JP3385850B2 - Composite material with hydrophilicity - Google Patents

Composite material with hydrophilicity

Info

Publication number
JP3385850B2
JP3385850B2 JP13408196A JP13408196A JP3385850B2 JP 3385850 B2 JP3385850 B2 JP 3385850B2 JP 13408196 A JP13408196 A JP 13408196A JP 13408196 A JP13408196 A JP 13408196A JP 3385850 B2 JP3385850 B2 JP 3385850B2
Authority
JP
Japan
Prior art keywords
photo
sample
titanium oxide
optical semiconductor
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13408196A
Other languages
Japanese (ja)
Other versions
JPH09226040A (en
Inventor
信 早川
栄一 小島
圭一郎 則本
町田  光義
俊也 渡部
真 千国
厚 北村
Original Assignee
東陶機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18438979&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3385850(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 東陶機器株式会社 filed Critical 東陶機器株式会社
Priority to JP13408196A priority Critical patent/JP3385850B2/en
Publication of JPH09226040A publication Critical patent/JPH09226040A/en
Application granted granted Critical
Publication of JP3385850B2 publication Critical patent/JP3385850B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/22Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using UV light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Finishing Walls (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Prevention Of Fouling (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Building Environments (AREA)
  • Refuge Islands, Traffic Blockers, Or Guard Fence (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Road Signs Or Road Markings (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Rear-View Mirror Devices That Are Mounted On The Exterior Of The Vehicle (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)
  • Greenhouses (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Panels For Use In Building Construction (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Detergent Compositions (AREA)
  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)
  • Bridges Or Land Bridges (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Mirrors, Picture Frames, Photograph Stands, And Related Fastening Devices (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Refrigerator Housings (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、基材の表面を高度
の親水性になし、かつ、維持する技術に関する。
TECHNICAL FIELD The present invention relates to a technique for making a surface of a base material highly hydrophilic and maintaining it.

【0002】[0002]

【従来技術】建築及び塗装の分野においては、環境汚染
に伴い、建築外装材料や屋外建造物やその塗膜の汚れが
問題となっている。大気中に浮遊する煤塵や粒子は晴天
には建物の屋根や外壁に堆積する。堆積物は降雨に伴い
雨水により流され、建物の外壁を流下する。更に、雨天
には浮遊煤塵は雨によって持ち運ばれ、建物の外壁や屋
外建造物の表面を流下する。その結果、表面には、雨水
の道筋に沿って汚染物質が付着する。表面が乾燥する
と、表面には縞状の汚れが現れる。建築外装材料や塗膜
の汚れは、カーボンブラックのような燃焼生成物や、都
市煤塵や、粘土粒子のような無機質物質の汚染物質から
なる。このような汚染物質の多様性が防汚対策を複雑に
しているものと考えられる(橘高義典、"外壁仕上材料
の汚染の促進試験方法"、日本建築学会構造系論文報告
集、第404号、1989年10月、p.15−2
4)。
2. Description of the Related Art In the fields of construction and coating, stains on building exterior materials, outdoor structures and their coating films have become a problem due to environmental pollution. Soot and particles floating in the atmosphere accumulate on the roof and outer walls of buildings in fine weather. The sediment is washed away by rainwater as it rains and flows down the outer wall of the building. Furthermore, in rainy weather, suspended dust is carried by rain and flows down on the outer wall of a building or the surface of an outdoor structure. As a result, contaminants adhere to the surface along the rainwater path. When the surface dries, striped stains appear on the surface. Dirt on building exterior materials and coatings consists of combustion products such as carbon black, urban soot and contaminants of inorganic materials such as clay particles. It is thought that such a variety of pollutants complicates antifouling measures (Yoshinori Tachibana, "Method for accelerating contamination of exterior wall finishing materials", Architectural Institute of Japan, Proceedings of Structural Papers, No. 404, October 1989, p.15-2
4).

【0003】従来の通念では、建築外装などの汚れを防
止するためにはポリテトラフルオロエチレン(PTF
E)のような撥水性の塗料が好ましいと考えられていた
が、最近では親油性成分を多く含む都市煤塵に対して
は、塗膜の表面をできるだけ親水性にするのが望ましい
と考えられている(高分子、44巻、1995年5月
号、p.307)。そこで、親水性のグラフト重合ポリ
マーで建物を塗装することが提案されている(新聞"化
学工業日報"、1995年1月30日)。報告によれ
ば、この塗膜は水との接触角が30〜40゜の親水性を
呈する。
The conventional wisdom is that polytetrafluoroethylene (PTF) is used to prevent stains on building exteriors.
It was thought that a water-repellent coating such as E) was preferable, but recently, it has been thought that it is desirable to make the surface of the coating film as hydrophilic as possible with respect to urban dust containing a large amount of lipophilic components. (Polymer, Vol. 44, May 1995, p. 307). Therefore, it has been proposed to coat a building with a hydrophilic graft polymer (newspaper "Chemical Industry Daily", January 30, 1995). Reportedly, this coating film exhibits hydrophilicity with a contact angle with water of 30 to 40 °.

【0004】しかしながら、粘土鉱物で代表される無機
質塵埃の水との接触角は20〜50゜であり、水との接
触角が30〜40゜のグラフト重合ポリマーに対して親
和性を有しその表面に付着しやすいので、このグラフト
重合ポリマーの塗膜は無機質塵埃による汚れを防止する
ことができないと考えられる。
However, the contact angle of the inorganic dust typified by clay minerals with water is 20 to 50 °, which has an affinity for the graft-polymerized polymer having a contact angle with water of 30 to 40 °. It is considered that the coating film of this graft-polymerized polymer cannot prevent stains due to inorganic dusts because it easily adheres to the surface.

【0005】一方で、親水性樹脂にはポリアミドに代表
される上記グラフト重合ポリマーより優れた親水性を示
す材料もあるが、これらの材料は膨潤性を示し、硬質の
塗膜を形成しえない。
On the other hand, hydrophilic resins include materials having hydrophilicity superior to that of the above graft-polymerized polymers represented by polyamides, but these materials exhibit swelling property and cannot form a hard coating film. .

【0006】そこで本発明者は、建築外装材料や屋外建
造物用の塗膜として、親水性表面を有する光半導体を含
有する薄膜を提案した。当薄膜を建築外装材料や屋外建
造物用の塗膜として用いると、光半導体のバンドギャッ
プエネルギーより高いエネルギーの波長をもった光を充
分な照度で充分な照射すると、価電子帯中の電子が伝導
帯に励起されて正孔と伝導電子を生成し、それがおそら
くは何らかの理由により、塗膜表面に水が水酸基(OH
-)の形で化学吸着する現象や、さらにその上に水素結
合的に物理吸着する現象を促進し、塗膜表面を水との接
触角に換算して10゜以下という状態にまで高度に親水
化するに至るのである。さらに光半導体を含有する薄膜
は、ポリアミド等とは異なり、硬質の塗膜を形成しうる
ことも判明している。
Therefore, the present inventor has proposed a thin film containing an optical semiconductor having a hydrophilic surface as a coating film for building exterior materials and outdoor buildings. When this thin film is used as a building exterior material or a coating film for outdoor construction, when light with a wavelength of energy higher than the band gap energy of optical semiconductors is sufficiently irradiated with sufficient illuminance, the electrons in the valence band become Excited to the conduction band to generate holes and conduction electrons, which is probably due to some reason water on the surface of the coating film contains hydroxyl groups (OH
- ) Form the chemical adsorption phenomenon and the physical adsorption phenomenon by hydrogen bonding on it, and it is highly hydrophilic to the state where the contact angle of water on the surface of the coating film is 10 ° or less. It will be transformed. Further, it has been found that a thin film containing an optical semiconductor can form a hard coating film, unlike polyamide or the like.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、光半導
体は、顔料の分野では以前より一般塗料にそのまま含有
させると、塗料中の樹脂成分を光酸化作用により変質さ
せ、劣化や変色を生じさせる原因になると考えられてき
た。そのため、例えば光半導体の1種であるアナターゼ
型酸化チタン粒子を白色顔料として利用する場合、酸化
チタン粒子をアルミナやシリカで被覆し、光半導体の光
励起で生じる伝導電子や正孔が粒子表面に拡散するのを
防止していた。従って、光半導体を含有する薄膜をこれ
ら一般塗料で塗装された面に適用する場合、同様に光酸
化劣化を引き起こすおそれがある。
However, in the field of pigments, when an optical semiconductor is contained in a general coating material as it is, it is a cause of deterioration or discoloration of a resin component in the coating material by photooxidation. It has been thought to be. Therefore, for example, when anatase-type titanium oxide particles, which is one type of optical semiconductor, is used as a white pigment, the titanium oxide particles are coated with alumina or silica, and conduction electrons and holes generated by photoexcitation of the optical semiconductor diffuse to the particle surface. It was preventing it. Therefore, when a thin film containing an optical semiconductor is applied to a surface coated with these general paints, it may similarly cause photo-oxidation deterioration.

【0008】さらに光半導体は以前よりその光還元作用
を利用して、表面に水中の溶存金属イオンを析出させ除
去する方法への提案がなされている(特開昭61−18
494)。この提案は、逆にいえば、光半導体を含有す
る薄膜からなる塗膜を形成した部材を、鉄等の有色金属
のイオンが溶存している水環境で使用すると、有色金属
が析出して外観を損ねる可能性のあることを示唆してい
る。
Further, for optical semiconductors, a proposal has been made for a method of precipitating and removing dissolved metal ions in water by utilizing its photoreduction effect (Japanese Patent Laid-Open No. 61-18).
494). Conversely, this proposal, conversely, when a member formed with a coating film composed of a thin film containing an optical semiconductor is used in an aqueous environment in which ions of a colored metal such as iron are dissolved, the colored metal precipitates and the appearance Suggests that it may damage the.

【0009】本発明では、上記事情に鑑み、一般塗料の
塗装面に適用しても光酸化劣化を引き起こさず、また、
水環境下で使用しても有色金属が析出して外観を損ねな
い光半導体を含有する薄膜を含む複合材を提供すること
を目的とする。
In view of the above circumstances, the present invention does not cause photo-oxidative deterioration even when applied to a coated surface of a general paint, and
It is an object of the present invention to provide a composite material including a thin film containing an optical semiconductor that does not impair the appearance by precipitation of a colored metal even when used in an aqueous environment.

【0010】[0010]

【課題を解決するための手段と作用】本発明は、光半導
体による複合材表面の親水化現象と、光半導体による光
酸化還元反応とが基本的に異なる現象であるという発見
に基づくものである。この発見に基づいて、本発明者は
光半導体薄膜の設計上光酸化還元反応はほとんど示さな
いが、親水化現象を示す構成が存在することを遂に見出
したのである。
The present invention is based on the discovery that the phenomenon of hydrophilization of a composite material surface by an optical semiconductor is basically different from the photo-oxidation-reduction reaction by an optical semiconductor. . Based on this finding, the present inventor has finally found that there is a structure exhibiting a hydrophilization phenomenon, although the photo-semiconductor thin film shows almost no photo-oxidation-reduction reaction in design.

【0011】本発明にあっては、光半導体の伝導帯のエ
ネルギー準位を、水素生成準位を0eVとした場合に、
正の値に位置するようにすることである。光酸化還元反
応に関する従来の定説は、光励起により伝導電子−正孔
対が生成し、次いで生成した伝導電子による還元反応と
正孔による酸化反応が同時に促進されて進行するという
ものであった。従って、光半導体の伝導帯のエネルギー
準位の下端が負側に充分高くない酸化錫やルチルは、伝
導電子による還元反応が進行しにくく、正孔による酸化
反応のみが促進されやすい構造であるが、このような構
造では伝導電子が過剰となり、光励起により生成した電
子−正孔対が酸化還元反応に関与することなく再結合す
るため、実際には酸化反応も還元反応もほとんど生じな
い。しかしながら、後述するように光励起による親水化
現象は進行するのである。
In the present invention, when the energy level of the conduction band of the optical semiconductor is set to 0 eV for the hydrogen generation level,
It should be located at a positive value. The conventional theory regarding the photooxidation / reduction reaction is that a conduction electron-hole pair is generated by photoexcitation, and then the reduction reaction by the conduction electron and the oxidation reaction by the hole are simultaneously promoted and proceed. Therefore, tin oxide and rutile, whose lower end of the energy level of the conduction band of the optical semiconductor is not sufficiently high on the negative side, have a structure in which the reduction reaction by conduction electrons is difficult to proceed and only the oxidation reaction by holes is easily promoted. In such a structure, the conduction electrons become excessive, and the electron-hole pairs generated by photoexcitation recombine without participating in the redox reaction, so that an oxidation reaction and a reduction reaction hardly occur in practice. However, as described later, the hydrophilization phenomenon by photoexcitation progresses.

【0012】光半導体の光酸化還元反応が有機物の分解
に利用される場合、その分解反応は環境中の水や酸素を
利用して行われる。すなわち、光励起により生成した伝
導電子は酸素を還元してスーパーオキサイドイオン(O
2 -)を生成し、正孔は水酸基を酸化して水酸ラジカル
(・OH)を生成し、これらの高度に反応性の活性酸素
種(O2 -や・OH)の酸化還元反応により有機物が分解
される。従って、有機物を有効に光酸化還元分解するた
めには、正孔を生成する価電子帯上端のエネルギー準位
が水酸基が電子を放出する酸素生成準位(+0.82e
V)より正側に位置し、かつ伝導電子が生成する伝導帯
下端のエネルギー準位が水素が電子を放出して酸素側に
供与する水素生成準位(0eV)より負側に位置させれ
ばよいことになる。故に、逆に、有機物を有効に光酸化
還元分解させないためには、価電子帯上端のエネルギ
ー準位を酸素生成準位(+0.82eV)より負側に位
置させるか、あるいは伝導帯下端のエネルギー準位を
水素生成準位(0eV)より正側に位置させればよいこ
とになる。
When the photo-oxidation / reduction reaction of an optical semiconductor is used for decomposing an organic substance, the decomposition reaction is carried out by utilizing water and oxygen in the environment. That is, the conduction electrons generated by photoexcitation reduce oxygen to generate superoxide ions (O
2 -) to generate the hole is to oxidize the hydroxyl group to generate a hydroxyl radical (· OH), these highly reactive oxygen species (O 2 - organics by oxidation-reduction reaction of and · OH) Is decomposed. Therefore, in order to effectively photooxidatively decompose an organic substance, the energy level at the upper end of the valence band for generating holes is the oxygen generation level (+ 0.82e) at which the hydroxyl group emits electrons.
V) is located on the positive side, and the energy level at the bottom of the conduction band generated by conduction electrons is located on the negative side from the hydrogen generation level (0 eV) at which hydrogen emits electrons to donate to the oxygen side. It will be good. Therefore, conversely, in order to prevent the photooxidation / reduction decomposition of organic matter effectively, the energy level at the upper end of the valence band should be set to the negative side of the oxygen production level (+0.82 eV), or the energy at the lower end of the conduction band should be set. It suffices to position the level on the positive side of the hydrogen generation level (0 eV).

【0013】光半導体の光酸化還元反応が水中の金属イ
オンの析出に利用される場合には、光励起により生成し
た伝導電子により金属イオンが還元析出される。(同時
に正孔は水中の水酸基を酸化して水酸ラジカル(・O
H)を生成すると考えられる。) 従って、例えば鉄イ
オンを水中から有効に析出除去するためには、伝導電子
が生成する伝導帯下端のエネルギー準位が鉄生成準位
(−0.44eV)より負側に位置する必要がある。故
に、逆に、金属イオンを水中から析出させないために
は、伝導帯下端のエネルギー準位を金属生成準位より正
側に位置させればよいことになる。貴金属を除外すれば
金属の生成準位は水素生成準位より負側にあるので、結
局、伝導帯下端のエネルギー準位を水素生成準位(0e
V)より正側に位置させればよいことになる。
When the photo-oxidation / reduction reaction of an optical semiconductor is used for the deposition of metal ions in water, the conduction ions generated by photoexcitation cause the reduction and deposition of metal ions. (At the same time, the holes oxidize the hydroxyl groups in the water to cause hydroxyl radicals (.O
H). Therefore, for example, in order to effectively remove iron ions from water by deposition, the energy level at the lower end of the conduction band generated by conduction electrons needs to be located on the negative side of the iron generation level (-0.44 eV). . Therefore, conversely, in order to prevent metal ions from precipitating from water, the energy level at the lower end of the conduction band should be located on the positive side of the metal production level. If the noble metal is excluded, the production level of the metal is on the negative side of the hydrogen production level. Therefore, the energy level at the bottom of the conduction band is eventually set to the hydrogen production level (0e
V) should be located on the positive side.

【0014】以上のことから、樹脂の分解、水中溶存金
属イオンの析出を抑えつつ、光親水化させる1つの方法
として、光半導体の伝導帯のエネルギー準位を、水素生
成準位を0eVとした場合に、正の値に位置する方法が
あることがわかる。
From the above, as one method of photohydrophilization while suppressing the decomposition of resin and the precipitation of metal ions dissolved in water, the energy level of the conduction band of the optical semiconductor is set to 0 eV for the hydrogen generation level. It turns out that there is a way to position it in a positive value.

【0015】本発明にあっては、基材表面に光半導体と
光半導体でない親水性物質を含有させた層を形成し、か
つ、光半導体はほとんど外気に接していない状態にす
る。このような状態では光半導体の光励起により生成し
た伝導電子及び正孔のうちのほとんどは表面まで拡散せ
ず、水、酸素、金属イオン等の表面反応種と接触する確
率が激減し、故に光酸化還元反応は抑制される。そし
て、励起光照度1mW/cm2以下で、かつ充分な耐摩
耗性を発揮しうる程度に、膜厚が薄い及び/又は光半導
体粒子含有率が低い塗膜において生成する伝導電子及び
正孔量のもとではほとんど光酸化還元反応は生じない程
度まで抑制可能となる。にも拘らず、後述するように光
親水化反応は進行するのである。
In the present invention, a layer containing a photo-semiconductor and a hydrophilic substance other than the photo-semiconductor is formed on the surface of the base material, and the photo-semiconductor is brought into a state where it is not in contact with the outside air. In such a state, most of the conduction electrons and holes generated by photoexcitation of the photo-semiconductor do not diffuse to the surface, and the probability of contact with surface reactive species such as water, oxygen and metal ions is drastically reduced. The reduction reaction is suppressed. The amount of conduction electrons and holes generated in a coating film having a thin film thickness and / or a low photo-semiconductor particle content is sufficient to exhibit sufficient abrasion resistance with an excitation light illuminance of 1 mW / cm 2 or less. Originally, it can be suppressed to such an extent that the photo-redox reaction hardly occurs. Nevertheless, the photohydrophilization reaction proceeds as described later.

【0016】本発明にあっては、基材表面に光半導体と
光半導体の光酸化還元反応を阻害する物質を含有させた
層を形成する。その機構は明らかでないが、アルカリ金
属、アルカリ土類金属、アルミナ、ジルコニア、シリ
カ、酸化アンチモン、無定型酸化チタンは光半導体によ
る光酸化還元性能を弱める(「酸化チタン」、技報堂
(1991))。そして、励起光照度1mW/cm2
下で、かつ充分な耐摩耗性を発揮しうる程度に、膜厚が
薄い及び/又は光半導体粒子含有率が低い塗膜において
生成する伝導電子及び正孔量のもとではほとんど光酸化
還元反応は生じない程度まで抑制可能となる。しかし、
層中にこれら物質が含有されても後述するように光親水
化反応は進行するのである。
In the present invention, a layer containing an optical semiconductor and a substance that inhibits the photoredox reaction of the optical semiconductor is formed on the surface of the base material. Although the mechanism is not clear, alkali metal, alkaline earth metal, alumina, zirconia, silica, antimony oxide, and amorphous titanium oxide weaken the photooxidation / reduction performance of optical semiconductors (“titanium oxide”, Gihodo (1991)). The amount of conduction electrons and holes generated in a coating film having a thin film thickness and / or a low photo-semiconductor particle content is sufficient to exhibit sufficient abrasion resistance with an excitation light illuminance of 1 mW / cm 2 or less. Originally, it can be suppressed to such an extent that the photo-redox reaction hardly occurs. But,
Even if these substances are contained in the layer, the photohydrophilization reaction proceeds as described later.

