JP2007187583A - Optical path length measuring device and specific component measuring device using it - Google Patents

Optical path length measuring device and specific component measuring device using it Download PDF

Info

Publication number
JP2007187583A
JP2007187583A JP2006006683A JP2006006683A JP2007187583A JP 2007187583 A JP2007187583 A JP 2007187583A JP 2006006683 A JP2006006683 A JP 2006006683A JP 2006006683 A JP2006006683 A JP 2006006683A JP 2007187583 A JP2007187583 A JP 2007187583A
Authority
JP
Japan
Prior art keywords
magnetic field
optical path
path length
biological sample
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006006683A
Other languages
Japanese (ja)
Inventor
Tatsuro Kawamura
達朗 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006006683A priority Critical patent/JP2007187583A/en
Publication of JP2007187583A publication Critical patent/JP2007187583A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To precisely measure optical path length that is easily varied in a living body and is difficult to be measured depending on the part of the living body. <P>SOLUTION: A magnetic field is applied to the living body, the optical path length L is calculated based on the rotation angle θ of the rotation in the polarization direction by the Faraday effect of the living body itself, the intensity H of the magnetic field, and the Verdet constant V of the living body. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、生体試料を伝搬する光の光路長を求めたり、生体試料中の特定成分の濃度を計測する技術に関する。   The present invention relates to a technique for obtaining an optical path length of light propagating through a biological sample or measuring a concentration of a specific component in the biological sample.

従来、被検試料に光を照射し、透過した特定波長の光の強度を検出することで、被検試料中の特定成分の濃度を計測していた。この場合、下記の式(2):
I=I0×exp(−A×C×L) ・・・(2)
(式(2)中、I0:照射する光の強度
I:透過光の強度
L:被検試料中を光が伝搬した距離(光路長)
C:特定成分の濃度
A:特定波長に対する特定成分の吸光係数)
により濃度を算出していた。即ち、Iを計測し、I0、L及びAから特定成分の濃度Cを算出する。従って、濃度を算出するには、あらかじめ光路長Lが判明している必要がある。
Conventionally, the concentration of a specific component in a test sample has been measured by irradiating the test sample with light and detecting the intensity of the transmitted light having a specific wavelength. In this case, the following formula (2):
I = I 0 × exp (−A × C × L) (2)
(In the formula (2), I 0 : intensity of irradiated light
I: Intensity of transmitted light
L: Distance (light path length) that light propagates through the test sample
C: Specific component concentration
A: Absorption coefficient of a specific component for a specific wavelength)
Was used to calculate the concentration. That is, I is measured, and the concentration C of the specific component is calculated from I 0 , L, and A. Therefore, in order to calculate the concentration, it is necessary to know the optical path length L in advance.

ここで、例えば耳たぶ等の生体試料に光を照射し、透過光を測定することにより、人体の外部からグルコース等の濃度を算出する、いわゆる非侵襲測定の可能な定量分析装置が提案されている(例えば、特許文献1参照)。
ここでは、光路長を確定させるとともに、一定にするために、生体試料を一定厚みでクランプする機械的な部材を用いることが開示されている。
特開2001−356089号公報
Here, for example, a quantitative analysis apparatus capable of so-called non-invasive measurement is proposed that calculates the concentration of glucose or the like from the outside of a human body by irradiating a biological sample such as an earlobe and measuring transmitted light. (For example, refer to Patent Document 1).
Here, it is disclosed that a mechanical member that clamps a biological sample with a constant thickness is used in order to determine the optical path length and make it constant.
JP 2001-356089 A

しかしながら、被検試料が生体の場合は、一定厚みでクランプすると、その挟み圧力によって生体試料本来の状態を保持できなくなる場合があり、特定成分の濃度を正確に計測することができなくなるおそれがある。より具体的には、挟み圧力によって血流や圧力が変化し、生体組織中の成分濃度が変化するため、当該成分濃度を正確に計測できなくなるおそれがある。例えば、静脈中の血糖値が変化すると、細胞間質液のグルコース濃度もやや遅れて変化するが、この遅れの度合いに影響を及ぼすことも考えられる。
また、長時間クランプすると、被検者が不快感を感じるため、常時連続計測を行うことが困難になることもあった。更に、眼球及びその周辺のように、クランプすることが困難な部位で計測を行いたい場合もあるが、上記特許文献1記載の技術では正確には計測できない。
そこで、生体試料の厚みが一定になるような大きさの挟み圧力を生体試料に印加しないで、生体試料の光路長を測定することが好ましい。
However, when the test sample is a living body, if it is clamped at a certain thickness, the original state of the biological sample may not be maintained due to the pinching pressure, and the concentration of the specific component may not be accurately measured. . More specifically, the blood flow and pressure change due to the pinching pressure, and the component concentration in the living tissue changes, so that there is a possibility that the component concentration cannot be measured accurately. For example, when the blood glucose level in the vein changes, the glucose concentration in the cell interstitial fluid also changes with a slight delay, but this may affect the degree of this delay.
Further, when the clamp is performed for a long time, the subject feels uncomfortable, and it may be difficult to perform continuous measurement at all times. Furthermore, there are cases where it is desired to perform measurement at a site that is difficult to clamp, such as the eyeball and its surroundings, but the technique described in Patent Document 1 cannot be measured accurately.
Therefore, it is preferable to measure the optical path length of the biological sample without applying a pinching pressure having such a size that the thickness of the biological sample is constant.

しかし、生体試料の厚みが一定になるような大きさの挟み圧力を印加せずに、ノギス等により生体試料を挟んで光路長を測定する場合、生体試料を挟む圧力により生体試料の厚みが変化するため、光路長を正確に測定することは困難であった。   However, when the optical path length is measured with a biological sample sandwiched between calipers or the like without applying a pinching pressure of a size that keeps the thickness of the biological sample constant, the thickness of the biological sample changes due to the pressure pinching the biological sample. Therefore, it is difficult to accurately measure the optical path length.

そこで本発明は、上記従来の課題に鑑み、生体試料の厚みが一定になるような大きさの挟み圧力を生体試料に印加することなく、生体試料の光路長を正確に算出することの可能な光路長計測装置を提供することを目的とする。また、本発明は、求められた生体試料の光路長を用いて、生体試料中の特定成分の濃度を正確に算出することの可能な特定成分計測装置を提供することを目的とする。   Therefore, in view of the above-described conventional problems, the present invention can accurately calculate the optical path length of a biological sample without applying a pinching pressure of a size that makes the thickness of the biological sample constant. An object is to provide an optical path length measuring device. Another object of the present invention is to provide a specific component measuring apparatus capable of accurately calculating the concentration of a specific component in a biological sample using the obtained optical path length of the biological sample.

上記課題を解決すべく、本発明は、直線偏光した光を生体試料に投射する光源と、生体試料に磁場を印加する磁場印加部と、磁場を制御する磁場制御部と、磁場制御部を制御する磁場制御信号を発生させる磁場制御信号発生部と、生体試料を透過した前記光のうち、特定の偏光方向の成分を透過させる検光子と、検光子を透過した上記成分を検知し、上記検知に応じた信号を出力する光センサと、磁場制御信号及び光センサの出力信号に基づいて生体試料中を伝搬する直線偏光した光の光路長を算出する演算部と、を備えた光路長計測装置を提供する。
さらに、本発明は、先に述べた本発明の光路長計測装置を備えた特定成分計測装置も提供する。
In order to solve the above problems, the present invention controls a light source that projects linearly polarized light onto a biological sample, a magnetic field application unit that applies a magnetic field to the biological sample, a magnetic field control unit that controls the magnetic field, and a magnetic field control unit. A magnetic field control signal generating unit that generates a magnetic field control signal to be detected; an analyzer that transmits a component in a specific polarization direction among the light transmitted through the biological sample; and the component that is transmitted through the analyzer is detected, and the detection is performed. An optical path length measuring device comprising: an optical sensor that outputs a signal corresponding to the signal; and an arithmetic unit that calculates an optical path length of linearly polarized light propagating through the biological sample based on the magnetic field control signal and the output signal of the optical sensor. I will provide a.
Furthermore, the present invention also provides a specific component measuring apparatus provided with the optical path length measuring apparatus of the present invention described above.

