JP2007187374A - Continuous calcination furnace - Google Patents

Continuous calcination furnace Download PDF

Info

Publication number
JP2007187374A
JP2007187374A JP2006004868A JP2006004868A JP2007187374A JP 2007187374 A JP2007187374 A JP 2007187374A JP 2006004868 A JP2006004868 A JP 2006004868A JP 2006004868 A JP2006004868 A JP 2006004868A JP 2007187374 A JP2007187374 A JP 2007187374A
Authority
JP
Japan
Prior art keywords
gas
furnace
outside
chamber
preheating chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006004868A
Other languages
Japanese (ja)
Other versions
JP4522368B2 (en
Inventor
Hiroyuki Manabe
弘幸 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2006004868A priority Critical patent/JP4522368B2/en
Priority to CN 200710001379 priority patent/CN101004326A/en
Publication of JP2007187374A publication Critical patent/JP2007187374A/en
Application granted granted Critical
Publication of JP4522368B2 publication Critical patent/JP4522368B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tunnel Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous calcination furnace capable of promptly discharging harmful gas generated from a baked article outside the furnace even in a high temperature range, and not requiring a lot of space or incidental equipment outside the furnace. <P>SOLUTION: A large number of gas injection nozzles 4 are disposed in the inner side wall of a furnace chamber 1 into which the baked articles W stacked in a multistage are transferred in a level between the baked articles W. The inside of an inner wall outside each the gas injection nozzle 4 is buried with a gas preheating chamber 5 provided with a heater 9 along a flow passage of injection gas preferably configured by a double porcelain tube. A gas such as nitrogen supplied from the outside is heated to an in-furnace temperature during passage through the gas preheating chamber 5 and is injected into the furnace chamber 1, and the harmful gas generated from the baked article W is discharged outside the furnace from a discharge port 12. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、焼成中に被焼成品から発生する有害な気体を速やかに除去するためのガス打ち込みノズルを備えた連続焼成炉に関するものである。   The present invention relates to a continuous firing furnace provided with a gas injection nozzle for quickly removing harmful gas generated from a product to be fired during firing.

電子部品や各種セラミック製品の焼成には、従来からトンネル炉や台板プッシャー炉のような連続焼成炉が広く使用されている。被焼成品は炉室の内部を移送されながら、所定のヒートカーブに従って加熱、焼成される。   Conventionally, continuous firing furnaces such as tunnel furnaces and base plate pusher furnaces have been widely used for firing electronic parts and various ceramic products. The product to be fired is heated and fired according to a predetermined heat curve while being transferred inside the furnace chamber.

ところが被焼成品の種類によっては、焼成中に有害な気体を発生するものがある。ある種のセラミックの焼成工程では1000〜1100℃の温度域において焼結反応に伴って酸素ガスが発生する。また多くのセラッミックの焼成では、300℃程度の低温域においてバインダーガスを発生する。これらの気体はそのまま炉内に滞留させると焼成品質に悪影響を及ぼすので、できるだけ速やかに炉外に排出することが望まれる。   However, some types of products to be fired generate harmful gases during firing. In a certain ceramic firing step, oxygen gas is generated with a sintering reaction in a temperature range of 1000 to 1100 ° C. In many ceramic firings, a binder gas is generated in a low temperature range of about 300 ° C. If these gases are retained in the furnace as they are, they will adversely affect the firing quality, so it is desirable to discharge them out of the furnace as quickly as possible.

