JP2007185026A - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
JP2007185026A
JP2007185026A JP2006000718A JP2006000718A JP2007185026A JP 2007185026 A JP2007185026 A JP 2007185026A JP 2006000718 A JP2006000718 A JP 2006000718A JP 2006000718 A JP2006000718 A JP 2006000718A JP 2007185026 A JP2007185026 A JP 2007185026A
Authority
JP
Japan
Prior art keywords
switching element
gate
igbt
conductor
flat conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006000718A
Other languages
Japanese (ja)
Inventor
Hiroshi Kosaka
広 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006000718A priority Critical patent/JP2007185026A/en
Publication of JP2007185026A publication Critical patent/JP2007185026A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power conversion device having a main circuit that is less susceptible to main circuit noise and can be controlled at high speed, by reducing the inductance of a control signal wiring connecting the gate and emitter terminals of a switching element of a power converter and the control signal output section of a gate driver. <P>SOLUTION: The power conversion device includes the self-arc-suppressing switching element and the flat conductor of a main circuit wiring. One or more holes that penetrate the flat conductor are provided in the flat conductor. A signal wire for controlling the switching element is inserted into this through hole. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、鉄道車両用の電力変換装置など電力変換装置一般に関わり、特に主回路を構成するスイッチング素子を高速かつ、安定動作させた電力変換装置に関する。   The present invention relates to power converters in general, such as power converters for railway vehicles, and more particularly to a power converter in which switching elements constituting a main circuit are operated at high speed and stably.

従来、電力変換器の主回路配線は、細長い導体バーや電線が使用されてきた。しかし、この構成では主回路配線のインダクタンスが大きく、スイッチング素子をオン、オフした際の跳ね上り電圧が大きくなる問題がある。このため、近年、配線インダクタンスを低減する方法として、特許文献1から特許文献6などに記載の通り、主回路配線を幅広の平板状導体としかつ主回路を構成するループ上の往路と復路を極力近接して配置する手法がとられている。   Conventionally, elongate conductor bars and electric wires have been used for main circuit wiring of power converters. However, in this configuration, there is a problem that the inductance of the main circuit wiring is large, and the jumping voltage when the switching element is turned on / off becomes large. Therefore, in recent years, as a method for reducing the wiring inductance, as described in Patent Document 1 to Patent Document 6, the main circuit wiring is formed as a wide flat conductor and the forward path and the return path on the loop constituting the main circuit are made as much as possible. A method of arranging them close to each other is taken.

特開平6−38507号公報JP-A-6-38507 特開平6−225545号公報JP-A-6-225545 特開平6−327266号公報JP-A-6-327266 特開平7−131981号公報Japanese Patent Laid-Open No. 7-131981 特開平9−47036号公報JP 9-47036 A 特開平9−70184号公報JP-A-9-70184

上記のような幅広の平板状導体により主回路を構成すると、スイッチング素子として、近年の電力変換装置における主流である、外部制御信号を利用する自己消弧型の素子を利用する場合、スイッチング素子の信号入力部であるゲート及びエミッタ端子と、制御信号をスイッチング素子に供給するゲートドライバ間のゲート制御信号配線は主回路を迂回する必要があり、配線が長くなる。この結果、ゲート制御信号配線の寄生インダクタンスが大きくなり、主回路電流の影響を受けやすくなってゲート誤動作により素子破壊を起こし電力変換器が機能停止したり、スイッチング素子の高速な制御が妨げられて、電力変換器の低損失化が実現できないといった状況が発生する。   When the main circuit is constituted by the wide flat conductor as described above, when a self-extinguishing element using an external control signal, which is the mainstream in recent power converters, is used as a switching element, The gate control signal wiring between the gate and emitter terminals, which are signal inputs, and the gate driver that supplies the control signal to the switching element needs to bypass the main circuit, and the wiring becomes long. As a result, the parasitic inductance of the gate control signal wiring becomes large, and it is easily affected by the main circuit current, causing the gate breakdown to cause element destruction and the power converter to stop functioning, preventing high-speed control of the switching element. Therefore, a situation occurs in which the loss reduction of the power converter cannot be realized.