本発明の光路長計測装置によると、生体試料の厚みが一定になるような大きさの挟み圧力を生体試料に印加することなく、生体試料の光路長を正確に算出することができる。また、本発明の特定成分計測装置によると、求められた生体試料の光路長を用いて、生体試料中の特定成分の濃度を正確に算出することができる。   According to the optical path length measuring device of the present invention, the optical path length of a biological sample can be accurately calculated without applying a pinching pressure of a size that makes the thickness of the biological sample constant. Moreover, according to the specific component measuring apparatus of the present invention, the concentration of the specific component in the biological sample can be accurately calculated using the obtained optical path length of the biological sample.

本発明の光路長計測装置は、生体試料に光を照射し同時に生体試料に磁場を印加しファラデー効果によって光の偏光方向を所定角度回転させ、印加した磁場強度より光路長を算出する。また、本発明の特定成分計測装置は、求められた生体試料の光路長を用いて、生体試料中の特定成分の濃度を算出する。
即ち、本発明によれば、生体試料に光を照射し同時に生体試料に磁場を印加することで、生体試料をクランプ等で拘束することなく非接触で生体試料の光路長や特定成分の濃度を計測することができる。
The optical path length measurement apparatus of the present invention irradiates a biological sample with light, simultaneously applies a magnetic field to the biological sample, rotates the polarization direction of the light by a predetermined angle by the Faraday effect, and calculates the optical path length from the applied magnetic field strength. Moreover, the specific component measuring apparatus of the present invention calculates the concentration of the specific component in the biological sample using the obtained optical path length of the biological sample.
That is, according to the present invention, by applying light to a biological sample and simultaneously applying a magnetic field to the biological sample, the optical path length of the biological sample and the concentration of a specific component can be adjusted in a non-contact manner without restraining the biological sample by clamping or the like. It can be measured.

本発明において、光を照射する生体の部位としては、例えば腕、指、耳及び目等が挙げられる。
また、生体試料中に含まれる特定成分であって、本発明による計測の対象となる特定成分としては、例えばグルコース、ヘモグロビン及びアルブミン等が挙げられる。
In the present invention, examples of the part of the living body that emits light include an arm, a finger, an ear, and an eye.
Examples of the specific component contained in the biological sample and to be measured by the present invention include glucose, hemoglobin, and albumin.

本発明の光路長計測装置は、直線偏光した光を生体試料に投射する光源と、生体試料に磁場を印加する磁場印加部と、磁場を制御する磁場制御部と、磁場制御部を制御する磁場制御信号を発生させる磁場制御信号発生部と、生体試料を透過した光のうち、特定の偏光方向の成分を透過させる検光子と、検光子を透過した上記成分を検知し、上記検知に応じた信号を出力する光センサと、磁場制御信号及び光センサの出力信号に基づいて生体試料中を伝搬する上記直線偏光した光の光路長を算出する演算部と、を有する。   The optical path length measurement device of the present invention includes a light source that projects linearly polarized light onto a biological sample, a magnetic field application unit that applies a magnetic field to the biological sample, a magnetic field control unit that controls the magnetic field, and a magnetic field that controls the magnetic field control unit. A magnetic field control signal generation unit that generates a control signal, an analyzer that transmits a component of a specific polarization direction among light transmitted through a biological sample, and the component that transmits the analyzer, and detects the component according to the detection An optical sensor that outputs a signal; and an arithmetic unit that calculates an optical path length of the linearly polarized light propagating through the biological sample based on the magnetic field control signal and the output signal of the optical sensor.

ここで、前記磁場制御部は、光センサの出力信号が極大値及び極小値を示すまで前記磁場を掃引し、前記演算部は、光センサの出力信号が極大値を示す際の磁場制御信号の強度と光センサの出力信号が極小値を示す際の磁場制御信号の強度との差に基づき光路長を算出することが好ましい。
また、前記演算部は、前記磁場制御信号のうちn個の離散的な磁場制御信号Xi(iは整数)を選択し、さらに前記磁場制御信号Xiに対応するn個の前記光センサの出力信号Yi(iは整数)を選択し、前記n個のXi及び前記n個のYiを、式(1):
Y=α+β×(Sin((X/γ)−δ))2 ・・・(1)
(式(1)中、Yは光センサの出力信号を示す変数、α、β、γ及びδは算出された定数、Xは磁場制御信号に相当する変数)で示される回帰方程式を用いて最小2乗計法の原理に基づいて回帰処理してα、β、γ及びδを算出し、前記γより前記生体試料中を伝搬する前記直線偏光した光の光路長を算出するのが好ましい。
また、本発明の光路長計測装置は、光源から出射される光の強度を変調させるための信号を発生させ出力する信号発生器と、光センサの出力信号を信号発生器の出力信号を参照信号として位相敏感検波し、その検波に応じた信号を出力するロックインアンプとをさらに備え、ロックインアンプの出力信号を光センサの出力信号とすることが好ましい。
本発明の特定成分計測装置は、上記の光路長計測装置と、α又はβに基づいて生体試料中の吸光度を算出し、吸光度、生体試料中に含まれている特定成分の吸光係数、及びγより算出された生体試料の光路長から、生体試料における特定成分の濃度を算出する濃度演算部とを備えることが好ましい。
Here, the magnetic field control unit sweeps the magnetic field until the output signal of the optical sensor shows a local maximum value and a local minimum value, and the arithmetic unit calculates a magnetic field control signal when the output signal of the optical sensor shows a local maximum value. It is preferable to calculate the optical path length based on the difference between the intensity and the intensity of the magnetic field control signal when the output signal of the optical sensor shows a minimum value.
In addition, the arithmetic unit selects n discrete magnetic field control signals Xi (i is an integer) from among the magnetic field control signals, and further outputs n optical sensor output signals corresponding to the magnetic field control signals Xi. Yi (i is an integer) is selected, and the n Xi and the n Yi are represented by the formula (1):
Y = α + β × (Sin ((X / γ) −δ)) 2 (1)
(Equation (1) where Y is a variable indicating the output signal of the optical sensor, α, β, γ and δ are calculated constants, and X is a variable corresponding to the magnetic field control signal). It is preferable to calculate α, β, γ, and δ by regression processing based on the principle of the square method, and to calculate the optical path length of the linearly polarized light propagating in the biological sample from the γ.
The optical path length measuring device of the present invention also includes a signal generator for generating and outputting a signal for modulating the intensity of light emitted from the light source, and an output signal of the optical sensor as a reference signal. It is preferable to further include a lock-in amplifier that performs phase-sensitive detection and outputs a signal corresponding to the detection, and the output signal of the lock-in amplifier is used as the output signal of the optical sensor.
The specific component measuring apparatus of the present invention calculates the absorbance in the biological sample based on the above optical path length measuring apparatus and α or β, and the absorbance, the extinction coefficient of the specific component contained in the biological sample, and γ It is preferable to include a concentration calculation unit that calculates the concentration of the specific component in the biological sample from the calculated optical path length of the biological sample.

以下に、本発明の光路長計測装置及び特定成分計測装置が利用する原理について説明する。
物質中に光を伝搬させ、その伝搬方向に磁場を印加すると、いわゆる磁気旋光により光の偏光方向が伝搬にしたがって回転する。この現象を光ファラデー効果と呼ぶ。この光ファラデー効果は、次の式(3):
Θ=V×H×L ・・・(3)
(式(3)中、Θ:偏光方向の回転角度[分]、
V:物質のベルデの定数[分/A]
H:磁場[A/m]
L:光路長[m])
で表される。
この式(3)のVは、物質、光の波長、温度によって異なる。各種の物質のVの一例を以下の表1に示す。
The principle used by the optical path length measuring device and the specific component measuring device of the present invention will be described below.
When light is propagated in a substance and a magnetic field is applied in the propagation direction, the polarization direction of the light is rotated according to the propagation by so-called magnetic rotation. This phenomenon is called the optical Faraday effect. This optical Faraday effect is expressed by the following equation (3):
Θ = V × H × L (3)
(In the formula (3), Θ: rotation angle of polarization direction [minute],
V: Verde constant of matter [min / A]
H: Magnetic field [A / m]
L: Optical path length [m])
It is represented by
V in this formula (3) varies depending on the substance, the wavelength of light, and the temperature. An example of V of various substances is shown in Table 1 below.