そこで多くのセラミック焼成炉では、炉室内部から循環ファンによりバインダーガスを吸引するとともに、同量の雰囲気ガスを打ち込んでバインダーガスを排出する構造が採用されている。しかしこのような循環ファンを用いる構造は低温域でしか採用できず、1000℃以上の高温域では金属材料の使用が困難であるため、循環構造は採用できない。なお特許文献1には、500℃前後のバインダーガスを含む炉内雰囲気を炉外で循環させるシステムが開示されているが、1000℃以上の高温域では使用が困難である。   Therefore, in many ceramic firing furnaces, a structure is adopted in which the binder gas is sucked from the inside of the furnace chamber by a circulation fan, and the same amount of atmospheric gas is injected to discharge the binder gas. However, such a structure using a circulation fan can be used only in a low temperature range, and since it is difficult to use a metal material in a high temperature range of 1000 ° C. or higher, a circulation structure cannot be used. Patent Document 1 discloses a system for circulating a furnace atmosphere containing a binder gas at around 500 ° C. outside the furnace, but it is difficult to use in a high temperature range of 1000 ° C. or higher.

従って1000℃以上の高温域において炉内から有害な気体を排出するためには、炉外に熱風炉を設け、熱風を炉内に打ち込んで炉内ガスと置換する方法を取らざるを得ない。ところがこの方法では炉外に熱風炉を設置し、ダクトで熱風を導かねばならないので、設備構成が複雑になり余分なスペースが必要となるという問題がある。しかも炉室内部に浮力により形成される温度差を解消するためには、かなりの高速で熱風を炉内に打ち込む必要があり、この方式では対応できない場合がある。
特開平6−94369号公報
Therefore, in order to discharge harmful gas from the furnace in a high temperature range of 1000 ° C. or higher, a hot air furnace must be provided outside the furnace, and hot air is driven into the furnace to replace it with the gas in the furnace. However, in this method, a hot air furnace must be installed outside the furnace, and the hot air must be guided through a duct. Therefore, there is a problem that the equipment configuration becomes complicated and an extra space is required. Moreover, in order to eliminate the temperature difference formed by buoyancy in the furnace chamber, it is necessary to drive hot air into the furnace at a considerably high speed, which may not be possible with this method.
JP-A-6-94369

本発明は上記した従来の問題点を解決し、1000℃以上の高温域においても被焼成品から発生する有害な気体を速やかに炉外に排出することができ、しかも炉外に多くのスペースや付帯設備を要しない連続焼成炉を提供するためになされたものである。   The present invention solves the above-mentioned conventional problems, and can quickly discharge harmful gas generated from the product to be fired to the outside of the furnace even in a high temperature range of 1000 ° C. or more. It was made in order to provide a continuous firing furnace that does not require additional equipment.

上記の課題を解決するためになされた本発明の連続焼成炉は、被焼成品が移送される炉室の内側壁に多数のガス打ち込みノズルを配置するとともに、各ガス打ち込みノズルの外側の炉壁内部に、打ち込みガスの流路に沿って加熱ヒーターを設けたガス予熱室を埋設したことを特徴とするものである。なお、ガス予熱室が打ち込みガスの流路を構成する二重の磁器管と、それらの内部に配置されたコイル状の加熱ヒーターとからなる構造であることが好ましく、炉壁の外部に、各打ち込みガスの流路に均等にガスを配分するためのヘッダー管を設けた構造とすることが好ましい。   The continuous firing furnace of the present invention made to solve the above-mentioned problems has a number of gas injection nozzles arranged on the inner wall of the furnace chamber to which the product to be fired is transferred, and the furnace wall outside each gas injection nozzle. A gas preheating chamber provided with a heater along the flow path of the implantation gas is embedded inside. It is preferable that the gas preheating chamber has a structure composed of a double porcelain tube that forms the flow path for the driving gas and a coiled heater disposed inside the chamber. It is preferable to have a structure in which a header pipe for distributing gas evenly in the flow path of the implantation gas is provided.