【0017】[0017]

【発明の実施の形態】本発明にあっては、表面の親水化
を要する基材を準備し、その上に伝導帯のエネルギー準
位の下端が、水素生成準位を0eVとした場合に、正の
値に位置する光半導体粒子を含む薄膜を形成する。本発
明の第二構成は、表面の親水化を要する基材を準備し、
その上に光半導体粒子と光半導体でない親水性物質を含
む薄膜を形成する。その際に光半導体はほとんど外気に
接していない状態になるようにする。本発明の第三構成
は、表面の親水化を要する基材を準備し、その上に光半
導体粒子と光半導体の光酸化還元反応を阻害する物質を
含む薄膜を形成する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, when a base material requiring hydrophilicity on the surface is prepared, and the lower end of the energy level of the conduction band is set to 0 eV for the hydrogen generation level, A thin film containing optical semiconductor particles located at a positive value is formed. The second configuration of the present invention is to prepare a substrate that requires hydrophilicity of the surface,
A thin film containing optical semiconductor particles and a hydrophilic substance that is not an optical semiconductor is formed thereon. At that time, the optical semiconductor should be in a state where it is not in contact with the outside air. According to the third configuration of the present invention, a base material whose surface needs to be hydrophilized is prepared, and a thin film containing photo-semiconductor particles and a substance that inhibits the photo-redox reaction of the photo-semiconductor is formed thereon.

【0018】ここで親水化とは、外的要因により表面の
水濡れ性が増加し、水との接触角が低下する現象をい
う。光親水化とは、上記において外的要因が光である場
合である。高度に親水化、超親水化とは、水との接触角
で10゜以下、好ましくは5゜以下になる程度まで親水
化することをいう。
The term "hydrophilization" as used herein means a phenomenon in which the wettability of the surface is increased by an external factor and the contact angle with water is reduced. The photohydrophilization is a case where the external factor is light in the above. The term “highly hydrophilic” or “superhydrophilic” means that the contact angle with water is 10 ° or less, preferably 5 ° or less.

【0019】本発明で好適に使用可能な光半導体として
は、アナターゼ型酸化チタン、ルチル型酸化チタン、酸
化亜鉛、酸化錫、チタン酸ストロンチウム、三酸化タン
グステン、三酸化二ビスマス、酸化第二鉄等の金属酸化
物が挙げられる。
Optical semiconductors that can be preferably used in the present invention include anatase type titanium oxide, rutile type titanium oxide, zinc oxide, tin oxide, strontium titanate, tungsten trioxide, dibismuth trioxide, ferric oxide and the like. The metal oxides of

【0020】本発明で好適に使用可能な伝導帯のエネル
ギー準位の下端が水素生成準位を0eVとした場合に正
の値に位置する光半導体としては、酸化錫、三酸化タン
グステン、三酸化二ビスマス、酸化第二鉄、ルチル型酸
化チタン等の金属酸化物が挙げられる。
Photoconductors whose lower end of the energy level of the conduction band which can be preferably used in the present invention has a positive value when the hydrogen generation level is 0 eV are tin oxide, tungsten trioxide and trioxide. Examples thereof include metal oxides such as dibismuth, ferric oxide and rutile type titanium oxide.

【0021】本発明で好適に使用可能な光半導体でない
親水性物質は、シリカ、無定型酸化チタン、アルミナ等
の無機酸化物、シラノール、ポリシラノール、シリコン
原子に結合したオルガノ基の少なくとも一部が水酸基に
置換されたシリコーン樹脂等が挙げられる。
The hydrophilic substance which is not a photo-semiconductor which can be suitably used in the present invention is silica, amorphous titanium oxide, an inorganic oxide such as alumina, silanol, polysilanol, or at least a part of an organo group bonded to a silicon atom. Examples thereof include silicone resins substituted with hydroxyl groups.

【0022】光半導体の光酸化還元反応を阻害する物質
には、アルカリ金属、アルカリ土類金属、アルミナ、ジ
ルコニア、シリカ、酸化アンチモン、無定型酸化チタ
ン、アルミニウム、マンガン等が知られている。
Known substances that inhibit the photo-oxidation / reduction reaction of optical semiconductors are alkali metals, alkaline earth metals, alumina, zirconia, silica, antimony oxide, amorphous titanium oxide, aluminum and manganese.

【0023】本発明が適用可能な基材は特に限定される
ものではない。一般塗料の塗装面に適用しても光酸化劣
化を引き起こさない塗膜を形成することを目的とする場
合は、一般樹脂フィルム、塗装板、化粧板、プラスチッ
ク、木材、人工大理石等に好適に使用可能である。水環
境下で使用しても有色金属が析出して外観を損ねない塗
膜を形成することを目的とする場合は、窯業製品、一般
樹脂フィルム、塗装板、化粧板、プラスチック、木材、
人工大理石、石、ガラス、金属、コンクリート、それら
の組合せ、それらの積層体等に好適に使用可能である。
The substrate to which the present invention is applicable is not particularly limited. Suitable for general resin film, coated board, decorative board, plastic, wood, artificial marble, etc. for the purpose of forming a coating film that does not cause photooxidation deterioration even when applied to the painted surface of general paint It is possible. For the purpose of forming a coating film that does not impair the appearance of colored metal deposited even when used in an aqueous environment, ceramic products, general resin films, coated boards, decorative boards, plastics, wood,
It can be suitably used for artificial marble, stone, glass, metal, concrete, combinations thereof, laminates thereof, and the like.

【0024】本発明にあっては、膜厚は薄い方が好まし
い。好ましくは1μm以下、より好ましくは0.2μm
以下がよい。そうすれば、基材に固定される光半導体の
絶対量を低減することができ、より光酸化還元性を低め
ることができる。また耐摩耗性も向上する。さらに特に
0.2μm以下では、光半導体を含有する薄膜の透明性
を確保しやすく、下地の意匠性や透明性を維持できる。
In the present invention, it is preferable that the film thickness is thin. Preferably 1 μm or less, more preferably 0.2 μm
The following is good. Then, the absolute amount of the optical semiconductor fixed on the base material can be reduced, and the photo-oxidation / reduction property can be further reduced. Also, the wear resistance is improved. Further, particularly when the thickness is 0.2 μm or less, the transparency of the thin film containing the optical semiconductor can be easily ensured, and the design and transparency of the base can be maintained.

【0025】本発明にあっては、光半導体含有量は、光
半導体含有層に対して好ましくは5〜80重量%、より
好ましくは10〜50重量%程度にするのがよい。光半
導体含有量が少ない程光酸化還元性を低めることができ
るからである。但し、光親水化現象も光半導体の光励起
現象に基づいた現象なので約5%以上は含有されている
必要はある。
In the present invention , the optical semiconductor content is preferably 5 to 80% by weight, more preferably 10 to 50% by weight, based on the optical semiconductor containing layer. This is because the photooxidation / reduction property can be lowered as the content of the optical semiconductor is reduced. However, since the photohydrophilization phenomenon is also a phenomenon based on the photoexcitation phenomenon of the optical semiconductor, it is necessary to contain about 5% or more.

【0026】本発明にあっては、励起波長以下の波長光
の照度は、好ましくは0.0001〜1mW/cm2
より好ましくは0.001〜1mW/cm2程度がよ
い。励起波長以下の波長光の照度が低い程、生成する電
子−正孔対の量が減少するので光酸化還元性を低めるこ
とができるからである。但し、光親水化現象も光半導体
の光励起現象に基づいた現象なので約0.0001mW
/cm2以上の励起光照度を要する。
In the present invention, the illuminance of light having a wavelength equal to or shorter than the excitation wavelength is preferably 0.0001 to 1 mW / cm 2 ,
More preferably, it is about 0.001 to 1 mW / cm 2 . This is because the lower the illuminance of light having a wavelength equal to or shorter than the excitation wavelength, the smaller the amount of generated electron-hole pairs, and the lower the photooxidation / reduction property. However, since the photohydrophilization phenomenon is also a phenomenon based on the photoexcitation phenomenon of an optical semiconductor, it is about 0.0001 mW.
Excitation light illuminance of at least / cm 2 is required.

【0027】本発明において光半導体を励起するための
光源は、上記励起波長以下の波長光の照度を発光しうる
ものであればよく、太陽光や、蛍光灯、白熱電灯、メタ
ルハライドランプ、水銀ランプのような室内照明灯を使
用することができる。
In the present invention, the light source for exciting the optical semiconductor may be any light source capable of emitting an illuminance of light having a wavelength of the excitation wavelength or less, such as sunlight, fluorescent lamps, incandescent lamps, metal halide lamps, and mercury lamps. Interior lighting such as can be used.

【0028】本発明において基材と光半導体含有層との
間に中間層を設けてもよい。それにより基材との密着性
が増加し、耐摩耗性が向上する。
In the present invention, an intermediate layer may be provided between the base material and the photosemiconductor-containing layer. This increases the adhesion to the base material and improves the wear resistance.

【0029】本発明にあっては、表面の親水化を要する
基材上に伝導帯のエネルギー準位の下端が、水素生成準
位を0eVとした場合に、正の値に位置する光半導体粒
子を含む薄膜を形成する方法には例えば以下の方法があ
る。 (1)基材表面に、上記光半導体粒子を塗布し、焼成す
る。 (2)基材表面に、上記光半導体金属酸化物の構成元素
金属種を含む有機化合物(アルコキシド、キレート、ア
セテートなど)又は酸化物でない無機化合物(塩化物、
硫酸化物など)を加水分解し、基材に塗布し、加熱等の
方法で脱水反応させる。この過程までで酸化チタンのよ
うに金属酸化物が結晶化されない場合には、さらに加熱
して金属酸化物を結晶化させる。 (3)基材表面に、半導体金属酸化物の構成元素金属を
スパッタ等で固定後、加熱、電極反応等の方法で酸化す
る。この過程までで酸化チタンのように金属酸化物が結
晶化されない場合には、さらに加熱して金属酸化物を結
晶化させる。
In the present invention, the photo-semiconductor particles in which the lower end of the energy level of the conduction band is located at a positive value when the hydrogen production level is 0 eV on the substrate whose surface needs to be hydrophilized For example, the following methods are available for forming a thin film containing (1) The above-mentioned optical semiconductor particles are applied to the surface of the base material and baked. (2) On the surface of the base material, an organic compound (alkoxide, chelate, acetate, etc.) containing the constituent element metal species of the above-mentioned photo-semiconductor metal oxide or an inorganic compound (chloride,
(Sulfate, etc.) is hydrolyzed, applied to a substrate, and dehydrated by a method such as heating. If the metal oxide is not crystallized up to this process like titanium oxide, it is further heated to crystallize the metal oxide. (3) After the constituent element metal of the semiconductor metal oxide is fixed on the surface of the base material by sputtering or the like, it is oxidized by a method such as heating or an electrode reaction. If the metal oxide is not crystallized up to this process like titanium oxide, it is further heated to crystallize the metal oxide.

【0030】本発明にあっては、表面の親水化を要する
基材上に光半導体粒子と光半導体でない親水性物質を含
む薄膜を形成する方法は、光半導体でない親水性物質の
種類により方法が異なる。 (I)光半導体でない親水性物質がシリカ、アルミナ等
の無機酸化物の場合(1)基材表面に、光半導体粒子と
上記無機酸化物粒子を塗布し、焼成する。(2)基材表
面に、光半導体粒子と、上記無機酸化物の構成元素金属
種を含む有機化合物(アルコキシド、キレート、アセテ
ートなど)又は酸化物でない無機化合物(塩化物、硫酸
化物など)の加水分解物を、基材に塗布し、加熱等の方
法で脱水反応させる。(3)基材表面に、上記無機酸化
物粒子と、光半導体粒子の構成元素金属種を含む有機化
合物(アルコキシド、キレート、アセテートなど)又は
酸化物でない無機化合物(塩化物、硫酸化物など)の加
水分解物を、基材に塗布し、加熱等の方法で脱水反応さ
せる。この過程までで酸化チタンのように金属酸化物が
結晶化されない場合には、さらに加熱して金属酸化物を
結晶化させる。(II)光半導体でない親水性物質がシ
リコン原子に結合したオルガノ基の少なくとも一部が水
酸基に置換されたシリコーン樹脂の場合光半導体粒子と
シリコーン樹脂及び/又はその前駆体(オルガノアルコ
キシシラン、及びその加水分解物)を基材に塗布し、加
熱する。それにより必要に応じて加水分解され、その後
脱水縮重合され硬化して光半導体粒子とシリコーン樹脂
が基材上に固定される。その後、光半導体に励起波長以
下の波長光を照射してシリコーン樹脂中のシリコン原子
に結合したオルガノ基の少なくとも一部を水酸基に置換
する。
In the present invention, the method for forming a thin film containing optical semiconductor particles and a hydrophilic substance that is not an optical semiconductor on a substrate that requires hydrophilicity depends on the kind of hydrophilic substance that is not an optical semiconductor. different. (I) When the hydrophilic substance that is not an optical semiconductor is an inorganic oxide such as silica or alumina (1) Optical semiconductor particles and the above inorganic oxide particles are applied to the surface of a base material and baked. (2) On the surface of the base material, hydrated photo-semiconductor particles and an organic compound (alkoxide, chelate, acetate, etc.) containing a constituent element metal species of the above-mentioned inorganic oxide or an inorganic compound (chloride, sulfate, etc.) which is not an oxide. The decomposition product is applied to a base material and dehydrated by a method such as heating. (3) On the surface of the base material, the inorganic oxide particles and an organic compound (alkoxide, chelate, acetate, etc.) containing the constituent element metal species of the optical semiconductor particles or an inorganic compound (chloride, sulfate, etc.) which is not an oxide The hydrolyzate is applied to a base material and dehydrated by a method such as heating. If the metal oxide is not crystallized up to this process like titanium oxide, it is further heated to crystallize the metal oxide. (II) In the case of a silicone resin in which a hydrophilic substance which is not a photo-semiconductor is substituted with at least a part of an organo group bonded to a silicon atom, a photo-semiconductor particle and a silicone resin and / or a precursor thereof (organoalkoxysilane, and its Hydrolyzate) is applied to the substrate and heated. As a result, it is hydrolyzed as required, and then dehydration polycondensation is performed and cured to fix the optical semiconductor particles and the silicone resin on the substrate. Then, the photo-semiconductor is irradiated with light having a wavelength not longer than the excitation wavelength to substitute at least a part of the organo group bonded to the silicon atom in the silicone resin with a hydroxyl group.

【0031】本発明にあっては、表面の親水化を要する
基材上に光半導体粒子と光半導体の光酸化還元反応を阻
害する物質を含む薄膜を形成する方法には、例えば以下
の方法がある。 (1)基材表面に、光半導体粒子と上記阻害する物質中
の構成元素金属種を含む化合物を塗布し、焼成する。 (2)基材表面に、阻害する物質中の構成元素金属種を
含む化合物と、光半導体粒子の構成元素金属種を含む有
機化合物(アルコキシド、キレート、アセテートなど)
又は酸化物でない無機化合物(塩化物、硫酸化物など)
の加水分解物を、基材に塗布し、加熱等の方法で脱水反
応させる。この過程までで酸化チタンのように金属酸化
物が結晶化されない場合には、さらに加熱して金属酸化
物を結晶化させる。
In the present invention, a method for forming a thin film containing photo-semiconductor particles and a substance that inhibits the photo-oxidation-reduction reaction of the photo-semiconductor on a base material whose surface needs to be hydrophilized includes, for example, the following methods. is there. (1) The surface of the base material is coated with a compound containing the photo-semiconductor particles and the constituent element metal species in the inhibiting substance, and then baked. (2) A compound containing a constituent element metal species in the inhibiting substance and an organic compound containing a constituent element metal species of the optical semiconductor particles (alkoxide, chelate, acetate, etc.) on the substrate surface
Or inorganic compounds that are not oxides (chlorides, sulfates, etc.)
The hydrolyzate of is applied to a base material, and dehydration reaction is performed by a method such as heating. If the metal oxide is not crystallized up to this process like titanium oxide, it is further heated to crystallize the metal oxide.

【0032】参考例 1.(酸化チタン+シリコーン、膜厚変化) まず10cm角のアルミニウム基板に、基板表面を平滑
化するため、予めシリコーン層で被覆した。このため、
日本合成ゴム製の塗料組成物"グラスカ"のA液(シリカ
ゾル)とB液(トリメトキシメチルシラン)を、重量比
で3になるように混合し、この混合液をアルミニウム基
板に塗布し、150℃の温度で硬化させ、膜厚3μmの
シリコーンのベースコートで被覆された複数のアルミニ
ウム基板(#1試料)を得た。次に、#1試料表面に光
半導体とシリコーン樹脂よりなる薄膜を形成した。より
詳しくは、アナターゼ型チタニアゾル(日産化学製、T
A−15)と前記"グラスカ"のA液を混合し、エタノー
ルで希釈後、更に"グラスカ"の上記B液を添加し、酸化
チタン含有シリコーン塗料用組成物を調整した。ここ
で"グラスカ"のA液とB液は、重量比で3になるように
した。この塗料用組成物を#1試料の表面に塗布し、1
50℃の温度で硬化させ、アナターゼ型チタニア粒子と
シリコーン樹脂よりなるトップコートを形成し、#2〜
#6試料を得た。#2試料のトップコート膜厚は0.0
3μm、#3試料のトップコート膜厚は0.1μm、#
4試料のトップコート膜厚は0.2μm、#5試料のト
ップコート膜厚は0.6μm、#6試料のトップコート
膜厚は2.5μmであった。またいずれの試料も、アナ
ターゼ型チタニア粒子1重量部に対し、シリカとシリコ
ーン樹脂の合計重量部は1となるようにした。それぞれ
の試料に20WのBLB蛍光灯(三共電気製)を用いて
0.5mW/cm2の紫外線照度で紫外線を照射しなが
ら、接触角測定器(ERMA社製、型式G−I−100
0)を用いて試料の表面の水との接触角の時間的変化を
調べた。接触角は、マイクロシリンジから試料表面に水
滴を滴下した後30秒後に測定した。結果を図1のグラ
フに示す。図1のグラフからわかるように、いずれの試
料においても、膜厚に関係なく、照射50時間以内に表
面は高度に親水化され、水との接触角は3゜未満になっ
た。次に、#2〜#6試料についての光酸化還元性能を
調べるため、メチルメルカプタンの光分解性能を調べ
た。紫外線を透過可能な石英ガラス製の容積11リッタ
ーのデシケータ内にそれぞれの試料を配置し、メチルメ
ルカプタンを含有する窒素ガスをメチルメルカプタンの
濃度が3ppmになるように注入した。試料から8cm
の距離のところに4WのBLB蛍光灯(三共電気製)を
配置し、0.3mW/cm2の紫外線照度で紫外線を照
射した。30分後にデシケータ内のガスを採取し、ガス
クロマトグラフによりメチルメルカプタン濃度を測定
し、メチルメルカプタンの除去率を求めた。結果を図2
のグラフに示す。図2のグラフからわかるように、この
場合メチルメルカプタンの光分解性能、すなわち光酸化
還元性能は膜厚依存性を有し、膜厚1μm以下では光分
解性能がかなり抑制される。この傾向をさらに検証する
ため、比較試料として、アルミニウム基板上にシリカ層
を形成(テトラエトキシシランを加水分解後に基板に塗
布し、150℃で脱水縮重合させて硬化)後、単にアナ
ターゼ型チタニアゾル(日産化学製、TA−15)を塗
布し、400℃で焼成した試料(膜厚0.4μm)を作
製し、メチルメルカプタン除去率を測定してみたが90
%と非常に高く、膜厚1μm以下でのシリコーン樹脂添
加における光酸化還元性能抑制効果が確認された。
Reference Example 1. (Titanium oxide + silicone, change in film thickness) First, a 10 cm square aluminum substrate was previously coated with a silicone layer in order to smooth the substrate surface. For this reason,
Liquid A (silica sol) and liquid B (trimethoxymethylsilane) of the Japanese synthetic rubber coating composition "GLASCA" were mixed in a weight ratio of 3, and the mixed liquid was applied to an aluminum substrate, Curing was performed at a temperature of ° C to obtain a plurality of aluminum substrates (# 1 sample) coated with a silicone base coat having a thickness of 3 µm. Next, a thin film made of an optical semiconductor and a silicone resin was formed on the surface of the # 1 sample. More specifically, anatase titania sol (manufactured by Nissan Kagaku, T
A-15) and the solution A of "GLASCA" were mixed and diluted with ethanol, and then the solution B of "GLASCA" was added to prepare a titanium oxide-containing silicone coating composition. Here, the liquids A and B of "grasca" were adjusted to have a weight ratio of 3. Apply this coating composition to the surface of # 1 sample and
It is cured at a temperature of 50 ° C. to form a top coat composed of anatase type titania particles and a silicone resin.
# 6 sample was obtained. # 2 sample has a topcoat thickness of 0.0
3 μm, # 3 sample top coat film thickness is 0.1 μm, #
The topcoat film thickness of the 4 samples was 0.2 μm, the topcoat film thickness of the # 5 sample was 0.6 μm, and the topcoat film thickness of the # 6 sample was 2.5 μm. In all samples, the total weight of silica and silicone resin was 1 with respect to 1 weight of anatase-type titania particles. Each sample was irradiated with ultraviolet rays using a 20 W BLB fluorescent lamp (manufactured by Sankyo Denki Co., Ltd.) at an ultraviolet illuminance of 0.5 mW / cm 2 , and a contact angle measuring device (manufactured by ERMA, model GI-100).
0) was used to examine the temporal change of the contact angle of the surface of the sample with water. The contact angle was measured 30 seconds after dropping a water droplet from the microsyringe on the sample surface. The results are shown in the graph of FIG. As can be seen from the graph of FIG. 1, the surface of each sample was highly hydrophilized within 50 hours of irradiation regardless of the film thickness, and the contact angle with water was less than 3 °. Next, in order to examine the photo-oxidation / reduction performance of the # 2 to # 6 samples, the photodegradation performance of methyl mercaptan was examined. Each sample was placed in a desiccator made of quartz glass and capable of transmitting ultraviolet rays and having a volume of 11 liters, and nitrogen gas containing methyl mercaptan was injected so that the concentration of methyl mercaptan was 3 ppm. 8 cm from the sample
A 4 W BLB fluorescent lamp (manufactured by Sankyo Denki Co., Ltd.) was placed at a distance of 3 mm, and ultraviolet rays were irradiated at an ultraviolet illuminance of 0.3 mW / cm 2 . After 30 minutes, the gas in the desiccator was sampled, the methyl mercaptan concentration was measured by gas chromatography, and the methyl mercaptan removal rate was determined. The result is shown in Figure 2.
Is shown in the graph. As can be seen from the graph of FIG. 2, in this case, the photodecomposition performance of methyl mercaptan, that is, the photoredox performance has a film thickness dependence, and the photodecomposition performance is considerably suppressed when the film thickness is 1 μm or less. In order to further verify this tendency, as a comparative sample, after forming a silica layer on an aluminum substrate (coating the substrate after hydrolysis of tetraethoxysilane and curing by dehydration polycondensation at 150 ° C.), simply anatase-type titania sol ( Nissan Chemical Industries, Ltd. TA-15) was applied and baked at 400 ° C. to prepare a sample (film thickness 0.4 μm), and the removal rate of methyl mercaptan was measured.
%, Which is very high, and the effect of suppressing the photo-oxidation / reduction performance by adding a silicone resin at a film thickness of 1 μm or less was confirmed.