Figure 2007187583
Figure 2007187583

この光ファラデー効果を利用したものに、従来の技術で用いられている光ファラデー変調器がある。これは、棒状のフリントガラスにソレノイドコイルを巻きこれに電流を流すことによって磁場を印加して、磁場方向に伝搬する光の偏光方向を変調するものである。ソレノイドコイルに流す電流を制御することによって、自由に偏光方向を制御することができる。
このように、光ファラデー効果によって、物質に磁場を印加すると、偏光方向を制御することができる。これは、表1からもわかるように、水、クロロホルム、アセトンなどにおいても同じである。また、水を主成分とする生体も同様である。
An optical Faraday modulator used in the prior art is one that uses this optical Faraday effect. In this method, a solenoid coil is wound around a rod-shaped flint glass to apply a magnetic field by passing a current through the solenoid coil, thereby modulating the polarization direction of light propagating in the magnetic field direction. The polarization direction can be freely controlled by controlling the current flowing through the solenoid coil.
Thus, the polarization direction can be controlled by applying a magnetic field to a substance by the optical Faraday effect. As can be seen from Table 1, this is the same for water, chloroform, acetone and the like. The same applies to a living body mainly composed of water.

ここでの、磁場印加部としては、光の伝搬方向に磁場を印加するソレノイドコイル、磁石などがある。この磁場の変調は、ソレノイドコイルに流す電流を変調するか、磁石と被検試料までの距離を変調することで、可能になる。
上記のように、物質に磁場を印加して、この磁場を制御することによって、偏光方向を制御することができることが、例えば特許第3072040号公報に示されている。
Examples of the magnetic field application unit include a solenoid coil and a magnet that apply a magnetic field in the light propagation direction. This magnetic field can be modulated by modulating the current flowing through the solenoid coil or by modulating the distance between the magnet and the test sample.
As described above, for example, Japanese Patent No. 3072040 discloses that the polarization direction can be controlled by applying a magnetic field to a substance and controlling the magnetic field.

ここで、上記式(3)は次のように式(4):
L=Θ/(V×H) ・・・(4)
に変換することができる。
式(4)から明らかなように、Θを所定角度回転させ、その時のHと物質のVよりLが算出できる。
このように、生体などの被検試料に磁場を印加し、生体自身のファラデー効果により回転した偏光方向の回転角度Θと磁場の強度Hと、生体のベルデの定数Vより光路長Lが算出できる。
Here, the above equation (3) is converted into the following equation (4):
L = Θ / (V × H) (4)
Can be converted to
As is clear from Equation (4), L can be calculated from H at that time and V of the substance by rotating Θ by a predetermined angle.
In this way, the optical path length L can be calculated from the rotation angle Θ of the polarization direction rotated by the Faraday effect of the living body itself, the intensity H of the magnetic field, and the constant V of the Verde of the living body by applying a magnetic field to a test sample such as a living body. .

以下において、図面を参照しながら、本発明の実施の形態について説明する。より具体的には、まず生体試料の代わりに被検試料として純水を用いて本発明の光路長計測原理を説明し、ついで、生体試料の代わりに被検試料としてグルコース水溶液を用いて本発明の特定成分の濃度計測原理を説明する。
本実施の形態の光路長計測装置及び特定成分計測装置を実施するための構成を図1に示す。図1に示すように、本実施の形態の光路長計測装置及び特定成分計測装置は、特定成分の吸光波長の光を発する光源1から、略平行光2を生体試料(ないしは被検試料)に照射する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. More specifically, first, the optical path length measurement principle of the present invention will be described using pure water as a test sample instead of a biological sample, and then the present invention will be described using an aqueous glucose solution as the test sample instead of the biological sample. The principle of measuring the concentration of specific components will be described.
A configuration for carrying out the optical path length measuring device and the specific component measuring device of the present embodiment is shown in FIG. As shown in FIG. 1, the optical path length measurement device and the specific component measurement device according to the present embodiment are configured to convert a substantially parallel light 2 from a light source 1 that emits light having an absorption wavelength of a specific component into a biological sample (or test sample). Irradiate.

光源1は、例えばランプ等の白色発光デバイス、特定波長の光のみを抽出する回折格子又は光学フィルターなどの分光デバイス、略平行光にするレンズ系、及び光を断続し略平行光を強度変調するチョッパーで構成する。
また、光源1としては、半導体レーザ又はLED等の発光デバイス、レンズ及び駆動回路を一体化して含む投射モジュールを用いてもよい。
The light source 1 is, for example, a white light emitting device such as a lamp, a spectroscopic device such as a diffraction grating or an optical filter that extracts only light of a specific wavelength, a lens system that makes substantially parallel light, and intermittently intensifies light to modulate the intensity of the substantially parallel light Consists of choppers.
Further, as the light source 1, a projection module including a light emitting device such as a semiconductor laser or an LED, a lens, and a driving circuit may be used.

被検試料を保持するサンプルセル20は、円筒型部材3、及び二色性を有し直線偏光の光を透過するポーラロイド板4、5で構成されている。被検試料中の略平行光2の光路長はLである。
ポーラロイド板4は略平行光2が被検試料へ入射する入射面を構成し、また、ポーラロイド板5は略平行光2が被検試料より出射する出射面を構成する。
また、ポーラロイド板4は偏光方向が紙面に平行な光を透過する偏光子として、ポーラロイド板5は偏光方向が紙面に垂直な光を透過する透過する偏光子として機能している。ここでは入射面および出射面が透過させる光の偏光方向の相対角度Dはπ/2である。
A sample cell 20 for holding a test sample is composed of a cylindrical member 3 and polaroid plates 4 and 5 having dichroism and transmitting linearly polarized light. The optical path length of the substantially parallel light 2 in the test sample is L.
The polaroid plate 4 constitutes an incident surface on which the substantially parallel light 2 enters the test sample, and the polaroid plate 5 constitutes an exit surface on which the substantially parallel light 2 exits from the test sample.
Further, the polaroid plate 4 functions as a polarizer that transmits light whose polarization direction is parallel to the paper surface, and the polaroid plate 5 functions as a polarizer that transmits light whose polarization direction is perpendicular to the paper surface. Here, the relative angle D of the polarization direction of the light transmitted through the entrance surface and the exit surface is π / 2.

円筒型部材3を構成する材料は特に制限されず、光透過性を有していても有していなくてもよい。
なお、被検試料中での略平行光2の伝搬距離(光路長)に比べて入射面、出射面での伝搬距離は、十分に小さい。
サンプルセル20をはさんで、略平行光2の周囲に巻かれたソレノイドコイル6で、サンプルセル中の被検試料に磁場を印加する。この磁場は、略平行光2の伝搬方向に印加され、その強度は被検試料中の略平行光2の光路内において実質的に均一である。さらに、磁場の強度はソレノイドコイル6に流す電流に比例する。
The material constituting the cylindrical member 3 is not particularly limited, and may or may not have light transmittance.
Note that the propagation distances at the entrance surface and the exit surface are sufficiently smaller than the propagation distance (optical path length) of the substantially parallel light 2 in the test sample.
A magnetic field is applied to the test sample in the sample cell by the solenoid coil 6 wound around the substantially parallel light 2 with the sample cell 20 interposed therebetween. This magnetic field is applied in the propagation direction of the substantially parallel light 2 and its intensity is substantially uniform in the optical path of the substantially parallel light 2 in the test sample. Further, the strength of the magnetic field is proportional to the current flowing through the solenoid coil 6.

