成したガラス基板を72分以上浸漬した。次いで、ODP溶液からガラス基板を取り出し、イソプロパノールで洗浄した。ODP分子はTiO層の表面に緻密な単層を形成する。ODP分子の吸着後、TiO層の表面の水接触角は100°以上に増加した。表面は疎水性となった。
A multi-layer (PDDA / SiO 2 ) 6 (6 times alternately immersed) was produced on the substrate. Then, the substrate was alternately immersed in the PDDA solution and the titanate nanosheet colloid solution. Thereafter, the PDDA was removed by baking at 500 ° C. for 1 hour, and the titanate nanosheet was converted to anatase-type TiO 2 .
(Self-cleaning function)
The surface of the TiO 2 —SiO 2 double structure film obtained by firing was modified with octadodecyl phosphate (ODP). Octadodecyl phosphate is purchased from Wako Pure Chemical Industries, Ltd. and dissolved in a mixed solvent of heptane and isopropanol (1000: 5 v / v) (both purchased from Wako Pure Chemical Industries, Ltd., no purification) to give 1 mM. ODP solution. The glass substrate on which the TiO 2 —SiO 2 double structure film was formed was immersed in this ODP solution for 72 minutes or more. Subsequently, the glass substrate was taken out from the ODP solution and washed with isopropanol. ODP molecules form a dense monolayer on the surface of the TiO 2 layer. After adsorption of ODP molecules, the water contact angle on the surface of the TiO 2 layer increased to 100 ° or more. The surface became hydrophobic.

ガラス基板をUV−A帯の紫外光を放出するUV光照射条件下(林時計工業(株)製 UV-310)に配置した。UV照射中に10カ所の異なる位置で水の接触角を測定し、TiO−SiO二重構造膜のセルフクリーニング機能を評価した。ガラス基板表面に照射した光の強度は2.6mW cm−2とした(浜松ホトニクス(株)製の電力計を用いて測定)。日光のUV成分の範囲内である。接触角の測定は、固着モード、室温で接触角測定計(協和界面科学(株)製CA-X)を用いて行い、市販のFMASソフトウェアで分析した。従来の静的な接触角測定に加えて、液滴が表面に広がる途中の一時的な接触角を測定することもできる。また、ODP単層の分解について、日本分光(株)製のFTIR分光計により赤外線(IR)スペクトルを用いて調べた。
(その他の測定)
TiO−SiO二重構造膜の透過スペクトルを、(株)島津製作所製の分光計を用いて垂直入射で測定した。TiO−SiO二重構造膜の表面形態と断面を、(株)日立製作所製のS4500走査型電子顕微鏡(SEM)を用いて調べた。SEM測定は、試料に市販のスパッタリング装置を用いてプラチナをコーティングしてから行った。TiO−SiO二重構造膜の屈折率および各層の厚みを偏光解析装置(J.A.Woollam Co., Inc. M-2000U)を用いて測定した。
(結果)
アルカリ性媒体の中ではガラスや石英などの基材は負に帯電している。したがって、静電沈着によりSiOおよびチタン酸ナノシートの複層を基板上に沈着させることが可能であった。SiOナノ粒子が沈着している証拠は表面反射の減少により得られる。6サイクルの沈着により基材の表面反射が非常に弱くなり、淡黄色を示した。
The glass substrate was placed under UV light irradiation conditions (UV-310 manufactured by Hayashi Watch Industry Co., Ltd.) that emits UV light in the UV-A band. The contact angle of water was measured at 10 different positions during UV irradiation, and the self-cleaning function of the TiO 2 —SiO 2 double structure film was evaluated. The intensity of light applied to the glass substrate surface was 2.6 mW cm −2 (measured using a wattmeter manufactured by Hamamatsu Photonics Co., Ltd.). Within the UV component of sunlight. The contact angle was measured using a contact angle meter (CA-X, manufactured by Kyowa Interface Science Co., Ltd.) in the fixing mode and at room temperature, and analyzed with commercially available FMAS software. In addition to the conventional static contact angle measurement, it is also possible to measure a temporary contact angle while the droplet is spreading on the surface. Further, the decomposition of the ODP monolayer was examined using an infrared (IR) spectrum with an FTIR spectrometer manufactured by JASCO Corporation.
(Other measurements)
The transmission spectrum of the TiO 2 —SiO 2 double structure film was measured at normal incidence using a spectrometer manufactured by Shimadzu Corporation. The surface morphology and cross section of the TiO 2 —SiO 2 double structure film were examined using an S4500 scanning electron microscope (SEM) manufactured by Hitachi, Ltd. The SEM measurement was performed after coating the sample with platinum using a commercially available sputtering apparatus. The refractive index and the thickness of each layer of the TiO 2 —SiO 2 double structure film were measured using an ellipsometer (JAWoollam Co., Inc. M-2000U).
(result)
In alkaline media, substrates such as glass and quartz are negatively charged. Therefore, it was possible to deposit a multilayer of SiO 2 and titanate nanosheet on the substrate by electrostatic deposition. Evidence that SiO 2 nanoparticles are deposited is obtained by a decrease in surface reflection. After 6 cycles of deposition, the surface reflection of the substrate was very weak and light yellow.