本発明の課題は、電力変換器のスイッチング素子のゲート、エミッタ端子とゲートドライバの制御信号出力部を結ぶゲート制御信号配線の寄生インダクタンスを低減することにより、誤動作しにくく、かつ高速制御可能な主回路を有する主変換装置を実現することにある。   The object of the present invention is to reduce the parasitic inductance of the gate control signal wiring connecting the gate and emitter terminals of the switching element of the power converter and the control signal output part of the gate driver, thereby preventing malfunctions and enabling high-speed control. It is to realize a main converter having a circuit.

上記課題を解決するために、本発明の電力変換装置は、自己消弧型のスイッチング素子、該スイッチング素子の主端子間および他の構成部品とを接続する平板状導体、該スイッチング素子を制御するゲートドライバ、とを具備する電力変換装置において、平板状導体の少なくとも1箇所以上に該平板状導体を貫通する穴を設け、該スイッチング素子を制御する信号線を該貫通穴に通して構成することを特徴とする。   In order to solve the above-mentioned problems, a power converter according to the present invention controls a self-extinguishing type switching element, a flat conductor connecting main terminals of the switching element and other components, and controlling the switching element. In a power conversion device comprising a gate driver, a hole penetrating the flat conductor is provided in at least one place of the flat conductor, and a signal line for controlling the switching element is formed through the through hole. It is characterized by.

本発明によれば、平板状導体を貫通する穴を利用することにより、ゲート制御信号を配線するにあたり、主回路配線を構成する平板状導体を迂回することなく、貫通穴を経由して最短で制御信号を配線することができ、ゲート制御配線インダクタンスを低減できる。また、平板状導体に設けた貫通穴を通る制御配線は平板状導体に対して直交するため、平板状導体を流れる主回路電流の誘導を受けにくく、誤動作しにくい。この結果、誤動作しにくく、かつ高速制御可能な主回路を有する主変換装置装置を実現できる。   According to the present invention, by using a hole penetrating the flat conductor, when routing the gate control signal, the shortest via the through hole without bypassing the flat conductor constituting the main circuit wiring. Control signals can be wired, and gate control wiring inductance can be reduced. Further, since the control wiring passing through the through hole provided in the flat conductor is orthogonal to the flat conductor, it is difficult to receive the induction of the main circuit current flowing through the flat conductor and malfunction. As a result, it is possible to realize a main converter device having a main circuit that is less likely to malfunction and that can be controlled at high speed.

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施例1の電力変換装置の平面図を示す。IGBT(Insulated Gate Bipolar Transistor)を用いた2レベル電力変換器の例である。簡単のため一相分のみを示し、本発明に関わる部分である、主回路を構成する平板状導体部分、スイッチング素子であるIGBT、IGBTの主端子及びゲート制御端子、ゲートドライバ、ゲート制御配線を示し、フィルタコンデンサなどの他の構成部品は省略してある。 1 is a plan view of a power conversion device according to a first embodiment of the present invention. It is an example of a two-level power converter using IGBT (I nsulated G ate B ipolar T ransistor). For simplicity, only one phase is shown, and the part related to the present invention is the flat conductor part constituting the main circuit, the IGBT as the switching element, the main terminal and gate control terminal of the IGBT, the gate driver, and the gate control wiring. Other components such as a filter capacitor are omitted.

1は電源正側に接続される平板状の正側導体、2は交流出力側の平板状の交流側導体、3は電源負側に接続される平板状の負側導体、5は2レベル電力変換器の上アーム側IGBT、6は下アーム側IGBTである。50は上アーム側IGBT5のコレクタ主端子であり、正側導体1と電気的に接続する。51は上アーム側IGBT5のエミッタ主端子であり、交流側導体2と電気的に接続する。52は下アーム側IGBT6のコレクタ主端子であり、交流側導体2と電気的に接続する。53は下アーム側IGBT6のエミッタ主端子であり、負側導体3と電気的に接続する。9は負側導体3とIGBT6のエミッタ主端子53間を電気的に接続するために交流側導体2に設けた主回路配線用の貫通穴、25はIGBTのゲート制御用のゲート・エミッタ端子である。30、31はゲートドライバで、ゲート制御配線10を通じて、IGBTのゲート・エミッタ端子25と電気的に接続する。   1 is a flat positive conductor connected to the power supply positive side, 2 is a flat AC conductor on the AC output side, 3 is a flat negative conductor connected to the power negative side, and 5 is a two-level power. The upper arm side IGBT 6 and 6 of the converter are the lower arm side IGBT. Reference numeral 50 denotes a collector main terminal of the upper arm IGBT 5 and is electrically connected to the positive conductor 1. An emitter main terminal 51 of the upper arm side IGBT 5 is electrically connected to the AC side conductor 2. 52 is a collector main terminal of the lower arm side IGBT 6 and is electrically connected to the AC side conductor 2. 53 is an emitter main terminal of the lower arm IGBT 6 and is electrically connected to the negative conductor 3. 9 is a through hole for main circuit wiring provided in the AC side conductor 2 to electrically connect the negative side conductor 3 and the emitter main terminal 53 of the IGBT 6, and 25 is a gate / emitter terminal for gate control of the IGBT. is there. Reference numerals 30 and 31 denote gate drivers, which are electrically connected to the gate / emitter terminal 25 of the IGBT through the gate control wiring 10.