本発明の連続焼成炉は、炉壁内部に打ち込みガスの流路に沿って加熱ヒーターを設けたガス予熱室を埋設し、予熱された打ち込みガスを炉室の内側壁に配置されたガス打ち込みノズルから炉室内に直接打込む。このため1000℃以上の高温域においても、被焼成品から発生する有害な気体を速やかに炉外に排出することができる。またガス予熱室は炉壁内部に埋設してあるので、余分なスペースを必要とせず、ガス予熱室は各ガス打ち込みノズル毎に設けてあるので、ガス量を絞った場合にも各ガス打ち込みノズルから均等に打ち込みガスを打込むことができ、またガス温度も均一にすることができる。さらに打ち込みガスが炉壁を冷却する効果があり、炉壁内部で熱交換が行われるので、熱損失を小さくすることができる。   The continuous firing furnace according to the present invention has a gas injection nozzle in which a gas preheating chamber provided with a heater is embedded in the furnace wall along the flow path of the injection gas, and the preheated injection gas is disposed on the inner wall of the furnace chamber Directly into the furnace chamber. For this reason, even in a high temperature range of 1000 ° C. or higher, harmful gas generated from the product to be fired can be quickly discharged out of the furnace. In addition, since the gas preheating chamber is embedded inside the furnace wall, no extra space is required, and a gas preheating chamber is provided for each gas injection nozzle, so each gas injection nozzle can be used even when the amount of gas is reduced. The gas can be injected evenly and the gas temperature can be made uniform. Further, the implanted gas has an effect of cooling the furnace wall, and heat exchange is performed inside the furnace wall, so that heat loss can be reduced.

図1は、本発明を台板プッシャー炉に適用した実施形態を示す断面図である。1は炉室であり、被焼成品Wは台板2上に所定間隔で多段積みされた状態で、図示を略した周知の移送手段により、紙面と垂直方向に間欠的に移送されて行く。被焼成品Wから有害な気体が発生する温度域の左右の内側壁3には、多数のガス打ち込みノズル4が配置されている。この実施形態では被焼成品Wは電子部品であり、ガス打ち込みノズル4は1000℃以上の高温域に配置されている。   FIG. 1 is a sectional view showing an embodiment in which the present invention is applied to a base plate pusher furnace. Reference numeral 1 denotes a furnace chamber, and the products to be fired W are intermittently transferred in a direction perpendicular to the paper surface by well-known transfer means (not shown) in a state where they are stacked in multiple stages on the base plate 2. A large number of gas injection nozzles 4 are arranged on the left and right inner walls 3 in the temperature range where harmful gas is generated from the article to be fired W. In this embodiment, the article to be fired W is an electronic component, and the gas injection nozzle 4 is disposed in a high temperature region of 1000 ° C. or higher.

図1には片側3本ずつのガス打ち込みノズル4が図示されている。しかしこの実施形態では被焼成品Wが9段に積まれているため、ガス打ち込みノズル4は各段の被焼成品Wの中間高さ位置にガスを打ち込めるよう、図2に示すように炉長方向にわずかに位置をずらせて片側8本ずつが配置されている。この実施形態では打ち込みガスは窒素ガスであるが、被焼成品Wの種類や炉内雰囲気によっては、空気その他の任意のガスを用いることもできる。   FIG. 1 shows three gas injection nozzles 4 on each side. However, in this embodiment, since the products to be fired W are stacked in 9 stages, the furnace length as shown in FIG. 2 is set so that the gas injection nozzle 4 can inject gas into the intermediate height position of the products to be fired W in each stage. Eight pieces on each side are arranged slightly shifted in the direction. In this embodiment, the implantation gas is nitrogen gas. However, depending on the type of the article to be fired W and the atmosphere in the furnace, air or any other gas can be used.

それぞれのガス打ち込みノズル4に対応して、ガス予熱室5が設けられている。各ガス予熱室5はガス打ち込みノズル4の外側の炉壁内部に埋設されたもので、ガス打ち込みノズル4とガス予熱室5とは連通させてある。ガス予熱室5は図3、図4に示すように、炉壁6の内部に形成された孔の内部に外側磁器管7と内側磁器管8とを二重に設けて打ち込みガスの流路を形成するとともに、内側磁器管8の外周を取り巻くようにコイル状の加熱ヒーター9を設けたものである。すなわちこの内側磁器管8は、コイル状の加熱ヒーター9の支持体としての機能を有するものである。   A gas preheating chamber 5 is provided corresponding to each gas injection nozzle 4. Each gas preheating chamber 5 is embedded in the furnace wall outside the gas injection nozzle 4, and the gas injection nozzle 4 and the gas preheating chamber 5 communicate with each other. As shown in FIGS. 3 and 4, the gas preheating chamber 5 is provided with a double outer ceramic tube 7 and an inner ceramic tube 8 inside a hole formed in the furnace wall 6 to provide a flow path for the gas to be implanted. While being formed, a coiled heater 9 is provided so as to surround the outer periphery of the inner porcelain tube 8. That is, the inner porcelain tube 8 has a function as a support for the coiled heater 9.