一方、チタン酸ナノシートには260nmを中心とする特徴的な吸収帯が存在する。図2に示したように、チタン酸ナノシートを一層ずつ沈着させる過程で260nmの吸収はほぼ線形に増加した。このことは、チタン酸ナノシートが均一に積層していることを示している。チタン酸ナノシートの沈着時間が増えるにつれて基板の表面反射が徐々に増加し、表面反射の色は、淡黄色から暗い黄色(3層ナノシート)、ピンク(6層ナノシート)、青(9層ナノシート)に変化した。12層ナノシートでは反射防止機能は実現されなかった。   On the other hand, the titanate nanosheet has a characteristic absorption band centered at 260 nm. As shown in FIG. 2, the absorption at 260 nm increased almost linearly in the process of depositing the titanate nanosheets one by one. This indicates that the titanate nanosheets are uniformly laminated. As the deposition time of titanate nanosheets increases, the surface reflection of the substrate gradually increases, and the color of the surface reflection changes from light yellow to dark yellow (3-layer nanosheet), pink (6-layer nanosheet), and blue (9-layer nanosheet) changed. The antireflection function was not realized with the 12-layer nanosheet.

図3に、6層SiOコーティング石英、3層チタン酸ナノシート/6層SiOコーティング石英、6層チタン酸ナノシート/6層SiOコーティング石英および9層チタン酸ナノシート/6層SiOコーティング石英の500℃焼成後の透過スペクトルを示した。リファレンスとして、250nm−800nm範囲の石英の透過スペクトルも示した。 FIG. 3 shows six layers of SiO 2 coated quartz, three layers of titanate nanosheets / 6 layers of SiO 2 coated quartz, six layers of titanate nanosheets / 6 layers of SiO 2 coated quartz, and nine layers of titanate nanosheets / 6 layers of SiO 2 coated quartz. The transmission spectrum after baking at 500 ° C. is shown. As a reference, the transmission spectrum of quartz in the range of 250 nm to 800 nm is also shown.

280nmでは、6層SiOコーティング石英が99.9%を超える最大の透過性を示した。390nmでは、3層ナノシート/6層SiO二重構造が99.4%を超える最大の透過性を示した。485nmでは、6層ナノシート/6層SiO二重構造が98.5%を超える最大の透過性を示した。585nmでは、9層ナノシート/6層SiO二重構造が97.6%を超える最大の透過性を示した。全ての試料は400−800nmの範囲で石英基板を超える透過性を示しており、反射防止機能を裏付けている。 At 280 nm, the 6-layer SiO 2 coated quartz showed the maximum permeability exceeding 99.9%. At 390 nm, the three-layer nanosheet / 6-layer SiO 2 double structure showed the maximum permeability exceeding 99.4%. At 485 nm, the 6-layer nanosheet / 6-layer SiO 2 double structure showed the maximum permeability exceeding 98.5%. At 585 nm, the 9-layer nanosheet / 6-layer SiO 2 double structure showed the maximum permeability exceeding 97.6%. All the samples show a transmissivity exceeding the quartz substrate in the range of 400 to 800 nm, which supports the antireflection function.