10は概念的に判り易いよう一部を除き一本線で示してあるが、実際には往路と復路からなる2本線で構成し、絶縁被覆を有するとともに、低インダクタンス化やノイズの誘導を防ぐため同軸もしくは撚り線とする。70はゲートドライバ固定板でゲートドライバ30、31を固定する。4はゲート制御配線10を通すために、交流側導体2と負側導体3にそれぞれ設けた貫通穴である。100はIGBT用の放熱板であり、上アーム側IGBT5、下アーム側IGBT6の放熱ベースに接触する。   10 is shown as a single line except for a part so as to be conceptually easy to understand. Actually, it is composed of two lines consisting of a forward path and a return path, and has an insulation coating, in order to prevent low inductance and noise induction. Coaxial or stranded wire. A gate driver fixing plate 70 fixes the gate drivers 30 and 31. Reference numeral 4 denotes through holes provided in the AC side conductor 2 and the negative side conductor 3 in order to pass the gate control wiring 10. Reference numeral 100 denotes an IGBT heat dissipation plate, which contacts the heat dissipation bases of the upper arm side IGBT 5 and the lower arm side IGBT 6.

図5には、図1にある3つの平板状導体の構造が容易に判るように、それぞれ単体で示す。図4には、図1の実施例1に相当する回路図を示す。200は正側導体1、並びに負側導体3に電気的に接続し、これら導体の電圧レベルを安定させるフィルタコンデンサである。単相、並びに多相電力変換器の基本となる一相分の構成であり、この回路構成を内包する種々の電力変換器で本発明の効果を期待できる。   FIG. 5 shows each of the three flat conductors shown in FIG. 1 as a single unit so that the structure can be easily understood. FIG. 4 shows a circuit diagram corresponding to the first embodiment of FIG. A filter capacitor 200 is electrically connected to the positive-side conductor 1 and the negative-side conductor 3 to stabilize the voltage level of these conductors. This is a single-phase and multi-phase power converter configuration, and the effects of the present invention can be expected with various power converters including this circuit configuration.

図2は、図1の実施例1を側面からみた図である。最下層に放熱板100に接する形でIGBT5、6を配置し、各々の上層に近接して、正側導体1、交流側導体2を、1、2の上層に負側導体3を近接して配置する。さらに、これらの上層にゲートドライバ30、31をゲートドライバ固定板70に固定して配置する。正側導体1は上アーム側IGBT5のコレクタ主端子50と端子スペーサ60を介して電気的に接続する。交流側導体2は一方で上アーム側IGBT5のエミッタ主端子51と端子スペーサ61を介して電気的に接続し、もう一方で下アーム側IGBT6のコレクタ主端子52と端子スペーサ62を介して電気的に接続する。負側導体3は、交流側導体2に設けた貫通穴9を2と電気的に絶縁させて貫通する端子スペーサ63を介して、下アーム側IGBT6のエミッタ主端子53と電気的に接続する。ゲート制御配線10は、交流側導体2と負側導体3に設けた貫通穴4を経由することにより、ゲートドライバ配置平面とIGBT配置平面間を最短で配線する。   FIG. 2 is a side view of Example 1 of FIG. The IGBTs 5 and 6 are arranged in contact with the heat sink 100 at the lowermost layer, close to each upper layer, the positive side conductor 1 and the AC side conductor 2, and the negative side conductor 3 near the upper layer 1 and 2. Deploy. Furthermore, the gate drivers 30 and 31 are fixed to the gate driver fixing plate 70 and arranged on these upper layers. The positive side conductor 1 is electrically connected to the collector main terminal 50 of the upper arm side IGBT 5 via the terminal spacer 60. The AC side conductor 2 is electrically connected to the emitter main terminal 51 of the upper arm side IGBT 5 via the terminal spacer 61 on the one hand, and is electrically connected to the collector side terminal 52 and terminal spacer 62 of the lower arm side IGBT 6 on the other hand. Connect to. The negative side conductor 3 is electrically connected to the emitter main terminal 53 of the lower arm side IGBT 6 through a terminal spacer 63 that penetrates the through hole 9 provided in the AC side conductor 2 while being electrically insulated from 2. The gate control wiring 10 is routed between the gate driver placement plane and the IGBT placement plane in the shortest distance through the through hole 4 provided in the AC side conductor 2 and the negative side conductor 3.