【0033】参考例 2.(酸化チタン+シリコーン、表面のAES分
析)参考例 1の#3試料(トップコート膜厚0.1μm)に
ついて、断面方向の元素分析をオージェ分光分析法によ
り行った。結果を図3(a)〜図3(c)に示す。図3
(a)は試料最表面の元素分析結果を示している。図3
(a)からわかるように、試料最表面にはSi、C、
N、Oは観察されるが、Tiは観察されなかった。Ti
が観察されなかったことから、試料最表面には光半導体
である酸化チタンはほとんど存在せず、言い換えれば、
ほとんど外気には接していない状態にあると考えられ
る。一方、SiとCとOが観察されたのは、シリコーン
が最表面に存在するためである。さらにNが観察された
のは、酸化チタンゾルの分散液が硝酸であるため、硝酸
由来の窒素が観察されたためと考えられる。図3(b)
は試料最表面から0.02μm下層面の元素分析結果を
示している。図3(b)からわかるように、この断面で
はSi、C、N、Oの他、Tiが認められた。Tiが観
察されたことから、試料最表面から0.02μm下には
光半導体である酸化チタンが存在することがわかる。ま
た、SiとCとOが同時に観察されたことよりこの断面
にはシリコーンも存在する。図3(c)は試料最表面か
ら0.2μm下層面、すなわちベースコート内断面の元
素分析結果を示している。図3(b)からわかるよう
に、この断面ではSi、C、Oが認められ、シリコーン
のみからなることがわかる。以上のことから、実施例1
の製法で、基材表面に光半導体(アナターゼ型酸化チタ
ン)と光半導体でない親水性物質(シリコーン樹脂自体
は疎水性物質だが、紫外線照射による光半導体の光励起
によりシリコーン中のシリコン原子に結合するオルガノ
基(実施例1ではメチル基)の少なくとも一部が水酸基
に置換されると親水性物質に変換される)を含有する層
を含む複合材であって、光半導体はほとんど外気に接し
ていない状態のものが作製しうることが確認された。
Reference Example 2. (Titanium oxide + silicone, surface AES analysis) For the sample # 3 of Reference Example 1 (top coat film thickness 0.1 μm), elemental analysis in the cross-sectional direction was performed by Auger spectroscopy. The results are shown in FIGS. 3 (a) to 3 (c). Figure 3
(A) shows the elemental analysis result of the outermost surface of the sample. Figure 3
As can be seen from (a), Si, C,
N and O were observed, but Ti was not observed. Ti
Was not observed, there is almost no titanium oxide, which is an optical semiconductor, on the outermost surface of the sample, in other words,
It is considered that they are not in contact with the outside air. On the other hand, Si, C, and O were observed because silicone was present on the outermost surface. Furthermore, it is considered that N was observed because nitrogen derived from nitric acid was observed because the dispersion liquid of titanium oxide sol was nitric acid. Figure 3 (b)
Shows the elemental analysis result of 0.02 μm lower layer surface from the outermost surface of the sample. As can be seen from FIG. 3B, Ti, in addition to Si, C, N and O, was observed in this cross section. From the observation of Ti, it can be seen that titanium oxide, which is an optical semiconductor, exists 0.02 μm below the outermost surface of the sample. Silicon was also present in this cross section because Si, C and O were observed at the same time. FIG. 3C shows the elemental analysis result of the lower layer surface of 0.2 μm from the outermost surface of the sample, that is, the inner cross section of the base coat. As can be seen from FIG. 3 (b), Si, C, and O are recognized in this cross section, and it can be seen that the cross section is made of only silicone. From the above, Example 1
In the production method, a photo-semiconductor (anatase-type titanium oxide) and a non-photo-semiconductor hydrophilic substance (silicone resin itself is a hydrophobic substance on the surface of the substrate, but the organo-organism that binds to the silicon atom in the silicone by photoexcitation of the photo-semiconductor by UV irradiation. A composite material including a layer containing a group (a methyl group in Example 1 is converted into a hydrophilic substance when at least a part of the group is replaced with a hydroxyl group), and a photosemiconductor is hardly exposed to the outside air. It was confirmed that the above can be produced.

【0034】参考例 3.(酸化チタン+シリコーン、親水化後の表面
のラマン分光分析)参考例 1の#3試料に水銀灯を用いて22.8mW/c
2の紫外線照度で2時間紫外線を照射し、#7試料を
得た。照射前の#3試料と照射後の#7試料のラマン分
光分析を行った。比較のため、実施例1の#1試料にも
同様の条件で紫外線を照射し、照射前後の試料のラマン
分光分析を行った。ラマンスペクトルを図4のグラフに
示す。#1試料の照射前後のラマンスペクトルは同一で
あったので、図4のグラフではカーブ#1で示す。図4
のグラフを参照するに、#3試料のラマンスペクトルに
おいて、波数2910cm-1の位置にはsp3混成軌道
のC−H結合対称伸縮の大きなピークが認められ、波数
2970cm-1の位置にはsp3混成軌道のC−H結合
逆対称伸縮の大きなピークが認められる。従って、#3
試料にはC−H結合が存在することが帰結される。#7
試料のラマンスペクトルにおいては、波数2910cm
-1の位置及び波数2970cm-1の位置のいづれにもピ
ークが認められない。その代わりに、波数3200cm
-1の位置にピークを有する広い幅のO−H結合対称伸縮
が認められる。従って、#7試料にはC−H結合が存在
せず、その代わりに、O−H結合が存在することに帰結
する。これに対して、#1試料のラマンスペクトルにお
いては、照射前後を通じて、波数2910cm-1の位置
にはsp3混成軌道のC−H結合対称伸縮の大きなピー
クが認められ、波数2970cm-1の位置にはsp3混
成軌道のC−H結合逆対称伸縮の大きなピークが認めら
れる。従って、#1試料にはC−H結合が存在すること
が確認される。以上のことから、光半導体とシリコーン
を含有する層に紫外線を照射した場合には、下記の化学
式1で示すシリコーンの分子のシリコン原子に結合した
オルガノ基が、光半導体の光励起によって水酸基に置換
され、化学式2で示すようなシリコーン誘導体が表面に
形成されているものと考えられる。
Reference Example 3. (Titanium oxide + silicone, Raman spectroscopic analysis of surface after hydrophilization) 22.8 mW / c using # 3 sample of Reference Example 1 with a mercury lamp
The sample was irradiated with ultraviolet rays for 2 hours at an ultraviolet illuminance of m 2 to obtain a # 7 sample. Raman spectroscopic analysis was performed on the # 3 sample before irradiation and the # 7 sample after irradiation. For comparison, the # 1 sample of Example 1 was also irradiated with ultraviolet rays under the same conditions, and Raman spectroscopic analysis of the sample before and after irradiation was performed. The Raman spectrum is shown in the graph of FIG. Since the Raman spectra of the # 1 sample before and after irradiation were the same, the curve # 1 is shown in the graph of FIG. Figure 4
Referring to the graph, in the Raman spectrum of the # 3 specimen, the position of the wave number 2910cm -1 is observed a large peak of C-H bonds symmetric stretching of sp 3 hybrid orbital, the position of the wave number 2970cm -1 is sp A large peak of C-H bond antisymmetric expansion and contraction of three hybrid orbitals is observed. Therefore, # 3
It follows that C—H bonds are present in the sample. # 7
In the Raman spectrum of the sample, the wave number is 2910 cm
No peak is observed at either the position of -1 or the position of wave number 2970 cm -1 . Instead, the wave number is 3200 cm
A wide OH bond symmetrical expansion and contraction having a peak at the position of -1 is recognized. Thus, the # 7 sample results in the absence of C—H bonds, instead of the presence of O—H bonds. In contrast, in the Raman spectrum of the # 1 specimen, both before and after irradiation, the position of the wave number 2910cm -1 is observed a large peak of C-H bonds symmetric stretching of sp3 hybrid orbital, the position of the wave number 2970cm -1 Shows a large peak of C-H bond antisymmetric stretching of sp3 hybrid orbital. Therefore, it is confirmed that the CH bond is present in the # 1 sample. From the above, when the layer containing the photo-semiconductor and the silicone is irradiated with ultraviolet rays, the organo group bonded to the silicon atom of the silicone molecule represented by the following chemical formula 1 is replaced with the hydroxyl group by photoexcitation of the photo-semiconductor. It is considered that the silicone derivative represented by Chemical Formula 2 is formed on the surface.

【化1】 [Chemical 1]

【化2】 [Chemical 2]

【0035】参考例 4.(酸化チタン+シリコーン、酸化チタン含有
量) 基材との密着性を増加させ、よりよい耐摩耗性を獲得す
るために、10cm角のアクリル樹脂基板上に予めシリ
コーン層を被覆した。すなわち実施例1と同様のやり方
で、日本合成ゴム製の塗料組成物"グラスカ"のA液とB
液を、重量比で3になるように混合し、この混合液をア
クリル樹脂基板に塗布し、100℃の温度で硬化させ、
膜厚5μmのシリコーンのベースコートで被覆された複
数のアルミニウム基板(#8試料)を得た。次に、#8
試料表面に光半導体とシリコーン樹脂よりなる薄膜を形
成した。より詳しくは、アナターゼ型チタニアゾル(日
産化学製、TA−15)と前記"グラスカ"のA液を混合
し、エタノールで希釈後、更に"グラスカ"の上記B液を
添加し、酸化チタン含有シリコーン塗料用組成物を調整
した。ここで"グラスカ"のA液とB液は、重量比で3に
なるようにした。この塗料用組成物を#8試料の表面に
塗布し、100℃の温度で硬化させ、アナターゼ型チタ
ニア粒子とシリコーン樹脂よりなるトップコートを形成
し、#9〜#12試料を得た。トップコート層中のアナ
ターゼ型チタニア粒子とシリコーン樹脂とシリカ粒子の
合計重量に対するアナターゼ型チタニア粒子重量の比
は、#9試料では5%、#10試料では10%、#11
試料では50%、#12試料では80%になるように調
整した。またいずれの試料も、トップコート層の膜厚は
0.2μmとなるようにした。#8〜#12試料にBL
B蛍光灯を0.5mW/cm2の照度で最大200時間
紫外線を照射しながら、異なる時間間隔でこれらの試料
の表面の水との接触角を接触角測定器(ERMA社製)
で測定し、接触角の時間的変化を観測した。結果を図5
のグラフに示す。図5のグラフからわかるように、光半
導体(酸化チタン)のない#8試料においては、紫外線
を照射しても水との接触角には殆ど変化が見られない。
これに対して、酸化チタン含有トップコートを備えた#
9〜#12試料においては、紫外線照射に応じて水との
接触角が10゜未満になるまで親水化されることがわか
る。特に、酸化チタンの割合が10重量%以上の#10
〜#12試料においては、水との接触角が3゜以下にな
ることがわかる。次に、#8〜#12試料についての光
酸化還元性能を調べるため、実施例1と同様にしてメチ
ルメルカプタンの光分解性能を調べた。結果を図6のグ
ラフに示す。図6のグラフからわかるように、この場合
メチルメルカプタンの光分解性能、すなわち光酸化還元
性能はシリコーンの添加により抑制され、酸化チタン含
有率80重量%以下では1/5以下、50重量%以下で
は1/10以下まで抑制される。この傾向をさらに検証
するため、比較試料として、アルミニウム基板上にシリ
カ層を形成(テトラエトキシシランを加水分解後に基板
に塗布し、150℃で脱水縮重合させて硬化)後、単に
アナターゼ型チタニアゾル(日産化学製、TA−15)
を塗布し、400℃で焼成した試料(膜厚0.4μm)
を作製し、メチルメルカプタン除去率を測定してみたが
90%と非常に高く(図6のTiO2含有率100%の
もの)、膜厚1μm以下でのシリコーン樹脂添加におけ
る光酸化還元性能抑制効果が確認された。
Reference Example 4. (Titanium oxide + silicone, titanium oxide content) In order to increase the adhesion to the substrate and obtain better wear resistance, a 10 cm square acrylic resin substrate was previously coated with a silicone layer. That is, in the same manner as in Example 1, A composition and B composition of the coating composition "Glaska" made of Japan Synthetic Rubber
The liquids are mixed in a weight ratio of 3, and the mixed liquid is applied to an acrylic resin substrate and cured at a temperature of 100 ° C.
A plurality of aluminum substrates (# 8 sample) coated with a silicone base coat having a film thickness of 5 μm were obtained. Next, # 8
A thin film made of an optical semiconductor and a silicone resin was formed on the surface of the sample. More specifically, anatase-type titania sol (TA-15, manufactured by Nissan Kagaku Co., Ltd.) and the solution A of "GLASCA" are mixed, diluted with ethanol, and then the solution B of "GLASCA" is added to the titanium oxide-containing silicone coating. A composition for use was prepared. Here, the liquids A and B of "grasca" were adjusted to have a weight ratio of 3. This coating composition was applied to the surface of # 8 sample and cured at a temperature of 100 ° C. to form a top coat composed of anatase-type titania particles and a silicone resin, to obtain # 9 to # 12 samples. The ratio of the weight of the anatase-type titania particles to the total weight of the anatase-type titania particles, the silicone resin and the silica particles in the top coat layer was 5% for the # 9 sample, 10% for the # 10 sample and # 11.
The sample was adjusted to 50% and the # 12 sample was adjusted to 80%. Further, in all the samples, the thickness of the top coat layer was 0.2 μm. BL for # 8 to # 12 samples
While irradiating the B fluorescent lamp with ultraviolet light at an illuminance of 0.5 mW / cm 2 for up to 200 hours, the contact angles of the surfaces of these samples with water were measured at different time intervals using a contact angle measuring device (manufactured by ERMA).
And the time change of the contact angle was observed. The results are shown in Figure 5.
Is shown in the graph. As can be seen from the graph of FIG. 5, in the # 8 sample having no optical semiconductor (titanium oxide), there is almost no change in the contact angle with water even when irradiated with ultraviolet rays.
In contrast, with a top coat containing titanium oxide #
It can be seen that the 9 to # 12 samples are hydrophilized until the contact angle with water becomes less than 10 ° in response to ultraviolet irradiation. In particular, # 10 containing 10% by weight or more of titanium oxide
It can be seen that the contact angle with water is 3 ° or less for the ~ 12 samples. Next, in order to examine the photo-oxidation / reduction performance of the # 8 to # 12 samples, the photo-decomposition performance of methyl mercaptan was examined in the same manner as in Example 1. The results are shown in the graph of FIG. As can be seen from the graph of FIG. 6, in this case, the photodegradation performance of methyl mercaptan, that is, the photooxidation reduction performance was suppressed by the addition of silicone, and when the titanium oxide content was 80% by weight or less, 1/5 or less, and 50% by weight or less. It is suppressed to 1/10 or less. In order to further verify this tendency, as a comparative sample, after forming a silica layer on an aluminum substrate (coating the substrate after hydrolysis of tetraethoxysilane and curing by dehydration polycondensation at 150 ° C.), simply anatase-type titania sol ( Nissan Chemical, TA-15)
Sample coated with and baked at 400 ° C (film thickness 0.4 μm)
Was prepared, and the removal rate of methyl mercaptan was measured, but it was very high at 90% (with a TiO 2 content of 100% in FIG. 6), and the effect of suppressing photo-oxidation reduction performance when a silicone resin was added at a film thickness of 1 μm or less. Was confirmed.

【0036】参考例 5.(酸化チタン+シリコーン、酸化チタン含有
量、鉛筆硬度) 酸化チタンとシリコーンからなるトップコートの耐摩耗
性を調べるため、鉛筆スクラッチ試験を行った。実施例
4と同様の方法で、10cm角のアクリル樹脂基板の表
面に膜厚5μmのシリコーンのベースコートを被覆し、
次いで酸化チタン含有量の異なるトップコートを夫々被
覆した。トップコート中の酸化チタンの割合は、夫々、
50重量%、60重量%、90重量%であった。日本工
業規格(JIS)H8602に従い、試料の表面を鉛筆
の芯でスクラッチし、トップコートが剥離する最も硬い
鉛筆芯を検出した。また、ベースコートのみで被覆され
た試料についても同様に試験した。結果を、図7のグラ
フに示す。 酸化チタンの割合が90重量%のトップコ
ートは硬度5Bの鉛筆芯で剥離したが、酸化チタンの割
合が60重量%のトップコートは硬度Hの鉛筆芯に耐え
ることができ、充分な耐摩耗性は酸化チタン含有量の減
少に伴い増加する。
Reference Example 5. (Titanium oxide + silicone, titanium oxide content, pencil hardness) A pencil scratch test was conducted to examine the wear resistance of the top coat made of titanium oxide and silicone. In the same manner as in Example 4, a surface of a 10 cm square acrylic resin substrate was coated with a silicone base coat having a thickness of 5 μm,
Then, top coats having different titanium oxide contents were coated respectively. The proportion of titanium oxide in the top coat is
It was 50% by weight, 60% by weight and 90% by weight. According to Japanese Industrial Standard (JIS) H8602, the surface of the sample was scratched with a pencil lead, and the hardest pencil lead from which the top coat was peeled off was detected. Also, a sample coated with only the base coat was similarly tested. The results are shown in the graph of FIG. The top coat with a titanium oxide content of 90% by weight was peeled off with a pencil lead with a hardness of 5B, but the topcoat with a titanium oxide content of 60% by weight can withstand a pencil lead with a hardness of H and has sufficient abrasion resistance. Increases with decreasing titanium oxide content.