図4に、上記の内の3種類のTiO−SiO二重構造膜の吸収スペクトルを示した。リファレンスとしてチタン酸ナノシートコロイド水溶液の吸収スペクトルを併せて示した。 FIG. 4 shows absorption spectra of three types of the above-described TiO 2 —SiO 2 double structure films. The absorption spectrum of the aqueous solution of titanate nanosheet colloid is also shown as a reference.

全ての二重構造膜が示す吸収特性はチタン酸ナノシートと異なっているが、TiOの特性に類似しており、500℃での焼成途中でチタン酸からTiOへと相変化が生じたことが確認される。3種類の二重構造膜のバンドギャップを計算すると、3層ナノシート試料では3.59eV、6層ナノシート試料では3.43eV、9層ナノシート試料では3.32eVとなった。これらのバンドギャップ値はチタン酸ナノシートの値3.9eVよりかなり小さいが、それでもバルク状態のアナターゼのバンドギャップ値3.2eVよりは大きくなっており、TiO超薄層による2次元量子閉じ込め効果がその原因ではないかと考えられた。 Although the absorption characteristics shown all the dual structure film is different from the titanate nanosheet, that are similar to the properties of TiO 2, firing middle phase change from titanate to TiO 2 at 500 ° C. resulted Is confirmed. When the band gaps of the three types of double structure films were calculated, it was 3.59 eV for the 3-layer nanosheet sample, 3.43 eV for the 6-layer nanosheet sample, and 3.32 eV for the 9-layer nanosheet sample. Although these band gap values are considerably smaller than the value of 3.9 eV for titanate nanosheets, they are still larger than the band gap value of 3.2 eV for bulk anatase, and the two-dimensional quantum confinement effect by the TiO 2 ultrathin layer is It was thought to be the cause.

偏光解析装置を用いた500℃焼成後の複層ナノシートの厚み測定の結果、3層、6層、9層のナノシートの厚みは、それぞれ、2.2nm、4.3nm、6.5nmであり、ナノシート1層の厚みの平均は0.72nmであった。このデータは2002年のSasaki et al.による報告と一致している。633nmでの屈折率は、3層ナノシートで1.80、6層ナノシートで2.04、9層ナノシートで2.07であった。屈折率がアナターゼ(屈折率:2.52)と比較して小さい理由は、おそらく超薄層に起因していると考えられる。   As a result of measuring the thickness of the multilayer nanosheet after baking at 500 ° C. using an ellipsometer, the thicknesses of the nanosheets of 3 layers, 6 layers, and 9 layers are 2.2 nm, 4.3 nm, and 6.5 nm, respectively. The average thickness of one nanosheet layer was 0.72 nm. This data is consistent with a 2002 report by Sasaki et al. The refractive index at 633 nm was 1.80 for the 3-layer nanosheet, 2.04 for the 6-layer nanosheet, and 2.07 for the 9-layer nanosheet. The reason why the refractive index is small compared to anatase (refractive index: 2.52) is probably due to the ultrathin layer.

同様に、偏光解析装置による6層SiOの厚みの測定値は55nmであった。6層SiOの633nmにおける屈折率測定値は1.26であったが、この値は、純粋なSiO(屈折率:1.46)に比べ大幅に減少しており、SiO層が多孔性であることを裏付けている。 Similarly, the measured value of the thickness of the 6-layer SiO 2 by the ellipsometer was 55 nm. The refractive index measured at 633 nm of the 6-layer SiO 2 was 1.26, but this value was significantly reduced compared to pure SiO 2 (refractive index: 1.46), and the SiO 2 layer was porous. It confirms that it is sex.