図3は、従来方式の形態を図1との対比で示した図である。図3の従来方式では、主回路を構成する平板状導体である交流側導体2、負側導体3は制御配線用の貫通穴を有しておらず、IGBTゲート・エミッタ端子25とゲートドライバ30、31を電気的に接続するゲート制御配線10は、平板状導体2、3を迂回して配線している。このようにゲート制御配線が長くなると、ゲート配線のインダクタンスが大きくなり、主回路スイッチングに伴うノイズがゲート制御配線に誘導しやすくなり、IGBTのゲート制御信号に誤信号がのってIGBTを誤動作させる危険性が大きくなり、誤動作のタイミングによっては、上下アームIGBTを同時オンさせて、素子破壊し、電力変換器の機能が停止する場合がある。また、ゲート配線インダクタンスが大きいと、ゲート制御信号を鈍らせやすくなり、高速な制御を妨げることになる。スイッチング素子は近年性能向上のために高速化が図られており、ゲート制御も高速な動作が要求されつつあるため、充分にスイッチング素子の性能を活用できず、電力変換器としての性能も制限されてしまう。   FIG. 3 is a diagram showing the configuration of the conventional system in comparison with FIG. In the conventional system of FIG. 3, the AC side conductor 2 and the negative side conductor 3, which are flat conductors constituting the main circuit, do not have through holes for control wiring, but the IGBT gate / emitter terminal 25 and the gate driver 30. , 31 are electrically connected to each other so as to bypass the flat conductors 2 and 3. When the gate control wiring becomes longer in this way, the inductance of the gate wiring increases, noise due to main circuit switching is easily induced in the gate control wiring, and an erroneous signal is added to the gate control signal of the IGBT, causing the IGBT to malfunction. Depending on the timing of malfunction, the upper and lower arm IGBTs may be turned on at the same time, causing element destruction and stopping the function of the power converter. Further, if the gate wiring inductance is large, the gate control signal is likely to be dulled, and high-speed control is hindered. In recent years, switching devices have been speeded up in order to improve performance, and gate control is also required to operate at high speed. Therefore, the performance of switching devices cannot be fully utilized, and the performance as a power converter is limited. End up.

一方、本発明によれば、図1にあるように、主回路を構成する平板状導体にゲート制御配線を通すための貫通穴を設けてあり、この貫通穴を経由することで、自己消弧型素子のゲート・エミッタ制御端子とゲートドライバの間のゲート制御配線を最短で結ぶことができる。この結果、ゲート制御配線の配線インダクタンスを小さくでき、主回路スイッチング素子のスイッチングノイズの誘導を小さくし、ゲート信号の誤動作が発生しにくいとともに、高速なゲート信号の伝達も妨げにくくなり、高速制御可能な主変換装置装置を実現する。   On the other hand, according to the present invention, as shown in FIG. 1, a through hole for passing the gate control wiring is provided in the flat conductor constituting the main circuit, and the self-extinguishing is made through the through hole. The gate control wiring between the gate / emitter control terminal of the mold element and the gate driver can be connected in the shortest distance. As a result, the wiring inductance of the gate control wiring can be reduced, the induction of switching noise in the main circuit switching element can be reduced, gate signal malfunctions are less likely to occur, and high-speed gate signal transmission is less likely to be hindered, enabling high-speed control. A main conversion device is realized.