【0037】参考例 6.(酸化チタン+ナトリウム、ゾル系) アナターゼ型酸化チタンゾル(石原産業製、STS−1
1)と、ナトリウム金属濃度50μmol/gの硝酸ナ
トリウム水溶液を混合し、混合液を調整した。ここで混
合液中の酸化チタン固形分とナトリウム金属量のモル比
は87:13となるようにした。15cm角の施釉タイ
ル(東陶機器製AB02E01)表面に塗布後、700
℃の温度で1時間焼成して#13試料を得た。比較のた
め、アナターゼ型酸化チタンゾル(石原産業製、STS
−11)を15cm角の施釉タイル表面(東陶機器製A
B02E01)に塗布後、700℃の温度で1時間焼成
した#14試料を得た。得られた試料の膜厚はいずれも
0.7μmとなるようにした。焼成後の#13試料及び
#14試料を1週間暗所に放置した後、BLB蛍光灯を
用いて夫々の試料に0.15mW/cm2の紫外線照度
で1日間紫外線を照射した。このときの夫々の試料の紫
外線時間による水との接触角の変化を図8の#13曲線
及び#14曲線に示す。図8の#13曲線及び#14曲
線の比較からわかるように、ナトリウムの添加の有無に
かかわらず、紫外線照射により試料表面は親水化され
た。また理由は明らかではないが、ナトリウムが添加さ
れているほうが、接触角が低い傾向が認められた。以上
のことから基材表面に光半導体以外にナトリウムが添加
されていても、光半導体の光励起による親水化現象には
悪影響しないことがわかる。次に、#13及び#14試
料についての光酸化還元性能を調べるため、実施例1と
同様にしてメチルメルカプタンの光分解性能を調べた。
その結果、#14試料では92%と良好な結果を示した
のに対し、#13試料では5%であった。すなわち、光
酸化還元性能はナトリウムの添加により非常に強く抑制
された。以上のことから、ナトリウムの添加により光半
導体の光励起による光酸化還元性能を抑制しつつ、光半
導体の光励起による親水化現象を生じさせることができ
ることが判明した。
Reference Example 6. (Titanium oxide + sodium, sol system) Anatase type titanium oxide sol (Ishihara Sangyo, STS-1
1) was mixed with an aqueous sodium nitrate solution having a sodium metal concentration of 50 μmol / g to prepare a mixed solution. Here, the molar ratio between the solid content of titanium oxide and the amount of sodium metal in the mixed solution was set to be 87:13. 700 after applying it to the surface of a 15 cm square glazed tile (AB02E01 manufactured by Totou Kikai)
A # 13 sample was obtained by firing at a temperature of ° C for 1 hour. For comparison, anatase type titanium oxide sol (made by Ishihara Sangyo, STS
-11) is a 15 cm square glazed tile surface (A
After coating B02E01), a # 14 sample was obtained which was baked at a temperature of 700 ° C. for 1 hour. The thickness of each of the obtained samples was 0.7 μm. The # 13 sample and # 14 sample after firing were left in a dark place for one week, and then each sample was irradiated with ultraviolet rays for 1 day at an ultraviolet illuminance of 0.15 mW / cm 2 using a BLB fluorescent lamp. The changes in the contact angle of each sample with water according to the ultraviolet ray time at this time are shown by the curves # 13 and # 14 in FIG. As can be seen from the comparison between the # 13 curve and the # 14 curve in FIG. 8, the sample surface was hydrophilized by the ultraviolet irradiation regardless of the addition of sodium. Although the reason is not clear, the contact angle tended to be lower when sodium was added. From the above, it can be seen that even if sodium is added to the surface of the base material in addition to the optical semiconductor, it does not adversely affect the hydrophilization phenomenon of the optical semiconductor due to photoexcitation. Next, in order to examine the photo-oxidation / reduction performance of the # 13 and # 14 samples, the photodegradation performance of methyl mercaptan was examined in the same manner as in Example 1.
As a result, the # 14 sample showed a good result of 92%, while the # 13 sample showed 5%. That is, the photoredox performance was very strongly suppressed by the addition of sodium. From the above, it was found that the addition of sodium can suppress the photo-oxidation / reduction performance of the photo-semiconductor by photo-excitation while causing the hydrophilization phenomenon of the photo-semiconductor by photo-excitation.

【0038】参考例 7.(酸化チタン+ナトリウム、アルコキシド) テトラエトキシチタン(Merck社製)1重量部とエ
タノール9重量部との混合物に加水分解抑制剤として3
6%塩酸を0.1重量部添加して酸化チタンコーティン
グ液を調整し、この溶液を10cm角のソーダライムガ
ラス板の表面に乾燥空気中でフローコーティング法によ
り塗布した。塗布量は酸化チタンに換算して45μg/
cm2とした。テトラエトキシチタンの加水分解速度は
極めて早いので、塗布の段階でテトラエトキシチタンの
一部は加水分解され、水酸化チタンが生成し始めた。次
に、このガラス板を1〜10分間約150℃の温度に保
持することにより、テトラエトキシチタンの加水分解を
完了させると共に、生成した水酸化チタンを脱水縮重合
に付し、無定型酸化チタンを生成させた。こうして、無
定型酸化チタンがコーティングされたガラス板を得た。
この試料を500℃の温度で焼成して、無定型酸化チタ
ンをアナターゼ型酸化チタンに変換させた。この焼成過
程中で、ガラス板中のアルカリ網目修飾イオンであるナ
トリウムイオンはガラス基材から酸化チタンコーティン
グ中に拡散することが知られている。この試料を数日間
暗所に放置した後、BLB蛍光灯を用いて試料の表面に
0.5mW/cm2の紫外線照度で1日紫外線を照射し
た。接触角測定器(ERMA社製)により水との接触角
を測定した所、3゜まで親水化された。以上のことから
基材表面に光半導体以外にナトリウムが添加されていて
も、光半導体の光励起による親水化現象には悪影響しな
いことがわかる。次に、上記試料についての光酸化還元
性能を調べるため、実施例1と同様にしてメチルメルカ
プタンの光分解性能を調べた。その結果、0%と全く光
分解性を示さず、光酸化還元性能はナトリウムの添加に
より非常に強く抑制されることが確認された。以上のこ
とから、アルコキシド法にて製膜した場合にも、ナトリ
ウムの添加により光半導体の光励起による光酸化還元性
能を抑制しつつ、光半導体の光励起による親水化現象を
生じさせることができることが判明した。
Reference Example 7. (Titanium oxide + sodium, alkoxide) A mixture of 1 part by weight of tetraethoxy titanium (manufactured by Merck) and 9 parts by weight of ethanol was used as a hydrolysis inhibitor.
A titanium oxide coating solution was prepared by adding 0.1 part by weight of 6% hydrochloric acid, and this solution was applied to the surface of a 10 cm square soda lime glass plate in dry air by a flow coating method. The coating amount is 45 μg / converted to titanium oxide
It was set to cm 2 . Since the hydrolysis rate of tetraethoxytitanium is extremely fast, a part of tetraethoxytitanium was hydrolyzed at the coating stage, and titanium hydroxide started to be produced. Next, by holding this glass plate at a temperature of about 150 ° C. for 1 to 10 minutes, the hydrolysis of tetraethoxy titanium is completed, and the produced titanium hydroxide is subjected to dehydration polycondensation to obtain amorphous titanium oxide. Was generated. Thus, a glass plate coated with amorphous titanium oxide was obtained.
This sample was baked at a temperature of 500 ° C. to convert the amorphous titanium oxide into anatase type titanium oxide. It is known that during this firing process, sodium ions, which are alkaline network modifying ions in the glass plate, diffuse from the glass substrate into the titanium oxide coating. After leaving this sample in the dark for several days, the surface of the sample was irradiated with ultraviolet rays for 1 day at an ultraviolet illuminance of 0.5 mW / cm 2 using a BLB fluorescent lamp. When the contact angle with water was measured by a contact angle measuring device (manufactured by ERMA), it was hydrophilized to 3 °. From the above, it can be seen that even if sodium is added to the surface of the base material in addition to the optical semiconductor, it does not adversely affect the hydrophilization phenomenon of the optical semiconductor due to photoexcitation. Next, in order to examine the photo-oxidation / reduction performance of the above sample, the photodegradation performance of methyl mercaptan was examined in the same manner as in Example 1. As a result, it was confirmed that it showed no photodegradability of 0% and that the photoredox performance was very strongly suppressed by the addition of sodium. From the above, it was found that even when the film is formed by the alkoxide method, the addition of sodium can suppress the photo-oxidation / reduction performance of the photo-semiconductor by photo-excitation while causing the hydrophilization phenomenon of photo-semiconductor by photo-excitation. did.

【0039】参考例8.(ルチル型酸化チタン) テトラエトキシチタン1重量部とエタノール9重量部と
の混合物に加水分解抑制剤として36%塩酸を0.1重
量部添加して酸化チタンコーティング溶液を調整した。
このコーティング溶液を10cm角の石英ガラス板の表
面に乾燥空気中でフローコーティング法により塗布し
た。塗布量は酸化チタンに換算して45μg/cm2
した。次に、これらのガラス板を1〜10分間約150
℃の温度に保持することにより、テトラエトキシチタン
を加水分解と脱水縮重合に付し、ガラス板の表面に無定
型酸化チタンの塗膜を形成した。この試料を800℃の
温度で焼成して、無定型酸化チタンを結晶化させた。粉
末X線回折法により調べたところ、焼成試料の結晶型は
ルチル型であることが分かった。得られた試料を1週間
暗所に放置した後、BLB蛍光灯を用いて試料の表面に
0.3mW/cm2の紫外線照度で2日間紫外線を照射
した。接触角測定器(ERMA社製)により水との接触
角を測定した所、0゜まで親水化された。以上のことか
ら基材表面に形成される層中の光半導体が、伝導帯のエ
ネルギー準位の下端が正の値であるルチル型酸化チタン
の場合にも、光半導体の光励起による親水化現象は生じ
ることがわかる。次に、上記試料についての光酸化還元
性能を調べるため、実施例1と同様にしてメチルメルカ
プタンの光分解性能を調べた。その結果、0%と全く光
分解性を示さず、光酸化還元性能は生じないことが確認
された。以上のことから、基材表面に形成される層中の
光半導体が、伝導帯のエネルギー準位の下端が正の値で
あるルチル型酸化チタンの場合にも、光半導体の光励起
による光酸化還元性能を抑制しつつ、光半導体の光励起
による親水化現象を生じさせることができることが判明
した。
Reference Example 8. (Rutile type titanium oxide) 0.1 part by weight of 36% hydrochloric acid as a hydrolysis inhibitor was added to a mixture of 1 part by weight of tetraethoxy titanium and 9 parts by weight of ethanol to prepare a titanium oxide coating solution.
This coating solution was applied to the surface of a 10 cm square quartz glass plate in dry air by a flow coating method. The coating amount was 45 μg / cm 2 in terms of titanium oxide. Next, these glass plates are exposed to about 150 minutes for about 150 minutes.
By maintaining the temperature at ℃, tetraethoxy titanium was subjected to hydrolysis and dehydration polycondensation to form a coating film of amorphous titanium oxide on the surface of the glass plate. This sample was fired at a temperature of 800 ° C. to crystallize amorphous titanium oxide. When examined by powder X-ray diffractometry, it was found that the crystal type of the fired sample was the rutile type. The obtained sample was left in the dark for 1 week, and then the surface of the sample was irradiated with ultraviolet rays for 2 days with an ultraviolet illuminance of 0.3 mW / cm 2 using a BLB fluorescent lamp. When the contact angle with water was measured with a contact angle measuring instrument (manufactured by ERMA), it was hydrophilized to 0 °. From the above, even when the photo-semiconductor in the layer formed on the substrate surface is rutile-type titanium oxide in which the lower end of the energy level of the conduction band is a positive value, the hydrophilization phenomenon by photo-excitation of the photo-semiconductor does not occur. You can see that it will occur. Next, in order to examine the photo-oxidation / reduction performance of the above sample, the photodegradation performance of methyl mercaptan was examined in the same manner as in Example 1. As a result, it was confirmed that it showed no photodegradability of 0% and no photo-oxidation reduction performance occurred. From the above, even when the photo-semiconductor in the layer formed on the surface of the base material is rutile-type titanium oxide in which the lower end of the energy level of the conduction band is a positive value, photo-oxidation reduction by photo-excitation of the photo-semiconductor It has been found that the hydrophilic phenomenon can be caused by photoexcitation of the optical semiconductor while suppressing the performance.

【0040】参考例9.(酸化錫) 酸化錫ゾル(多木化学製、平均結晶子径3.5nm)
を、15cm角の施釉タイル(東陶機器製AB02E0
1)の表面にスプレーコーティング法により塗布し、7
50℃の温度で10分間焼成し、試料を得た。得られた
試料を1週間暗所に放置した後、BLB蛍光灯を用いて
試料の表面に0.3mW/cm2の紫外線照度(酸化錫
の励起波長である344nm以下の照度約0.1mW/
cm2)で3日間紫外線を照射した。接触角測定器(E
RMA社製)により水との接触角を測定した所、8゜ま
で親水化された。以上のことから基材表面に形成される
層中の光半導体が、伝導帯のエネルギー準位の下端が正
の値である酸化錫の場合にも、光半導体の光励起による
親水化現象は生じることがわかる。次に、上記試料につ
いての光酸化還元性能を調べるため、実施例1と同様に
してメチルメルカプタンの光分解性能を調べた。その結
果、0%と全く光分解性を示さず、光酸化還元性能は生
じないことが確認された。以上のことから、基材表面に
形成される層中の光半導体が、伝導帯のエネルギー準位
の下端が正の値である酸化錫の場合にも、光半導体の光
励起による光酸化還元性能を抑制しつつ、光半導体の光
励起による親水化現象を生じさせることができることが
判明した。
Reference Example 9. (Tin oxide) Tin oxide sol (manufactured by Taki Chemical Co., Ltd., average crystallite size 3.5 nm)
Is a 15 cm square glazed tile (AB02E0
Apply to the surface of 1) by spray coating method, and
A sample was obtained by firing at a temperature of 50 ° C. for 10 minutes. After leaving the obtained sample in a dark place for one week, an ultraviolet illuminance of 0.3 mW / cm 2 was applied to the surface of the sample by using a BLB fluorescent lamp (illuminance of about 0.1 mW /
3 days ultraviolet was irradiated by cm 2). Contact angle measuring device (E
When the contact angle with water was measured by RMA), it was hydrophilized to 8 °. From the above, even when the photo-semiconductor in the layer formed on the surface of the substrate is tin oxide whose conduction band energy level has a positive lower end, the photo-excitation of the photo-semiconductor causes the hydrophilization phenomenon. I understand. Next, in order to examine the photo-oxidation / reduction performance of the above sample, the photodegradation performance of methyl mercaptan was examined in the same manner as in Example 1. As a result, it was confirmed that it showed no photodegradability of 0% and no photo-oxidation reduction performance occurred. From the above, even when the photo-semiconductor in the layer formed on the surface of the base material is tin oxide whose energy band lower end has a positive value, the photo-oxidation reduction performance by photo-excitation of the photo-semiconductor is improved. It was found that the hydrophilic phenomenon due to the photoexcitation of the photosemiconductor can be caused while suppressing.

【0041】参考例10.(酸化チタン+カルシウム) アナターゼ型酸化チタンゾル(石原産業製、STS−1
1)と、カルシウム金属濃度50μmol/gの硝酸カ
ルシウム水溶液を混合し、混合液を調整した。ここで混
合液中の酸化チタン固形分とカルシウム金属量のモル比
は52:48となるようにした。15cm角の施釉タイ
ル(東陶機器製AB02E01)表面に塗布後、700
℃の温度で1時間焼成して#15試料を得た。得られた
試料の膜厚は0.7μmとなるようにした。焼成後の#
15試料を1週間暗所に放置した後、BLB蛍光灯を用
いて試料に0.15mW/cm2の紫外線照度で1日間
紫外線を照射した。このときの試料の紫外線時間による
水との接触角の変化を図8の#15曲線に示す。図8の
#15曲線及び#14曲線の比較からわかるように、カ
ルシウムの添加の有無にかかわらず、紫外線照射により
試料表面は親水化された。また理由は明らかではない
が、カルシウムが添加されているほうが、接触角が低い
傾向が認められた。以上のことから、従来光酸化還元性
能に悪影響を及ぼすと考えられたカルシウムが基材表面
に添加されていても、光半導体の光励起による親水化現
象には悪影響しないことがわかった。従って、カルシウ
ムの添加により光半導体の光励起による光酸化還元性能
を抑制しつつ、光半導体の光励起による親水化現象を生
じさせることができると考えられる。
Reference Example 10. (Titanium oxide + calcium) Anatase type titanium oxide sol (made by Ishihara Sangyo, STS-1
1) was mixed with a calcium nitrate aqueous solution having a calcium metal concentration of 50 μmol / g to prepare a mixed solution. Here, the molar ratio between the solid content of titanium oxide and the amount of calcium metal in the mixed solution was set to 52:48. 700 after applying it to the surface of a 15 cm square glazed tile (AB02E01 manufactured by Totou Kikai)
A # 15 sample was obtained by firing at a temperature of ° C for 1 hour. The film thickness of the obtained sample was set to 0.7 μm. After firing #
After leaving the 15 samples in the dark for 1 week, the samples were irradiated with ultraviolet rays for 1 day at a UV intensity of 0.15 mW / cm 2 using a BLB fluorescent lamp. The change in the contact angle of the sample with water according to the ultraviolet ray time at this time is shown by the # 15 curve in FIG. As can be seen from the comparison between the # 15 curve and the # 14 curve in FIG. 8, the sample surface was hydrophilized by the ultraviolet irradiation regardless of whether calcium was added or not. Although the reason is not clear, the contact angle tended to be lower when calcium was added. From the above, it was found that even if calcium, which was conventionally considered to have a bad influence on the photoredox performance, was added to the surface of the base material, it did not adversely affect the hydrophilization phenomenon of the photosemiconductor by photoexcitation. Therefore, it is considered that the addition of calcium can suppress the photo-oxidation / reduction performance of the photo-semiconductor by photo-excitation, and can cause the hydrophilization phenomenon of photo-semiconductor by photo-excitation.

【0042】参考例 11.(酸化チタン+アルミニウム) アナターゼ型酸化チタンゾル(石原産業製、STS−1
1)と、アルミニウム金属濃度50μmol/gの塩化
アルミニウム水溶液を混合し、混合液を調整した。ここ
で混合液中の酸化チタン固形分とアルミニウム金属量の
モル比は74:26となるようにした。15cm角の施
釉タイル(東陶機器製AB02E01)表面に塗布後、
700℃の温度で1時間焼成して#16試料を得た。得
られた試料の膜厚は0.7μmとなるようにした。焼成
後の#16試料を1週間暗所に放置した後、BLB蛍光
灯を用いて試料に0.15mW/cm2の紫外線照度で
1日間紫外線を照射した。このときの試料の紫外線時間
による水との接触角の変化を図8の#16曲線に示す。
図8の#16曲線及び#14曲線の比較からわかるよう
に、アルミニウムの添加の有無にかかわらず、紫外線照
射により試料表面は親水化された。また理由は明らかで
はないが、アルミニウムが添加されているほうが、接触
角が低い傾向が認められた。以上のことから、従来光酸
化還元性能に悪影響を及ぼすと考えられたアルミニウム
が基材表面に添加されていても、光半導体の光励起によ
る親水化現象には悪影響しないことがわかった。従っ
て、アルミニウムの添加により光半導体の光励起による
光酸化還元性能を抑制しつつ、光半導体の光励起による
親水化現象を生じさせることができると考えられる。
Reference Example 11. (Titanium oxide + aluminum) Anatase type titanium oxide sol (STS-1 manufactured by Ishihara Sangyo)
1) was mixed with an aqueous aluminum chloride solution having an aluminum metal concentration of 50 μmol / g to prepare a mixed solution. Here, the molar ratio between the solid content of titanium oxide and the amount of aluminum metal in the mixed solution was set to 74:26. After applying it to the surface of a 15 cm square glazed tile (AB02E01 manufactured by Totou Kikai),
A # 16 sample was obtained by firing at a temperature of 700 ° C. for 1 hour. The film thickness of the obtained sample was set to 0.7 μm. The # 16 sample after firing was left in the dark for one week, and then the sample was irradiated with ultraviolet rays for 1 day at a UV intensity of 0.15 mW / cm 2 using a BLB fluorescent lamp. The change in the contact angle of the sample with water according to the ultraviolet ray time at this time is shown by the # 16 curve in FIG.
As can be seen from the comparison between the # 16 curve and the # 14 curve in FIG. 8, the sample surface was hydrophilized by the ultraviolet irradiation regardless of the addition of aluminum. Although the reason is not clear, it was confirmed that the contact angle tended to be lower when aluminum was added. From the above, it was found that even if aluminum, which was conventionally considered to have a bad influence on the photo-oxidation / reduction performance, was added to the surface of the base material, it did not adversely affect the hydrophilization phenomenon of the photosemiconductor by photoexcitation. Therefore, it is considered that the addition of aluminum suppresses the photo-oxidation / reduction performance of the photo-semiconductor by photo-excitation, while at the same time causing the hydrophilization phenomenon of photo-semiconductor by photo-excitation.