図1に示すように、炉壁6の外部には各打ち込みガスの流路に均等にガスを配分するためのヘッダー管10が設けられており、打ち込みガスはガス予熱室5の内部に外側磁器管7と内側磁器管8とによって形成された流路を通過する間に加熱ヒーター9によって急速に予熱され、ガス打ち込みノズル4から炉室1の内部に打ち込まれる。予熱温度は炉内温度と同等の1000℃以上とすることが好ましい。その速度は1〜10m/秒程度とすることが好ましく、打込みガス量はこの実施形態では4〜5m/hrである。 As shown in FIG. 1, a header pipe 10 is provided outside the furnace wall 6 to distribute the gas evenly to the flow paths of the implanted gas, and the implanted gas is placed in the gas preheating chamber 5 in the outer porcelain. While passing through the flow path formed by the tube 7 and the inner porcelain tube 8, it is rapidly preheated by the heater 9 and driven into the furnace chamber 1 from the gas injection nozzle 4. The preheating temperature is preferably 1000 ° C. or more, which is equal to the furnace temperature. The speed is preferably about 1 to 10 m / second, and the amount of implanted gas is 4 to 5 m 3 / hr in this embodiment.

なお、加熱ヒーター9は温度や経時変化によって抵抗値が変化せず、従って発熱量も変化しないものが好ましく、この実施形態ではFe-Cr-Alの金属ヒーターを使用した。ここで用いた加熱ヒーター9は、図5に示すように2本の並列なコイルを端部において接続した形状であり、各コイルの中心に電極11が配置された構造である。そこで図2に示すように2本のガス打ち込みノズル4をペアとし、各コイルがそれぞれのガス打ち込みノズル4のガス予熱室5に配置されるようにした。   The heater 9 preferably has a resistance value that does not change with temperature and changes with time, and therefore does not change the amount of heat generation. In this embodiment, a Fe—Cr—Al metal heater was used. The heater 9 used here has a shape in which two parallel coils are connected at an end portion as shown in FIG. 5, and an electrode 11 is arranged at the center of each coil. Therefore, as shown in FIG. 2, two gas injection nozzles 4 are paired, and each coil is arranged in the gas preheating chamber 5 of each gas injection nozzle 4.

このように構成された本発明の連続焼成炉は、被焼成品Wを台板2上に多段積みし、炉室1の内部を間欠的に移送しながら所定の温度カーブに沿って加熱焼成を行うものである。被焼成品Wが反応温度(例えば1100℃)に達して有害な気体が発生する位置には、左右の内側壁3に配置された多数のガス打ち込みノズル4から、予熱された窒素ガスが多段に段積みされた被焼成品Wの間隙に高速で吹き込まれ、発生した気体を天井下部の排気口12から炉外に排出する。このため被焼成品Wから発生した気体による焼成品質の低下を防止することができる。   The continuous firing furnace of the present invention configured as described above stacks the products to be fired W on the base plate 2 and performs heat firing along a predetermined temperature curve while intermittently transporting the inside of the furnace chamber 1. Is what you do. Preheated nitrogen gas is multi-staged from a large number of gas injection nozzles 4 arranged on the left and right inner walls 3 at a position where the article to be fired W reaches a reaction temperature (for example, 1100 ° C.) and harmful gas is generated. The air is blown into the gaps between the stacked products to be fired W at a high speed, and the generated gas is discharged from the exhaust port 12 at the bottom of the ceiling to the outside of the furnace. For this reason, the fall of the calcination quality by the gas generated from the to-be-fired goods W can be prevented.