また、本実施の形態の光路長計測装置は、ソレノイドコイル6に電流Jを流す駆動器7、出射面を出射した光を検知する光センサ8、光源1を制御し略平行光2を強度変調する変調信号を発生する信号発生器(即ち、光源から出射される光の強度を変調させるための信号を発生させ出力する信号発生器)9、光センサ8の出力信号を信号発生器9の出力信号を参照信号として位相敏感検波するロックインアンプ10、及び駆動器7に指令信号を発しかつロックインアンプ10の出力信号を記録解析するコンピュータ(演算部及び制御部を含む)11を具備する。
ここで、ソレノイドコイル6が本発明の磁場印加部、駆動器7が本発明の磁場制御部、ポーラロイド板5が本発明の検光子、コンピュータ11が本発明の演算部及び磁場制御信号発生部に相当する。
In addition, the optical path length measuring device of the present embodiment controls the intensity of the parallel light 2 by controlling the driver 7 for passing the current J through the solenoid coil 6, the optical sensor 8 for detecting the light emitted from the emission surface, and the light source 1. A signal generator (that is, a signal generator that generates and outputs a signal for modulating the intensity of light emitted from the light source) 9 and an output signal of the optical sensor 8 are output from the signal generator 9. A lock-in amplifier 10 that performs phase-sensitive detection using the signal as a reference signal, and a computer (including a calculation unit and a control unit) 11 that issues a command signal to the driver 7 and records and analyzes the output signal of the lock-in amplifier 10 are provided.
Here, the solenoid coil 6 is the magnetic field application unit of the present invention, the driver 7 is the magnetic field control unit of the present invention, the polaroid plate 5 is the analyzer of the present invention, and the computer 11 is the arithmetic unit and the magnetic field control signal generation unit of the present invention. It corresponds to.

上記のような構成によれば、被検試料中において略平行光2の偏光方向は、ソレノイドコイルに流された電流Jに比例してΘ回転する。その際の光センサ8に到達する略平行光2の強度即ちロックインアンプ10の出力信号Sは式(5):
S=E+F×(Sin(Θ−δ))2
=E+F×(Sin((V×k×J×L)−δ))2 ・・・(5)
(式(5)中、E:Θ=0(J=0)の時のロックインアンプ10の出力信号
F:Θ=π/2の時のロックインアンプ10の出力信号からEを引いた値
k:比例定数
δ:被検試料中における磁場によらない偏光方向の回転)
で表される。
According to the above configuration, the polarization direction of the substantially parallel light 2 in the test sample rotates Θ in proportion to the current J flowing through the solenoid coil. The intensity of the substantially parallel light 2 reaching the optical sensor 8 at that time, that is, the output signal S of the lock-in amplifier 10 is expressed by the following equation (5):
S = E + F × (Sin (Θ−δ)) 2
= E + F × (Sin ((V × k × J × L) −δ)) 2 (5)
(In the formula (5), the output signal of the lock-in amplifier 10 when E: Θ = 0 (J = 0)
F: Value obtained by subtracting E from the output signal of the lock-in amplifier 10 when Θ = π / 2
k: Proportional constant
δ: Polarization direction rotation in the test sample independent of the magnetic field)
It is represented by

なお、Eは、ポーラロイド板4、5が理想的で、被検試料中で偏光解消が発生しなかった場合はゼロであり、Fは、被検試料の透過率に相当する。
また、本実施の形態では、略平行光2を強度変調しているため、光センサ8に到達する略平行光2の強度はロックインアンプの出力信号で示される。ただし、本発明においては略平行光2を強度変調しなくてもよい。略平行光2を強度変調しない場合、光センサ8に到達する略平行光2の強度を示すものとして光センサ8の出力信号を用いてもよい。
Note that E is zero when the polaroid plates 4 and 5 are ideal and depolarization does not occur in the test sample, and F corresponds to the transmittance of the test sample.
In this embodiment, since the intensity of the substantially parallel light 2 is modulated, the intensity of the substantially parallel light 2 reaching the optical sensor 8 is indicated by an output signal of the lock-in amplifier. However, in the present invention, the intensity of the substantially parallel light 2 need not be modulated. When the intensity of the substantially parallel light 2 is not modulated, the output signal of the optical sensor 8 may be used to indicate the intensity of the substantially parallel light 2 that reaches the optical sensor 8.

本実施の形態の光路長計測装置及び特定成分計測装置の作用を、被検試料として純水又はグルコース水溶液を用い、光路長Lが5cmである場合について説明する。
光源1はグルコース水溶液中のグルコースが吸収する波長の光を発する。コンピュータ11は駆動器7に指令信号を発し、ソレノイドコイル6に流す電流を−10A〜+10Aまで掃引する。このときのロックインアンプ10の出力信号を図2に示す。
図2において、横軸はソレノイドコイル6に流す電流J(A)を示し、縦軸はロックインアンプ10の出力信号(任意値)を示している。また、図2には、被検試料である純水について21個の計測点において計測を行った結果がプロットされている。
The operation of the optical path length measurement device and the specific component measurement device according to the present embodiment will be described in the case where pure water or an aqueous glucose solution is used as a test sample and the optical path length L is 5 cm.
The light source 1 emits light having a wavelength that is absorbed by glucose in the aqueous glucose solution. The computer 11 issues a command signal to the driver 7 to sweep the current flowing through the solenoid coil 6 from -10A to + 10A. The output signal of the lock-in amplifier 10 at this time is shown in FIG.
In FIG. 2, the horizontal axis indicates the current J (A) flowing through the solenoid coil 6, and the vertical axis indicates the output signal (arbitrary value) of the lock-in amplifier 10. FIG. 2 plots the results of measurement at 21 measurement points for pure water as the test sample.

ここで、各計測点を計測点Pi(Xi,Yi)として割り当てる(この場合、iは1〜21の整数)。Xiは各点の電流Jを示し、Yiは各点のロックインアンプの出力信号を示す。そして、これら21個の計測点Pi(Xi,Yi)のXi及びYiを、上記式(1)に示す回帰方程式で最小2乗計法の原理に基づいて回帰処理し、α、β、γ及びδを算出する。その結果、以下の値が得られる。
α=8.9×10-5
β=2.2
γ=586/π
δ=0
これらの数値を上記式(1)に代入して得られる回帰曲線を、X=−600〜600の範囲で描いた図を図3に示す。
Here, each measurement point is assigned as a measurement point Pi (Xi, Yi) (in this case, i is an integer of 1 to 21). Xi represents the current J at each point, and Yi represents the output signal of the lock-in amplifier at each point. Then, Xi and Yi of these 21 measurement points Pi (Xi, Yi) are subjected to regression processing based on the principle of the least squares method with the regression equation shown in the above formula (1), and α, β, γ and δ is calculated. As a result, the following values are obtained.
α = 8.9 × 10 −5
β = 2.2
γ = 586 / π
δ = 0
FIG. 3 shows a diagram in which a regression curve obtained by substituting these numerical values into the above equation (1) is drawn in the range of X = −600 to 600.

ここで、上記式(1)と上記式(5)とを比較すると、以下の式:
L=1/(γ×V×k)=(1/γ)×(1/(V×k))
が得られる。
Vは、被検試料に含まれる物質によって決定することができ、ここでは純水を用いているため上記表1に示すようにVは1.645である。ただし、生体試料のVは、生体試料の主成分が水であるため、1.645に近くやや大きな値(概ね1割以内)をとる。
Here, when the above formula (1) is compared with the above formula (5), the following formula:
L = 1 / (γ × V × k) = (1 / γ) × (1 / (V × k))
Is obtained.
V can be determined by the substance contained in the test sample. Since pure water is used here, V is 1.645 as shown in Table 1 above. However, V of the biological sample takes a slightly large value (approximately within 10%) close to 1.645 because the main component of the biological sample is water.

このようなV値は、例えば以下の方法によっても決定することができる。
(a)動物(眼球等)又は水、タンパク質及び脂肪を用いた擬似生体(ファントム)を作成して、光路長が既知のサンプルセルに入れて計測する方法。
(b)別の方法で光路長を計測し易い部位(腕や指等)で、光路長を確定しておき、Vを計測する方法(例えば図1に示す装置において、サンプルセル20を用いず、指等を配置して計測する方法)。
(c)生体中のグルコース濃度を別途計測(侵襲型で可)しておき、吸光係数及び透過率から上記式(2)を用いて光路長を求めてVを計測する方法。
Such a V value can also be determined by the following method, for example.
(A) A method in which an animal (eyeball or the like) or a simulated living body (phantom) using water, protein, and fat is created and placed in a sample cell having a known optical path length and measured.
(B) A method in which the optical path length is determined at a part (such as an arm or a finger) where the optical path length can be easily measured by another method and V is measured (for example, the sample cell 20 is not used in the apparatus shown in FIG. 1). , How to place a finger etc. and measure).
(C) A method in which the glucose concentration in the living body is separately measured (invasive type is acceptable), and the optical path length is obtained from the light absorption coefficient and transmittance using the above equation (2) to measure V.