【0043】参考例12.(酸化チタン+アルミナ) アナターゼ型酸化チタンゾル(石原産業製、STS−1
1)と、ベーマイト型酸化アルミニウムゾル(日産化学
製アルミナゾル−520)の混合液を調整した。ここで
混合液中の酸化チタン固形分と酸化アルミニウム固形分
のモル比は88:12となるようにした。15cm角の
施釉タイル(東陶機器製AB02E01)表面に塗布
後、800℃の温度で1時間焼成して#17試料を得
た。得られた試料の膜厚は0.3μmとなるようにし
た。焼成後の#17試料を1週間暗所に放置した後、B
LB蛍光灯を用いて試料に0.03mW/cm2の紫外
線照度で1日間紫外線を照射した。このときの試料の紫
外線時間による水との接触角の変化を図8の#17曲線
に示す。図8の#17曲線及び#14曲線の比較からわ
かるように、酸化アルミニウムの添加の有無にかかわら
ず、紫外線照射により試料表面は親水化された。また理
由は明らかではないが、酸化アルミニウムが添加されて
いるほうが、接触角が低い傾向が認められた。以上のこ
とから、従来光酸化還元性能に悪影響を及ぼすと考えら
れた酸化アルミニウムが基材表面に添加されていても、
光半導体の光励起による親水化現象には悪影響しないこ
とがわかった。従って、酸化アルミニウムの添加により
光半導体の光励起による光酸化還元性能を抑制しつつ、
光半導体の光励起による親水化現象を生じさせることが
できると考えられる。
Reference Example 12. (Titanium oxide + alumina) Anatase type titanium oxide sol (made by Ishihara Sangyo, STS-1
A mixed solution of 1) and boehmite type aluminum oxide sol (Alumina sol-520 manufactured by Nissan Chemical Industries, Ltd.) was prepared. Here, the molar ratio of the titanium oxide solid content and the aluminum oxide solid content in the mixed solution was set to 88:12. A # 17 sample was obtained by coating the surface of a 15 cm square glazed tile (AB02E01 manufactured by Totoki Kiki Co., Ltd.) and baking it at a temperature of 800 ° C. for 1 hour. The film thickness of the obtained sample was set to 0.3 μm. After leaving the # 17 sample after firing in the dark for one week, B
The sample was irradiated with ultraviolet light for 1 day with an illuminance of 0.03 mW / cm 2 of ultraviolet light using an LB fluorescent lamp. The # 17 curve in FIG. 8 shows the change in the contact angle of the sample with water depending on the ultraviolet ray time. As can be seen from the comparison between the # 17 curve and the # 14 curve in FIG. 8, the sample surface was hydrophilized by the ultraviolet irradiation regardless of whether or not aluminum oxide was added. Although the reason is not clear, the contact angle tended to be lower when aluminum oxide was added. From the above, even if aluminum oxide, which was conventionally considered to adversely affect the photo-oxidation / reduction performance, is added to the substrate surface,
It was found that there is no adverse effect on the hydrophilization phenomenon caused by photoexcitation of the optical semiconductor. Therefore, while suppressing the photoredox performance by the photoexcitation of the optical semiconductor by the addition of aluminum oxide,
It is considered that the hydrophilic phenomenon can be caused by the photoexcitation of the optical semiconductor.

【0044】参考例13.(酸化チタン+ジルコニア) アナターゼ型酸化チタンゾル(石原産業製、STS−1
1)と、酸化ジルコニウムゾル(日産化学製NZS−3
0B)の混合液を調整した。ここで混合液中の酸化チタ
ン固形分と酸化ジルコニウム固形分のモル比は88:1
2となるようにした。15cm角の施釉タイル(東陶機
器製AB02E01)表面に塗布後、800℃の温度で
1時間焼成して#18試料を得た。得られた試料の膜厚
は0.3μmとなるようにした。焼成後の#18試料を
1週間暗所に放置した後、BLB蛍光灯を用いて試料に
0.03mW/cm2の紫外線照度で1日間紫外線を照
射した。このときの試料の紫外線時間による水との接触
角の変化を図8の#18曲線に示す。図8の#18曲線
及び#14曲線の比較からわかるように、酸化ジルコニ
ウムの添加の有無にかかわらず、紫外線照射により試料
表面は親水化された。また理由は明らかではないが、酸
化ジルコニウムが添加されているほうが、接触角が低い
傾向が認められた。以上のことから、従来光酸化還元性
能に悪影響を及ぼすと考えられた酸化ジルコニウムが基
材表面に添加されていても、光半導体の光励起による親
水化現象には悪影響しないことがわかった。従って、酸
化ジルコニウムの添加により光半導体の光励起による光
酸化還元性能を抑制しつつ、光半導体の光励起による親
水化現象を生じさせることができると考えられる。
Reference Example 13. (Titanium oxide + zirconia) Anatase type titanium oxide sol (Ishihara Sangyo, STS-1
1) and zirconium oxide sol (NZS-3 manufactured by Nissan Chemical Industries, Ltd.
A mixed solution of 0B) was prepared. Here, the molar ratio of the solid content of titanium oxide and the solid content of zirconium oxide in the mixed solution is 88: 1.
I set it to 2. A # 18 sample was obtained by coating the surface of a 15 cm square glazed tile (AB02E01 manufactured by Totoki Kiki Co., Ltd.) and baking at a temperature of 800 ° C. for 1 hour. The film thickness of the obtained sample was set to 0.3 μm. The # 18 sample after firing was left in a dark place for one week, and then the sample was irradiated with ultraviolet rays for 1 day at an ultraviolet illuminance of 0.03 mW / cm 2 using a BLB fluorescent lamp. The change in the contact angle of the sample with water according to the ultraviolet ray time at this time is shown by the # 18 curve in FIG. As can be seen from the comparison between the # 18 curve and the # 14 curve in FIG. 8, the sample surface was hydrophilized by the ultraviolet irradiation regardless of whether zirconium oxide was added or not. Although the reason is not clear, the contact angle tended to be lower when zirconium oxide was added. From the above, it was found that even if zirconium oxide, which was conventionally considered to have an adverse effect on photooxidation / reduction performance, was added to the surface of the base material, it did not adversely affect the hydrophilization phenomenon due to photoexcitation of the photosemiconductor. Therefore, it is considered that the addition of zirconium oxide can suppress the photo-oxidation / reduction performance of the photo-semiconductor by photo-excitation, and at the same time, cause the hydrophilization phenomenon of photo-semiconductor by photo-excitation.

【0045】参考例14.(酸化チタン+シリカ) アナターゼ型酸化チタンゾル(石原産業製、STS−1
1)と、シリカゾル(日産化学製スノーテックス20)
の混合液を調整した。ここで混合液中の酸化チタン固形
分とシリカ固形分のモル比は88:12となるようにし
た。15cm角の施釉タイル(東陶機器製AB02E0
1)表面に塗布後、800℃の温度で1時間焼成して#
19試料を得た。得られた試料の膜厚は0.3μmとな
るようにした。焼成後の#19試料を1週間暗所に放置
した後、BLB蛍光灯を用いて試料に0.03mW/c
2の紫外線照度で1日間紫外線を照射した。このとき
の試料の紫外線時間による水との接触角の変化を図8の
#19曲線に示す。図8の#19曲線及び#14曲線の
比較からわかるように、シリカの添加の有無にかかわら
ず、紫外線照射により試料表面は親水化された。また理
由は明らかではないが、シリカが添加されているほう
が、接触角が低い傾向が認められた。以上のことから、
従来光酸化還元性能に悪影響を及ぼすと考えられたシリ
カが基材表面に添加されていても、光半導体の光励起に
よる親水化現象には悪影響しないことがわかった。従っ
て、シリカの添加により光半導体の光励起による光酸化
還元性能を抑制しつつ、光半導体の光励起による親水化
現象を生じさせることができると考えられる。
Reference Example 14. (Titanium oxide + silica) Anatase type titanium oxide sol (made by Ishihara Sangyo, STS-1
1) and silica sol (Snowtex 20 made by Nissan Chemical)
A mixed solution of was prepared. Here, the molar ratio of the titanium oxide solid content and the silica solid content in the mixed solution was set to 88:12. 15 cm square glazed tile (AB02E0 manufactured by Totoki Kikai)
1) After coating on the surface, bake at a temperature of 800 ° C for 1 hour.
19 samples were obtained. The film thickness of the obtained sample was set to 0.3 μm. The # 19 sample after firing was left in the dark for 1 week, and then 0.03 mW / c was applied to the sample using a BLB fluorescent lamp.
Ultraviolet rays were irradiated for 1 day at an ultraviolet illuminance of m 2 . The change in the contact angle of the sample with water according to the ultraviolet ray time at this time is shown by the # 19 curve in FIG. As can be seen from the comparison between the # 19 curve and the # 14 curve in FIG. 8, the sample surface was hydrophilized by the ultraviolet irradiation regardless of whether silica was added or not. Although the reason is not clear, the contact angle tended to be lower when silica was added. From the above,
It was found that even if silica, which has been considered to have a bad influence on the photo-oxidation / reduction performance, is added to the surface of the substrate, it does not adversely affect the hydrophilization phenomenon of the photosemiconductor by photoexcitation. Therefore, it is considered that the addition of silica makes it possible to suppress the photo-oxidation / reduction performance of the photo-semiconductor by photo-excitation and to cause the hydrophilization phenomenon of the photo-semiconductor by photo-excitation.

【0046】参考例15.(光励起の必要性)参考例 6の#14試料、及び、比較のため酸化チタンの
被覆のない施釉タイル(東陶機器製AB02E01)を
10日間暗所に放置した後、Hg−Xeランプを用いて
下記の表1の条件で紫外線を照射しながら水との接触角
の時間的変化を測定した。
Reference Example 15. (Necessity of Photoexcitation) The # 14 sample of Reference Example 6 and a glazed tile without coating of titanium oxide (AB02E01 manufactured by Toto Kikai Co., Ltd.) for 10 days were left in a dark place, and then a Hg-Xe lamp was used. Then, the time change of the contact angle with water was measured while irradiating with ultraviolet rays under the conditions shown in Table 1 below.

【0047】[0047]

【表1】 [Table 1]

【0048】測定結果を図9のAからCに示す。Aから
Cにおいて、白点でプロットした値は実施例6の#14
試料の水との接触角を表し、黒点でプロットした値は酸
化チタンの被覆のない施釉タイルの水との接触角を表
す。Cから分かるように、アナターゼ型酸化チタンのバ
ンドギャップエネルギーに相当する波長387nmより
低いエネルギーの紫外線(387nmより長い波長の紫
外線)では、紫外線を照射しても親水化が起こらない。
それに対して、A及びBに示すように、アナターゼ型酸
化チタンのバンドギャップエネルギーに相当する波長3
87nmより高いエネルギーの紫外線では、紫外線照射
に応じて表面が親水化されることが分かる。以上のこと
から、表面の親水化は、光半導体が光励起されることに
密接な関連があることが確認された。
The measurement results are shown in FIGS. 9A to 9C. In A to C, the value plotted with white dots is # 14 of Example 6.
The contact angle of the sample with water is plotted, and the values plotted with black dots represent the contact angle of the glazed tile without titanium oxide coating with water. As can be seen from C, with ultraviolet rays having an energy lower than the wavelength of 387 nm (ultraviolet rays having a wavelength longer than 387 nm) corresponding to the band gap energy of anatase type titanium oxide, even if the ultraviolet rays are irradiated, hydrophilicity does not occur.
On the other hand, as shown in A and B, the wavelength 3 corresponding to the band gap energy of anatase type titanium oxide is
It can be seen that with ultraviolet light having an energy higher than 87 nm, the surface becomes hydrophilic in response to irradiation with ultraviolet light. From the above, it was confirmed that the hydrophilization of the surface is closely related to the photoexcitation of the photosemiconductor.

【0049】[0049]

【発明の効果】本発明では、基材表面に、光半導体を含
有する層を形成し、かつ(1)光半導体として、水素生
成準位を0eVとした場合に、伝導帯のエネルギー準位
の下端が正の値に位置するようなものにする、または
(2)表面にさらに光半導体でない親水性物質を含有さ
せ、光半導体をほとんど外気に接しない状態にする、
(3)または表面にさらに光半導体の光酸化還元反応を
阻害する物質を含有させることにより、光半導体の励起
波長以下の光の照射による光励起に応じて親水化される
が、光酸化還元反応はほとんど生じない程度の光触媒活
性しか有しない複合材ができるようになる。このような
複合材があれば、光酸化劣化されずに、超親水化されて
防汚、防曇、水や降雨のみの簡単な清掃性、水滴形成防
止、雨中の視界確保、生体適合性等に優れた、プラスチ
ック基材からなる複合材が形成可能になる。さらにこの
ような複合材があれば、水環境使用時に有色金属イオン
の光還元析出されずに、超親水化されて防汚、防曇、水
や降雨のみの簡単な清掃性、水滴形成防止、雨中の視界
確保、生体適合性等に優れた複合材が形成可能になる。
According to the present invention, when a layer containing an optical semiconductor is formed on the surface of a substrate and (1) the hydrogen generation level is set to 0 eV as the optical semiconductor, the energy level of the conduction band is reduced. The lower end is located at a positive value, or (2) the surface further contains a hydrophilic substance that is not an optical semiconductor, so that the optical semiconductor is hardly exposed to the outside air.
(3) Alternatively, by adding a substance that inhibits the photo-oxidation / reduction reaction of the photo-semiconductor to the surface of the photo-semiconductor, the photo-oxidation / reduction reaction is hydrophilized by photoexcitation by irradiation with light having a wavelength not longer than the excitation wavelength of the photo-semiconductor A composite material having a photocatalytic activity that hardly occurs is obtained. If such a composite material is used, it will be superhydrophilic without being photooxidized and deteriorated, and it will be antifouling, antifogging, easy cleanability only with water and rainfall, prevention of water droplet formation, visibility in the rain, biocompatibility, etc. It is possible to form a composite material made of a plastic base material, which has excellent properties. Further, if such a composite material is used, it is not subjected to photoreduction deposition of colored metal ions when used in an aqueous environment, and is superhydrophilized to be antifouling, antifogging, easy cleanability only with water or rainfall, prevention of water droplet formation, It is possible to form a composite material that has excellent visibility in the rain and biocompatibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の種々の試料の紫外線照射に伴
う水との接触角の時間的変化を示すグラフ。
FIG. 1 is a graph showing the change over time in the contact angle with water of various samples according to the examples of the present invention due to ultraviolet irradiation.

【図2】本発明の実施例の種々の試料の膜厚とメチルメ
ルカプタンの分解性能を示すグラフ。
FIG. 2 is a graph showing the film thickness of various samples and the decomposition performance of methyl mercaptan in Examples of the present invention.

【図3】本発明の実施例のオージェ分光分析スペクトル
であり、 (a)は試料最表面 (b)は試料最表面から0.02μm下部のトップコー
ト層中の断面 (c)は試料最表面から0.2μm下部のベースコート
層中の断面のスペクトル。
FIG. 3 is an Auger spectroscopic analysis spectrum of an example of the present invention, where (a) is the outermost surface of the sample (b) is 0.02 μm below the outermost surface of the sample, and the cross section (c) in the topcoat layer is 0.02 μm lower than the outermost surface of the sample. To 0.2 μm lower cross-section spectrum in the base coat layer.

【図4】本発明の実施例のラマン分光分析スペクトル。FIG. 4 is a Raman spectroscopic analysis spectrum of an example of the present invention.

【図5】本発明の実施例の種々の試料の紫外線照射に伴
う水との接触角の時間的変化を示すグラフ。
FIG. 5 is a graph showing the change over time in the contact angle with water of various samples according to the examples of the present invention due to ultraviolet irradiation.

【図6】本発明の実施例の種々の試料の酸化チタン含有
量とメチルメルカプタンの分解性能を示すグラフ。
FIG. 6 is a graph showing the titanium oxide content and methyl mercaptan decomposition performance of various samples of the examples of the present invention.

【図7】本発明の実施例の種々の試料の鉛筆硬度の結果
を示すグラフ。
FIG. 7 is a graph showing the results of pencil hardness of various samples of the examples of the present invention.

【図8】本発明の実施例の種々の試料の紫外線時間によ
る水との接触角の変化を示すグラフ。
FIG. 8 is a graph showing changes in contact angle with water of various samples of Examples of the present invention with respect to ultraviolet time.

【図9】異なる波長の紫外線を光半導体含有層表面に照
射したときの水との接触角の時間的変化を示すグラフ
で、Aは313nm、Bは365nm、Cは405nm
の紫外線を照射した場合のグラフ。
FIG. 9 is a graph showing the change over time in the contact angle with water when ultraviolet rays of different wavelengths are applied to the surface of the photosemiconductor-containing layer, where A is 313 nm, B is 365 nm, and C is 405 nm.
The graph when it is irradiated with ultraviolet rays.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 町田 光義 福岡県北九州市小倉北区中島2丁目1番 1号 東陶機器株式会社内 (72)発明者 渡部 俊也 福岡県北九州市小倉北区中島2丁目1番 1号 東陶機器株式会社内 (72)発明者 千国 真 福岡県北九州市小倉北区中島2丁目1番 1号 東陶機器株式会社内 (72)発明者 北村 厚 福岡県北九州市小倉北区中島2丁目1番 1号 東陶機器株式会社内 (56)参考文献 特開 平8−253759(JP,A) 特開 平9−52973(JP,A) 特開 昭62−191427(JP,A) 特開 平7−138021(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 35/02 C09K 3/00 CA(STN) JICSTファイル(JOIS) WPI(DIALOG)─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsuyoshi Machida 2-1-1 Nakajima, Kokurakita-ku, Kitakyushu, Fukuoka Prefecture Totoki Equipment Co., Ltd. (72) Inventor Toshiya Watanabe 2 Nakajima, Kokurakita-ku, Kitakyushu, Fukuoka 1st-1st Totoki Co., Ltd. (72) Inventor Makoto Senkoku 2-11-1 Nakajima, Kokurakita-ku, Kitakyushu, Fukuoka Prefecture 72nd Totoki Co., Ltd. (72) Atsushi Kitamura Kitakyushu, Fukuoka 2-1-1 Nakajima, Kokurakita-ku, Totoki Kikai Co., Ltd. (56) Reference JP-A-8-253759 (JP, A) JP-A-9-52973 (JP, A) JP-A-62-191427 ( JP, A) JP-A-7-138021 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B01J 35/02 C09K 3/00 CA (STN) JISST file (JOIS) WPI ( DIALOG)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基材と、基材表面に形成された光半導体
と光半導体の光酸化還元反応を阻害する物質として酸化
アンチモンを含有する層からなり、前記光半導体がアナ
ターゼ型酸化チタン、ルチル型酸化チタン、酸化錫から
なる群から選ばれた1種であり、前記光半導体の太陽光
による光励起に応じて親水化されることを特徴とする複
合材。
1. An optical semiconductor comprising: a base material; and an optical semiconductor formed on the surface of the base material and a layer containing antimony oxide as a substance that inhibits a photoredox reaction of the optical semiconductor.
From tase type titanium oxide, rutile type titanium oxide, tin oxide
A composite material , which is one kind selected from the group consisting of the following, and which is hydrophilized in response to photoexcitation of the optical semiconductor by sunlight.
【請求項2】 基材と、基材表面に形成された光半導体
と光半導体の光酸化還元反応を阻害する物質として酸化
アンチモンからなる層からなり、前記光半導体がアナタ
ーゼ型酸化チタン、ルチル型酸化チタン、酸化錫からな
る群から選ばれた1種であり、前記光半導体の太陽光に
よる光励起に応じて親水化されることを特徴とする複合
材。
2. A substrate, an optical semiconductor formed on the surface of the substrate, and a layer made of antimony oxide as a substance that inhibits the photoredox reaction of the optical semiconductor.
-Type titanium oxide, rutile-type titanium oxide, tin oxide
A composite material , which is one kind selected from the group consisting of the following, and which is hydrophilized in response to photoexcitation of the optical semiconductor by sunlight.
JP13408196A 1995-12-22 1996-04-19 Composite material with hydrophilicity Expired - Lifetime JP3385850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13408196A JP3385850B2 (en) 1995-12-22 1996-04-19 Composite material with hydrophilicity

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP35464995 1995-12-22
JP7-354649 1995-12-22
JP13408196A JP3385850B2 (en) 1995-12-22 1996-04-19 Composite material with hydrophilicity

Publications (2)

Publication Number Publication Date
JPH09226040A JPH09226040A (en) 1997-09-02
JP3385850B2 true JP3385850B2 (en) 2003-03-10

Family

ID=18438979

Family Applications (71)