図6、7は、本発明の実施例2の電力変換装置を示す。図6は平面図を、図7はその側面図を示す。図1において、IGBT5に対し180回転した向きにあるIGBT6の配置を、IGBT5と同じ向きとして配置した構造を有する。主回路構造がより単純となり、図1の実施例1において必要であった、交流側導体2と下アーム側IGBT6のエミッタ主端子53を電気的に接続するために負側導体2に設けた貫通穴9が不要となるほか、下アーム側IGBT6についてはそのゲート・エミッタ端子25が平板状導体で覆われないため、制御配線用の貫通穴は上アーム側IGBT5についてのみ設ければ良い。この場合についても、図1の実施例1同様、ゲート制御配線の短縮が図られ、同様な効果が実現できる。   6 and 7 show a power conversion apparatus according to Embodiment 2 of the present invention. 6 is a plan view and FIG. 7 is a side view thereof. In FIG. 1, the IGBT 6 is disposed in the same direction as the IGBT 5 in the direction rotated 180 with respect to the IGBT 5. The main circuit structure becomes simpler and the penetration provided in the negative side conductor 2 to electrically connect the AC side conductor 2 and the emitter main terminal 53 of the lower arm side IGBT 6 which is necessary in the first embodiment of FIG. In addition to the need for the hole 9, the gate / emitter terminal 25 of the lower arm side IGBT 6 is not covered with the flat conductor, so that a through hole for the control wiring may be provided only for the upper arm side IGBT 5. Also in this case, the gate control wiring can be shortened and the same effect can be realized as in the first embodiment of FIG.

本発明は、図1、図6に示した実施例1、実施例2に限定されるものでなく、これらの各実施例の中においても種々の変形が可能なのはもちろんである。
例えば、図1、図6の各実施例において、ゲート制御配線用の貫通穴4はゲート・エミッタ端子の直上に配置してあるが、必ずしもこのような配置とする必要はなく、平板状導体の幅に対して、ゲート・エミッタ端子とゲート制御配線が経由する貫通穴の距離が充分短ければ、本発明の効果は達成される。また、貫通穴4の大きさは概念的に判りやすいように大きく示してあるが、平板状導体との間で必要な電気絶縁が確保される範囲において充分小さくでき、主回路電流の流路への影響を最小限にできる。
The present invention is not limited to the first embodiment and the second embodiment shown in FIGS. 1 and 6, and various modifications can be made in these embodiments.
For example, in each of the embodiments shown in FIGS. 1 and 6, the through hole 4 for the gate control wiring is disposed immediately above the gate / emitter terminal. The effect of the present invention can be achieved if the distance between the through hole through which the gate / emitter terminal and the gate control wiring pass is sufficiently short with respect to the width. Further, the size of the through hole 4 is shown large so as to be conceptually easy to understand, but it can be made sufficiently small as long as necessary electrical insulation is ensured between the flat conductor and the flow path of the main circuit current. Can be minimized.

主回路構成についても、上記の例であげたIGBT素子2直列で構成される2レベル電力変換器に限定されず、IGBT素子4個直列で構成される3レベル電力変換器や、可制御電流を増やすためIGBT素子を複数個並列で構成したものについても容易に拡張することができる。これらの例では主回路構造がより複雑化し、平板状導体の大きさも拡大するため、従来方式におけるゲート制御配線の迂回による配線長もさらに増加する。そのため、本発明による改善がより一層期待できる。   The main circuit configuration is not limited to the two-level power converter configured in series with the IGBT element 2 described in the above example, but a three-level power converter configured with four IGBT elements in series, or a controllable current. In order to increase the number, a plurality of IGBT elements arranged in parallel can be easily expanded. In these examples, the main circuit structure becomes more complicated and the size of the flat conductor increases, so that the wiring length due to the bypass of the gate control wiring in the conventional system further increases. Therefore, the improvement by this invention can be expected further.

また、構成要素であるスイッチング素子についてもIGBTに限定されず、他の種々の自己消弧型素子を使用しても同様に適用できるほか、スイッチング素子の主端子構造も上記の実施形態に示した3端子に限定されることなく種々の主端子構造のものに適用できることはもちろんである。   In addition, the switching element as a constituent element is not limited to the IGBT, but can be similarly applied even when other various self-extinguishing elements are used, and the main terminal structure of the switching element is also shown in the above embodiment. Needless to say, the present invention is not limited to three terminals and can be applied to various main terminal structures.