各ガス打ち込みノズル4から打ち込まれるガスは、炉壁内部に埋設されガス予熱室5により炉内温度とほぼ同温度まで加熱されたガスである。すなわち、炉壁6の外部に設けられたヘッダー管10から分配されたガスは、ガス予熱室5の内部に二重に配置された外側磁器管7と内側磁器管8の内部の流路を通過する間に加熱ヒーター9により急速に予熱され、ガス打ち込みノズル4から炉室1の内部に打ち込まれる。このような構造としたため、1000℃以上の高温域においても被焼成品から発生する有害な気体を速やかに炉外に排出することができる。   The gas injected from each gas injection nozzle 4 is a gas embedded in the furnace wall and heated to a temperature substantially equal to the furnace temperature by the gas preheating chamber 5. That is, the gas distributed from the header pipe 10 provided outside the furnace wall 6 passes through the flow paths inside the outer porcelain pipe 7 and the inner porcelain pipe 8 that are doubly arranged inside the gas preheating chamber 5. In the meantime, it is rapidly preheated by the heater 9 and driven into the furnace chamber 1 from the gas injection nozzle 4. Because of such a structure, harmful gas generated from the product to be fired can be quickly discharged out of the furnace even in a high temperature range of 1000 ° C. or higher.

本発明においては、ガス予熱室5は炉壁内部に埋設してある。このため外部に余分なスペースや付帯機器を必要とせず、通常の炉体に要求される厚さの炉壁内部にガス予熱室5を収納することができる。また各ガス打ち込みノズル4毎にガス予熱室5を設けてあるので、ガス量を絞った場合にも各ガス打ち込みノズル4から均等にガスを打込むことができ、ガス温度も均一にすることができる。さらに打ち込みガスが熱交換により炉壁を冷却する効果があるので、炉壁の外側面の温度上昇が抑制され、熱損失を小さくすることができる。なお本発明は台板プッシャー炉に限定されるものではなく、各種形式の連続炉に適用できることはいうまでもない。   In the present invention, the gas preheating chamber 5 is embedded in the furnace wall. For this reason, an extra space and ancillary equipment are not required outside, and the gas preheating chamber 5 can be accommodated inside the furnace wall having a thickness required for a normal furnace body. Further, since the gas preheating chamber 5 is provided for each gas injection nozzle 4, even when the amount of gas is reduced, the gas can be injected uniformly from each gas injection nozzle 4, and the gas temperature can be made uniform. it can. Further, since the implantation gas has an effect of cooling the furnace wall by heat exchange, the temperature rise on the outer surface of the furnace wall is suppressed, and heat loss can be reduced. Needless to say, the present invention is not limited to a base plate pusher furnace, and can be applied to various types of continuous furnaces.

本発明の実施形態を示す断面図である。It is sectional drawing which shows embodiment of this invention. ガス打ち込みノズルの配置を示す側面図である。It is a side view which shows arrangement | positioning of a gas implantation nozzle. ガス予熱室の断面図である。It is sectional drawing of a gas preheating chamber. ガス予熱室の他方向の断面図である。It is sectional drawing of the other direction of a gas preheating chamber. 加熱ヒーターの形状を示す外観図である。It is an external view which shows the shape of a heater.