Application Number Title Priority Date Filing Date
JP8083499A Pending JPH09231821A (en) 1995-12-22 1996-04-05 Luminaire and method for maintaining illuminance
JP13408196A Expired - Lifetime JP3385850B2 (en) 1995-12-22 1996-04-19 Composite material with hydrophilicity
JP10079496A Expired - Lifetime JP3740736B2 (en) 1995-12-22 1996-04-23 HEAT EXCHANGER AND HEAT EXCHANGER OPERATION METHOD
JP15017196A Expired - Lifetime JP3760509B2 (en) 1995-12-22 1996-05-22 Greenhouse ceiling and its condensation prevention method
JP8150410A Pending JPH09225263A (en) 1995-12-22 1996-05-23 Air pollutant removing filter, air pollutant removing fan and ventilator using the fan
JP8156383A Pending JPH09231849A (en) 1995-12-22 1996-05-29 Insulator and dirt preventing method therefore
JP8136777A Pending JPH09227178A (en) 1995-12-22 1996-05-30 Laminated glass and its production
JP13653596A Expired - Lifetime JP3339304B2 (en) 1995-12-22 1996-05-30 Painted object and painting method
JP13782996A Ceased JP3189682B2 (en) 1995-12-22 1996-05-31 Antifouling material
JP8168643A Pending JPH09232096A (en) 1995-12-22 1996-06-06 Electrification preventing method, and electrification preventive composite material
JP8145265A Pending JPH09225276A (en) 1995-12-22 1996-06-07 Separating membrane and formation of surface layer to separating membrane
JP8168662A Pending JPH09225389A (en) 1995-12-22 1996-06-10 Method for making member hydrophilic and preventing deterioration by ultraviolet ray, hydrophilic ultraviolet resistant member and its manufacture
JP8158518A Pending JPH09225021A (en) 1995-12-22 1996-06-19 Medical material
JP8195184A Expired - Lifetime JP3003581B2 (en) 1995-12-22 1996-06-20 A member that exhibits hydrophilicity in response to optical excitation of an optical semiconductor
JP8272814A Pending JPH09226041A (en) 1995-12-22 1996-09-06 Member for preventing attachment of condensation water drop and method for preventing attachment of condensation water drop of the member
JP8272815A Pending JPH09224957A (en) 1995-12-22 1996-09-06 Laser beam focusing lens, dentistry and oral surgery treatment device using the same, and preventing device of laser beam irregular reflection due to stuck waterdrop
JP27280996A Expired - Fee Related JP3588202B2 (en) 1995-12-22 1996-09-07 Anti-fog road mirror and its anti-fog method
JP8272808A Pending JPH09229724A (en) 1995-12-22 1996-09-07 Non-fogging cover for instrument panel of motorcycle, motorcycle equipped with the cover, and fogging-preventing method for the cover
JP27519096A Expired - Lifetime JP3277983B2 (en) 1995-12-22 1996-09-10 Outdoor display panel and its cleaning method
JP8275189A Pending JPH09231807A (en) 1995-12-22 1996-09-10 Vehicle headlight cover, vehicle with it, and its defogging method
JP8238927A Pending JPH09227159A (en) 1995-12-22 1996-09-10 Front and rear window glass of vehicle
JP8281225A Pending JPH09230107A (en) 1995-12-22 1996-09-17 Anti-fogging glass lens and its anti-fogging method
JP8281222A Pending JPH09230106A (en) 1995-12-22 1996-09-17 Anti-fogging camera filter and its anti-fogging method
JP8281220A Expired - Lifetime JP3003593B2 (en) 1995-12-22 1996-09-17 Photocatalytic hydrophilic member
JP28122196A Expired - Lifetime JP3743075B2 (en) 1995-12-22 1996-09-17 Antifogging dental mirror and antifogging method
JP8281223A Expired - Lifetime JP3063968B2 (en) 1995-12-22 1996-09-17 Anti-fog vehicle mirror, automobile equipped with the same, anti-fog film for vehicle mirror and anti-fog method for vehicle mirror
JP8281224A Pending JPH09228134A (en) 1995-12-22 1996-09-17 Antifogging helmet shield and antifogging method
JP8282806A Pending JPH09228057A (en) 1995-12-22 1996-09-18 Wheel and its cleaning method
JP08282811A Expired - Fee Related JP3075195B2 (en) 1995-12-22 1996-09-18 Anti-fog wash mirror, vanity table provided with the same, anti-fog film for wash mirror and anti-fog method for wash mirror
JP8282808A Pending JPH09228765A (en) 1995-12-22 1996-09-18 Blind and manufacture thereof
JP8246180A Pending JPH09230493A (en) 1995-12-22 1996-09-18 Camera
JP8282805A Pending JPH09231499A (en) 1995-12-22 1996-09-18 Light source cover for traffic signal, traffic signal with it, and cleaning method for light source cover for traffic signal
JP28281296A Expired - Lifetime JP3612896B2 (en) 1995-12-22 1996-09-18 Exterior wall building materials and methods for cleaning them
JP8282809A Pending JPH09230108A (en) 1995-12-22 1996-09-18 Anti-fogging plastic lens and its anti-fogging method
JP8282810A Pending JPH09228545A (en) 1995-12-22 1996-09-18 Glass block and its cleaning method
JP8282807A Pending JPH09224874A (en) 1995-12-22 1996-09-18 Water-closet bowl made of resin
JP8284533A Pending JPH09227161A (en) 1995-12-22 1996-09-19 Pane, film for applying thereto and antifogging and cleaning thereof
JP8284532A Pending JPH09227805A (en) 1995-12-22 1996-09-19 Photocatalytic hydrophilic coating composition
JP28453496A Expired - Lifetime JP3173391B2 (en) 1995-12-22 1996-09-19 Hydrophilic film, and method for producing and using the same
JP28579796A Expired - Lifetime JP3697795B2 (en) 1995-12-22 1996-09-20 Display and cleaning method thereof
JP28895696A Expired - Fee Related JP3588206B2 (en) 1995-12-22 1996-09-25 Self-cleaning road decorative panel, and method of cleaning road decorative panel
JP28895596A Expired - Lifetime JP3774955B2 (en) 1995-12-22 1996-09-25 Self-cleaning handrail and handrail cleaning method
JP28895496A Expired - Fee Related JP3588205B2 (en) 1995-12-22 1996-09-25 Self-cleaning guard fence and method of cleaning guard fence
JP8291006A Pending JPH09229767A (en) 1995-12-22 1996-09-26 Pyroelectric infrared detector
JP8291005A Pending JPH09230031A (en) 1995-12-22 1996-09-26 Inter-vehicle distance detecting device and automobile having it
JP8291007A Pending JPH09225054A (en) 1995-12-22 1996-09-26 Gas mask and storing device for gas mask
JP8297248A Pending JPH09227169A (en) 1995-12-22 1996-10-18 Transfer sheet, and transferring of photocatalytic and hydrophilic thin film
JP8298236A Pending JPH09227162A (en) 1995-12-22 1996-10-22 Vehicle pane for securing rainy weather view, and automobile mounted therewith
JP8298235A Pending JPH09230119A (en) 1995-12-22 1996-10-22 Road mirror for assuring visual field in rainy weather
JP8298237A Pending JPH09229546A (en) 1995-12-22 1996-10-22 Door for refrigerated showcase having see-through ensuring property
JP8298234A Pending JPH09226531A (en) 1995-12-22 1996-10-22 Rainy weather visibility securable vehicular mirror, automobile and two wheeler having it
JP8306997A Pending JPH09226060A (en) 1995-12-22 1996-11-01 Lid for heating container having fog resistance
JP8307000A Pending JPH09224800A (en) 1995-12-22 1996-11-01 Glassware and water-washing method
JP8323516A Pending JPH09241038A (en) 1995-12-22 1996-11-19 Photocatalytic hydrophilic member and its production
JP8340470A Pending JPH09225387A (en) 1995-12-22 1996-12-05 Hydrophilic member and method to make surface of member hydrophilic
JP34047296A Expired - Fee Related JP3348613B2 (en) 1995-12-22 1996-12-05 Photocatalytic hydrophilic coating composition
JP34047196A Expired - Lifetime JP3303696B2 (en) 1995-12-22 1996-12-05 Photocatalytic hydrophilic coating composition
JP08344585A Expired - Lifetime JP3141802B2 (en) 1995-12-22 1996-12-09 Hydrophilic member and method for maintaining hydrophilicity
JP23956899A Expired - Lifetime JP3613085B2 (en) 1995-12-22 1999-08-26 Photocatalytic hydrophilic member
JP23956799A Expired - Lifetime JP3613084B2 (en) 1995-12-22 1999-08-26 A member that exhibits hydrophilicity in response to photoexcitation of an optical semiconductor
JP34300999A Expired - Fee Related JP3844182B2 (en) 1995-12-22 1999-12-02 Hydrophilic film and method for producing and using the same
JP2000180301A Expired - Lifetime JP3414365B2 (en) 1995-12-22 2000-06-15 Building materials for exterior walls
JP2000181284A Pending JP2001048679A (en) 1995-12-22 2000-06-16 Photocatalytic hydrophilic tile and its production
JP2000181287A Expired - Fee Related JP3465664B2 (en) 1995-12-22 2000-06-16 Building materials for exterior walls
JP2000181286A Expired - Lifetime JP3414367B2 (en) 1995-12-22 2000-06-16 Building materials for exterior walls
JP2000227055A Withdrawn JP2001089752A (en) 1995-12-22 2000-07-27 Member capable of obtaining hydrophilic nature in accordance with photoexcitation of optical semiconductor and manufacturing method thereof
JP2000227056A Pending JP2001129916A (en) 1995-12-22 2000-07-27 Photocatalytic hydrophilic member
JP2000247609A Pending JP2001122679A (en) 1995-12-22 2000-08-17 Antifouling tile
JP2001140242A Pending JP2002030258A (en) 1995-12-22 2001-05-10 Coated material and method for coating
JP2002020533A Expired - Fee Related JP3882625B2 (en) 1995-12-22 2002-01-29 Sound insulation wall and cleaning method for sound insulation wall
JP2002244772A Pending JP2003113345A (en) 1995-12-22 2002-08-26 Antistatic coating composition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP8083499A Pending JPH09231821A (en) 1995-12-22 1996-04-05 Luminaire and method for maintaining illuminance

Family Applications After (69)

Application Number Title Priority Date Filing Date
JP10079496A Expired - Lifetime JP3740736B2 (en) 1995-12-22 1996-04-23 HEAT EXCHANGER AND HEAT EXCHANGER OPERATION METHOD
JP15017196A Expired - Lifetime JP3760509B2 (en) 1995-12-22 1996-05-22 Greenhouse ceiling and its condensation prevention method
JP8150410A Pending JPH09225263A (en) 1995-12-22 1996-05-23 Air pollutant removing filter, air pollutant removing fan and ventilator using the fan
JP8156383A Pending JPH09231849A (en) 1995-12-22 1996-05-29 Insulator and dirt preventing method therefore
JP8136777A Pending JPH09227178A (en) 1995-12-22 1996-05-30 Laminated glass and its production
JP13653596A Expired - Lifetime JP3339304B2 (en) 1995-12-22 1996-05-30 Painted object and painting method
JP13782996A Ceased JP3189682B2 (en) 1995-12-22 1996-05-31 Antifouling material
JP8168643A Pending JPH09232096A (en) 1995-12-22 1996-06-06 Electrification preventing method, and electrification preventive composite material
JP8145265A Pending JPH09225276A (en) 1995-12-22 1996-06-07 Separating membrane and formation of surface layer to separating membrane
JP8168662A Pending JPH09225389A (en) 1995-12-22 1996-06-10 Method for making member hydrophilic and preventing deterioration by ultraviolet ray, hydrophilic ultraviolet resistant member and its manufacture
JP8158518A Pending JPH09225021A (en) 1995-12-22 1996-06-19 Medical material
JP8195184A Expired - Lifetime JP3003581B2 (en) 1995-12-22 1996-06-20 A member that exhibits hydrophilicity in response to optical excitation of an optical semiconductor
JP8272814A Pending JPH09226041A (en) 1995-12-22 1996-09-06 Member for preventing attachment of condensation water drop and method for preventing attachment of condensation water drop of the member
JP8272815A Pending JPH09224957A (en) 1995-12-22 1996-09-06 Laser beam focusing lens, dentistry and oral surgery treatment device using the same, and preventing device of laser beam irregular reflection due to stuck waterdrop
JP27280996A Expired - Fee Related JP3588202B2 (en) 1995-12-22 1996-09-07 Anti-fog road mirror and its anti-fog method
JP8272808A Pending JPH09229724A (en) 1995-12-22 1996-09-07 Non-fogging cover for instrument panel of motorcycle, motorcycle equipped with the cover, and fogging-preventing method for the cover
JP27519096A Expired - Lifetime JP3277983B2 (en) 1995-12-22 1996-09-10 Outdoor display panel and its cleaning method
JP8275189A Pending JPH09231807A (en) 1995-12-22 1996-09-10 Vehicle headlight cover, vehicle with it, and its defogging method
JP8238927A Pending JPH09227159A (en) 1995-12-22 1996-09-10 Front and rear window glass of vehicle
JP8281225A Pending JPH09230107A (en) 1995-12-22 1996-09-17 Anti-fogging glass lens and its anti-fogging method
JP8281222A Pending JPH09230106A (en) 1995-12-22 1996-09-17 Anti-fogging camera filter and its anti-fogging method
JP8281220A Expired - Lifetime JP3003593B2 (en) 1995-12-22 1996-09-17 Photocatalytic hydrophilic member
JP28122196A Expired - Lifetime JP3743075B2 (en) 1995-12-22 1996-09-17 Antifogging dental mirror and antifogging method
JP8281223A Expired - Lifetime JP3063968B2 (en) 1995-12-22 1996-09-17 Anti-fog vehicle mirror, automobile equipped with the same, anti-fog film for vehicle mirror and anti-fog method for vehicle mirror
JP8281224A Pending JPH09228134A (en) 1995-12-22 1996-09-17 Antifogging helmet shield and antifogging method
JP8282806A Pending JPH09228057A (en) 1995-12-22 1996-09-18 Wheel and its cleaning method
JP08282811A Expired - Fee Related JP3075195B2 (en) 1995-12-22 1996-09-18 Anti-fog wash mirror, vanity table provided with the same, anti-fog film for wash mirror and anti-fog method for wash mirror
JP8282808A Pending JPH09228765A (en) 1995-12-22 1996-09-18 Blind and manufacture thereof
JP8246180A Pending JPH09230493A (en) 1995-12-22 1996-09-18 Camera
JP8282805A Pending JPH09231499A (en) 1995-12-22 1996-09-18 Light source cover for traffic signal, traffic signal with it, and cleaning method for light source cover for traffic signal
JP28281296A Expired - Lifetime JP3612896B2 (en) 1995-12-22 1996-09-18 Exterior wall building materials and methods for cleaning them
JP8282809A Pending JPH09230108A (en) 1995-12-22 1996-09-18 Anti-fogging plastic lens and its anti-fogging method
JP8282810A Pending JPH09228545A (en) 1995-12-22 1996-09-18 Glass block and its cleaning method
JP8282807A Pending JPH09224874A (en) 1995-12-22 1996-09-18 Water-closet bowl made of resin
JP8284533A Pending JPH09227161A (en) 1995-12-22 1996-09-19 Pane, film for applying thereto and antifogging and cleaning thereof
JP8284532A Pending JPH09227805A (en) 1995-12-22 1996-09-19 Photocatalytic hydrophilic coating composition
JP28453496A Expired - Lifetime JP3173391B2 (en) 1995-12-22 1996-09-19 Hydrophilic film, and method for producing and using the same
JP28579796A Expired - Lifetime JP3697795B2 (en) 1995-12-22 1996-09-20 Display and cleaning method thereof
JP28895696A Expired - Fee Related JP3588206B2 (en) 1995-12-22 1996-09-25 Self-cleaning road decorative panel, and method of cleaning road decorative panel
JP28895596A Expired - Lifetime JP3774955B2 (en) 1995-12-22 1996-09-25 Self-cleaning handrail and handrail cleaning method
JP28895496A Expired - Fee Related JP3588205B2 (en) 1995-12-22 1996-09-25 Self-cleaning guard fence and method of cleaning guard fence
JP8291006A Pending JPH09229767A (en) 1995-12-22 1996-09-26 Pyroelectric infrared detector
JP8291005A Pending JPH09230031A (en) 1995-12-22 1996-09-26 Inter-vehicle distance detecting device and automobile having it
JP8291007A Pending JPH09225054A (en) 1995-12-22 1996-09-26 Gas mask and storing device for gas mask
JP8297248A Pending JPH09227169A (en) 1995-12-22 1996-10-18 Transfer sheet, and transferring of photocatalytic and hydrophilic thin film
JP8298236A Pending JPH09227162A (en) 1995-12-22 1996-10-22 Vehicle pane for securing rainy weather view, and automobile mounted therewith
JP8298235A Pending JPH09230119A (en) 1995-12-22 1996-10-22 Road mirror for assuring visual field in rainy weather
JP8298237A Pending JPH09229546A (en) 1995-12-22 1996-10-22 Door for refrigerated showcase having see-through ensuring property
JP8298234A Pending JPH09226531A (en) 1995-12-22 1996-10-22 Rainy weather visibility securable vehicular mirror, automobile and two wheeler having it
JP8306997A Pending JPH09226060A (en) 1995-12-22 1996-11-01 Lid for heating container having fog resistance
JP8307000A Pending JPH09224800A (en) 1995-12-22 1996-11-01 Glassware and water-washing method
JP8323516A Pending JPH09241038A (en) 1995-12-22 1996-11-19 Photocatalytic hydrophilic member and its production
JP8340470A Pending JPH09225387A (en) 1995-12-22 1996-12-05 Hydrophilic member and method to make surface of member hydrophilic
JP34047296A Expired - Fee Related JP3348613B2 (en) 1995-12-22 1996-12-05 Photocatalytic hydrophilic coating composition
JP34047196A Expired - Lifetime JP3303696B2 (en) 1995-12-22 1996-12-05 Photocatalytic hydrophilic coating composition
JP08344585A Expired - Lifetime JP3141802B2 (en) 1995-12-22 1996-12-09 Hydrophilic member and method for maintaining hydrophilicity
JP23956899A Expired - Lifetime JP3613085B2 (en) 1995-12-22 1999-08-26 Photocatalytic hydrophilic member
JP23956799A Expired - Lifetime JP3613084B2 (en) 1995-12-22 1999-08-26 A member that exhibits hydrophilicity in response to photoexcitation of an optical semiconductor
JP34300999A Expired - Fee Related JP3844182B2 (en) 1995-12-22 1999-12-02 Hydrophilic film and method for producing and using the same
JP2000180301A Expired - Lifetime JP3414365B2 (en) 1995-12-22 2000-06-15 Building materials for exterior walls
JP2000181284A Pending JP2001048679A (en) 1995-12-22 2000-06-16 Photocatalytic hydrophilic tile and its production
JP2000181287A Expired - Fee Related JP3465664B2 (en) 1995-12-22 2000-06-16 Building materials for exterior walls
JP2000181286A Expired - Lifetime JP3414367B2 (en) 1995-12-22 2000-06-16 Building materials for exterior walls
JP2000227055A Withdrawn JP2001089752A (en) 1995-12-22 2000-07-27 Member capable of obtaining hydrophilic nature in accordance with photoexcitation of optical semiconductor and manufacturing method thereof
JP2000227056A Pending JP2001129916A (en) 1995-12-22 2000-07-27 Photocatalytic hydrophilic member
JP2000247609A Pending JP2001122679A (en) 1995-12-22 2000-08-17 Antifouling tile
JP2001140242A Pending JP2002030258A (en) 1995-12-22 2001-05-10 Coated material and method for coating
JP2002020533A Expired - Fee Related JP3882625B2 (en) 1995-12-22 2002-01-29 Sound insulation wall and cleaning method for sound insulation wall
JP2002244772A Pending JP2003113345A (en) 1995-12-22 2002-08-26 Antistatic coating composition

Country Status (1)

Country Link
JP (71) JPH09231821A (en)