図5に、いくつかの試料の電子顕微鏡写真を示した。上の2枚は厚さ55nmのSiO層、中央の2枚は厚さ4.3nmのTiO層/厚さ55nmのSiO層、下の2枚の内左側は、厚さ2.2nmのTiO層/厚さ55nmのSiO層、右側は厚さ6.5nmのTiO層/厚さ55nmのSiO層をそれぞれ示している。 FIG. 5 shows electron micrographs of some samples. The upper two sheets are 55 nm thick SiO 2 layers, the middle two sheets are 4.3 nm thick TiO 2 layers / 55 nm thick SiO 2 layers, and the lower two sheets are 2.2 nm thick TiO 2 layer / 55 nm thick SiO 2 layer, and the right side shows a 6.5 nm thick TiO 2 layer / 55 nm thick SiO 2 layer.

SiO層は多孔性が大きく、屈折率が低いことに対応している。チタン酸ナノシートを沈着させることにより、多孔性SiO層を覆う表面薄層が生じる。チタン酸ナノシート層の多孔性SiO層上におけるコーティング度は沈着回数が増えるに伴い増大し、9層ナノシートはほぼ完全に多孔性SiO層をコーティングした。断面の顕微鏡写真よりTiOの高密度層が多孔性SiO層の上に形成しているのが明確に確認される。 The SiO 2 layer corresponds to the large porosity and low refractive index. By depositing the titanate nanosheet, a thin surface layer covering the porous SiO 2 layer is generated. The degree of coating of the titanate nanosheet layer on the porous SiO 2 layer increased as the number of depositions increased, and the 9-layer nanosheet almost completely coated the porous SiO 2 layer. It is clearly confirmed from the micrograph of the cross section that a high-density layer of TiO 2 is formed on the porous SiO 2 layer.

セルフクリーニング機能の結果については図6に示した通りである。全てのTiO−SiO二重構造膜において、UV照射により水接触角が著しく減少している。また、接触角の減少速度はTiO層の厚みに依存することが確認された。3種類の試料の内で最も速い水接触角の減少が観察されたのは、6.5nmTiO/55nmSiO二重構造膜(△)であった。水接触角が3.5時間で107°から約0°に減少した。2.1nmTiO/55nmSiO二重構造膜(■)は、水接触角の減少が最も遅く、接触角が115°から約0°に減少するまでに6時間を要した。4.3nmTiO/55nmSiO二重構造膜(●)は両者の中間である。 The result of the self-cleaning function is as shown in FIG. In all TiO 2 —SiO 2 double structure films, the water contact angle is significantly reduced by UV irradiation. Moreover, it was confirmed that the decreasing rate of the contact angle depends on the thickness of the TiO 2 layer. Three of reduction of the fastest water contact angle of the sample was observed, was 6.5nmTiO 2 / 55nmSiO 2 double structure layer (△). The water contact angle decreased from 107 ° to about 0 ° in 3.5 hours. 2.1nmTiO 2 / 55nmSiO 2 double structure film (■), the reduction in water contact angle slowest, the contact angle is over 6 hours to decrease from 115 ° to approximately 0 °. 4.3nmTiO 2 / 55nmSiO 2 double structure film (●) is an intermediate between them.

UV照射中のIRスペクトルは図7に示した通りである。図7は、6.5nmTiO/55nmSiO二重構造膜についてのIRスペクトルである。2919cm−1ならびに2850cm−1に現れるメチレン基のIR吸収は、UVの照射にともなって次第に減少した。3時間後、シグナルはほぼ消失した。接触角測定の結果が追認された。TiO−SiO二重構造膜はセルフクリーニング機能を持つ。ODP単層の分解後、二重構造膜の接触角は0°近くになったが、これはTiO層の超親水性によるものである。 The IR spectrum during UV irradiation is as shown in FIG. Figure 7 is an IR spectrum for 6.5nmTiO 2 / 55nmSiO 2 double structure film. The IR absorption of the methylene group appearing at 2919 cm −1 and 2850 cm −1 gradually decreased with UV irradiation. After 3 hours, the signal almost disappeared. The result of contact angle measurement was confirmed. The TiO 2 —SiO 2 double structure film has a self-cleaning function. After the decomposition of the ODP single layer, the contact angle of the double structure film became close to 0 °, which is due to the superhydrophilicity of the TiO 2 layer.