また、製造上の種々の変形も可能であり、図2に示した平板状導体と端子スペーサは図のように個別に製造することのほか、互いに電気的に接続する平板状導体と端子スペーサをそれぞれ一体化して製造することも可能である。この場合でも、本発明による効果は同様に達せられる。   Also, various modifications in manufacturing are possible, and the flat conductor and terminal spacer shown in FIG. 2 are manufactured individually as shown in FIG. It is also possible to manufacture them integrally. Even in this case, the effect of the present invention can be achieved similarly.

上記の各実施例は電力変換器の一相分の構造を取り出して示してある。従って、単相はもちろん、3相以上の多相の変換器においても適用することが可能である。   In each of the above embodiments, the structure of one phase of the power converter is taken out and shown. Therefore, it can be applied not only to a single phase but also to a multi-phase converter having three or more phases.

本発明の実施例1の電力変換装置を示す平面図である。It is a top view which shows the power converter device of Example 1 of this invention. 図1の実施例1の側面図である。It is a side view of Example 1 of FIG. 従来例の電力変換装置の例を示す平面図である。It is a top view which shows the example of the power converter device of a prior art example. 図1の実施例1に相当する回路図である。FIG. 2 is a circuit diagram corresponding to Example 1 of FIG. 1. 図1の実施例1における各平板状導体の平面形状を示す図である。It is a figure which shows the planar shape of each flat conductor in Example 1 of FIG. 本発明の実施例2の電力変換装置を示す平面図である。It is a top view which shows the power converter device of Example 2 of this invention. 図6の実施例2の側面図である。It is a side view of Example 2 of FIG.

符号の説明Explanation of symbols

1 正側導体(P)
2 交流側導体(M)
3 負側導体(N)
4 導体貫通穴(ゲート制御配線用)
5 上アーム側IGBTモジュール
6 下アーム側IGBTモジュール
9 導体貫通穴(主回路用)
10 IGBTゲート制御配線
25 IGBT制御用ゲート・エミッタ端子
50 上アーム側IGBTコレクタ主端子
51 上アーム側IGBTエミッタ主端子
52 下アーム側IGBTコレクタ主端子
53 下アーム側IGBTエミッタ主端子
60〜63 端子スペーサ
30〜31 ゲートドライバ
70 ゲートドライバ固定板
100 放熱板
200 フィルタコンデンサ
1 Positive conductor (P)
2 AC side conductor (M)
3 Negative conductor (N)
4 Conductor through hole (for gate control wiring)
5 Upper arm side IGBT module 6 Lower arm side IGBT module 9 Conductor through hole (for main circuit)
10 IGBT gate control wiring 25 IGBT control gate / emitter terminal 50 Upper arm side IGBT collector main terminal 51 Upper arm side IGBT emitter main terminal 52 Lower arm side IGBT collector main terminal 53 Lower arm side IGBT emitter main terminal 60 to 63 Terminal spacer 30 to 31 Gate driver 70 Gate driver fixing plate 100 Heat sink 200 Filter capacitor

Claims (2)

自己消弧型のスイッチング素子、該スイッチング素子の主端子間および他の構成部品とを接続する平板状導体、該スイッチング素子を制御するゲートドライバ、とを具備する電力変換装置において、
該平板状導体の少なくとも1箇所以上に該平板状導体を貫通する穴を設け、該スイッチング素子を制御する信号線を該貫通穴に通してあることを特徴とする電力変換装置。
In a power conversion device comprising a self-extinguishing type switching element, a flat conductor connecting between main terminals of the switching element and other components, and a gate driver for controlling the switching element,
A power conversion device, wherein a hole penetrating the flat conductor is provided in at least one portion of the flat conductor, and a signal line for controlling the switching element is passed through the through hole.
請求項1に記載の電力変換装置において、
該貫通穴を該スイッチング素子の制御端子を含む平面に投影した少なくとも一部が、該平面上において、該制御端子を基点とし該制御端子と該平板状導体との距離で囲んだ領域内に含まれてあることを特徴とする電力変換装置。
The power conversion device according to claim 1,
At least a portion of the through-hole projected onto a plane including the control terminal of the switching element is included in a region surrounded by the distance between the control terminal and the flat conductor on the plane. A power conversion device characterized by that.
JP2006000718A 2006-01-05 2006-01-05 Power conversion device Pending JP2007185026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006000718A JP2007185026A (en) 2006-01-05 2006-01-05 Power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006000718A JP2007185026A (en) 2006-01-05 2006-01-05 Power conversion device