Families Citing this family (197)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6830785B1 (en) * 1995-03-20 2004-12-14 Toto Ltd. Method for photocatalytically rendering a surface of a substrate superhydrophilic, a substrate with a superhydrophilic photocatalytic surface, and method of making thereof
JPH09227779A (en) * 1995-12-22 1997-09-02 Toto Ltd Rubber member for construction and impartment of hydrophilicity to surface thereof
JPH09230105A (en) * 1995-12-22 1997-09-05 Toto Ltd Antifogging method and facility applied with the method
JPH09231821A (en) * 1995-12-22 1997-09-05 Toto Ltd Luminaire and method for maintaining illuminance
JPH09186949A (en) * 1995-12-27 1997-07-15 Toshiba Lighting & Technol Corp Video equipment
JP3400259B2 (en) * 1996-08-26 2003-04-28 セントラル硝子株式会社 Hydrophilic coating and method for producing the same
JP3949788B2 (en) * 1996-09-17 2007-07-25 大野 隆司 Goods storage container
WO1998012048A1 (en) * 1996-09-20 1998-03-26 Hitachi, Ltd. Thin photocatalytic film and articles provided with the same
JP4305001B2 (en) * 1996-09-20 2009-07-29 株式会社日立製作所 Articles with a photocatalytic film
JPH10148705A (en) * 1996-11-21 1998-06-02 Hitachi Chem Co Ltd Antifog treatment
JP3467994B2 (en) * 1996-11-27 2003-11-17 松下電工株式会社 Silicone transfer film and transfer structure thereof
JPH10237352A (en) * 1997-02-24 1998-09-08 Tao:Kk Polyfunctional coating agent
JP4672822B2 (en) * 1997-02-24 2011-04-20 株式会社ティオテクノ Hydrophilic coating agent and surface hydrophilic substrate
JP3518251B2 (en) * 1997-05-20 2004-04-12 株式会社日立製作所 Oxide photocatalytic thin film and article provided with the same
JPH1190236A (en) * 1997-09-22 1999-04-06 Ebara Corp Photocatalyst and reaction device using photocatalyst
JPH11100695A (en) * 1997-09-26 1999-04-13 Nippon Alum Co Ltd Production of titanium material having photocatalytic activity
JPH11100526A (en) * 1997-09-29 1999-04-13 Toto Ltd Photocatalytic hydrophilic member and photocatalytic hydrophilic coating composition
JP3996682B2 (en) * 1997-10-20 2007-10-24 日本デコール株式会社 Decorative sheet having organic substance decomposing function and method for producing the same
JPH11152447A (en) * 1997-11-21 1999-06-08 Toto Ltd Surface-treating agent for forming photocatalyzing coating film, and formation of photocatalyzing coating film using the surface-treating agent
KR100740055B1 (en) * 1997-12-25 2007-10-18 산젠 가꼬 가부시키가이샤 Anti-fogging laminates
JPH11197516A (en) * 1998-01-09 1999-07-27 Takenaka Komuten Co Ltd Photocatalyst material and its production
WO1999041322A1 (en) * 1998-02-10 1999-08-19 Toto Ltd. Coating material for forming photocatalytic hydrophilic film, method of forming photocatalytic hydrophilic film, and photocatalytic hydrophilic member
JPH11263950A (en) * 1998-03-16 1999-09-28 Nippon Carbide Ind Co Inc Transparent adhesive sheet for preventing dew condensation and dew condensation-preventing deflective sign
CA2293790A1 (en) * 1998-04-10 1999-10-21 Matsushita Electric Works, Ltd. Inorganic coating composition and hydrophilic inorganic coating film
JPH11347482A (en) * 1998-06-12 1999-12-21 Dainippon Toryo Co Ltd Production of joint part coated porcelain tile panel
CH693138A5 (en) * 1998-06-19 2003-03-14 Unaxis Trading Ag Laminated glass and method for making a coated plastic film therefor.
KR100290066B1 (en) * 1998-07-13 2001-05-15 김명신 How to fix titanium dioxide, used as an air freshener, on activated carbon
TW473400B (en) 1998-11-20 2002-01-21 Asahi Chemical Ind Modified photocatalyst sol
JP2000226234A (en) * 1998-12-03 2000-08-15 Toto Ltd Hydrophilic member
JP3340688B2 (en) * 1999-01-28 2002-11-05 シャープ株式会社 Air conditioner
EP1023910A1 (en) * 1999-01-29 2000-08-02 Institut Straumann AG Preparation of osteophilic surfaces for metallic prosthetic devices anchorable to bone
WO2000046154A1 (en) * 1999-02-04 2000-08-10 Japan Science And Technology Corporation Process for producing anatase titania or composite oxide containing anatase titania
JP2000234892A (en) * 1999-02-12 2000-08-29 Zexel Corp Method for reducing heat exchanger and heat exchanger manufactured by that method
AU2940200A (en) * 1999-03-09 2000-09-28 Toto Ltd. Hydrophilic member, method for preparation thereof, and coating agent and apparatus for preparation thereof
JP4029516B2 (en) * 1999-03-18 2008-01-09 株式会社Inax Photocatalytic tile
KR100308818B1 (en) * 1999-04-01 2001-09-26 이계안 Hydrophilic coating glass coated with porous thin layer of TiO2
JP4345941B2 (en) * 1999-04-16 2009-10-14 ベック株式会社 Coating method
US6485838B1 (en) 1999-05-21 2002-11-26 Jsr Corporation Coating composition, and a coated film and glass each having a coating layer comprised thereof
JP2000334309A (en) * 1999-05-25 2000-12-05 Shinichi Harigai Photocatalyst
FR2794225B3 (en) * 1999-05-25 2001-06-15 Saint Gobain Vitrage REFRIGERATED ENCLOSURE DOOR WITH VACUUM WINDOWS
JP2000334308A (en) * 1999-05-25 2000-12-05 Shinichi Harigai Cafrrier for photocatalyst and photocatalyst using the same
JP4513141B2 (en) * 1999-06-21 2010-07-28 パナソニック株式会社 air purifier
JP4507302B2 (en) * 1999-08-10 2010-07-21 凸版印刷株式会社 High refractive index composition
EP1081108B1 (en) 1999-09-02 2004-02-25 Central Glass Company, Limited Article with photocatalytic film
JP2001080974A (en) * 1999-09-08 2001-03-27 Fuji Photo Film Co Ltd Composite base plate material and method for producing the same
JP4675535B2 (en) * 1999-10-01 2011-04-27 日本曹達株式会社 Photocatalyst transfer sheet
JP2001164117A (en) * 1999-12-07 2001-06-19 Toppan Printing Co Ltd High-refractive-index composition and antireflection laminate
TW468053B (en) * 1999-12-14 2001-12-11 Nissan Chemical Ind Ltd Antireflection film, process for forming the antireflection film, and antireflection glass
WO2001059441A1 (en) * 2000-02-07 2001-08-16 Organo Corporation Electric conductometer, electrode for measuring electric conductivity, and method for producing the same
US8632583B2 (en) 2011-05-09 2014-01-21 Palmaz Scientific, Inc. Implantable medical device having enhanced endothelial migration features and methods of making the same
US6866937B2 (en) 2000-08-22 2005-03-15 Central Glass Company, Limited Glass plate with oxide film and process for producing same
KR100631104B1 (en) * 2000-11-03 2006-10-02 한국유리공업주식회사 Hydrophilic glass coated with metal oxide and method for producing it
JP2002159910A (en) * 2000-11-27 2002-06-04 Cleanup Corp Method for forming photocatalytic coating film on surface of base material
JP4755756B2 (en) * 2000-12-20 2011-08-24 日本テトラパック株式会社 Photocatalytic material
US6645569B2 (en) 2001-01-30 2003-11-11 The Procter & Gamble Company Method of applying nanoparticles
KR20030085017A (en) * 2001-03-21 2003-11-01 가부시키가이샤 브리지스톤 Method for forming antifouling coating and antifouling material having antifouling coating
JP2002285036A (en) * 2001-03-23 2002-10-03 Seiichi Rengakuji Photocatalyst supported aluminum material and its manufacturing method
KR100393733B1 (en) * 2001-03-28 2003-08-06 홍국선 Ceramic Compositions for superhydrophilic coating and its manufacturing method
US6827966B2 (en) * 2001-05-30 2004-12-07 Novartis Ag Diffusion-controllable coatings on medical device
EP1434607A1 (en) * 2001-10-11 2004-07-07 Straumann Holding AG Osteophilic implants
JP2003135228A (en) * 2001-11-02 2003-05-13 Sanyo Electric Co Ltd Low temperature show case
US20050050925A1 (en) * 2002-02-14 2005-03-10 Je Byoung Soo Door for washing machne and method for manufacturing the same
US6938546B2 (en) 2002-04-26 2005-09-06 Mitsubishi Heavy Industries, Ltd. Printing press, layered formation and making method thereof, and printing plate and making method thereof
EP1518601A4 (en) 2002-06-03 2007-12-19 Asahi Chemical Ind Photocatalyst composition
JP4169557B2 (en) * 2002-09-19 2008-10-22 旭化成ケミカルズ株式会社 Photocatalyst
JP4069369B2 (en) 2002-09-25 2008-04-02 信越化学工業株式会社 Antireflection film and method of manufacturing antireflection film
AU2003272710B2 (en) 2002-09-26 2008-05-15 Vactronix Scientific, Llc Implantable materials having engineered surfaces and method of making same
US8268340B2 (en) 2002-09-26 2012-09-18 Advanced Bio Prosthetic Surfaces, Ltd. Implantable materials having engineered surfaces and method of making same
US8679517B2 (en) 2002-09-26 2014-03-25 Palmaz Scientific, Inc. Implantable materials having engineered surfaces made by vacuum deposition and method of making same
JP2003231204A (en) * 2002-12-09 2003-08-19 Toto Ltd Functional material and functional coating composition
JP3707737B2 (en) * 2003-03-06 2005-10-19 重岡 誠司 Outdoor heat exchanger
DE10325768A1 (en) * 2003-06-05 2004-12-23 Chemetall Gmbh Coating system for glass surfaces, process for its production and its application
JP4493290B2 (en) * 2003-06-23 2010-06-30 菊治 山下 Artificial biomaterial and method for producing the same
US20050040151A1 (en) 2003-08-20 2005-02-24 Robert Dyrdek Heated side window glass
JP2005096336A (en) * 2003-09-26 2005-04-14 Lintec Corp Process film for ceramic green sheet production and its production method
JP2005186353A (en) * 2003-12-25 2005-07-14 Murakami Corp Anti-fogging element
JP4995428B2 (en) * 2004-03-10 2012-08-08 東海旅客鉄道株式会社 Titanium oxide coating formation method
JP2008510186A (en) * 2004-08-10 2008-04-03 日本板硝子株式会社 LCD mirror system and method
JP4758086B2 (en) * 2004-09-09 2011-08-24 タキロン株式会社 Construction structure using a sealing material used for polycarbonate resin parts with photocatalytic function
AU2005287016B2 (en) 2004-09-20 2012-04-12 Agc Flat Glass North America, Inc. Anti-fog refrigeration door and method of making the same
JP2006091249A (en) 2004-09-22 2006-04-06 Murakami Corp Camera
WO2006070395A1 (en) * 2004-12-28 2006-07-06 Council Of Scientific And Industrial Research Photocatalytic auto-cleaning process of stains
US7709552B2 (en) * 2005-02-18 2010-05-04 Nippon Soda Co., Ltd. Organic/inorganic composite
WO2006090631A1 (en) 2005-02-24 2006-08-31 Central Research Institute Of Electric Power Industry Multifunctional material
KR100954176B1 (en) 2005-02-24 2010-04-20 자이단호징 덴료쿠추오켄큐쇼 Process for producing multifunctional material
JP4771359B2 (en) * 2005-02-28 2011-09-14 財団法人電力中央研究所 Playground equipment
JP4807722B2 (en) * 2005-02-28 2011-11-02 財団法人電力中央研究所 Manufacturing method for environmentally resistant equipment
JP4807723B2 (en) * 2005-02-28 2011-11-02 財団法人電力中央研究所 Manufacturing method of heat-resistant member
JP4958029B2 (en) * 2005-02-28 2012-06-20 一般財団法人電力中央研究所 Building materials
JP4541929B2 (en) * 2005-02-28 2010-09-08 財団法人電力中央研究所 Flying object
JP4814534B2 (en) * 2005-02-28 2011-11-16 財団法人電力中央研究所 Manufacturing method of structural materials
JP4807724B2 (en) * 2005-02-28 2011-11-02 財団法人電力中央研究所 Rail vehicle manufacturing method
JP4995425B2 (en) * 2005-02-28 2012-08-08 一般財団法人電力中央研究所 Irrigation apparatus, irrigation member, manufacturing method thereof, and irrigation system
JP4843231B2 (en) * 2005-02-28 2011-12-21 財団法人電力中央研究所 Kitchen products
JP4807725B2 (en) * 2005-02-28 2011-11-02 財団法人電力中央研究所 Manufacturing method of energy generating equipment
JP4480014B2 (en) * 2005-02-28 2010-06-16 財団法人電力中央研究所 Rocket parts
JP2006247760A (en) * 2005-03-08 2006-09-21 Disco Abrasive Syst Ltd Machining apparatus
TW200631899A (en) 2005-03-09 2006-09-16 Tokai Ryokaku Tetsudo Kk Titanium oxide-coating agent, and forming method for titanium oxide-coating film
JP4659494B2 (en) * 2005-03-23 2011-03-30 株式会社ミクニ Infrared transmitting window material, infrared sensor unit, and combustion apparatus
US7757629B2 (en) * 2005-04-14 2010-07-20 Transitions Optical, Inc. Method and apparatus for coating an optical article
KR100796718B1 (en) * 2005-08-10 2008-01-21 요시노리 나카가와 Method for manufacturing photoelectro-chemical cell and photoelectro-chemical cell
JP3795515B1 (en) 2005-08-10 2006-07-12 善典 中川 Manufacturing method of semiconductor photoelectrochemical cell
WO2007052815A1 (en) * 2005-11-04 2007-05-10 Tokuyama Corporation Coater
JP5004561B2 (en) * 2005-11-30 2012-08-22 株式会社トクヤマ Coating equipment
GB0602933D0 (en) 2006-02-14 2006-03-22 Pilkington Automotive Ltd Vehicle glazing
EP1829991A1 (en) * 2006-03-02 2007-09-05 UGINE & ALZ FRANCE Stainless steel plate coated with self-cleaning coating.
JP2007247166A (en) * 2006-03-14 2007-09-27 Sumitomo Chemical Co Ltd Road mirror
JP2007262498A (en) * 2006-03-28 2007-10-11 National Institute Of Advanced Industrial & Technology Color-controlled titanium alloy bolt and nut
JP4849525B2 (en) * 2006-04-04 2012-01-11 花王株式会社 Resin composition
JP2007277935A (en) * 2006-04-07 2007-10-25 Sekisui Jushi Co Ltd Indicating body for road
JP2008013833A (en) * 2006-07-07 2008-01-24 National Institute Of Advanced Industrial & Technology Titanium alloy member which develops controlled color
JP4966614B2 (en) * 2006-09-14 2012-07-04 Mkvドリーム株式会社 Agricultural film
JP2008114760A (en) * 2006-11-06 2008-05-22 Asahi Glass Co Ltd Vehicle with anti-fogging glass and set of vehicle window glass
JP4823045B2 (en) * 2006-12-12 2011-11-24 旭化成ケミカルズ株式会社 Water-based photocatalytic composition
JP2008184357A (en) * 2007-01-30 2008-08-14 National Institute Of Advanced Industrial & Technology Method of making surface of oxide amphiphilic
JP5064817B2 (en) * 2007-01-30 2012-10-31 トヨタ自動車株式会社 Method for preventing contamination of automobile wheel and automobile wheel
US7659226B2 (en) 2007-02-26 2010-02-09 Envont Llc Process for making photocatalytic materials
JP2008260667A (en) * 2007-04-13 2008-10-30 Univ Of Electro-Communications Method for manufacturing titanium oxide thin film and resin product with titanium oxide thin film
KR100809030B1 (en) * 2007-05-08 2008-03-03 주식회사 에임하이글로벌 Board for road facilities and preparation method thereof
JP2009002979A (en) * 2007-06-19 2009-01-08 Mitsubishi Electric Corp Video display device and its manufacturing method
JP5510911B2 (en) * 2007-08-17 2014-06-04 株式会社伸興サンライズ Composite interior coating material for buildings
JP2007327071A (en) * 2007-08-23 2007-12-20 Kawasaki Heavy Ind Ltd Method for producing hydrophilic coating composition
JP2009090641A (en) 2007-09-20 2009-04-30 Fujifilm Corp Anticlouding cover and cover for meter using it
JP5705398B2 (en) * 2007-12-05 2015-04-22 トヨタ自動車株式会社 Vehicle wheels and wheel caps
JP5145023B2 (en) * 2007-12-19 2013-02-13 住友軽金属工業株式会社 Fin material for heat exchanger and manufacturing method thereof
JP4993745B2 (en) * 2007-12-28 2012-08-08 株式会社アルバック Deposition equipment
US7910085B2 (en) 2007-12-28 2011-03-22 Tdk Corporation Process for production of iron oxyhydroxide particles
JP2009185107A (en) * 2008-02-04 2009-08-20 Pialex Technologies Corp Hydrophilic coating material and hydrophilic coated object
KR101104262B1 (en) * 2008-12-31 2012-01-11 주식회사 노루홀딩스 Article wih self-cleaning effect and method of preparation thereof
JP5267308B2 (en) * 2009-04-28 2013-08-21 信越化学工業株式会社 Photocatalyst coating liquid that provides a photocatalytic thin film excellent in photoresponsiveness and the photocatalytic thin film
US20110008612A1 (en) * 2009-07-10 2011-01-13 Korea University Research And Business Foundation Self-cleaning surfaces
JP5365501B2 (en) * 2009-12-24 2013-12-11 平岡織染株式会社 Non-flammable interior illuminated signboard
JP5365500B2 (en) * 2009-12-24 2013-12-11 平岡織染株式会社 Non-flammable interior illuminated signboard
JP5411791B2 (en) * 2010-04-23 2014-02-12 三菱レイヨン株式会社 Manufacturing method of laminated resin plate
CN101830644B (en) * 2010-05-14 2012-11-14 中国科学院上海技术物理研究所 High-stability car coated glass membrane system
JP5810294B2 (en) * 2010-07-27 2015-11-11 パナソニックIpマネジメント株式会社 Rainwater collecting wall material
WO2012014893A1 (en) 2010-07-29 2012-02-02 Toto株式会社 Inorganic material comprising photocatalyst layer, method for producing same, and photocatalyst coating liquid for inorganic material
JP5835219B2 (en) 2010-07-29 2015-12-24 Toto株式会社 Photocatalyst-coated body and photocatalyst coating liquid
JP5848351B2 (en) * 2010-09-28 2016-01-27 ダウ グローバル テクノロジーズ エルエルシー Reactive flow static mixer with crossflow obstruction
JP2012086104A (en) * 2010-10-15 2012-05-10 Asahi Kasei Chemicals Corp Photocatalyst composition
JP2012087213A (en) * 2010-10-19 2012-05-10 Nippon Parkerizing Co Ltd Hydrophilic film for metal material, hydrophilization-treating agent, and hydrophilization-treating method
US8728563B2 (en) 2011-05-03 2014-05-20 Palmaz Scientific, Inc. Endoluminal implantable surfaces, stents, and grafts and method of making same
JP6083811B2 (en) * 2011-08-18 2017-02-22 株式会社インパクト Information display board
JP2013096959A (en) * 2011-11-04 2013-05-20 Shiyouichi Yoshino Radioactive decontamination method
JP5250685B2 (en) * 2011-11-25 2013-07-31 パナソニック株式会社 Camera cover and camera
KR20130118456A (en) * 2012-04-20 2013-10-30 호서대학교 산학협력단 Ozone contactor with static mixer
JP6171275B2 (en) * 2012-07-02 2017-08-02 大日本印刷株式会社 Transparent film and method for producing the same
JP6028495B2 (en) * 2012-09-27 2016-11-16 Toto株式会社 Photocatalyst member
CN102923836A (en) * 2012-11-15 2013-02-13 常州大学 Method for treating washing wastewater by using composite-film modified sintered gangue ceramsite
JP6105998B2 (en) * 2013-03-26 2017-03-29 パナホーム株式会社 Method for producing photocatalyst composition and method for producing photocatalyst
CN105732125B (en) * 2013-11-30 2018-03-13 国网河南省电力公司平顶山供电公司 A kind of porcelain and glass insulator low-temperature resistance coating
WO2015119192A1 (en) * 2014-02-05 2015-08-13 旭硝子株式会社 Laminated glass production method
CN104047343A (en) * 2014-06-20 2014-09-17 欧士玺 Mobile toilet capable of recycling water
CN106574165B (en) 2014-07-30 2018-10-19 三菱综合材料株式会社 Hydrophilic oil-repellent agent and its manufacturing method and surface covering material, coated film, resin combination, water-oil separating filter material, porous body
CN106659948B (en) 2014-07-30 2019-08-16 三菱综合材料株式会社 Filter material, the manufacturing method of filter material, water process module and water treatment facilities
JP6461573B2 (en) 2014-07-30 2019-01-30 三菱マテリアル株式会社 Oil / water separator / collector
US10364360B2 (en) 2014-07-30 2019-07-30 Mitsubishi Materials Corporation Surface coating material, coating film, and hydrophilic oil repellent member
KR101942261B1 (en) * 2014-09-24 2019-01-28 (주)엘지하우시스 Visible light active photocatalyst tile
KR101642870B1 (en) * 2014-10-21 2016-08-29 가천대학교 산학협력단 Endoscope
JP2016104681A (en) * 2014-12-01 2016-06-09 大日本印刷株式会社 Method for producing laminated glass, and laminated glass
JP6366813B2 (en) * 2015-02-27 2018-08-01 富士フイルム株式会社 Gas separation asymmetric membrane, gas separation module, gas separation device, and gas separation method
CN106580154B (en) * 2015-03-18 2018-11-27 杭州桑莱特卫浴有限公司 The production method of bathroom cabinet and bathroom cabinet
CN104848985B (en) * 2015-06-05 2017-03-08 合肥工业大学 A kind of vacuum detecting method based on infrared laser spectroscopy and system
JP2017090380A (en) * 2015-11-16 2017-05-25 株式会社デンソーウェーブ Laser radar device, window member for laser radar device, and control program for laser radar device
CN105349042A (en) * 2015-11-20 2016-02-24 杨京广 Silicon carbide coating and use method thereof
CN105444486A (en) * 2015-12-31 2016-03-30 广西路桥工程集团有限公司 Multi-way valve circulation system for cooling system
JP6811415B2 (en) * 2016-01-29 2021-01-13 パナソニックIpマネジメント株式会社 urinal
CN105694688B (en) * 2016-03-16 2017-09-26 曲阜师范大学 A kind of fast preparation method of high intensity super-hydrophobic coat
JP2017165612A (en) * 2016-03-16 2017-09-21 Towa株式会社 Translucent material, low adhesion material and molding member
CN107313490A (en) * 2016-04-26 2017-11-03 厦门致杰智能科技有限公司 A kind of Split intelligent toilet seat
CN105860692A (en) * 2016-04-29 2016-08-17 南京晨光艺术工程有限公司 Self-cleaning Buddha statue
CN106242314A (en) * 2016-08-23 2016-12-21 张洪建 A kind of glass copper-plating technique
CN108261086A (en) * 2017-01-03 2018-07-10 佛山市顺德区美的电热电器制造有限公司 The preparation method of Anti-fog mirror, cooking apparatus and Anti-fog mirror
JP6814473B2 (en) * 2017-02-28 2021-01-20 国立大学法人東北大学 Photocatalytic functional member and its manufacturing method
JP6428864B2 (en) * 2017-07-03 2018-11-28 大日本印刷株式会社 Transparent film and method for producing the same
KR102138411B1 (en) * 2017-07-07 2020-07-27 주식회사 엘지화학 Coating composition including the same, organic light emitting device using the same and method of manufacturing the same
JP2019070247A (en) * 2017-10-06 2019-05-09 スリーエム イノベイティブ プロパティズ カンパニー Window film
MX2023000863A (en) * 2018-01-30 2023-03-01 Viavi Solutions Inc Optical device having optical and mechanical properties.
CN108383396A (en) * 2018-02-27 2018-08-10 张家港外星人新材料科技有限公司 The double-deck film glass with anti-reflection film and antistatic automatically cleaning film and its preparation method
CN110157224A (en) * 2018-03-14 2019-08-23 成都今天化工有限公司 A method of preparing nano ceramics anti-pollution flashover coating
JP2019158247A (en) * 2018-03-14 2019-09-19 株式会社デンソー Heat exchanger
PL425045A1 (en) * 2018-03-28 2019-10-07 Uniwersytet Jagielloński Method for producing nanoporous semiconducting layers of metal oxides
KR101917149B1 (en) 2018-05-17 2018-11-09 주식회사 대수하이테크 Anti-fouling coating composition having excellent weatherability
JP7086744B2 (en) * 2018-06-22 2022-06-20 株式会社東芝 Camera system
JP7329909B2 (en) * 2018-06-28 2023-08-21 小林製薬株式会社 Coating agent for toilet bowl
JP2020069684A (en) * 2018-10-30 2020-05-07 三井化学株式会社 Multilayer structure
JP7290938B2 (en) * 2018-12-11 2023-06-14 イビデン株式会社 Manufacturing method of cover for infrared detection element
JP7499561B2 (en) 2018-12-28 2024-06-14 ホヤ レンズ タイランド リミテッド Manufacturing method of eyeglass lenses
CN109667139B (en) * 2018-12-31 2021-06-29 盐城工学院 Anti-ultraviolet self-cleaning composition and preparation method and application thereof
JP6901186B2 (en) * 2019-04-03 2021-07-14 株式会社ワンアンドオンリー Antistatic agent / antistatic method / antistatic coating film and antistatic layer forming resin composition / antistatic method
US11747272B2 (en) 2019-06-10 2023-09-05 Analog Devices, Inc. Gas detection using differential path length measurement
CN112811829A (en) * 2020-04-30 2021-05-18 法国圣戈班玻璃公司 Antifogging glass, vehicle and method for manufacturing antifogging glass
US11821836B2 (en) 2020-07-13 2023-11-21 Analog Devices, Inc. Fully compensated optical gas sensing system and apparatus
CN112143299B (en) * 2020-09-24 2022-02-01 南京长江涂料有限公司 Long-acting self-cleaning high-weatherability fluorocarbon coating and preparation method thereof
CN116235016A (en) * 2020-10-21 2023-06-06 三菱电机株式会社 Heat exchanger and method for manufacturing heat exchanger
CN113311444B (en) * 2021-06-22 2022-08-02 山东高速建设管理集团有限公司 Water film identification and treatment device and use method thereof
CN113462273A (en) * 2021-06-29 2021-10-01 广东康伴新材料科技有限公司 High-wear-resistance high-hand-sensitivity rubber coating and preparation method thereof