また、kはソレノイドコイル6の特性に基づいて決定することができる。より具体的には、例えばソレノイドコイル6の巻き数や長さ等を用いて電磁気学的(公知的)に算出したり、磁場計測機を用いて算出したりすることによって決定することができる。
したがって、上記式(1)及び上記式(5)を用いて、光路長Lを算出することができる。
Further, k can be determined based on the characteristics of the solenoid coil 6. More specifically, it can be determined by, for example, calculating electromagnetically (known) using the number of turns, the length, or the like of the solenoid coil 6 or using a magnetic field measuring machine.
Therefore, the optical path length L can be calculated using the above formula (1) and the above formula (5).

また、ある装置を用いて、同じ生体(同じ人)の同じ測定部位(例えば、指)を計測する場合、即ち、同じ組成の生体試料(被検試料)を計測することになるため、Vは定数とみなすことができ、さらにV×kも定数とみなすことができる。そのため、光路長Lは1/γに比例するものとみなすことができる。
従って、あらかじめ光路長が既知の生体試料を用いてγを求めておけば、光路長が未知の被検試料で算出されたγとの比より、実際の光路長を算出することができる。
Moreover, when measuring the same measurement site | part (for example, finger | toe) of the same biological body (the same person) using a certain apparatus, ie, measuring the biological sample (test sample) of the same composition, V is It can be regarded as a constant, and V × k can also be regarded as a constant. Therefore, the optical path length L can be regarded as being proportional to 1 / γ.
Therefore, if γ is obtained in advance using a biological sample whose optical path length is known, the actual optical path length can be calculated from the ratio with γ calculated for the test sample whose optical path length is unknown.

なお、「光路長が既知の生体試料」における光路長は、別の方法で計測することができる。例えば、別の方法で計測する際、同時に本発明に基づく計測を行ってγを求める(ただし、このとき生体試料の光路長は一定とみなす。)。
別の方法としては、例えばノギス等で機械的に計測する方法等が考えられる。
The optical path length in the “biological sample whose optical path length is known” can be measured by another method. For example, when measuring by another method, measurement based on the present invention is simultaneously performed to obtain γ (however, at this time, the optical path length of the biological sample is considered constant).
As another method, for example, a method of mechanically measuring with a caliper or the like can be considered.

《実施の形態1》
本実施の形態においては、生体試料の代わりに被検試料であるグルコース水溶液(疑似生体試料)を用いて、上述した図1に示す光路長計測装置及び特定成分計測装置を使用した。
Embodiment 1
In the present embodiment, the optical path length measuring device and the specific component measuring device shown in FIG. 1 described above are used by using a glucose aqueous solution (pseudo biological sample) as a test sample instead of the biological sample.

1.光路長の計測
光路長Lを2.5cm、1cm又は0.5cmに設定し、ソレノイドコイル6に流す電流を−10〜+10Aまで掃引し、21個の計測点を用いてγを算出した。その結果を図4に示す。図4において、横軸は光路長(cm)を示し、縦軸は1/γを示す。図4から、光路長Lは1/γに比例することが確認できる。
したがって、図4を検量線として用い、γに基づいて光路長を決定することができる。
1. Measurement of optical path length The optical path length L was set to 2.5 cm, 1 cm, or 0.5 cm, the current passed through the solenoid coil 6 was swept from −10 to +10 A, and γ was calculated using 21 measurement points. The result is shown in FIG. In FIG. 4, the horizontal axis indicates the optical path length (cm), and the vertical axis indicates 1 / γ. From FIG. 4, it can be confirmed that the optical path length L is proportional to 1 / γ.
Therefore, using FIG. 4 as a calibration curve, the optical path length can be determined based on γ.

2.特定成分の計測
次に、光路長Lを5cmに設定し、疑似生体試料として、グルコース濃度が100mg/dl、250mg/dl、及び500mg/dlのグルコース水溶液を用いて、上記と同様にソレノイドコイル6に流す電流を−10〜+10Aまで掃引し、21個の計測点を得た。そして、それぞれ上記と同様に、計測点Pi(Xi,Yi)及び上記式(1)を用いて、回帰曲線式を算出した。
このとき得られたβを純水の際のβ(=2.2)で規格化し(即ち、β=2.2のときを図5における縦軸の1(=100)になるように規格化し)、図5の縦軸に表示した。図5より、βが濃度に依存することが確認できる。
したがって、図5を検量線として用い、算出されたβに基づいて特定成分(グルコース)濃度を求めることができる。
2. Measurement of Specific Component Next, the optical path length L is set to 5 cm, and glucose coils having a glucose concentration of 100 mg / dl, 250 mg / dl, and 500 mg / dl are used as a pseudo biological sample, and the solenoid coil 6 is used in the same manner as described above. The current passed through was swept from −10 to +10 A to obtain 21 measurement points. Then, similarly to the above, a regression curve equation was calculated using the measurement point Pi (Xi, Yi) and the above equation (1).
Β obtained at this time is normalized by β (= 2.2) in the case of pure water (that is, when β = 2.2, it is normalized so that it becomes 1 (= 100) on the vertical axis in FIG. ) And displayed on the vertical axis of FIG. From FIG. 5, it can be confirmed that β depends on the concentration.
Therefore, using FIG. 5 as a calibration curve, the specific component (glucose) concentration can be obtained based on the calculated β.

また、上記式(5)を用いて光路長を算出することができるため、ランベルト−ベアの式を用い、グルコースの吸光係数及びβに基づいて特定成分(グルコース)の濃度を算出してもよい。
この濃度の算出は、以下のようにして行えばよい。この場合は、上記式(2)に示したランベルト−ベアの式において、光路長L、グルコースの吸光係数Aが既知である場合に相当する。したがって、あらかじめ、別の方法で疑似生体試料のグルコース濃度(Cy)を計測すると同時に、上記の本発明の方法でそのときのα及びβ(αy,βy)を求めておく。
Further, since the optical path length can be calculated using the above formula (5), the concentration of the specific component (glucose) may be calculated based on the absorption coefficient of glucose and β using the Lambert-Bear formula. .
This concentration calculation may be performed as follows. This case corresponds to the case where the optical path length L and glucose extinction coefficient A are known in the Lambert-Bear equation shown in the above equation (2). Therefore, the glucose concentration (Cy) of the simulated biological sample is measured in advance by another method, and at the same time, α and β (αy, βy) at that time are obtained by the method of the present invention.

その後、疑似生体試料の濃度Cxを計測する際に、疑似生体試料を上記の本発明の方法で計測し、αx及びβxを求める。これらはそれぞれ、次の式(6)及び式(7)で表される。ただし、Qは定数である。
0×exp(−A×Cy×L)=Q×(αy+βy) ・・・(6)
0×exp(−A×Cx×L)=Q×(αx+βx) ・・・(7)
上記式(7)の両辺を上記式(6)の両辺で割ると、以下の式(8)が得られ、上記式(8)より濃度Cxを算出することができる。
Cx=Cy−(1/(A×L))×Ln((αx+βx)/(αy+βy))
・・・(8)
Thereafter, when the concentration Cx of the pseudo biological sample is measured, the pseudo biological sample is measured by the above-described method of the present invention to obtain αx and βx. These are respectively expressed by the following formulas (6) and (7). However, Q is a constant.
I 0 × exp (−A × Cy × L) = Q × (αy + βy) (6)
I 0 × exp (−A × Cx × L) = Q × (αx + βx) (7)
By dividing both sides of the above equation (7) by both sides of the above equation (6), the following equation (8) is obtained, and the concentration Cx can be calculated from the above equation (8).
Cx = Cy− (1 / (A × L)) × Ln ((αx + βx) / (αy + βy))
... (8)

なお、ここで、αとβは次の式(9)の関係を満足する。
α=s×β ・・・(9)
ここで、sは、同じ生体の同一部位であれば濃度Cに関わらず定数である。式(9)を(8)へ代入すると次の式(10)が得られる。
Cx=Cy−(1/(A×L))×Ln(((s+1)×βx)/((s+1)×βy))
=Cy−(1/(A×L))×Ln(βx/βy) ・・・(10)
上記式(10)で示したように、βのみからでも濃度Cxを算出することができる。
Here, α and β satisfy the relationship of the following formula (9).
α = s × β (9)
Here, s is a constant regardless of the concentration C if it is the same part of the same living body. Substituting equation (9) into (8) yields the following equation (10).
Cx = Cy− (1 / (A × L)) × Ln (((s + 1) × βx) / ((s + 1) × βy))
= Cy- (1 / (A * L)) * Ln ([beta] x / [beta] y) (10)
As shown in the above equation (10), the concentration Cx can be calculated from only β.