Publications (1)

Publication Number Publication Date
JP2007185026A true JP2007185026A (en) 2007-07-19

Family

ID=38340650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006000718A Pending JP2007185026A (en) 2006-01-05 2006-01-05 Power conversion device

Country Status (1)

Country Link
JP (1) JP2007185026A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010028877A (en) * 2008-07-15 2010-02-04 Meidensha Corp Power conversion apparatus
WO2014136271A1 (en) * 2013-03-08 2014-09-12 株式会社東芝 Power converter for vehicle
JP2014209812A (en) * 2013-04-16 2014-11-06 株式会社日立製作所 Semiconductor element and wiring structure of power conversion device
EP2928057A1 (en) 2014-04-03 2015-10-07 Hitachi, Ltd. Power converting device and railway vehicle mounted with the same
GB2529018A (en) * 2014-06-11 2016-02-10 Hitachi Ltd Power converter
JP2016140138A (en) * 2015-01-26 2016-08-04 株式会社Ihi Power converter
JPWO2017199304A1 (en) * 2016-05-16 2018-08-30 三菱電機株式会社 Motor drive device and air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229681A (en) * 1997-02-18 1998-08-25 Hitachi Ltd Switching device for electric car
JPH11341788A (en) * 1998-05-22 1999-12-10 Mitsubishi Electric Corp Passive filter device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229681A (en) * 1997-02-18 1998-08-25 Hitachi Ltd Switching device for electric car
JPH11341788A (en) * 1998-05-22 1999-12-10 Mitsubishi Electric Corp Passive filter device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010028877A (en) * 2008-07-15 2010-02-04 Meidensha Corp Power conversion apparatus
WO2014136271A1 (en) * 2013-03-08 2014-09-12 株式会社東芝 Power converter for vehicle
CN105027411A (en) * 2013-03-08 2015-11-04 株式会社东芝 Power converter for vehicle
JPWO2014136271A1 (en) * 2013-03-08 2017-02-09 株式会社東芝 Power converter for vehicle
CN105027411B (en) * 2013-03-08 2017-09-05 株式会社东芝 Electric power conversion device for vehicle
JP2014209812A (en) * 2013-04-16 2014-11-06 株式会社日立製作所 Semiconductor element and wiring structure of power conversion device
EP2928057A1 (en) 2014-04-03 2015-10-07 Hitachi, Ltd. Power converting device and railway vehicle mounted with the same
GB2529018A (en) * 2014-06-11 2016-02-10 Hitachi Ltd Power converter
GB2529018B (en) * 2014-06-11 2016-08-17 Hitachi Ltd Power converter
JP2016140138A (en) * 2015-01-26 2016-08-04 株式会社Ihi Power converter
JPWO2017199304A1 (en) * 2016-05-16 2018-08-30 三菱電機株式会社 Motor drive device and air conditioner

Similar Documents

Publication Publication Date Title
US9106124B2 (en) Low-inductance power semiconductor assembly
JP2007185026A (en) Power conversion device
JP6400201B2 (en) Power semiconductor module
US9041052B2 (en) Semiconductor device, semiconductor unit, and power semiconductor device
US10951128B2 (en) Main circuit wiring member and power conversion device
JP4164810B2 (en) Power semiconductor module
CN107710580B (en) Circuit arrangement for fast switching of a converter
JP3709512B2 (en) Main circuit structure of power converter
JP2003018860A (en) Power converter
JP2005235816A (en) Semiconductor power module
JP5906313B2 (en) Power converter
JP2007325387A (en) Power conversion device
JP2004134460A (en) Semiconductor device
JP4170763B2 (en) Circuit structure for current switching circuit
US11145634B2 (en) Power converter
JP2004056984A (en) Power converting device
JPWO2019146179A1 (en) Electric railroad vehicle equipped with a power converter and a power converter
JP5949254B2 (en) Power converter
JPH03108749A (en) Transistor module for power converter
JP2016184667A (en) Semiconductor device
JP2000216331A (en) Power semiconductor module and electric conversion device using the module
JP2013169114A (en) Power conversion device
JP5858800B2 (en) Power converter
WO2023140077A1 (en) Semiconductor device and inverter provided with semiconductor device
JP5840527B2 (en) Circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208