符号の説明Explanation of symbols

1 炉室
2 台板
3 内側壁
4 ガス打ち込みノズル
5 ガス予熱室
6 炉壁
7 外側磁器管
8 内側磁器管
9 加熱ヒーター
10 ヘッダー管
11 電極
12 排気口
DESCRIPTION OF SYMBOLS 1 Furnace room 2 Base plate 3 Inner side wall 4 Gas injection nozzle 5 Gas preheating chamber 6 Furnace wall 7 Outer porcelain tube 8 Inner porcelain tube 9 Heater 10 Header pipe 11 Electrode 12 Exhaust port

Claims (3)

被焼成品が移送される炉室の内側壁に多数のガス打ち込みノズルを配置するとともに、各ガス打ち込みノズルの外側の炉壁内部に、打ち込みガスの流路に沿って加熱ヒーターを設けたガス予熱室を埋設したことを特徴とする連続焼成炉。   A number of gas injection nozzles are arranged on the inner wall of the furnace chamber to which the product to be fired is transferred, and a heater is provided in the furnace wall outside the gas injection nozzles along the flow path of the injection gas. A continuous firing furnace characterized in that the chamber is embedded. ガス予熱室が、打ち込みガスの流路を構成する二重の磁器管と、それらの内部に配置されたコイル状の加熱ヒーターとからなることを特徴とする請求項1記載の連続焼成炉。   2. The continuous firing furnace according to claim 1, wherein the gas preheating chamber is composed of a double porcelain tube constituting a flow path for the implantation gas, and a coil-shaped heater disposed therein. 炉壁の外部に、各打ち込みガスの流路に均等にガスを配分するためのヘッダー管を設けたことを特徴とする請求項1記載の連続焼成炉。
2. The continuous firing furnace according to claim 1, wherein a header pipe is provided outside the furnace wall for evenly distributing the gas to the flow paths of each implantation gas.
JP2006004868A 2006-01-12 2006-01-12 Furnace generated gas discharge mechanism Active JP4522368B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006004868A JP4522368B2 (en) 2006-01-12 2006-01-12 Furnace generated gas discharge mechanism
CN 200710001379 CN101004326A (en) 2006-01-12 2007-01-11 Continuous sintering oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006004868A JP4522368B2 (en) 2006-01-12 2006-01-12 Furnace generated gas discharge mechanism

Publications (2)

Publication Number Publication Date
JP2007187374A true JP2007187374A (en) 2007-07-26
JP4522368B2 JP4522368B2 (en) 2010-08-11

Family

ID=38342661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006004868A Active JP4522368B2 (en) 2006-01-12 2006-01-12 Furnace generated gas discharge mechanism

Country Status (2)

Country Link
JP (1) JP4522368B2 (en)
CN (1) CN101004326A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108844369B (en) * 2018-06-11 2020-06-26 中国电子科技集团公司第四十八研究所 Box type furnace for simulating lithium battery anode material sintering experiment
CN109682206A (en) * 2018-12-13 2019-04-26 福建荣华科技有限公司 High-efficiency sintered furnace and LiFePO4 process units
CN109668427A (en) * 2018-12-29 2019-04-23 湖南金炉科技股份有限公司 It is heat-treated kiln
CN109668430A (en) * 2018-12-29 2019-04-23 湖南金炉科技股份有限公司 Roller kilns
CN110044176B (en) * 2019-05-23 2020-01-24 郑州釜鼎热能技术有限公司 Combustion device of tunnel kiln for vertical upward-spraying combustion of premixed airflow

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818955U (en) * 1981-07-28 1983-02-05 関屋窯炉工業株式会社 Rapid steel wire heating furnace
JPS62198490U (en) * 1986-06-05 1987-12-17
JPS63142700U (en) * 1987-03-10 1988-09-20
JPH0560465A (en) * 1991-08-30 1993-03-09 Toshiyuki Kitsunai Method of introducing gas into tunnel furnace and tunnel furnace
JPH0694369A (en) * 1992-09-14 1994-04-05 Tdk Corp Atmospheric gas controller for firing furnace
JPH0694371A (en) * 1992-09-11 1994-04-05 Murata Mfg Co Ltd Batch type firing furnace
JPH0814122A (en) * 1994-06-30 1996-01-16 Fuji Heavy Ind Ltd Intake air heating device for engine
JPH08320188A (en) * 1996-04-02 1996-12-03 Taiyo Yuden Co Ltd Fabrication method for ceramic electronic parts
JPH09170713A (en) * 1995-12-20 1997-06-30 Tokyo Gas Co Ltd Heat storage combustion device
JP2003185353A (en) * 2001-12-13 2003-07-03 Tokai Konetsu Kogyo Co Ltd Furnace charged gas heating device for electric furnace
JP2004100972A (en) * 2002-09-05 2004-04-02 Tokai Konetsu Kogyo Co Ltd Electric furnace for baking electronic component
JP2005214453A (en) * 2004-01-27 2005-08-11 Takasago Ind Co Ltd Atmospheric heating furnace