以上のように、本実施の形態によれば、被検試料に印加する磁場を掃引し、磁場強度に相当するソレノイドコイルに流す電流とロックインアンプの出力信号の関係から光路長と特定成分の濃度を計測することができる。   As described above, according to the present embodiment, the optical path length and the specific component are determined from the relationship between the current flowing through the solenoid coil corresponding to the magnetic field strength and the output signal of the lock-in amplifier, by sweeping the magnetic field applied to the test sample. Concentration can be measured.

本実施の形態では、ロックインアンプの出力信号が極小値を示す周辺のみで磁場を掃引したが、ロックインアンプの出力信号が極小値から極大値を示す範囲(図3において電流J=0A〜293Aの範囲)で磁場を掃引し、それぞれを示す電流値の差から、光路長を算出し、極小値と極大値の差から濃度を算出してもよい。
ただし、本実施の形態では、ロックインアンプの出力信号が極小値を示す周辺のみで磁場を掃引し、回帰処理することにより上記式(1)に基づいて回帰曲線式を算出したため、ソレノイドコイルに流す電流値を小さくでき、特に小型化に有利である。
In the present embodiment, the magnetic field is swept only in the vicinity where the output signal of the lock-in amplifier exhibits a minimum value, but the range in which the output signal of the lock-in amplifier exhibits a minimum value to a maximum value (in FIG. 3, current J = 0A to In the range of 293A, the magnetic field may be swept, the optical path length may be calculated from the difference between the current values indicating the respective values, and the concentration may be calculated from the difference between the minimum value and the maximum value.
However, in this embodiment, the regression curve equation is calculated based on the above equation (1) by sweeping the magnetic field only around the periphery where the output signal of the lock-in amplifier shows the minimum value, and performing the regression process. The value of the current that flows can be reduced, which is particularly advantageous for downsizing.

また、磁場の掃引範囲も特に制限はされず、例えば極値を含まない範囲で掃引しても本発明の光路長計測装置及び特定成分計測装置を用いて測定を行うことは可能である。
ただし、極値を含む範囲で掃引するほうが、本発明の効果をより確実に得るという観点からは好ましい。特に極小値の場合、磁場を掃引したことによる光センサの出力信号の変化(上記式(1)の第2項)に比べて、光センサに出力信号のオフセット(上記式(1)の第1項)が小さいくなるため、ロックインアンプのゲインを大きくすることができ、かつS/Nを高くすることができ、より正確な計測は可能となり有利である。
Further, the sweep range of the magnetic field is not particularly limited, and for example, it is possible to perform measurement using the optical path length measuring device and the specific component measuring device of the present invention even if sweeping is performed in a range not including the extreme value.
However, sweeping in a range including the extreme value is preferable from the viewpoint of obtaining the effect of the present invention more reliably. In particular, in the case of the minimum value, compared with the change in the output signal of the optical sensor due to the sweeping of the magnetic field (the second term in the above formula (1)), the offset of the output signal (the first in the above formula (1)) ) Is small, it is possible to increase the gain of the lock-in amplifier and increase the S / N, which is advantageous because more accurate measurement is possible.

《実施の形態2》
本実施の形態においては、生体試料として指を用い、後述する図6に示す光路長計測装置及び特定成分計測装置を使用する。
本実施の形態の光路長計測装置及び特定成分計測装置を実施するための構成を図6に示す。図6において符号1、2及び6〜11で示される構成要素は、図1において符号1、2及び6〜11で示される構成要素と同一であり、同様の機能を有している。12は、生体試料である。
<< Embodiment 2 >>
In the present embodiment, a finger is used as a biological sample, and an optical path length measuring device and a specific component measuring device shown in FIG. 6 to be described later are used.
A configuration for carrying out the optical path length measuring device and the specific component measuring device of the present embodiment is shown in FIG. The components indicated by reference numerals 1, 2 and 6-11 in FIG. 6 are the same as the constituent elements indicated by reference numerals 1, 2 and 6-11 in FIG. 1, and have similar functions. Reference numeral 12 denotes a biological sample.

本実施の形態の場合、被検試料が生体試料であるため、二色性を有する。ここで「二色性」とは、同一波長の直線偏光の光でも偏光方向が異なると、吸光度が異なる現象(例えば「生化学辞典 第3版」参照)を意味し、異方性の結晶や高分子を延伸した物質等が示す現象をいう。また、等方性の物質でも圧力が掛かると二色性を示すことがある。
生体の表面にある皮膚は二色性を示し、皮膚の伸縮状態によって二色性の大きさが変化する。生体試料12の表面、即ち皮膚は図1における符号4及び5で示される部分に相当する。
In the case of this embodiment, since the test sample is a biological sample, it has dichroism. Here, “dichroism” means a phenomenon in which the absorbance varies when the polarization direction is different even with linearly polarized light of the same wavelength (see, for example, “Biochemical Dictionary 3rd edition”). This refers to a phenomenon exhibited by a substance drawn from a polymer. Even isotropic materials may exhibit dichroism when pressure is applied.
Skin on the surface of a living body exhibits dichroism, and the size of the dichroism changes depending on the stretched state of the skin. The surface of the biological sample 12, that is, the skin, corresponds to the portions indicated by reference numerals 4 and 5 in FIG.

1.光路長の計測
上記実施の形態1と同様に、光源1はグルコースが吸収する波長の光を発し、コンピュータ11が駆動器7に指令信号を発し、ソレノイドコイル13に流す電流を−20〜20Aまで掃引する。
図7は、ロックインアンプ10の出力信号の電流依存性を示す予測図である。図7において、横軸はソレノイドコイル7に流す電流J(A)を示し、縦軸はロックインアンプ10の出力信号(任意値)を示す。また、図7には、41個の計測点について計測を行った結果がプロットされている。
1. Measurement of optical path length As in the first embodiment, the light source 1 emits light having a wavelength that glucose absorbs, the computer 11 issues a command signal to the driver 7, and the current flowing through the solenoid coil 13 ranges from -20 to 20A. Sweep.
FIG. 7 is a prediction diagram showing the current dependency of the output signal of the lock-in amplifier 10. In FIG. 7, the horizontal axis indicates the current J (A) flowing through the solenoid coil 7, and the vertical axis indicates the output signal (arbitrary value) of the lock-in amplifier 10. In FIG. 7, the results of measurement performed on 41 measurement points are plotted.

ここで、各計測点を計測点Pi(Xi,Yi)して割り当てる(iは1〜41の整数)。Xiは各点の電流Jを示し、Yiは各点のロックインアンプの出力信号を示す。
そして、これら41個の計測点Pi(Xi,Yi)のXi及びYiを、上記式(1)に示す回帰方程式で最小2乗計法の原理に基づいて回帰処理し、α、β、γ及びδを算出する。その結果、以下の値が得られる。
α=0.2
β=0.8
γ=3000/π
δ=0
Here, each measurement point is assigned as a measurement point Pi (Xi, Yi) (i is an integer from 1 to 41). Xi represents the current J at each point, and Yi represents the output signal of the lock-in amplifier at each point.
Then, Xi and Yi of these 41 measurement points Pi (Xi, Yi) are subjected to regression processing based on the principle of the least squares method with the regression equation shown in the above formula (1), and α, β, γ and δ is calculated. As a result, the following values are obtained.
α = 0.2
β = 0.8
γ = 3000 / π
δ = 0

図8は、上記のα、β及びγを用いて図7の横軸を拡大して得られる図である。このγから、生体試料12中での光路長Lを実施の形態1と同様にして算出することができる。
また、この光路長L及びβから、生体試料12中のグルコース濃度を実施の形態1と同様にして算出することができる。
FIG. 8 is a diagram obtained by enlarging the horizontal axis of FIG. 7 using the above α, β, and γ. From this γ, the optical path length L in the biological sample 12 can be calculated in the same manner as in the first embodiment.
Further, the glucose concentration in the biological sample 12 can be calculated from the optical path lengths L and β in the same manner as in the first embodiment.