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211321B2 (en) * 1972-04-11 1977-03-30
JPS49124166A (en) * 1973-02-07 1974-11-27
JPS5826052A (en) * 1981-08-06 1983-02-16 Asahi Glass Co Ltd Glass body provided with alkali diffusion preventing silicon oxide film
JPS59145808A (en) * 1983-02-09 1984-08-21 財団法人鉄道総合技術研究所 Cloudiness-proof road mirror
JPS60151250A (en) * 1984-01-12 1985-08-09 Matsushita Electric Ind Co Ltd Enamel film backed phosphor
JPS60210641A (en) * 1984-02-22 1985-10-23 Unitika Ltd Antifogging plastic molding
JPS6183106A (en) * 1984-10-01 1986-04-26 Giken Kogyo Kk Method of preventing contamination of surface of solid material to be brought into contact with water
JPS6191042A (en) * 1984-10-08 1986-05-09 Toyota Motor Corp Anti-fogging glass and its production
JPS61133125A (en) * 1984-11-29 1986-06-20 Tsutomu Kagitani Denitration process using ultraviolet ray
JPS621750A (en) * 1985-06-27 1987-01-07 Toray Silicone Co Ltd Room temperature curing organopolysiloxane composition
JPH0647668B2 (en) * 1985-12-16 1994-06-22 三菱化成ビニル株式会社 Anti-fog composition
JPH0615407B2 (en) * 1986-05-07 1994-03-02 株式会社資生堂 Optical semiconductor and its manufacturing method
JPS635301A (en) * 1986-06-25 1988-01-11 Matsushita Electric Works Ltd Reflecting mirror
JPS6363726A (en) * 1986-09-05 1988-03-22 Nippon Shokubai Kagaku Kogyo Co Ltd Composition for surface treatment
JPS6381176A (en) * 1986-09-24 1988-04-12 Yoshio Ichikawa Composition for coating
JPS63100042A (en) * 1986-10-14 1988-05-02 Nippon Sheet Glass Co Ltd Glass article difficult-to be dirtied
JPS63246167A (en) * 1987-04-02 1988-10-13 チタン工業株式会社 White deodorant and its production
JPH01169866A (en) * 1987-12-25 1989-07-05 Hitachi Ltd Discharge lamp
JPH06102155B2 (en) * 1988-02-29 1994-12-14 株式会社日立製作所 Deodorant, deodorant manufacturing method, deodorizing method, deodorizing device, and refrigeration cycle device equipped with this deodorizing device
JP2856754B2 (en) * 1989-02-17 1999-02-10 株式会社東芝 Ultraviolet-suppressed luminescence source, coating agent for ultraviolet-suppressed luminescence source, and method for producing ultraviolet-suppressed luminescence source
JPH0787891B2 (en) * 1989-04-14 1995-09-27 日本ゼオン株式会社 Removing agent and method for removing oxidizable harmful substances
JPH0330314U (en) * 1989-07-31 1991-03-26
DE4023267A1 (en) * 1990-07-21 1992-01-23 Hoechst Ag PLATE, FILM OR TAPE-BASED CARRIER MATERIAL FOR OFFSET PRINT PLATES, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE
JP2618287B2 (en) * 1990-11-06 1997-06-11 日本ゼオン株式会社 Photoreactive harmful substance remover and harmful substance removal method using the same
JPH04206201A (en) * 1990-11-29 1992-07-28 Honda Motor Co Ltd Resin lens headlamp for vehicle
JPH04225301A (en) * 1990-12-27 1992-08-14 Seiko Epson Corp Optical product having clouding preventive performance
JP3224865B2 (en) * 1991-08-14 2001-11-05 東レ合成フィルム株式会社 Agricultural coating film and method for producing the same
JP2883761B2 (en) * 1991-12-06 1999-04-19 工業技術院長 Antibacterial growth inhibitor
JP2913966B2 (en) * 1991-12-10 1999-06-28 市光工業株式会社 Vehicle lighting
JPH05209072A (en) * 1992-01-29 1993-08-20 Japan Synthetic Rubber Co Ltd Method for treating substrate surface
JPH05232566A (en) * 1992-02-24 1993-09-10 Olympus Optical Co Ltd Optical member
JP3340149B2 (en) * 1992-04-28 2002-11-05 セントラル硝子株式会社 Hydrophilic coating and method for forming the coating
JPH06293519A (en) * 1992-07-28 1994-10-21 Ishihara Sangyo Kaisha Ltd Production of titanium oxide particles and film
JP3036247B2 (en) * 1992-08-14 2000-04-24 東陶機器株式会社 Lighting equipment
JPH06190340A (en) * 1992-09-11 1994-07-12 Sekisui Jushi Co Ltd Coated metal body
JPH06278241A (en) * 1992-09-22 1994-10-04 Takenaka Komuten Co Ltd Building material
DE4235996A1 (en) * 1992-10-24 1994-04-28 Degussa Titanium dioxide mixed oxide produced by flame hydrolysis, process for its preparation and use
JP3316048B2 (en) * 1992-11-06 2002-08-19 株式会社竹中工務店 Building material and manufacturing method thereof
JP3496229B2 (en) * 1993-02-19 2004-02-09 日本電池株式会社 Method for producing photocatalyst body
JP2878922B2 (en) * 1993-03-04 1999-04-05 シャープ株式会社 In-vehicle camera device
JPH06266289A (en) * 1993-03-10 1994-09-22 Dainippon Ink & Chem Inc Manufacture of durable display body
JPH06315614A (en) * 1993-03-11 1994-11-15 Agency Of Ind Science & Technol Method for removing contaminants and cleaning material
JPH085660B2 (en) * 1993-04-13 1996-01-24 工業技術院長 Method for producing silica gel containing titanium oxide ultrafine particles dispersed therein
AU676299B2 (en) * 1993-06-28 1997-03-06 Akira Fujishima Photocatalyst composite and process for producing the same
JP3115745B2 (en) * 1993-07-12 2000-12-11 富士写真フイルム株式会社 Photosensitive material
JPH0751646A (en) * 1993-08-12 1995-02-28 Ishihara Sangyo Kaisha Ltd Method for cleaning off contaminant on solid matter surface
JP3279755B2 (en) * 1993-08-24 2002-04-30 松下精工株式会社 Photocatalyst and method for supporting photocatalyst
JP3499585B2 (en) * 1993-09-21 2004-02-23 日揮ユニバーサル株式会社 Ethylene decomposition photocatalyst
JP2517874B2 (en) * 1993-09-30 1996-07-24 工業技術院長 Method for producing titanium oxide thin film photocatalyst
JP3334767B2 (en) * 1993-10-20 2002-10-15 日新製鋼株式会社 Building materials with moisture absorption and release functions
JP2602022Y2 (en) * 1993-11-25 1999-12-20 旭光学工業株式会社 Dew condensation removal device in camera
JPH07149520A (en) * 1993-11-29 1995-06-13 Hoya Corp Coating composition
JPH07164607A (en) * 1993-12-13 1995-06-27 Mitsubishi Chem Corp Agricultural film
JPH07168001A (en) * 1993-12-15 1995-07-04 Nikon Corp Mildew-proofing optical equipment
JP3488496B2 (en) * 1993-12-21 2004-01-19 日揮ユニバーサル株式会社 Poison-resistant deodorizing photocatalyst
JP3391543B2 (en) * 1993-12-27 2003-03-31 花王株式会社 Hydrophilizing agent and hydrophilizing method
JP2883000B2 (en) * 1994-03-29 1999-04-19 三菱重工業株式会社 Automobile sound insulation wall cleaning device
JP3693363B2 (en) * 1994-03-30 2005-09-07 松下エコシステムズ株式会社 Supporting method for forming a photocatalyst layer
JPH07331120A (en) * 1994-06-10 1995-12-19 Hitachi Ltd Coating for removing nitrogen oxide and its use
JP2832239B2 (en) * 1994-06-21 1998-12-09 三井金属鉱業株式会社 Lighting equipment with photocatalytic function
JPH0810576A (en) * 1994-07-05 1996-01-16 Ebara Res Co Ltd Removing method of harmful gas and device therefor
JPH08119673A (en) * 1994-10-21 1996-05-14 Kansai Paint Co Ltd Hydrophilization treatment of glass
JPH08277147A (en) * 1995-03-31 1996-10-22 Nippon Muki Co Ltd Plate glass
JPH09129012A (en) * 1995-03-31 1997-05-16 Toshiba Lighting & Technol Corp Photocatalyst, fluorescent lamp and luminaire
JP3101537B2 (en) * 1995-05-10 2000-10-23 ワイケイケイ株式会社 Antifouling building material and exterior building material unit
JPH0929103A (en) * 1995-05-17 1997-02-04 Toshiba Lighting & Technol Corp Photocatalytic body, photocatalytic device, light source and lightening equipment
JPH08313705A (en) * 1995-05-22 1996-11-29 Seiko Epson Corp Anti-clouding article and its production
JP3127827B2 (en) * 1995-06-14 2001-01-29 東陶機器株式会社 Anti-fog seal
EP1955768A1 (en) * 1995-06-19 2008-08-13 Nippon Soda Co., Ltd. Photocatalyst-carrying structure and photocatalyst coating material
JPH0990889A (en) * 1995-09-27 1997-04-04 Toshiba Lighting & Technol Corp Sign body and externally illuminated sign device
JPH09173783A (en) * 1995-10-27 1997-07-08 Matsushita Electric Ind Co Ltd Sheet glass and resin plate and their production and method for removing contaminant
JP4237830B2 (en) * 1995-12-20 2009-03-11 日本曹達株式会社 Photocatalyst-carrying lighting fixture
JPH09231821A (en) * 1995-12-22 1997-09-05 Toto Ltd Luminaire and method for maintaining illuminance

Also Published As

Publication number Publication date
JP3277983B2 (en) 2002-04-22
JP3588205B2 (en) 2004-11-10
JPH09228602A (en) 1997-09-02
JP3743075B2 (en) 2006-02-08
JPH09227156A (en) 1997-09-02
JP2002302646A (en) 2002-10-18
JP3613084B2 (en) 2005-01-26
JPH09230107A (en) 1997-09-05
JPH09241038A (en) 1997-09-16
JP2000127289A (en) 2000-05-09
JPH09226531A (en) 1997-09-02
JP3882625B2 (en) 2007-02-21
JPH09228320A (en) 1997-09-02
JPH09229724A (en) 1997-09-05
JPH09232096A (en) 1997-09-05
JP3003593B2 (en) 2000-01-31
JPH09227832A (en) 1997-09-02
JP3063968B2 (en) 2000-07-12
JPH09225021A (en) 1997-09-02
JP2000141537A (en) 2000-05-23
JP3189682B2 (en) 2001-07-16
JP2001049829A (en) 2001-02-20
JPH09230106A (en) 1997-09-05
JPH09228545A (en) 1997-09-02
JPH09225396A (en) 1997-09-02
JPH09230810A (en) 1997-09-05
JPH09231499A (en) 1997-09-05
JPH09227160A (en) 1997-09-02
JP3348613B2 (en) 2002-11-20
JP3612896B2 (en) 2005-01-19
JPH09231821A (en) 1997-09-05
JPH09229546A (en) 1997-09-05
JP3588206B2 (en) 2004-11-10
JPH09224960A (en) 1997-09-02
JP2001089752A (en) 2001-04-03
JPH09224800A (en) 1997-09-02
JP2001122679A (en) 2001-05-08
JPH09228057A (en) 1997-09-02
JPH09224490A (en) 1997-09-02
JPH09227161A (en) 1997-09-02
JP3003581B2 (en) 2000-01-31
JPH09228332A (en) 1997-09-02
JPH09224874A (en) 1997-09-02
JPH09225388A (en) 1997-09-02
JP3339304B2 (en) 2002-10-28
JPH09230031A (en) 1997-09-05
JPH09230118A (en) 1997-09-05
JPH09231849A (en) 1997-09-05
JPH09228765A (en) 1997-09-02
JPH09230108A (en) 1997-09-05
JP2001049828A (en) 2001-02-20
JP3760509B2 (en) 2006-03-29
JPH09225054A (en) 1997-09-02
JP2001081948A (en) 2001-03-27
JPH09224793A (en) 1997-09-02
JPH09226040A (en) 1997-09-02
JP3414365B2 (en) 2003-06-09
JPH09226042A (en) 1997-09-02
JP3173391B2 (en) 2001-06-04
JPH09230119A (en) 1997-09-05
JPH09230493A (en) 1997-09-05
JP3141802B2 (en) 2001-03-07
JP2001048679A (en) 2001-02-20
JPH09229767A (en) 1997-09-05
JPH09228326A (en) 1997-09-02
JP2001129916A (en) 2001-05-15
JP3774955B2 (en) 2006-05-17
JPH09228134A (en) 1997-09-02
JP3303696B2 (en) 2002-07-22
JP3740736B2 (en) 2006-02-01
JPH09225389A (en) 1997-09-02
JPH09230796A (en) 1997-09-05
JPH09225276A (en) 1997-09-02
JPH09224957A (en) 1997-09-02
JPH09227169A (en) 1997-09-02
JPH09227162A (en) 1997-09-02
JPH09226060A (en) 1997-09-02
JP3588202B2 (en) 2004-11-10
JP3414367B2 (en) 2003-06-09
JPH09231807A (en) 1997-09-05
JP3465664B2 (en) 2003-11-10
JPH09229585A (en) 1997-09-05
JPH09228331A (en) 1997-09-02
JP3613085B2 (en) 2005-01-26
JPH09227159A (en) 1997-09-02
JPH09226041A (en) 1997-09-02
JPH09228022A (en) 1997-09-02
JP2000136370A (en) 2000-05-16
JP2003113345A (en) 2003-04-18
JP3075195B2 (en) 2000-08-07
JPH09225263A (en) 1997-09-02
JPH09225387A (en) 1997-09-02
JP2002030258A (en) 2002-01-31
JPH09227178A (en) 1997-09-02
JPH09227805A (en) 1997-09-02
JPH09227831A (en) 1997-09-02
JP3697795B2 (en) 2005-09-21
JP3844182B2 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
JP3385850B2 (en) Composite material with hydrophilicity
Watanabe et al. Photocatalytic activity and photo-induced wettability conversion of TiO2 thin film prepared by sol-gel process on a soda-lime glass
EP1712530B1 (en) Method of cleaning a substrate having an ultrahydrophilic and photocatalytic surface
JP4092714B1 (en) Photocatalyst-coated body and photocatalyst coating liquid therefor
JP4995428B2 (en) Titanium oxide coating formation method
US20110236284A1 (en) Photocatalyst-coated body and photocatalytic coating liquid
JP2865065B2 (en) Composite with hydrophilic surface
JP2000303027A (en) Photocatalytic hydrophilic coating composition
JP2001303276A (en) Enamel material
JPH10212809A (en) Building material for external wall
JP3972080B2 (en) Automobile and its painting method
JP4501562B2 (en) SUBSTRATE WITH LAMINATED FILM AND METHOD FOR PRODUCING THE SAME
JP3129194B2 (en) Antifouling crystallized glass
JP2002079109A (en) Optical semiconductor metal-organic substance mixed body, composition containing optical semiconductor metal, method for producing photocatalytic film and photocatalytic member
JP2001070801A (en) Base material provided with highly durable photocatalyst film and production process of the same
JPH1060665A (en) Hydrophilic coating film and its production
JPH10102722A (en) Building material for antifouling external wall
JPH10100901A (en) Antifouling rolling stock
JPH10193524A (en) Facing plate for road
JPH10212139A (en) Window glass for construction
JPH10211680A (en) Membrane structural material
JPH10102448A (en) Antifouling road facing board
JP2001146491A (en) Photo-catalytic hydrophilic tile
JPH10196249A (en) Blind
JPH10195822A (en) Balustrade

Legal Events

Date Code Title Description
S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

Free format text: JAPANESE INTERMEDIATE CODE: R314533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080110

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

S211 Written request for registration of transfer of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314211

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140110

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140110

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140110

Year of fee payment: 11

EXPY Cancellation because of completion of term