以上の通り、静電引力法により作製したTiO−SiO二重構造膜は、反射防止機能とともにセルフクリーニング機能を併せ持つ。反射防止機能は多孔性のSiO層により実現され、セルフクリーニング機能は、多孔性SiO層の上に形成されたTiO層により発現する。TiO層の屈折率は比較的大きいが、TiO−SiO二重構造のコーティングによってガラスまたは石英基板の最大透過率が97%を超える程度まで改善する。反射防止機能とセルフクリーニング機能は、形成するTiO層とSiO層の相対的な厚みを調節することによって最適化することが可能である。TiO層とSiO層の相対的な厚みの調節は、静電気力法により容易に可能である。 As described above, the TiO 2 —SiO 2 double structure film produced by the electrostatic attraction method has a self-cleaning function as well as an antireflection function. Antireflection function is realized by a porous SiO 2 layer, a self-cleaning function is expressed by the TiO 2 layer formed on the porous SiO 2 layer. Although the refractive index of the TiO 2 layer is relatively large, the maximum transmittance of the glass or quartz substrate is improved to over 97% by the coating of the TiO 2 —SiO 2 double structure. The antireflection function and the self-cleaning function can be optimized by adjusting the relative thicknesses of the TiO 2 layer and the SiO 2 layer to be formed. The relative thickness of the TiO 2 layer and the SiO 2 layer can be easily adjusted by an electrostatic force method.

反射防止機能を持つ二重構造セルフクリーニング膜とこの二重構造セルフクリーニング膜が形成された構造体の製造プロセスを示した概略図である。It is the schematic which showed the manufacturing process of the structure in which the double structure self-cleaning film | membrane with an antireflection function and this double structure self-cleaning film were formed. 複層(PDDA/SiO上に沈着させた(PDDA/チタン酸ナノシート)層毎の吸収スペクトルである。 2 is an absorption spectrum for each (PDDA / titanate nanosheet) layer deposited on a multilayer (PDDA / SiO 2 ) 6 . 6層SiOコーティング石英、3層チタン酸ナノシート/6層SiOコーティング石英、6層チタン酸ナノシート/6層SiOコーティング石英および9層チタン酸ナノシート/6層SiOコーティング石英の500℃焼成後の透過スペクトルである。6-layer SiO 2 coated quartz, 3 layer titanate nanosheet / 6-layer SiO 2 coated quartz, 6-layer titanate nanosheet / 6-layer SiO 2 coated quartz and 9-layer titanate nanosheet / 6-layer SiO 2 coated quartz after firing at 500 ° C. Is the transmission spectrum. 3層ナノシート/6層SiO二重構造膜、6層ナノシート/6層SiO二重構造膜および9層ナノシート/6層SiO二重構造膜の吸収スペクトルである。3-layer nanosheets / six-layer SiO 2 double structured film, the absorption spectrum of the 6-layered nanosheets / six-layer SiO 2 double structured film and 9 layers nanosheets / six-layer SiO 2 double structured film. 実施例におけるいくつかの試料の電子顕微鏡写真である。It is an electron micrograph of some samples in an example. UV照射によるODPを修飾したTiO/SiO二重構造膜の接触角変化をプロットした図である。It is a plot of contact angle change of the TiO 2 / SiO 2 double structured film was modified ODP by UV irradiation. 6.5nmTiO/55nmSiO二重構造膜のUV照射中のIRスペクトルである。It is an IR spectrum of the UV irradiation 6.5nmTiO 2 / 55nmSiO 2 double structure film.

Claims (7)