なお、あらかじめ、生体試料の厚み(=光路長)L0を機械的に計測しておきこのときのγをγ0とする。例えば、指等の場合は、ノギス等の機械的方法で光路長L0を計測すればよい。この方法で計測する際に、同時に本発明で計測することで、γ0を求めておく。
そして、それ以降、グルコース濃度を計測する際には、算出されたγ=γxとを比較することにより、光路長Lxを次の式(10)で示されるように求めてもよい。
x=(γ0/γx)×L0 ・・・(10)
これにより、生体試料の用に厚みが変化する場合でも、そのつど機械的に計測する必要が無くなる。
Note that the thickness (= optical path length) L 0 of the biological sample is mechanically measured in advance, and γ at this time is γ 0 . For example, in the case of a finger or the like, the optical path length L 0 may be measured by a mechanical method such as calipers. When measuring by this method, γ 0 is obtained by simultaneously measuring according to the present invention.
Thereafter, when measuring the glucose concentration, the optical path length L x may be obtained by the following equation (10) by comparing with the calculated γ = γ x .
L x = (γ 0 / γ x ) × L 0 (10)
This eliminates the need for mechanical measurement each time the thickness changes for a biological sample.

ここで、生体試料の厚み(=光路長)が異なる部位の厚みを機械的に計測し、それぞれのγを上記と同様に計測し、図4と同様の検量線を作成してもよい。そして、同時に、生体中のグルコース濃度を別途計測(侵襲型で可)し、その際のβを求めておき、さらに、生体中のグルコースが異なる際においても、同様にβを求めることで、図5と同様の検量線を作成してもよい。
また、同様に、生体試料中のグルコース濃度C0を計測しておき、このときのγをγ0、βを=β0をとする。そして、それ以降、グルコース濃度を計測する際に、算出されたγx及びβxとγ0及びβ0とを比較し、この結果から、C0に基づいてグルコース濃度Cxを算出してもよい。
Here, the thickness of a part having a different biological sample thickness (= optical path length) may be mechanically measured, and each γ may be measured in the same manner as described above to create a calibration curve similar to FIG. At the same time, the glucose concentration in the living body is separately measured (invasive type is possible), β at that time is obtained, and β is similarly obtained even when glucose in the living body is different. A calibration curve similar to 5 may be created.
Similarly, the glucose concentration C 0 in the biological sample is measured, and at this time, γ is γ 0 , and β is = β 0 . Thereafter, when measuring the glucose concentration, the calculated γ x and β x are compared with γ 0 and β 0, and from this result, the glucose concentration C x can be calculated based on C 0. Good.

ここで、図9に、本発明の実施の形態2の光路長計測装置及び特定成分計測装置の変形例を示す。図9に示すように信号発生器及びロックインアンプは必ずしも用いず、光センサ8の出力信号を、ロックインアンプ10の出力信号として用い、上記のように光路長計測装置及び特定成分計測装置を動作させて光路長及び特定成分を計測することも可能である。
ただし、より高いS/Nを確保して、より正確に光路長の計測及び特定成分の計測を行うという観点からは、上記のように信号発生器及びロックインアンプを用いるのが好ましい。
Here, FIG. 9 shows a modification of the optical path length measurement device and the specific component measurement device according to the second embodiment of the present invention. As shown in FIG. 9, the signal generator and the lock-in amplifier are not necessarily used, the output signal of the optical sensor 8 is used as the output signal of the lock-in amplifier 10, and the optical path length measuring device and the specific component measuring device are used as described above. It is also possible to operate and measure the optical path length and specific components.
However, it is preferable to use the signal generator and the lock-in amplifier as described above from the viewpoint of securing a higher S / N and measuring the optical path length and the specific component more accurately.

以上のように、本実施の形態によれば、生体試料に印加する磁場を掃引し、磁場強度に相当するソレノイドコイルに流す電流とロックインアンプの出力信号の関係から光路長と特定成分の濃度を計測することができる。
本実施の形態の場合、生体試料にクランプ等で圧力をかける必要がないため、常時連続計測に有利である。また、光路長の変化にも対応できるため、その実用的効果は極めて大きい。
As described above, according to the present embodiment, the optical path length and the concentration of the specific component are determined from the relationship between the current flowing through the solenoid coil corresponding to the magnetic field strength and the output signal of the lock-in amplifier, by sweeping the magnetic field applied to the biological sample. Can be measured.
In the case of this embodiment, it is not necessary to apply pressure to the biological sample with a clamp or the like, which is advantageous for continuous measurement. Moreover, since it can respond also to the change of optical path length, the practical effect is very large.

なお、実施の形態1及び2に場合は、βより濃度を算出する例を示した。実施の形態1及び2のように、βがαよりも大きい場合(s<1)は、βを用いて濃度を算出する方が高精度化に有利である。
ただし、βがαより小さい場合(s>1)には、βの代わりにαより、上記と同様に濃度を算出した方が有利である。βがαより小さくなった場合としては、被検試料中での偏光解消が大きい場合や生体試料の二色性が小さい場合等が挙げられる。
In the first and second embodiments, an example is shown in which the concentration is calculated from β. As in the first and second embodiments, when β is larger than α (s <1), it is advantageous to increase the accuracy by calculating the concentration using β.
However, when β is smaller than α (s> 1), it is advantageous to calculate the concentration in the same manner as described above from α instead of β. Examples of the case where β is smaller than α include a case where depolarization in the test sample is large and a case where the dichroism of the biological sample is small.

本発明に係る光路長計測装置及び特定成分計測装置は、生体試料の光路長を求めたり、生体試料中の特定成分の濃度を計測する場合に有用である。   The optical path length measurement device and the specific component measurement device according to the present invention are useful when obtaining the optical path length of a biological sample or measuring the concentration of a specific component in a biological sample.

本発明の実施の形態1の光路長計測装置、特定成分計測装置の構成を示す図である。It is a figure which shows the structure of the optical path length measuring apparatus of Embodiment 1 of this invention, and a specific component measuring apparatus. 本発明の実施の形態1においてソレノイドコイルに流す電流とロックインアンプの出力信号との関係を示すグラフである。It is a graph which shows the relationship between the electric current sent through a solenoid coil in Embodiment 1 of this invention, and the output signal of a lock-in amplifier. 本発明の実施の形態1においてソレノイドコイルに流す電流とロックインアンプの出力信号との関係を示すグラフである。It is a graph which shows the relationship between the electric current sent through a solenoid coil in Embodiment 1 of this invention, and the output signal of a lock-in amplifier. 本発明の実施の形態1において、光路長と1/γの関係を示すグラフである。In Embodiment 1 of this invention, it is a graph which shows the relationship between optical path length and 1 / gamma. 本発明の実施の形態1においてグルコース濃度と出力信号(任意値)の対数との関係を示すグラフである。It is a graph which shows the relationship between the glucose level and the logarithm of an output signal (arbitrary value) in Embodiment 1 of this invention. 本発明の実施の形態2の特定成分計測装置の構成を示す図である。It is a figure which shows the structure of the specific component measuring apparatus of Embodiment 2 of this invention. 本発明の実施の形態2においてソレノイドコイルに流す電流とロックインアンプの出力信号との関係を示すグラフである。It is a graph which shows the relationship between the electric current sent through a solenoid coil in Embodiment 2 of this invention, and the output signal of lock-in amplifier. 本発明の実施の形態2においてソレノイドコイルに流す電流とロックインアンプの出力信号との関係を示すグラフである。It is a graph which shows the relationship between the electric current sent through a solenoid coil in Embodiment 2 of this invention, and the output signal of lock-in amplifier. 本発明の実施の形態2の特定成分計測装置の変形例の構成を示す図である。It is a figure which shows the structure of the modification of the specific component measuring apparatus of Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 光源
2 略平行光
3 円筒型部材
4 ポーラロイド板
5 ポーラロイド板
6 ソレノイドコイル
7 駆動器
8 光センサ
9 コンピュータ

DESCRIPTION OF SYMBOLS 1 Light source 2 Parallel light 3 Cylindrical member 4 Polaroid plate 5 Polaroid plate 6 Solenoid coil 7 Driver 8 Optical sensor 9 Computer

Claims (5)