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818955U (en) * 1981-07-28 1983-02-05 関屋窯炉工業株式会社 Rapid steel wire heating furnace
JPS62198490U (en) * 1986-06-05 1987-12-17
JPS63142700U (en) * 1987-03-10 1988-09-20
JPH0560465A (en) * 1991-08-30 1993-03-09 Toshiyuki Kitsunai Method of introducing gas into tunnel furnace and tunnel furnace
JPH0694371A (en) * 1992-09-11 1994-04-05 Murata Mfg Co Ltd Batch type firing furnace
JPH0694369A (en) * 1992-09-14 1994-04-05 Tdk Corp Atmospheric gas controller for firing furnace
JPH0814122A (en) * 1994-06-30 1996-01-16 Fuji Heavy Ind Ltd Intake air heating device for engine
JPH09170713A (en) * 1995-12-20 1997-06-30 Tokyo Gas Co Ltd Heat storage combustion device
JPH08320188A (en) * 1996-04-02 1996-12-03 Taiyo Yuden Co Ltd Fabrication method for ceramic electronic parts
JP2003185353A (en) * 2001-12-13 2003-07-03 Tokai Konetsu Kogyo Co Ltd Furnace charged gas heating device for electric furnace
JP2004100972A (en) * 2002-09-05 2004-04-02 Tokai Konetsu Kogyo Co Ltd Electric furnace for baking electronic component
JP2005214453A (en) * 2004-01-27 2005-08-11 Takasago Ind Co Ltd Atmospheric heating furnace

Also Published As

Publication number Publication date
CN101004326A (en) 2007-07-25
JP4522368B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
US5997286A (en) Thermal treating apparatus and process
JP4522368B2 (en) Furnace generated gas discharge mechanism
JP2006518445A (en) Method and system for uniform heat treatment of materials
JP2008298404A (en) Continuous calcination furnace
JP2009014227A (en) Heat treatment furnace
JP6236088B2 (en) Improved atmosphere control method by secondary gas pressure wave firing
TWI550248B (en) Heat treatment furnace
KR100415166B1 (en) Manufacturing Furnace for Ceramic Elctronic Components
JP5339029B2 (en) Baking furnace control method and baking apparatus
CN212362814U (en) Roller hearth furnace
JPH04273988A (en) Ceramic baking furnace
JP4091754B2 (en) Annular multi-stage furnace
CN218583750U (en) Roller kiln
KR200264956Y1 (en) Manufacturing Furnace for Ceramic Elctronic Components
KR20030039118A (en) Manufacturing Furnace for Ceramic Elctronic Components
KR100558445B1 (en) A continuous sintering furnace having pulse type gas inlet system
JPH0854190A (en) Heat treating box and vertical heat treating furnace
JPH04288478A (en) Continuous baking furnace
JPH07309673A (en) Firing method of ceramic electronic part and firing device
JPH0741396U (en) Multi-stage muffle furnace
KR200264955Y1 (en) Manufacturing Furnace for Ceramic Elctronic Components
JP2847543B2 (en) Atmosphere heat treatment furnace
JP2003185353A (en) Furnace charged gas heating device for electric furnace
JP2004100972A (en) Electric furnace for baking electronic component
JPH10300355A (en) Atmosphere kiln

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100525

R150 Certificate of patent or registration of utility model

Ref document number: 4522368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140604

Year of fee payment: 4