多孔性のSiO層の上にTiO層が形成されていることを特徴とする反射防止機能を持つ二重構造セルフクリーニング膜。 A dual structure self-cleaning film having an antireflection function, wherein a TiO 2 layer is formed on a porous SiO 2 layer. SiO層は二次元的に広がるSiO粒子の単層または該単層が積層した複層から形成されている請求項1記載の反射防止機能を持つ二重構造セルフクリーニング膜。 Dual structure self-cleaning film having a reflection preventing function of the SiO 2 layer two-dimensionally to spread SiO 2 particles monolayer or monolayer is claim 1 is formed from a multilayer laminated of. TiOはチタン酸ナノシートから変換されたものである請求項1または2記載の反射防止機能を持つ二重構造セルフクリーニング膜。 The dual structure self-cleaning film having an antireflection function according to claim 1 or 2, wherein TiO 2 is converted from a titanate nanosheet. TiO層はチタン酸ナノシートの単層または複層から変換されて形成されている請求項1ないし3いずれか1項に記載の反射防止機能を持つ二重構造セルフクリーニング膜。 The double structure self-cleaning film having an antireflection function according to any one of claims 1 to 3, wherein the TiO 2 layer is formed by being converted from a single layer or multiple layers of titanate nanosheets. 透明基板の表面に請求項1ないし4いずれか1項に記載の反射防止機能を持つ二重構造セルフクリーニング膜が形成されていることを特徴とする反射防止機能を持つ二重構造セルフクリーニング膜が形成された構造体。   A double structure self-cleaning film having an antireflection function, wherein the double structure self cleaning film having an antireflection function according to any one of claims 1 to 4 is formed on a surface of a transparent substrate. The formed structure. カチオンポリマーを介在させ、透明基板上にSiO粒子、チタン酸ナノシートを静電気力により順次沈着させ、TiOが生成する温度で焼成し、カチオンポリマーを除去するとともにチタン酸ナノシートをTiOに変換し、透明基板の表面にSiO層を形成させ、かつSiO層の上にTiO層を形成させることを特徴とする反射防止機能を持つ二重構造セルフクリーニング膜が形成された構造体の製造方法。 A cationic polymer is interposed, SiO 2 particles and titanate nanosheets are sequentially deposited on a transparent substrate by electrostatic force, and baked at a temperature at which TiO 2 is generated to remove the cationic polymer and convert the titanate nanosheets to TiO 2. Production of a structure having a double structure self-cleaning film having an antireflection function, characterized in that a SiO 2 layer is formed on the surface of a transparent substrate and a TiO 2 layer is formed on the SiO 2 layer Method. カチオンポリマーを介在させ、透明基板上にSiO粒子、チタン酸ナノシートを静電気力により順次沈着させ、TiOが生成する温度で焼成し、カチオンポリマーを除去するとともにチタン酸ナノシートをTiOに変換し、透明基板の表面にSiO層を形成させ、かつSiO層の上にTiO層を形成させた後、透明基板を除去することを特徴とする反射防止機能を持つ二重構造セルフクリーニング膜の製造方法。 A cationic polymer is interposed, SiO 2 particles and titanate nanosheets are sequentially deposited on a transparent substrate by electrostatic force, and baked at a temperature at which TiO 2 is generated to remove the cationic polymer and convert the titanate nanosheets to TiO 2. A double structure self-cleaning film having an antireflection function, wherein an SiO 2 layer is formed on the surface of the transparent substrate, and a TiO 2 layer is formed on the SiO 2 layer, and then the transparent substrate is removed. Manufacturing method.
JP2006004605A 2006-01-12 2006-01-12 Dual structured self-cleaning film having anti-reflection function, structure formed with this dual structure self-cleaning film, and its manufacturing method Pending JP2007187785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006004605A JP2007187785A (en) 2006-01-12 2006-01-12 Dual structured self-cleaning film having anti-reflection function, structure formed with this dual structure self-cleaning film, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006004605A JP2007187785A (en) 2006-01-12 2006-01-12 Dual structured self-cleaning film having anti-reflection function, structure formed with this dual structure self-cleaning film, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007187785A true JP2007187785A (en) 2007-07-26