直線偏光した光を生体試料に投射する光源と、
前記生体試料に磁場を印加する磁場印加部と、
前記磁場を制御する磁場制御部と、
前記磁場制御部を制御する磁場制御信号を発生させる磁場制御信号発生部と、
前記生体試料を透過した前記光のうち、特定の偏光方向の成分を透過させる検光子と、
前記検光子を透過した前記成分を検知し、前記検知に応じた信号を出力する光センサと、
前記磁場制御信号及び前記光センサの出力信号に基づいて前記生体試料中を伝搬する前記直線偏光した光の光路長を算出する演算部と、
を備えた光路長計測装置。
A light source that projects linearly polarized light onto a biological sample;
A magnetic field application unit for applying a magnetic field to the biological sample;
A magnetic field controller for controlling the magnetic field;
A magnetic field control signal generator for generating a magnetic field control signal for controlling the magnetic field controller;
Of the light transmitted through the biological sample, an analyzer that transmits a component in a specific polarization direction;
An optical sensor that detects the component transmitted through the analyzer and outputs a signal according to the detection;
An arithmetic unit that calculates an optical path length of the linearly polarized light propagating through the biological sample based on the magnetic field control signal and the output signal of the optical sensor;
An optical path length measuring device.
前記磁場制御部は、前記光センサの出力信号が極大値及び極小値を示すまで前記磁場を掃引し、
前記演算部は、前記光センサの出力信号が極大値を示す際の前記磁場制御信号の強度と前記光センサの出力信号が極小値を示す際の前記磁場制御信号の強度との差に基づき光路長を算出する、
請求項1記載の光路長計測装置。
The magnetic field controller sweeps the magnetic field until the output signal of the optical sensor shows a maximum value and a minimum value,
The arithmetic unit is configured to determine an optical path based on a difference between an intensity of the magnetic field control signal when the output signal of the optical sensor shows a maximum value and an intensity of the magnetic field control signal when the output signal of the optical sensor shows a minimum value. Calculate the length,
The optical path length measuring device according to claim 1.
前記演算部は、前記磁場制御信号のうちn個の離散的な磁場制御信号Xi(iは整数)を選択し、さらに前記磁場制御信号Xiに対応するn個の前記光センサの出力信号Yi(iは整数)を選択し、
前記n個のXi及び前記n個のYiを、式(1):
Y=α+β×(Sin((X/γ)−δ))2 ・・・(1)
(式(1)中、Yは前記光センサの出力信号を示す変数、α、β、γ及びδは算出された定数、Xは前記磁場制御信号に相当する変数)で示される回帰方程式を用いて最小2乗計法の原理に基づいて回帰処理してα、β、γ及びδを算出し、
前記γより前記生体試料中を伝搬する前記直線偏光した光の光路長を算出する、
請求項1記載の光路長計測装置。
The arithmetic unit selects n discrete magnetic field control signals Xi (i is an integer) from the magnetic field control signals, and further outputs n output signals Yi (n) corresponding to the magnetic field control signals Xi. i is an integer),
The n pieces of Xi and the n pieces of Yi are represented by the formula (1):
Y = α + β × (Sin ((X / γ) −δ)) 2 (1)
(Where, Y is a variable indicating the output signal of the optical sensor, α, β, γ, and δ are calculated constants, and X is a variable corresponding to the magnetic field control signal). To calculate α, β, γ and δ by regression based on the principle of least squares method,
Calculating an optical path length of the linearly polarized light propagating in the biological sample from the γ,
The optical path length measuring device according to claim 1.
前記光源から出射される前記光の強度を変調させるための信号を発生させ出力する信号発生器と、
前記光センサの出力信号を前記信号発生器の出力信号を参照信号として位相敏感検波し、前記検波に応じた信号を出力するロックインアンプとをさらに備え、
前記ロックインアンプの出力信号を前記光センサの出力信号とする、
請求項1〜3のいずれかに記載の光路長計測装置。
A signal generator for generating and outputting a signal for modulating the intensity of the light emitted from the light source;
A phase-insensitive detection of the output signal of the optical sensor using the output signal of the signal generator as a reference signal, and a lock-in amplifier that outputs a signal corresponding to the detection; and
The output signal of the lock-in amplifier is the output signal of the photosensor,
The optical path length measuring device according to claim 1.
請求項3に記載の光路長計測装置と、
前記α又は前記βに基づいて前記生体試料中の吸光度を算出し、前記吸光度、前記生体試料中に含まれている特定成分の吸光係数、及び前記γより算出された前記生体試料の光路長から、前記生体試料における前記特定成分の濃度を算出する濃度演算部と、
を備えた特定成分計測装置。




An optical path length measuring device according to claim 3,
Based on the α or β, the absorbance in the biological sample is calculated, from the absorbance, the extinction coefficient of the specific component contained in the biological sample, and the optical path length of the biological sample calculated from the γ A concentration calculator that calculates the concentration of the specific component in the biological sample;
A specific component measuring apparatus.




JP2006006683A 2006-01-13 2006-01-13 Optical path length measuring device and specific component measuring device using it Pending JP2007187583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006006683A JP2007187583A (en) 2006-01-13 2006-01-13 Optical path length measuring device and specific component measuring device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006006683A JP2007187583A (en) 2006-01-13 2006-01-13 Optical path length measuring device and specific component measuring device using it

Publications (1)

Publication Number Publication Date
JP2007187583A true JP2007187583A (en) 2007-07-26

Family

ID=38342844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006006683A Pending JP2007187583A (en) 2006-01-13 2006-01-13 Optical path length measuring device and specific component measuring device using it

Country Status (1)

Country Link
JP (1) JP2007187583A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101995379A (en) * 2010-10-12 2011-03-30 南京邮电大学 Magneto-optic detector for transparent solution concentration
WO2011058987A1 (en) * 2009-11-13 2011-05-19 株式会社堀場製作所 Polarimeter
CN108267699A (en) * 2018-02-11 2018-07-10 文华学院 A kind of Faraday rotation effect measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058987A1 (en) * 2009-11-13 2011-05-19 株式会社堀場製作所 Polarimeter
CN101995379A (en) * 2010-10-12 2011-03-30 南京邮电大学 Magneto-optic detector for transparent solution concentration
CN101995379B (en) * 2010-10-12 2012-06-27 南京邮电大学 Magneto-optic detector for transparent solution concentration
CN108267699A (en) * 2018-02-11 2018-07-10 文华学院 A kind of Faraday rotation effect measuring device

Similar Documents

Publication Publication Date Title
JP3184521B2 (en) Measuring device and measuring system for determining concentration
KR100493154B1 (en) Apparatus of non-invasive measurement of bio-fluid concentration by using photoacoustic spectroscopy
US20110105867A1 (en) Optical sensor for determining the concentration of an analyte
US7248905B2 (en) Method of and apparatus for measuring concentration
US20140291524A1 (en) Information acquiring apparatus and information acquiring method of acquiring information of sample by using terahertz wave
EP2909624B1 (en) Simple sugar concentration sensor and method
JP2010164570A (en) Ingredient concentration measurement method
US8718734B2 (en) Non-invasive polarimetric apparatus and method for analyte sensing in birefringent media
US9829479B2 (en) Photoacoustic imaging device and oxygen saturation measurement method
KR20160130770A (en) Measurement device and measurement method
JPH11123195A (en) Living body measurement method and device
JPH10108857A (en) Biochemical measuring device
JPH11183377A (en) Optical content meter
JP2007187583A (en) Optical path length measuring device and specific component measuring device using it
WO2019225612A1 (en) Blood vessel detection device and method therefor
JP2007259913A (en) Apparatus and method for measuring component concentration
JP3308173B2 (en) Urine test method and urine test apparatus used therefor
JP4925278B2 (en) Optical biological information measuring method and apparatus
WO2001022871A9 (en) Optical glucose sensor apparatus and method
US10533838B2 (en) Visualization systems and methods for optimized optical coherence tomography
WO2019211993A1 (en) Component concentration measuring device
RU2295915C2 (en) Noninvasive method for measuring optically active substances concentrations in blood
US20120252131A1 (en) Biological material analyzer and biological material analysis method
JP4507372B2 (en) Urinalysis device
US10299706B2 (en) Method of noninvasive measurement of blood glucose concentrations and apparatus for the implementation thereof