Family

ID=38343011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006004605A Pending JP2007187785A (en) 2006-01-12 2006-01-12 Dual structured self-cleaning film having anti-reflection function, structure formed with this dual structure self-cleaning film, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007187785A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004992A1 (en) * 2009-07-10 2011-01-13 Korea University Research And Business Foundation Self-cleaning surfaces
JP2013218651A (en) * 2012-04-06 2013-10-24 Hotoku Technology Co Ltd Optical dustproof mouse
US10732325B2 (en) 2015-09-29 2020-08-04 Fujifilm Corporation Hydrophilic multilayer film and method for producing same, and imaging system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009295A (en) * 1999-04-28 2001-01-16 Toshiba Lighting & Technology Corp Photocatalyst body, lamp and lighting fixture
JP2002265223A (en) * 2001-03-12 2002-09-18 National Institute For Materials Science Titania ultrathin film and producing method therefor
JP2002361767A (en) * 2001-04-06 2002-12-18 Dainippon Printing Co Ltd Fine particle layer laminated film and optically functional material using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009295A (en) * 1999-04-28 2001-01-16 Toshiba Lighting & Technology Corp Photocatalyst body, lamp and lighting fixture
JP2002265223A (en) * 2001-03-12 2002-09-18 National Institute For Materials Science Titania ultrathin film and producing method therefor
JP2002361767A (en) * 2001-04-06 2002-12-18 Dainippon Printing Co Ltd Fine particle layer laminated film and optically functional material using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004992A1 (en) * 2009-07-10 2011-01-13 Korea University Research And Business Foundation Self-cleaning surfaces
JP2012530028A (en) * 2009-07-10 2012-11-29 コリア・ユニバーシティ・リサーチ・アンド・ビジネス・ファウンデーション Self-cleaning surface
JP2013218651A (en) * 2012-04-06 2013-10-24 Hotoku Technology Co Ltd Optical dustproof mouse
US10732325B2 (en) 2015-09-29 2020-08-04 Fujifilm Corporation Hydrophilic multilayer film and method for producing same, and imaging system

Similar Documents

Publication Publication Date Title
Garlisi et al. Multilayer thin film structures for multifunctional glass: Self-cleaning, antireflective and energy-saving properties
Liu et al. Sol–gel SiO2/TiO2 bilayer films with self-cleaning and antireflection properties
Mills et al. Thick titanium dioxide films for semiconductor photocatalysis
JP3385850B2 (en) Composite material with hydrophilicity
JP6247141B2 (en) Light-induced hydrophilic article and method for producing the same
JP4777673B2 (en) Sheet glass with photocatalytic coating
KR100870213B1 (en) Photocatalytic composition for anti-reflection and the glass substrate coated with the composition
Adak et al. Non lithographic block copolymer directed self-assembled and plasma treated self-cleaning transparent coating for photovoltaic modules and other solar energy devices
Yao et al. Fabrication of mechanically robust, self-cleaning and optically high-performance hybrid thin films by SiO 2 &TiO 2 double-shelled hollow nanospheres
JP2009120835A (en) Transparent aqua-based nano sol-gel coating agent composition which does not lower transmittance of visible ray and solar light through transparent substrate and method for coating it
CN104085165B (en) A kind of preparation method of photocatalyst of titanium dioxide coating
EP2938582B1 (en) Transparent substrate, in particular a glass substrate, coated with at least one at least bifunctional porous layer, manufacturing method and uses thereof
JP2007187785A (en) Dual structured self-cleaning film having anti-reflection function, structure formed with this dual structure self-cleaning film, and its manufacturing method
Lin et al. Design and fabrication of antireflective nanoparticulate thin films with superhydrophilic self-cleaning properties on glass substrate
KR20140061842A (en) Preparation of photocatalytic water system having anti-reflection effect, super-hydrophilicity action and uv-cut character, and the glass substrate coated with the composition
Brook et al. Novel multifunctional films
Wu et al. Hollow core-shell nanocoatings with gradient refractive index structure for enhanced photovoltaic performance
JP5054031B2 (en) Photocatalyst carrying structure
KR20020045856A (en) Photocatalyst coating sol capable of hardening at low temperature and preparation method thereof
KR100810738B1 (en) Preparation method of multi structural film using slot die and anti pollutant-heat cutting film prepared from them
JP2007224370A (en) MANUFACTURING METHOD OF TiO2 SPUTTER COATING FILM
JP2003266577A (en) Heat ray shielding material
JP2006162711A (en) Self-cleaning coating film having antireflection function and its constitution body
JP2010149005A (en) Article coated with photocatalyst, and photocatalytic coating liquid therefor
WO2017146015A1 (en) Photocatalyst structure and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004